初三数学圆经典例题
初三圆的练习题及答案
初三圆的练习题及答案初三圆的练习题及答案在初三数学学习中,圆是一个重要的几何概念。
掌握圆的性质和相关的计算方法对于解题非常关键。
本文将为大家提供一些圆的练习题及其答案,希望能够帮助大家更好地理解和应用圆的知识。
一、填空题1. 半径为5cm的圆的面积是多少?答案:面积=πr²=π×5²=25π cm²2. 已知一个圆的半径为8cm,求该圆的周长。
答案:周长=2πr=2π×8=16π cm3. 如果一个圆的面积是36π cm²,求该圆的半径。
答案:面积=πr²,36π=πr²,r²=36,r=6 cm二、选择题1. 以下哪个选项是圆的定义?A. 一个平面上的所有点到一个固定点的距离相等。
B. 一个平面上的所有点到一个固定点的距离之和相等。
C. 一个平面上的所有点到一个固定直线的距离相等。
D. 一个平面上的所有点到一个固定点的距离比例相等。
答案:A. 一个平面上的所有点到一个固定点的距离相等。
2. 以下哪个选项是圆的面积公式?A. 面积=πr²B. 面积=2πrC. 面积=πdD. 面积=πr答案:A. 面积=πr²三、计算题1. 已知一个圆的直径为12cm,求该圆的面积和周长。
答案:半径r=直径/2=12/2=6 cm面积=πr²=π×6²=36π cm²周长=2πr=2π×6=12π cm2. 一个圆的周长为18π cm,求该圆的半径和面积。
答案:周长=2πr=18π cm,解得r=9 cm面积=πr²=π×9²=81π cm²四、应用题1. 一个圆形花坛的半径为5 m,围绕花坛建一个小路,小路的宽度为2 m。
求小路的面积。
答案:外圆的半径=花坛半径+小路宽度=5+2=7 m内圆的半径=花坛半径=5 m小路的面积=外圆面积-内圆面积=π(外圆半径²-内圆半径²)=π(7²-5²)=π(49-25)=24π m²2. 一个圆形游泳池的直径为10 m,池边修建一条环形的跑道,跑道的宽度为2 m。
初中初三数学圆试题及答案
初中初三数学圆试题及答案一、选择题(每题2分,共10分)1. 圆的半径是10,那么圆的直径是()A. 5B. 20C. 15D. 252. 已知圆心为O,点A在圆上,OA的长度是半径的2倍,那么点A()A. 在圆内B. 在圆上C. 在圆外D. 不存在3. 圆的周长公式是()A. C = πdB. C = 2πrC. C = πrD. C = 4r4. 圆的面积公式是()A. S = πr²B. S = πd²C. S = 2πrD. S = πd5. 如果一个圆的半径增加1cm,那么它的面积将增加多少平方厘米?(π取3.14)A. 3.14B. 6.28C. 2πD. π二、填空题(每题2分,共10分)1. 半径为r的圆的周长是______。
2. 半径为r的圆的面积是______。
3. 如果一个扇形的圆心角为30°,半径为5cm,那么它的弧长是______。
4. 一个圆的直径是20cm,那么它的半径是______。
5. 圆周角定理指出,圆周上一点到圆心的两条半径所夹的角是圆心角的______。
三、解答题(每题5分,共30分)1. 已知圆O的半径为5cm,点P在圆O上,求OP的长度。
答案:OP的长度为5cm。
2. 一个圆的周长是44cm,求这个圆的半径。
答案:设半径为r,根据周长公式C = 2πr,44 = 2 × 3.14 × r,解得r = 7cm。
3. 一个圆的面积是78.5平方厘米,求这个圆的半径。
答案:设半径为r,根据面积公式S = πr²,78.5 = 3.14 × r²,解得r = √(78.5 / 3.14) ≈ 5cm。
4. 已知圆心角为60°,半径为10cm的扇形,求这个扇形的弧长。
答案:弧长= (60/360) × 2π × 10 = π × 10 = 31.4cm。
九年级数学上册第二十四章圆典型例题(带答案)
九年级数学上册第二十四章圆典型例题单选题1、如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.√2D.1答案:B分析:连接OA,如图,先根据垂径定理得到AE=BE=4,再利用勾股定理计算出OE=3,然后计算OC﹣OE即可.解:连接OA,如图,∵AB⊥CD,∴AE=BE=1AB=4,2在Rt△OAE中,OE=√OA2−AE2=√52−42=3,∴CE=OC﹣OE=5﹣3=2.故选:B.小提示:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理,掌握垂径定理是解题的关键.2、已知⊙O的半径为3,OA=5,则点A和⊙O的位置关系是()A.点A在圆上B.点A在圆外C.点A在圆内D.不确定答案:B分析:根据点与圆的位置关系的判定方法进行判断,OA小于半径则在圆内,OA等于半径则在圆上,OA大于半径则在圆外.解:∵⊙O的半径为3,OA=5,即A与点O的距离大于圆的半径,所以点A与⊙O外.故选:B.小提示:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD =DC =12AC =2√2 ∴OD 是△ABC 的中位线∴BC =2OD∵OA 2=OD 2+AD 2∴(4−x)2=x 2+(2√2)2,解得x =1∴BC =2OD =2x =2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD 的长是解题的关键.4、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.5、斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为( )A .54B .2C .52D .4答案:A分析:根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可. 解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长l =2π×5×14=52π设圆锥底面半径为r ,则2πr =52π ∴r =54故选:A .小提示:本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.6、如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM 的度数是( )A .36°B .45°C .48°D .60°答案:C分析:如图,连接AO .利用正多边形的性质求出∠AOM ,∠AOB ,可得结论.解:如图,连接AO.∵△AMN是等边三角形,∴∠ANM=60°,∴∠AOM=2∠ANM=120°,∵ABCDE是正五边形,=72°,∴∠AOB=360°5∴∠BOM=120°−72°=48°.故选:C.小提示:本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.7、如图,斗笠是一种遮挡阳光和蔽雨的编结帽,它可近似看成一个圆锥,已知该斗笠的侧面积为550πcm2,AB是斗笠的母线,长为25cm,AO为斗笠的高,BC为斗笠末端各点所在圆的直径,则OC的值为()A.22B.23C.24D.25答案:A分析:根据圆锥的侧面积和母线可得底面圆的周长,进而可得底面圆的半径.解:∵侧面积为550π cm2,母线长为25cm,∴1×l×25=550π解得l=44π,2∵2πr=44π,∴OC=r=22,故选:A.小提示:本题考查圆锥的计算,根据侧面积和母线得到底面圆的半径是解题关键.8、如图,正五边形ABCDE内接于⊙O,则正五边形中心角∠COD的度数是()A.76°B.72°C.60°D.36°答案:B计算即可.分析:根据正多边形的中心角的计算公式:360°n解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为360°=72°,5故选:B.小提示:本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°是解题的关键.n9、如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A .6π−6√3B .6π−9√3C .12π−9√3D .12π−18√3答案:D分析:作OC ⊥AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出∠A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB⌢的长,最后求它们的差即可. 解:作OC ⊥AB 于C ,如图,则AC =BC ,∵OA =OB ,∴∠A =∠B =12(180°-∠AOB )=30°, 在Rt △AOC 中,OC =12OA =9, AC =√182−92=9√3,∴AB =2AC =18√3,又∵AB ⌢=120×π×18180=12π,∴走便民路比走观赏路少走12π−18√3米,故选D .小提示:本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10、在锐角△ABC中,∠ACB=60°,∠BAC、∠ABC的角平分线AD、BE交于点M,则下列结论中错误的是()A.∠AMB=120°B.ME=MDC.AE+BD=AB D.点M关于AC的对称点一定在△ABC的外接圆上答案:D分析:利用三角形内角和定理以及角平分线的定义求出∠MAB+∠MBA=60°,推出∠AMB=120°,可判断A,证明C,E,M,D四点共圆,利用圆周角定理可判断B;在AB上取一点T,使得AT=AE,利用全等三角形的性质证明BD=BT,可判断C;无法判断∠M′与∠ABC互补,可判断D.解:如图,∵∠ACB=60°,∴∠CAB+∠CBA=120°,∵AD,BE分别是∠CAB,∠CBA的角平分线,∴∠MAB+∠MBA=1(∠CAB+∠CBA)=60°,2∴∠AMB=180°-(∠MAB+∠MBA)=120°,故A符合题意,∵∠EMD=∠AMB=120°,∴∠EMD+∠ECD=180°,∴C,E,M,D四点共圆,∵∠MCE=∠MCD,∴EM⌢=DM⌢,∴EM=DM,故B符合题意,∵四边形CEMD是⊙O的内接四边形,∴∠AME=∠ACB=60°=∠BMD,在AB上取一点T,使得AT=AE,在△AME和△AMT中,{AE=AT∠MAE=∠MATAM=AM,∴△AME≌△AMT(SAS),∴∠AME=∠AMT=60°,EM=MT,∴∠BMD=∠BMT=60°,MT=MD,在△BMD和△BMT中,{MD=MT∠BMD=∠BMTBM=BM,∴△BMD≌△BMT,∴BD=BT,∴AB=AT+TB=AE+BD,故C符合题意,∵M,M′关于AC对称,∴∠M′=∠AMC,∵∠AMC=180°−12(∠CAB+∠ACB)=180°−12(180°−∠ABC)=90°+12∠ABC,∴∠M′与∠ABC不一定互补,∴点M′不一定在△ABC的外接圆上,故D不符合题意,故选D.小提示:本题考查三角形的外接圆,四点共圆,圆周角定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.填空题11、如图,已知A为半径为3的⊙O上的一个定点,B为⊙O上的一个动点(点B与A不重合),连接AB,以AB为边作正三角形ABC.当点B运动时,点C也随之变化,则O、C两点之间的距离的最大值是______.答案:6分析:连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.证明△BAO≌△CAN(SAS),推出OB=CN=3,推出OC≤ON+CN=6,可得结论.解:如图,连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.∵OA=ON,OA=AN,∴AO=ON=AN,∴△OAN是等边三角形,∴∠OAN=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠OAN=60°,∴∠BAO=∠CAN,∴△BAO≌△CAN(SAS),∴OB=CN=3,∵OC≤ON+CN=6,∴OC的最大值为6,所以答案是:6.小提示:本题考查了等边三角形的性质,圆的相关性质,垂径定理,利用两地之间线段最短是本题的解题关键.12、一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.cm答案:132分析:连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),cm,所以圆形镜面的半径为132cm.所以答案是:132小提示:本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC 是圆形镜面的直径是解此题的关键.13、如图所示的网格中,每个小正方形的边长均为1,点A ,B ,D 均在小正方形的顶点上,且点B ,C 在AD⌢上,∠BAC =22.5°,则BC⌢的长为__________.答案:5π4 分析:先找到AD̂的圆心O ,得到∠BOC =45°,利用弧长公式即可求解. 解:连接AD ,作线段AB 、AD 的垂直平分线,交点即为AD̂的圆心O , 从图中可得:AD̂的半径为OB =5, 连接OC ,∵∠BAC =22.5°,∴∠BOC =2×22.5°=45°,BC ̂的长为45×π×5180=5π4. .所以答案是:5π4.小提示:本题考查了弧长公式,找到AD̂的圆心是解题的关键. 14、如图,正六边形ABCDEF 的边长为4,以A 为圆心,AC 的长为半径画弧,得EC⌢,连接AC 、AE ,用图中阴影部分作一个圆锥的侧面,则这个圆锥的底面半径为______.答案:2√33分析:由正六边形ABCDEF的边长为4,可得AB=BC=4,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH=12AC,BH=2.在Rt△ABH中,由勾股定理求得AH=2√3,得到AC=4√3.根据扇形的面积公式可得到阴影部分的面积,即是圆锥的侧面积,最后根据圆锥的侧面积公式求解底面半径即可.解:∵正六边形ABCDEF的边长为4,∴AB=BC=4,∠ABC=∠BAF=(6−2)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°−∠ABC)=30°,如图,过B作BH⊥AC于H,∴AH=CH=12AC,BH=12AB=12×4=2,在Rt△ABH中,AH=√AB2−BH2=√42−22=2√3,∴AC=2AH=4√3,同理可求∠EAF=30°,∴∠CAE=∠BAF−∠BAC−∠EAF=120°−30°−30°=60°,∴S扇形CAE =60π⋅(4√3)2360=8π,∴S圆锥侧=S扇形CAE=8π,∵S 圆锥侧=πrl =πr ⋅AC =4√3πr ,∴4√3πr =8π,∴r =2√33, 所以答案是:2√33.小提示:本题考查的是正六边形的性质、扇形面积的计算、等腰三角形的性质、勾股定理、圆锥的侧面积,掌握扇形面积公式和圆锥侧面积公式是解题的关键.15、刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积S 1来近似估计⊙O 的面积S ,设⊙O 的半径为1,则S −S 1=__________.答案:π−3分析:如图,过点A 作AC ⊥OB ,垂足为C ,先求出圆的面积,再求出△ABC 面积,继而求得正十二边形的面积即可求得答案.如图,过点A 作AC ⊥OB ,垂足为C ,∵⊙O 的半径为1,∴⊙O 的面积S =π,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=360°12=30°,∴AC=12OB=12,∴S △AOB =12OB•AC=14, ∴圆的内接正十二边形的面积S 1=12S △AOB =3,∴则S −S 1=π−3,故答案为π−3.小提示:本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.解答题16、如图,CD 与EF 是⊙O 的直径,连接CE 、CF ,延长CE 到A ,连接AD 并延长,交CF 的延长线于点B ,过点F 作⊙O 的切线交AB 于点G ,点D 是AB 的中点.(1)求证:EF ∥AB ;(2)若AC =3,CD =2.5,求FG 的长.答案:(1)见解析;(2)65分析:(1)连接DE ,根据CD 和EF 都是⊙O 的直径得到∠DEA =∠ECF =90°,根据直角三角形的性质得到CD =AD =BD ,利用等腰三角形三线合一的性质推出∠ADE =∠CDE ,进而得到∠ADE =∠OED ,即可得到EF ∥AB ;(2)根据直角三角形斜边上的中线求得AB=2CD=5,勾股定理求得BC=4,由(1)可得EF=12AB,根据切线的性质可得FG⊥AB,根据sinB=FGBF =ACAB,代入数值,即可得到FC.(1)证明:连接DE,∵CD和EF都是⊙O的直径,∴∠DEA=∠ECF=90°,∵D是AB的中点,∴CD=AD=BD,∴∠ADE=∠CDE,∵OD=OE,∴∠OED=∠CDE,∴∠ADE=∠OED,∴EF∥AB;(2)连接DF,∵CD是⊙O的直径,∴∠DFC=90°,∴∠DFC=∠FCE=∠CED=90°,∴四边形CEDF是矩形,∴FC=DE,DE∥BC,∴AEEC =ADDB=1,∴AE=CE,∴DE是△ABC的中位线,∴DE=12BC,∵AB=2CD=5,AC=3,∴BC=√AB2−AC2=√52−32=4,∴FC=2.∴BF=BC−FC=4−2=2∵FG是⊙O的切线,∴GF⊥EF∵EF∥AB∴FG⊥AB∴∠BGF=∠BCA=90°∴sinB=FGBF =ACAB∴FG2=35∴FG=65小提示:此题考查了圆周角定理,矩形的判定定理及性质定理,勾股定理,三角形中位线的性质,熟记圆周角定理是解题的关键.17、如图,D是△ABC的BC边上一点,连结AD,作△ABD的外接圆O,将△ADC沿直线AD折叠,点C的对应点E 落在⊙O 上.(1)若∠ABC =30°,如图1.①求∠ACB 的度数.②若AD =DE ,求∠EAB 的度数.(2)若AD⌢=BE ⌢,AC =4,CD =2,如图2.求BC 的长. 答案:(1)①30°,②60°;(2)BC =6分析:(1)①根据折叠的性质可得∠ACD =∠AED ,根据等弧所对的圆周角即可求解;②根据等边对等角可得∠DAE =∠DEA ,根据(1)的结论可得∠ACB =∠ABC ,进而根据折叠的性质求得∠CAE =60°,进而根据∠CAB −∠CAE 即可求得∠BAE ,(2)根据AD⌢+DE ⌢=BE ⌢+DE ⌢,可得AE ⌢=DB ⌢,AE =BE ,根据折叠的性质可得DB =AE =4,进而即可求解.(1)①∵AD⌢=AD ⌢,∠ABC =30°, ∴∠AED =∠ABD =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠ACB =∠AED =30° ;②∵ AD =DE ,∴∠DAE =∠DEA ,∵∠DEA =∠DBA ,∴∠DAE =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠DAE =∠DAC =30°,△ABC 中,∠ABC =∠ACB =30°,则∠CAB =180°−∠ABC −∠ACB =120°,∵∠CAE =∠CAD +∠EAD =60°,∴∠EAB =∠CAB −∠CAE =120°−60°=60°,∴∠EAB =60°,(2)∵ AD⌢=BE ⌢ ∴AD⌢+DE ⌢=BE ⌢+DE ⌢ ∴AE⌢=DB ⌢ ∴AE =BE∵折叠∴AC =AE∴DB =AE =4∵CD =2∴BC =CD +DB =4+2=6小提示:本题考查了折叠的性质,同弧或等弧所对的圆周角相等,弧与弦的关系,三角形内角和定理的应用,综合运用以上知识是解题的关键.18、如图,C ,D 是以AB 为直径的半圆上的两点,∠CAB =∠DBA ,连结BC ,CD .(1)求证:CD ∥AB .(2)若AB =4,∠ACD =30°,求阴影部分的面积.答案:(1)答案见解析(2)23π 分析:(1)根据同弧所对的圆周角相等得到∠ACD =∠DBA ,根据 ∠CAB =∠DBA 得到∠CAB =∠ACD ,进而得到结论;(2)连结OC ,OD ,证明所求的阴影部分面积与扇形COD 的面积相等,继而得到结论.(1)证明:∵AD ⌒=AD ⌒,∴∠ACD =∠DBA ,又∵∠CAB =∠DBA ,∴∠CAB =∠ACD ,∴CD ∥AB ;(2)解:如图,连结OC ,OD .∵∠ACD =30°,∴∠ACD =∠CAB =30°,∴∠AOD =∠COB =60°,∴∠COD =180°-∠AOD -∠COB =60°.∵CD ∥AB ,∴S △DOC =S △DBC ,∴S 阴影=S 弓形COD +S △DOC =S 弓形COD +S △DBC=S 扇形COD ,∵AB =4,∴OA =2,∴S 扇形COD=nπr 2360=60×π×22360=23π.∴S阴影=2π.3小提示:本题主要考查扇形的面积,同弧所对的圆周角相等,平行线的判定,掌握定理以及公式是解题的关键.。
初三数学圆练习题及答案
初三数学圆练习题及答案一、选择题1. 圆的半径为5,圆心到直线的距离为3,则直线与圆的位置关系是()。
A. 相离B. 相切C. 相交D. 内含2. 已知圆的周长为6π,求圆的直径。
A. 3B. 6C. 9D. 123. 圆的半径为2,圆心到圆上一点的距离为2,则该点位于()。
A. 圆内B. 圆上C. 圆外D. 不能确定二、填空题4. 圆的直径为10,求圆的面积,结果保留π。
5. 已知圆的半径为3,求圆的周长。
6. 圆心到圆上任意一点的距离都等于半径,这个性质称为圆的()。
三、解答题7. 已知圆的半径为5,求圆的面积。
解:根据圆的面积公式,面积A=πr²,其中r为半径。
将半径r=5代入公式,得:A = π × 5² = 25π所以,圆的面积为25π。
8. 已知圆的周长为12π,求圆的半径。
解:根据圆的周长公式,周长C=2πr,其中r为半径。
将周长C=12π代入公式,得:12π = 2πr解得:r = 6所以,圆的半径为6。
9. 已知圆心到直线的距离为4,求直线与圆的交点个数。
解:根据圆的性质,当圆心到直线的距离小于半径时,直线与圆相交。
由于题目中未给出半径,无法确定直线与圆的交点个数。
需要更多信息才能解答此题。
答案:1. C2. B3. B4. 25π5. 6π6. 对称性7. 25π8. 6。
初三数学圆测试题及答案
初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。
如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。
2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。
3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。
初三数学圆精选练习题及答案
初三数学圆精选练习题及答案1.正确答案为C。
圆的切线垂直于圆的半径。
2.正确答案为A。
AB>2CD。
3.图中能用字母表示的直角共有4个。
4.正确答案为B。
CD-AB=4cm,根据勾股定理可得AB与CD的距离为14cm。
5.正确答案为120°。
圆周角等于弧所对圆心角的两倍,2×60°=120°。
6.正确答案为130°。
圆周角等于圆心角的两倍,2×100°=200°,而∠ACB为圆周角减去弧所对圆心角,200°-70°=130°。
7.正确答案为B。
根据正弦定理可得S AOB=(1/2)×20×20×sin120°=503cm2.8.正确答案为D。
由于OA=AB,所以∠OAB=∠OBA=30°,而∠BCO=90°-∠OAB=60°,所以∠BOC=2∠BCO=120°。
又因为∠XXX∠OCA=30°,所以∠AOC=120°,所以∠BOD=60°-∠OAB=30°,∠XXX∠OED=∠XXX°。
9.正确答案为A。
根据勾股定理可得d=20√3,所以R2=(d/2)2+202=400,r2=(d/2)2+102=100,所以R=20,r=10,两圆内切。
10.正确答案为225°。
圆锥的侧面展开图为一个扇形,圆心角为360°-2arctan(5/3),约为225°。
11.若一条弦把圆分成1:3两部分,则劣弧所对的圆心角的度数为 $120^\circ$。
12.在圆 $\odot O$ 中,若直径 $AB=10$ cm,弦$CD=6$ cm,则圆心 $O$ 到弦 $CD$ 的距离为 $2\sqrt{19}$ cm。
13.在圆 $\odot O$ 中,弦 $AB$ 所对的圆周角等于其所在圆周的一半。
初三数学圆经典例题
一.圆的界说及相关概念之羊若含玉创作【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形.经由圆心的每一条直线都是它的对称轴.圆心是它的对称中心.考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:贯穿连接圆上任意两点的线段叫做弦.经由圆心的弦叫做直径.直径是圆中最大的弦.弦心距:圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做弧.弧分为半圆,优弧、劣弧三种.(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所组成的关闭图形.弓高:弓形中弦的中点与弧的中点的连线段.(请务必注意在圆中一条弦将圆朋分为两个弓形,对应两个弓高)固定的已经不克不及再固定的办法:求弦心距,弦长,弓高,半径时通常要做弦心距,并衔接圆心和弦的一个端点,得到直角三角形.如下图:考点4:三角形的外接圆:锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在. 考点5点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种.①点在圆外⇔d >r ;②点在圆上⇔d=r ;③点在圆内⇔ d <r ; 【典范例题】例1 在⊿ABC 中,∠ACB=90°,AC=2,BC=4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分离与⊙C 有怎样的位置关系,并说明你的来由.例2.已知,如图,CD 是直径,且AB=OC ,求∠A 的度数.例3 ⊙O 平面内一点P 和⊙O 大为8cm ,则这圆的半径是例4 在半径为5cm 的圆中,弦则AB 和CD 的距离是若干?例 5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长.例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分离为3,2,求BAC ∠的度数.AB DCO·E例7.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心,AC 长为半径画弧交CB 的延长线于点D ,求CD 的长.例8CD =4cm ,那么拱形的半径是__m..思考题如图所示,已知⊙O 的半径为10cm ,P 是直径AB 上一点,弦CD 过点P,CD=16cm,过点A 和B 分离向CD 引垂线AE 和BF,求AE-BF 的值.二.垂径定理及其推论【考点速览】考点1 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条孤.推论1:①平分弦(不是直径)的直径重直于弦,并且平分弦所对的两条孤.②弦的垂直平分线经由圆心,并且平分弦所对的两条孤.③平分弦所对的一条孤的直径,垂直平分弦,并且平分弦所对的另一条孤.推论2.圆的两条平行弦所夹的孤相等.·ABDCE PFO垂径定理及推论1中的三条可归纳综合为:①经由圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧.以上五点已知其中的任意两点,都可以推得其它两点【典范例题】例1 如图AB 、CD 是⊙O 的弦,M 、N 分离是AB 、CD 的中点,且CNMAMN∠=∠.求证:AB=CD .例2已知,不过圆心的直线l 交⊙O 于C 、D两点,AB 是⊙O的直径,AE ⊥l 于E ,BF ⊥l 于F.求证:CE=DF .例3 如图所示,⊙O 的直径AB =15cm ,有一条定长为9cm 的动弦CD 在弧AmB 上滑动(点C 与点A ,点D 与B 不重合),且CE ⊥CD 交AB 于E ,DF ⊥CD 交AB 于F. (1)求证:AE =BF(2)在动弦CD 滑动的进程中,四边形CDEF 的面积是否为请说明来由.例4 如图,在⊙O 内,弦CD 与直径AB CD 交直径AB 于点P ,且⊙O 半径为1否为定值?若是,求出定值;若不是,请说明来由.例5.如图所示,在⊙O 中,弦AB ⊥AC ,弦BD ⊥BA ,AC 、ABCDP O..A BDC O ·NMBD 交直径MN 于E 、F.求证:ME=NF.例6.(思考题)如图,1o Θ与2o Θ交于点A ,B ,过A 的直线分离交1o Θ,2o Θ于M,N ,C 为MN 的中点,P 为21O O 的中点,求证:PA=PC.三.圆周角与圆心角【考点速览】 考点1圆心角:极点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数.Eg: 判别下列各图中的角是不是圆心角,并说明来由. 圆周角:极点在圆周上,角双方和圆相交的角叫圆周角.两个条件缺一不成.Eg: 断定下列图示中,各图形中的角是不是圆周角,并说明来由 考点2定理:一条弧所对的圆周角等于它所对的圆心角的一半. Eg: 如下三图,请证明.13.如图,已知A 、B 、C 、D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,衔接CD 、AD . (1)求证:DB 平分∠ADC ;(2)若BE =3,ED =6,求AB 的长.14.如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD·OA BDC EF M N1O A B2OMNC P于点E .衔接AC 、OC 、BC . (1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O15.如图,在Rt △ABC 中,∠ACB =90°,,AD 是△ABC 的角平分线,过A 、C 、D 交于点E ,衔接DE. (1)求证:AC =AE ;(2)求△ACD 外接圆的半径.16.已知:如图等边ABC △点(端点除外),延长BP 至D (1)若AP 过圆心O ,如图①,并说明来由.(2)若AP 不过圆心O ,如图②,PDC △又是什么三角形?为什么?【考点速览】圆心角, 弧,弦,:推论:在同圆或等圆中,如果①两个圆心角,②两条弧,③两条B图①图②A BC弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分离相等.(务必注意前提为:在同圆或等圆中)例1.如图所示,点O 是∠EPF 的平分线上一点,以O 为圆心的圆和角的双方分离交于A 、B 和C 、D ,求证:AB=CD . 例2、已知:如图,EF 为⊙O 的直径,过EF 上一点P作弦AB 、CD ,且∠APF=∠CPF. 求证:PA=PC.例3.如图所示,在ABC ∆中,∠A=︒72,⊙O 截ABC ∆的三条边长所得的三条弦等长,求∠BOC.例4.如图,⊙O 的弦CB 、ED BC=DE .求证:AC=AE .例5.如图所示,已知在⊙O ︒,OD ⊥AB 于D ,OE ⊥BC 于E . 求证:ODE ∆是等边三角形.例6.如图所示,已知△ABC ⊙O 分离交AB 、AC 于点D 、E. (1)试说明△ODE 的形状;(2)如图2,若∠A=60º,AB≠AC ,则①的结论是否仍然成立,说明你的来由.例7弦DF ∥AC ,EF ABE FO PC12DA BC(1)求证:△BEF 是等边三角形; (2)BA=4,CG=2,求BF 的长.例8已知:如图,∠AOB=90°,C 、D 是弧AB 的三等分点,AB 分离交OC 、OD 于点E 、F.求证:AE=BF=CD.六.会用切线,能证切线考点速览: 考点1直线与圆的位置关系图形公共点个数 d 与r 的关系 直线与圆的位置关系d>r 相离1d=r 相切2d<r 相交考点2切线:经由半径外端并且垂直于这条半径的直线是圆的切线.符号语言∵ OA ⊥ l 于A , OA 为半径 ∴ l 为⊙O 的切线 考点3断定直线是圆的切线的办法:·A OB E DC G F O①与圆只有一个交点的直线是圆的切线.②圆心到直线距离等于圆的半径的直线是圆的切线. ③经由半径外端,垂直于这条半径的直线是圆的切线. (请务必记住证明切线办法:有交点就连半径证垂直;无交点就做垂直证半径) 考点4切线的性质定理:圆的切线垂直于经由切点的半径.推论1:经由圆心且垂直于切线的直线必经由切点. 推论2:经由切点且垂直于切线的直线必经由圆心.(请务必记住切线重要用法: 见切线就要连圆心和切点得到垂直)1、如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分离交于点E 、F ,且∠ACB=∠DCE .(1)断定直线CE 与⊙O 的位置关系,并证明你的结论; (2)若AB=3,BC=4,DE=DC ,求⊙O 的半径. 2.如图,AB 是半圆O 的直径,过点O 作弦AD 的垂线交半圆O于点E ,交AC 于点C ,使BED C ∠=∠.(1)断定直线AC 与圆O 的位置关系,并证明你的结论;3.如图,已知R t △ABC ,∠ABC =90°,以直角边AB 为直径作O ,交斜边AC 于点D ,贯穿连接BD .(1)取BC 的中点E ,贯穿连接ED ,试证明ED 与⊙O 相切.(2)在(1)的条件下,若AB =3,AC=5,求DE 的长;CAOBED4.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线;(2)求证:BC=21AB ;5.如图,在△ABC 中,AB=AC ,D 是BC 中点,AE 平分∠BAD 交BC 于点E ,点O 是AB 上一点,⊙O 过A 、E 两点, 交AD 于点G ,交AB 于点F . (1)求证:BC 与⊙O 相切;(2)当∠BAC=120°时,求∠EFG 的度数6.如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O经由点D ,E 是⊙O 上一点,(1)若∠AED =45º.试断定CD 与⊙O 的关系,并说明来由.(2)若∠AED=60º,AD=4,求⊙O 半径.C B DEO · AB CDEOBACDE G O FE C 7.在Rt △ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D. (1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问当点E 在什么位置时,直线ED 与⊙O 相切?请说明来由.8.如图,已知△ABC 内接于⊙O ,AC 是⊙O的中点,过点D 作直线BC 延长线E 、F(1)求证:EF ⊙是O 的切线;(2)若AB =8,EB =2,求⊙O 如图,已知⊙O 是△ABC 的外接圆,AB PO 过AC 的中点M ,求证:PC 是⊙O 20.已知:AB 是⊙O 的弦,OD ⊥AB 于M 交⊙O 于点D ,CB ⊥AB 交AD 的延长线于C . (1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =2,CE=1,求⊙O 的半径.20.在Rt △AFD 中,∠F=90°,点B 、C 分离在、上,以AB 为直径的半圆O 过点C ,联络将△AFC 沿AC 翻折得△AEC ,且点E 恰好落在直径AB 上.(1)断定:直线FC 与半圆O 的位置关系是_______________;并证明你的结论.C B AAA(2)若OB=BD=2,求CE 的长.20.如图所示,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,且交⊙O 于点E ,若∠AEC=∠ODB .(1)断定直线BD 和⊙O 的位置关系,并给出证明; (2)当AB=10,BC=8时,求BD 的长.20.已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分离交BC 、AC 于点D 、E , 联络EB 交OD 于点F .(1)求证:OD ⊥BE; (2)若AB=5,求AE 的长.20.如图,AB 是O 的直径,30BAC ∠=︒,M 是OA 上一点,过M 作AB 的垂线交AC 于点N,交BC 的延长线于点E,直线CF 交EN 于点F,且.ECF E ∠=∠ (1)证明CF 是O 的切线(2) 设⊙O 的半径为1.且AC=CE,求MO 的长. 21.如图,AB BC CD 分离与圆O 切于E F G 且AB//CD ,衔接OB OC ,延长CO 交圆O 于点M ,过点M 作MN//OB 交CD 于N 求证 MN 是圆O 切线当OB=6cm ,OC=8cm 时,求圆O 的半径及MN 的长七.切线长定理考点速览:考点1切线长概念:经由圆外一点做圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 切线长和切线的区别切线是直线,不成器量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以器量.考点2切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.要注意:此定理包含两个结论,如图,PA 、PB 切⊙O 于A 、B 两点,①PA=PB ②PO 平分APB ∠. 考点3两个结论:圆的外切四边形对边和相等;圆的外切等腰梯形的中位线等于腰长. 经典例题:例1 已知PA 、PB 、DE 分离切⊙O 于A 、B 、C 三点,若PO=13㎝,PED ∆的周长为24㎝,求:①⊙O 的半径;②若40APB ∠=︒,EOD ∠的度数.例2 如图,⊙O 分离切ABC ∆的三边E 、F ,若,,BC a AC b AB c ===. (1)求AD 、BE 、CF 的长;(2)当r .例3.如图,一圆内切四边形ABCD ,且AB=16,CD=10,则四边形的周长为?例4 如图甲,直线343+-=x y 与x 轴相交于点A ,与y 轴相交于点B ,点C ()n m ,是第二象限内任意一点,以点C 为圆心与圆与x 轴相切于点E ,与直线AB 相切于点F. (1)当四边形OBCE 是矩形时,求点C 的坐标;(2)如图乙,若⊙C 与y 轴相切于点D ,求⊙C 的半径r ; (3)求m 与n 之间的函数关系式;(4)在⊙C 的移动进程中,可否使OEF ∆是等边三角形(只答复“能”或“不克不及”)?八.三角形内切圆考点速览 考点1概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的心坎,这个三角形叫做圆的外切三角形.概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 考点2三角形外接圆与内切圆比较:外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC ; (2)外心不一定在三角形的内部.心坎(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三边的距离相等;(2)OA 、OB 、OC 分离平分∠BAC、∠ABC、∠ACB;(3)心坎在三角形内部.考点3求三角形的内切圆的半径1、直角三角形△ABC 内切圆⊙O 的半径为2c b a r -+=.2、一般三角形①已知三边,求△ABC 内切圆⊙O 的半径r.(海伦公式S △=)c s )(b s )(a s (s --- , 其中s=2cb a ++) 例1.如图,△ABC 中,∠A=m°.(1)如图(1),当O 是△ABC 的心坎时,求∠BOC 的度数;BO E FD(2)如图(2),当O 是△ABC 的外心时,求∠BOC 的度数;(3)如图(3),当O 是高线BD 与CE 的交点时,求∠BOC 的度数.例2.如图,Rt △ABC 中,AC=8,BC=6,∠C=90°,⊙I 分离切AC ,BC ,AB 于D ,E ,F ,求Rt △ABC 的心坎I 与外心O 之间的距离. 考点速练21.如图,在半径为R 的圆内作一个内接正方形,•然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )A .(nRB .(12)nR C .(12)n -1R D )n -1R3.如图,已知△ABC 的内切圆⊙O 分离和边BC ,AC ,AB切于D ,E ,F ,•如果AF=2,BD=7,CE=4. (1)求△ABC 的三边长;(2)如果P 为弧DF 上一点,过P 作⊙O 的切线,交AB于M ,交BC 于N ,求△BMN 的周长.十.圆与圆位置的关系考点速览:1圆和圆的位置关系(设两圆半径分离为R和r,圆心距为d)2.有关性质:(1)连心线:通过两圆圆心的直线.如果两个圆相切,那么切点一定在连心线上.(2)公共弦:相交两圆的连心线垂直平分两圆的公共弦.(3)公切线:和两个圆都相切的直线,叫做两圆的公切线.两个圆在公切线同旁两个圆在公切线两旁34.相切两圆的性质定理:相切两圆的连心线经由切点经典例题:例1、如图,已知⊙1O 与⊙2O 相交于A 、B 两点,P 是⊙1O 上一点,PB 的延长线交⊙2O 于点C ,PA 交⊙2O 于点D ,CD 的延长线交⊙1O 于为N.(1)过点A 作AE//CN 交⊙1O 于点E.求证:PA=PE. (2)衔接PN ,若PB=4,BC=2,求PN 的长. 例2 如图,在ABC ∆中,22,90===∠AC AB BAC,圆A 的半径为1,若点O 在BC 边上运动(与点B 、C 不重合),设AOC x BO ∆=,的面积为y.(1)求y 关于x 的函数关系式,并写出x 的取值规模; (2)以点O 为圆心,BO 长为半径作⊙O ,当圆⊙O 与⊙A 相切时,求AOC ∆的面积.教室演习:1.已知⊙O1与⊙O2的半径分离为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为A .外离B .外切C .相交D .内切2.已知两圆半径分离为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( )A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d >P2OABC· EN ·1OD OBCA3.大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为()A.外离B.外切C.相交D.内含5.若两圆的半径分离是1cm和5cm,圆心距为6cm,则这两圆的位置关系是()A.内切B.相交C.外切D.外离6.外切两圆的圆心距是7,其中一圆的半径是4,则另一圆的半径是A.11B.7C.4D.3考点速览:【例题经典】有关弧长公式的应用例 1 如图,Rt△ABC的斜边AB=35,AC=21,点O在AB边上,OB=20,一个以O为圆心的圆,分离切两直角边边BC、AC于D、E两点,求弧DE的长度.有关阴影部分面积的求法例2 如图所示,等腰直角三角形ABC的斜边4AB ,O是AB的中点,以O为圆心的半圆分离与两腰相切于D、E.求圆中阴影部分的面积.B求曲面上最短距离例3如图,底面半径为1,母线长为4的圆锥, 一只小蚂蚁若从A 点出发,绕正面一周又回到A 点,它爬行的最短路线长是() A .2 B .42 C .43 D .5求圆锥的正面积例4如图10,这是一个由圆柱体资料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm ,高BC=8cm ,求这个零件的概况积.(成果保存根号) 三、应用与探究:1.如图所示,A 是半径为1的⊙O 外一点,OA=2,AB 是⊙O的切线,B 为切点,弦BC ∥OA ,贯穿连接AC ,求阴影部分的面积.2.已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于点D ,过点D 作DE ⊥AC 于点E ,交BC 的延长线于点F .求证:(1)AD =BD ;(2)DF 是⊙O 的切线.AOCBFEDCBAO3.如图,在Rt △ABC 中,∠B =90°,∠A 的平分线与BC 相交于点D,点E 在AB 上,DE=DC,以D 为圆心,DB 长为半径作⊙D .(1)AC 与⊙D 相切吗?并说明来由.(2)你能找到AB 、BE 、AC 之间的数量关系吗?为什么?4、如图,已知:ABC △内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,30D ∠=.(1)求证:AD 是⊙O 的切线; (2)若6AC =,求AD 的长.圆的综合测试一:选择题1.有下列四个命题:①直径是弦;②经由三个点一定可以作圆;③三角形的外心到三角形各极点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )2.下列断定中正确的是( )3.如上图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,的度数为100°,则∠AEC等于( )A.60°B.100°C.80°D.130°4.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2:3:6,则∠D 的度数是( )A.67.5°B.135°C.112.5°D.110°5.过⊙O 内一点M 的最长弦长为6cm,最短的弦长为4cm,则OM 的长为( ).A 、cm 3B 、cm 5C 、cm 2D 、cm 36.两个圆是同心圆,大、小圆的半径分离为9和 5,如果⊙P 与这两个圆都相切,则⊙P 的半径为( )7.△ABC 的三边长分离为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( )A.21(a +b +c )rB.2(a +b +c )C.31(a +b +c )r D.(a +b +c )r8.已知半径分离为r 和2 r 的两圆相交,则这两圆的圆心距d 的取值规模是( )A.0<d <3rB.r <d <3rC.r≤d <3rD.r≤d≤3r9.将一块弧长为的半圆形铁皮围成一个圆锥(接头疏忽不计),则围成的圆锥的高为()A .3B .23C .5D .25 10.如图,圆 O 中弦AB 、CD 相交于点F ,AB=10,AF=2,若CF:DF=1:4,则CF的长等于( ). C A DFOA .2B .2C .3D .2211.有一张矩形纸片ABCD ,其中AD=4cm ,上面有一个以AD 为直径的 半圆,正好与对边BC 相切,如图(甲),将它沿DE 折叠,使A 点落在BC 上,如图(乙),这时,半圆还露在外面的部分(阴影部分)的面积是( )A.2)32(cm -π B .2)321(cm +π C .2)334(cm -π D .2)332(cm +π 12.如图,两同心圆间的圆环(即图中阴影部分)的面积为16π,过小 圆上任一点P 作 大圆的弦AB ,则PA PB ⋅的值是( )A .16B .16πC .4D .4π二、填空题13.Rt △ABC 中,∠C =90°,AC=5,BC=12,则△ABC 的内切圆半径为 .14.如图,圆O 是ABC △的外接圆,30C ∠=,2cm AB =,则圆O 的半径为cm .15.(1)已知圆的面积为281cm π,其圆周上一段弧长为3cm π,那么这段弧所对圆心角的度数是.(2)如图13所示,AB 、CD 是⊙O 的直径,⊙O 的半径B O CAD A B C A B CC为R ,AB ⊥CD ,以B 为圆心, 以BC 为半径作弧CED ,则弧CED 与弧CAD 围成的新月形ACED 的面积为.(3)如图14,某学校建一个喷泉水池,设计的底面边长为4m 的正六边形,池底是水磨石地面,现用的磨光机的磨头是半径为2dm 的圆形砂轮,磨池底时磨头磨不到的部分的面积为. 16.如图2,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的正面积是.cm2.17.如图,有一个圆锥,它的底面半径是2cm母线长是8cm ,在点A 处有一只蚂蚁,它想吃到与A 点相对且离圆锥极点23cm 的点B 处的食物,蚂蚁爬行的最短旅程是. 18、如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 交BC 于E ,AE=2、ED=6,则AB=.19.已知矩形ABCD ,AB=8,AD=9,工人师傅在铁皮上剪去一个和三边都相切的⊙P 后,在剩余部分废料上再剪去一个最大的⊙Q ,那么⊙Q 的直径是. 20.如图所示,AB 是⊙1O 的直径,1AO 是⊙2O 的直径,弦MN ∥AB ,且MN 与⊙2O 相切于点C .若⊙1O 的半径为2,则由1O B 、弧BN 、NC 、弧CO 1围成图形的面积等于.21.如图,已知半圆O 的直径为AB ,半径长为·· A C B D E O · A B CD ·Q · P · M A O 1 O 2 C N B AC D O E B 图13图14 · · B O A·· · A B O C425,点C 在AB 上,CD AB CD OC ,,47⊥=交半圆O 于D ,那么与半圆相切,且与BC ,CD 相切的圆O '的半径长是 .三、综合题22.以Rt △ABC 的直角边AC 为直径作⊙O ,交斜边AB 于点D ,E 为BC 边的中点,连DE.⑴请断定DE 是否为⊙O 的切线,并证明你的结论.⑵当AD :DB=9:16时,DE=8cm 时,求⊙O 的半径R.23. 如图,已知AB 是O ⊙的直径,点C 在O ⊙上,过点C 的直线与AB 的延长线交于点P ,AC PC =,2COB PCB ∠=∠.(1)求证:PC 是O ⊙的切线;(2)求证:12BC AB =; (3)点M 是弧AB 的中点,CM 交AB 于点N ,若4AB =,求MN*MC 的值.。
初三有关圆的解答题及答案
初三有关圆的解答题及答案初三数学教学中,圆是一个非常重要的内容,也是经常考察的一道题型。
下面,我们来探讨一些初三有关圆的解答题及其答案。
一、相切问题问题:两个圆相切,半径分别为$r_1$和$r_2$,求它们的公切线的长度$L$。
解析:根据勾股定理,可得:$(r_1 + r_2)^2 = L^2 + (r_1 - r_2)^2$化简得:$L = 2\sqrt{r_1r_2}$答案:$L = 2\sqrt{r_1r_2}$二、切线问题问题:已知一个圆心坐标$(a, b)$,与一直线$y=k$相切,求这个圆的方程。
解析:由于圆与直线相切,所以该直线的距离等于圆的半径。
直线$y=k$与圆的距离为$|b-k|$,因此圆的方程为:$(x-a)^2 + (y-b)^2 = (b-k)^2$答案:$(x-a)^2 + (y-b)^2 = (b-k)^2$三、垂直问题问题:已知直线$y=k$和圆$(x-a)^2+(y-b)^2=r^2$相交于点$P(x_0,y_0)$,求直线$OP$的斜率,其中$O(a,b)$为圆心。
解析:首先,求点$P$的坐标。
因为$P$是圆和直线的交点,所以可以列出以下方程组:$\begin{cases} y=k \\ (x-a)^2 + (y-b)^2 = r^2 \end{cases}$将$y=k$代入第二个方程,可得:$(x-a)^2 + (k-b)^2 = r^2$将$(x,y)$代入,得到:$(x_0-a)^2 + (k-b)^2 = r^2$整理可得:$x_0 = a\pm \sqrt{r^2-(k-b)^2}$由于直线$OP$与$x$轴垂直,所以直线$OP$的斜率为$-\frac{1}{\frac{y_0-b}{x_0-a}}$。
代入$x_0$和$y_0$,即可得到答案。
答案:$-\frac{1}{\frac{y_0-b}{x_0-a}}$四、分割问题问题:一个圆$O$被圆弧$AB$和直径$CD$所分割,分别为弧$AB$和弧$BCD$。
初三数学圆精选练习题及答案
圆精选练习题及答案一一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24 分):1. 下列说法正确的是()A.垂直于半径的直线是圆的切线B. 经过三点一定可以作圆C.圆的切线垂直于圆的半径D. 每个三角形都有一个内切圆2. 在同圆或等圆中,如果AB = 2CD ,则AB与CD的关系是()(A)AB > 2CD (B)AB = 2CD (C)AB V 2CD (D)AB = CD3. 如图(1),已知PA切O O于B,OP交AB于C,则图中能用字母表示的直角共有()个A.3B.4C.5D.6⑵4. 已知O O的半径为10cm,弦AB// CD,AB=12cm,CD=16cr则AB和CD的距离为()A.2cmB.14cmC.2cm 或14cmD.10cm 或20cm5. 在半径为6cm的圆中,长为2 - cm的弧所对的圆周角的度数为()A.30 °B.100C.120°D.130 °6. 如图(2),已知圆心角/ AOB勺度数为100° ,则圆周角/ ACB的度数是()A.80 °B.100 °C.120°D.130 °7. O O的半径是20cm,圆心角/ AOB=120 ,AB是O O弦,则S. AOB等于()A.25 .3 cmB.50 、3 cnfC.100 \ 3 cn iD.200 、3 cnf8. 如图(3),半径0A 等于弦AB,过B 作O 0的切线BC,取BC=AB,O 交O 0于E,AC 交O 0于点D,则BD 和DE 的度数分别为()、填空题:(每小题4分,共20分):11. 一条弦把圆分成1 :3两部分,贝U 劣弧所对的圆心角的度数为 12. 如果O O 的直径为10cm,弦AB=6cm 那么圆心O 到弦AB 的距离为 13. 在O O 中,弦AB 所对的圆周角之间的关系为 14. 如图(4), 。
(完整版)初三数学有关圆的经典例题
初三数学 有关圆的经典例题1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。
132O AB AC BAC分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。
解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示,过O 作OD ⊥AB 于D,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE ====323222∵,∴∠,OA OAD AD OA ===132cos cos ∠OAE AE OA ==22∴∠OAD=30°,∠OAE=45°,故∠BAC=75°,当AB 、AC 在圆心O 同侧时,如下图所示,同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15°点拨:本题易出现只画出一种情况,而出现漏解的错误。
例2。
如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R,⊙O 与AC 交于D ,如果点既是的中点,又是边的中点,D AB AC ⋂(1)求证:△ABC 是直角三角形;()22求的值AD BC分析:()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ⋂则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB,∴△ADF∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC22122===解:(1)证明,作直径DE 交AB 于F ,交圆于E∵为的中点,∴⊥,D AB AB DE AF FB ⋂=又∵AD=DC∴∥,DF BC DF BC =12∴AB ⊥BC ,∴△ABC 是直角三角形。
(2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90°而AB ⊥DE ,∴△ADF ∽△EDA∴,即·AD DE DFADAD DE DF ==2∵,DE R DF BC ==212∴·,故AD BC R AD BCR 22==例3. 如图,在⊙O 中,AB=2CD ,那么( )A AB CD B AB CD ..⋂>⋂⋂<⋂22C AB CD D AB CD ..⋂=⋂⋂⋂22与的大小关系不确定分析:要比较与的大小,可以用下面两种思路进行:AB CD ⋂⋂2()112把的一半作出来,然后比较与的大小。
初三中考圆的试题及答案
初三中考圆的试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为5,圆心为坐标原点,则圆的方程为()A. (x-0)^2 + (y-0)^2 = 25B. (x-5)^2 + (y-5)^2 = 25C. (x+5)^2 + (y+5)^2 = 25D. (x-5)^2 + (y+5)^2 = 25答案:A2. 圆与直线相切的条件是()A. 圆心到直线的距离等于半径B. 圆心到直线的距离小于半径C. 圆心到直线的距离大于半径D. 圆心到直线的距离等于直径答案:A3. 已知圆的半径为3,圆心坐标为(-2, 3),求圆上的点(1, 4)与圆心的距离为()A. 2B. 3C. 4D. 5答案:D4. 圆的直径是()A. 圆上任意两点间最长的线段B. 圆上任意两点间最短的线段C. 圆上任意两点间距离的两倍D. 圆上任意两点间距离的一半答案:A5. 圆的周长公式为()A. C = 2πrB. C = πrC. C = 4πrD. C = πr^2答案:A6. 圆的面积公式为()A. S = πr^2B. S = 2πrC. S = πrD. S = 4πr^2答案:A7. 圆内接四边形的对角线()A. 相等B. 不相等C. 垂直D. 平行答案:A8. 圆的切线与半径的关系是()A. 切线与半径垂直B. 切线与半径平行C. 切线与半径相交D. 切线与半径重合答案:A9. 圆的内切圆与外切圆的半径之和等于()A. 圆的直径B. 圆的半径C. 圆的周长D. 圆的面积答案:A10. 圆的内接三角形的面积公式为()A. S = 1/2 * a * b * sin(C)B. S = 1/2 * a * b * cos(C)C. S = 1/2 * r * (a + b + c)D. S = 1/2 * r * (a - b + c)答案:C二、填空题(每题3分,共30分)1. 圆的方程为(x-2)^2 + (y+3)^2 = 16,则圆心坐标为______。
九年级数学圆的经典题
九年级上册圆经典题同步练习A 组1.如图所示,MN 为⊙O 的弦,∠N =50°,则∠MON 的度数为()A .40°B .50°C .80°D .100°2.已知⊙O 的半径是5,点A 到圆心O 的距离是7,则点A 与⊙O 的位置关系是()A .点A 在⊙O 上B .点A 在⊙O 内C .点A 在⊙O 外D .点A 与圆心O 重合3.如图所示,圆中弦的条数是()A .2B .3C .4D .54.如图,AC 为⊙O 的直径,点B 在⊙O 上,下列说法错误的是()A.弦BC 所对的弧有两条B.图中共有四条弦C.图中共有两条劣弧D.图中共有两条优化5.如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD 于点E ,则图中共有劣弧______条,写出其中的一条优弧,如_____________.6.如图,矩形ABCD 的边AB=4cm ,AD=5cm.以A 为圆心,4cm 为半径作⊙A ,试判断点B ,C ,D 与⊙A 的位置关系.7.如图,在Rt △ABC 中,∠C=90°,BC=6,AC=8,以点B 为圆心,6为半径作⊙B.(1)AB 与AC 的中点D ,E 与⊙B 有怎样的位置关系?(2)若要让点A 和点C 有且只有一个点在⊙B 内,则⊙B 的半径应满足什么条件?N OM第1题A OC第3题BDE C OB第4题A B第5题AB CDCBAEDB 组8.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2,下列说法中不正确的是()A .当a <5时,点B 在⊙A 内B .当1<a <5时,点B 在⊙A 内C .当a <1时,点B 在⊙A 外D .当a >5时,点B 在⊙A 外9.已知⊙O 外有一点P ,⊙O 上有一点Q ,线段PQ 长的最小值为4cm ,最大值为9cm ,则⊙O 的半径为___________.C 组10.如图所示,AB 是⊙O 的直径,CD 是⊙O 的一条弦,延长DC 与BA 的延长线相交于点P ,且PC =OB ,∠BOD =99°,求∠P 的度数.BOPDCA3.1圆(2)A 组1.能确定一个圆的是()A .已知圆心B .已知半径C .过三个已知点D .过三角形的三个顶点2.三角形的外心具有的性质是()A .到三边的距离相等B .到三个顶点的距离相等C .外心在三角形外D .外心在三角形内3.如图所示,在5×5的正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是()A .点PB .点QC .点RD .点M4.用直尺和圆规作出如图三角形的外接圆(只需要作出图形,并保留作图痕迹,不必谢作图过程)5.如图,已知线段AB.(1)经过A ,B 两点可做_______个圆,这些圆的圆心都在_______________.(2)作经过A ,B 两点的所有圆中最小的圆.6.已知A ,B ,C 三点.(1)当AB =1cm,BC =2cm ,AC =3cm 时,A ,B ,C 三点_________(填“能”或“不能”)确定一个圆,理由是_______________________________.(2)当AB =6cm,BC =8cm ,AC =10cm 时A ,B ,C 三点_________(填“能”或“不能”)确定一个圆,理由是_______________________________.第3题A BCBACBA7.在Rt △ABC 中,AB =6,BC =8,那么这个三角形的外接圆直径是_____________.B 组8.已知一个等边三角形的边长为6,则这个三角形的外接圆的半径长为()A .2B.3C .3D .239.如图所示,小明家的房前有一块矩形的空地,空地上有三棵树A ,B ,C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若在△ABC 中,AB =8m ,AC =6m ,∠BAC =90°,试求小明家圆形花坛的面积.C 组10.如图所示,在平面直角坐标系xOy 中,点A ,B ,P 的坐标分别为(1,0),(2,5),(4,2).若点C 在第一象限内,且横坐标、纵坐标均为整数,P 点是△ABC 的外心,求点C 的坐标.BAC3.2图形的旋转A 组1.下列现象中属于旋转的是()A .电梯的升降运动B .飞机起飞后冲向空中的过程C .汽车方向盘的转动D .笔直的铁轨上飞驰而过的火车2.如图所示,△ABC 按顺时针方向旋转一个角度后得△A′B ′C′,图中的旋转中心是()A .A 点B .B 点C .C 点D .B ′点3.风力发电机可以在风力作用下发电.如图所示的转子叶片图案绕中心旋转n °后能与原来的图案重合,那么n 的值可能是()A .45B .60C .90D .1204.如图所示,直角三角形ABC 绕直角顶点C 顺时针方向旋转90°后到达△A 1B 1C ,延长AB 交A 1B 1于点D ,则∠ADA 1的度数是()A .30°B .60°C .75°D .90°5.如图所示,△ABC 为等边三角形,D 是△ABC 内一点,若△ABD 经过逆时针旋转后到△ACP 位置,若点B ,D ,P 三点在同一直线上,则∠DPC =__________.6.如图,已知△ABC 和点O ,将△ABC 绕O 点旋转,点A 的对应点为A’,画出△ABC 经旋转后所得到的图形.A (A ’)BB ’C B第2题图第3题图BAC B 1A 1D 第4题图ABCD P 第5题图ACBO7.如图所示,在4×4的方格纸中,△ABC 的三个顶点都在格点上.(1)在图(1)中,画出一个与△ABC 成中心对称的格点三角形;(2)在图(2)中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.B 组8.在平面直角坐标系中,点A 的坐标为(-1,-2),将OA 绕原点O 逆时针旋转90°得到OA ′,点A′的坐标为(a ,b ),则a +b 等于()A.1B.-1C .3D .-39.如图所示,已知AC ⊥BC ,垂足为点C ,AC =4,BC =33,将线段AC 绕点A 按逆时针方向旋转60°得到线段AD ,连结DC ,DB.(1)线段DC =__________;(2)求线段DB 的长度.C 组10.如图所示,在△ABC 中,∠ACB =90°,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连结DE 交BC 于点F ,连结BE.(1)求证:△ACD ≌△BCE ;(2)当AD =BF 时,求∠BEF的度数.ABCDE FC ABD3.3垂径定理(1)A 组1.圆的对称轴有()A .1条B .2条C .4条D .无数条2.下列命题中,正确的是()A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心3.如图,在圆O 中,AB 是弦,OC ⊥AB ,垂足为C ,若AB =8,OC =3,则圆O 的半径OA 等于()A.8B.6C.5D.44.如图,在圆O 中,AB 是弦,OC ⊥AB ,若AO =10,AB =16,则AB 的弦心距等于()A.4B.8C.6D.105.已知在圆O 的半径为13cm ,一条弦心距为5cm ,则这条弦长为____________cm.6.如图所示,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC =6cm ,则∠ACB=_______°,OD =________cm.7.如图,AB 是圆O 的弦,半径OC ⊥AB 与点D ,(1)若半径为5,CD =2,求弦AB 的长(2)若CD =4,AB =16,求其半径长.AOC B第3题AO C B第4题AOCB 第6题D AO D B第7题CB 组8.如图,在⊙O 中,弦AB 垂直平分半径OC.(1)则∠C=___________°(2)若⊙O 的半径为r ,则弦AB=________(用含r 的代数式表示)9.已知:如图,在⊙O 中,弦AB ∥CD ,求证:弧AB=弧BDC 组10.图所示,在半径为5的扇形OAB 中,∠AOB =90°,C 是AB ︵上的一个动点(不与点A ,B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为点D ,E.(1)当BC =6时,求线段OD 的长;(2)求DE 的长;(3)在△ODE 中,是否存在度数不变的角?若存在,请直接指出是何角,并写出它的度数.AO D B第8题C CBODEA A OD BC3.3垂径定理(2)A 组1.如图所示,AB ,AC 是⊙O 的两条弦,AD 是⊙O 的一条直径,BC 与AD 相交于点E ,BD ︵=CD ︵,下列结论中不一定正确的是()A.AB ︵=AC︵B .BE =CEC .BC ⊥ADD .AB =BC2.下列说法错误的是()A.平分弧的直径垂直平分弧所对的弦B.平分弦的直径平分弦所对的的弧C.垂直平分弦的直线必定经过圆心D.垂直于弦的直径平分这条弦。
初三数学圆的练习题及答案
初三数学圆的练习题及答案1. 题目:已知AB为⊙O的直径,CD为⊙O的弦,且∠ACB = 30°,求∠CAD的度数。
解析:根据圆的性质,直径所对的两条弦互相垂直,即∠ACB与∠CAD互为余角。
而余角互补,因此∠CAD = 90° - ∠ACB = 90° - 30°= 60°。
答案:∠CAD的度数为60°。
2. 题目:在⊙O中,AB是直径,C为圆上一点,且AC = BC。
若∠ACO = 50°,求∠BAO的度数。
解析:对于⊙O,直径所对的两条弧互为等弧,所以AC = BC相当于∠ACO = ∠BCO。
又∠ACO = 50°,则∠BCO = 50°。
由于∠BAO与∠BCO互为余角,∠BAO = 90° - ∠BCO = 90° - 50° = 40°。
答案:∠BAO的度数为40°。
3. 题目:在⊙O中,AC是直径,点B在弧AC上,且∠ABC = 60°。
连接OB并延长交⊙O于点D,若∠ADC = 50°,求∠BDC的度数。
解析:由于AC为直径,所以∠ABC是弧AC所对的圆心角。
由于∠ABC = 60°,所以弧AC的度数为60°。
又∠ADC = 50°,则弧AD的度数为50°。
根据圆上的弧对应的圆心角相等,可以得到∠BDC = ∠BAD = 弧AD的度数 - 弧AC的度数 = 50° - 60° = -10°。
答案:∠BDC的度数为-10°。
4. 题目:在⊙O中,AB是直径,CD是弦,且AB = 2CD。
若∠ACB = 40°,求∠AOD的度数。
解析:根据圆的性质,直径所对的两条弦互相垂直,即∠ACB与∠AOD互为余角。
而余角互补,因此∠AOD = 90° - ∠ACB = 90° - 40°= 50°。
初三圆练习题和答案
初三圆练习题和答案在初三数学学习中,圆是一个非常重要的几何概念。
为了帮助同学们更好地掌握圆的相关知识,本文将提供一些初三圆练习题和答案。
一、选择题1. 已知圆的半径为4cm,求其直径是多少?A. 2cmB. 4cmC. 8cmD. 16cm答案:C. 8cm2. 如果一张圆形饼干的半径为6cm,那么它的周长是多少?A. 6cmB. 12cmC. 18cmD. 36cm答案:C. 18cm3. 已知圆的半径为2.5cm,求其面积是多少?A. 3.14 cm²B. 7.85 cm²C. 15.7 cm²D. 19.63 cm²答案:B. 7.85 cm²4. 若扇形的圆心角为60°,圆的半径为5cm,求扇形的面积是多少?A. 3.14 cm²B. 6.28 cm²C. 7.85 cm²D. 15.7 cm²答案:B. 6.28 cm²5. 已知圆的半径为3cm,求圆心角为120°的弧长是多少?A. 1.57 cmB. 3.14 cmC. 9.42 cmD. 18.85 cm答案:D. 18.85 cm二、填空题1. 已知圆的半径为8cm,求其周长是______cm。
答案:16π cm2. 若圆的周长为18π cm,求其半径的长是______cm。
答案:9 cm3. 已知圆心角为90°,圆的半径为6cm,求扇形的面积是______cm²。
答案:π·3² cm²4. 若扇形的半径为10cm,扇形面积为50π cm²,求圆心角的度数是______°。
答案:72°5. 若弧长为12π cm,圆心角的度数是______°。
答案:180°三、解答题1. 一个圆的直径为10cm,求其周长和面积。
解答:已知直径 d = 10cm则半径 r = 10 ÷ 2 = 5cm周长= 2πr = 2π × 5 = 10π cm面积= πr² = π × 5² = 25π cm²2. 计算一个圆心角为45°的扇形的面积,已知圆的半径为8cm。
中考数学圆的综合综合经典题含详细答案
中考数学圆的综合综合经典题含详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253 8.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC .设⊙O 的半径为r .在Rt △AHC 中,tan ∠ACH =tan ∠G =AH HC =34,∵AH =33,∴HC =43,在Rt △HOC 中,∵OC =r ,OH =r ﹣33,HC =43,∴222(33)(43)r r -+=,∴r =2536,∵GM ∥AC ,∴∠CAH =∠M ,∵∠OEM =∠AHC ,∴△AHC ∽△MEO ,∴AH HC EM OE =,∴33432536EM =,∴EM =2538. 点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.3.如图,AB 为O 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE ∽即可解决问题.【详解】()1解:结论:DE 是O 的切线.理由:连接OD .CDB ADE ∠=∠,ADC EDB ∴∠=∠,//CD AB ,CDA DAB ∴∠=∠,OA OD =,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠, AB 是直径,90ADB ∴∠=,90ADB ODE ∴∠=∠=,DE OD ∴⊥,DE ∴是O 的切线.()2//CD AB ,ADC DAB ∴∠=∠,CDB DBE ∠=∠,AC BD ∴=,AC BD ∴=,DCB DAB ∠=∠,EDB DAB ∠=∠,EDB DCB ∴∠=∠,CDB ∴∽DBE ,CD DB BD BE∴=, 2BD CD BE ∴=⋅,2AC CD BE ∴=⋅.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.4.如图,已知四边形ABCD是矩形,点P在BC边的延长线上,且PD=BC,⊙A经过点B,与AD边交于点E,连接CE .(1)求证:直线PD是⊙A的切线;(2)若PC=25,sin∠P=23,求图中阴影部份的面积(结果保留无理数).【答案】(1)见解析;(2)20-4π.【解析】分析:(1)过点A作AH⊥PD,垂足为H,只要证明AH为半径即可.(2)分别算出Rt△CED的面积,扇形ABE的面积,矩形ABCD的面积即可.详解:(1)证明:如图,过A作AH⊥PD,垂足为H,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,∴∠ADH=∠P,∠AHD=∠PCD=90°,又PD=BC,∴AD=PD,∴△ADH≌△DPC,∴AH=CD,∵CD=AB,且AB是⊙A的半径,∴AH=AB,即AH是⊙A的半径,∴PD是⊙A的切线.(2)如图,在Rt△PDC中,∵sin∠P=23CDPD,5,令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)252,解得:x=2,∴CD=4,PD=6,∴AB=AE=CD=4,AD=BC=PD=6,DE=2,∵矩形ABCD的面积为6×4=24,Rt△CED的面积为12×4×2=4,扇形ABE的面积为12π×42=4π,∴图中阴影部份的面积为24-4-4π=20-4π.点睛:本题考查了全等三角形的判定,圆的切线证明,三角形的面积,扇形的面积,矩形的面积.5.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).38313 24313n+ 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h 32,∴1=32-1)2+14a 22, 解得a 283 . (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2,即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭ . ∵h =32 a n ,∴1=14a n 2+2312n na ⎛⎫- ⎪ ⎪⎝⎭, 解得a n =24331n n + .6.如图1,已知AB 是⊙O 的直径,AC 是⊙O 的弦,过O 点作OF ⊥AB 交⊙O 于点D ,交AC 于点E ,交BC 的延长线于点F ,点G 是EF 的中点,连接CG(1)判断CG 与⊙O 的位置关系,并说明理由;(2)求证:2OB 2=BC •BF ;(3)如图2,当∠DCE =2∠F ,CE =3,DG =2.5时,求DE 的长.【答案】(1)CG 与⊙O 相切,理由见解析;(2)见解析;(3)DE =2【解析】【分析】(1)连接CE ,由AB 是直径知△ECF 是直角三角形,结合G 为EF 中点知∠AEO =∠GEC =∠GCE ,再由OA =OC 知∠OCA =∠OAC ,根据OF ⊥AB 可得∠OCA +∠GCE =90°,即OC ⊥GC ,据此即可得证;(2)证△ABC ∽△FBO 得BC AB BO BF =,结合AB =2BO 即可得; (3)证ECD ∽△EGC 得EC ED EG EC =,根据CE =3,DG =2.5知32.53DE DE =+,解之可得.【详解】解:(1)CG 与⊙O 相切,理由如下:如图1,连接CE ,∵AB 是⊙O 的直径,∴∠ACB =∠ACF =90°,∵点G 是EF 的中点,∴GF =GE =GC ,∴∠AEO =∠GEC =∠GCE ,∵OA =OC ,∴∠OCA =∠OAC ,∵OF ⊥AB ,∴∠OAC +∠AEO =90°,∴∠OCA +∠GCE =90°,即OC ⊥GC ,∴CG 与⊙O 相切;(2)∵∠AOE =∠FCE =90°,∠AEO =∠FEC ,∴∠OAE =∠F ,又∵∠B =∠B ,∴△ABC ∽△FBO , ∴BC AB BO BF=,即BO •AB =BC •BF , ∵AB =2BO ,∴2OB 2=BC •BF ;(3)由(1)知GC =GE =GF ,∴∠F =∠GCF ,∴∠EGC =2∠F ,又∵∠DCE =2∠F ,∴∠EGC =∠DCE ,∵∠DEC =∠CEG ,∴△ECD ∽△EGC , ∴EC ED EG EC=, ∵CE =3,DG =2.5, ∴32.53DE DE =+,整理,得:DE2+2.5DE﹣9=0,解得:DE=2或DE=﹣4.5(舍),故DE=2.【点睛】本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.7.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,3PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,3 ,∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=123 ,3, 在Rt △DEP 中,∵37∴22(7)(3)- =2,∵OP ⊥BC ,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE ,∠BED=∠AEC ,∴△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=17 ,∴AE=577∵BE ∥DF , ∴△ABE ∽△AFD , ∴BE AE DF AD= ,即5757125DF = , 解得DF=12,在Rt △BDH 中,BH=123, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣△BOD 的面积)=22160(23)3123(23)23604π⨯⨯-3﹣2π.【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.8.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)【答案】(1)证明见解析 (2)233π- 【解析】【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.【详解】(1)连接OD .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.(2)连接OE ,OE 交AD 于K .∵AE DE =,∴OE ⊥AD .∵∠OAK =∠EAK ,AK =AK ,∠AKO =∠AKE =90°,∴△AKO ≌△AKE ,∴AO =AE =OE ,∴△AOE是等边三角形,∴∠AOE =60°,∴S 阴=S 扇形OAE ﹣S △AOE 260233604π⋅⋅=-⨯22233π=. 【点睛】本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.9.如图,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,交BC 于点M ,若∠CAB =2∠B ,CF =3,求阴影部分的面积.【答案】(1)详见解析;(2)6334π-. 【解析】【分析】(1)如图,连接OC ,利用圆的切线的性质和直径对应的圆周角是直角可得∠PCA=∠OCB ,利用等量代换可得∠PCA=∠ABC.(2)先求出△OCA 是等边三角形,在利用三角形的等边对等角定理求出FA=FC 和CF=FM,然后分别求出AM 、AC 、MO 、CD 的值,分别求出0A E S ∆、BOE S 扇形 、ABM S ∆ 的值,利用0A E ABM BOE S S S S ∆∆=+-阴影部分扇形,然后通过计算即可解答.【详解】解:(1)证明:连接OC ,如图,∵PC 切⊙O 于点C ,∴OC ⊥PC,∴∠PCA+∠ACO=90º,∵AB 是⊙O 的直径,∴∠ACB=∠ACO+OCB=90º∴∠PCA=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠PCA=∠ABC ;(2)连接OE ,如图,∵△ACB 中,∠ACB =90º,∠CAB =2∠B,∴∠B =30º,∠CAB =60º,∴△OCA 是等边三角形,∵CD ⊥AB,∴∠ACD+∠CAD =∠CAD +∠ABC =90º,∴∠ACD =∠B =30º,∵PC ∥AE,∴∠PCA =∠CAE =30º,∴FC=FA,同理,CF =FM,∴AM =2CF=23,Rt △ACM 中,易得AC=23×32=3=OC, ∵∠B =∠CAE =30º,∴∠AOC=∠COE=60º,∴∠EOB=60º,∴∠EAB=∠ABC=30º,∴MA=MB,连接OM,EG ⊥AB 交AB 于G 点,如图所示,∵OA=OB,∴MO ⊥AB,∴MO =3∵△CDO ≌△EDO(AAS),∴332 ∴1332ABM S AB MO ∆=⨯= 同样,易求93AOE S ∆=, 260333602BOE S ππ⨯==扇形 ∴0A E ABM BOE S S S S ∆∆=+-阴影部分扇形933633332ππ-+-=. 【点睛】本题考查了切线的性质、解直角三角形、扇形面积和识图的能力,综合性较强,有一定难度,熟练掌握定理并准确识图是解题的关键.10.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=32;(2)tan ∠BCD=14;(3)①135°;②2. 【解析】【分析】 (1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(a-2c )(b-2c )=8,消去字母a ,b 求出c 值,即求出△CPF 的内切圆半径长为22c . 【详解】(1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得:AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1,∴x 2+x 2=82,解得:x=42. ∵⊙O 内接四边形,∠ACD=90°,∴∠ADE=90°,∴∠EDB=90°,∵∠B=45°,∴△BDE 是等腰直角三形.∴DE=DB ,又∵DB=1,∴DE=1,又∵CE=BC-BE ,∴CE=42232-=.(2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y ,∵S △ACB =S ACD +S DCB , ∴()1114242103y y 222⨯=+⨯+⨯, 解得:y=2或y=-11(舍去).∴EM=1,CM=CE+ME=1+3=4,又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D 切线PF 交CB的延长线于点F .∵∠CAD=45°,∴∠CPD=∠CAD=45°,又∵点D 是CPF ∆的内心,∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD∴∠CPF=90°∴∠PCF+∠PFC=90° ∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°,即∠CDF 的度数为135°.②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心,∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°,∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线,∴∠PCF=2∠DCF ,∠PFC=2∠DFC ,∴∠PCF+∠PFC=90°,∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°,∴四边形PKDN 是矩形,又∵KD=ND ,∴四边形PKDN 是正方形.又∵∠MBD=∠BDM=45°,∠BDM=∠KDP ,∴∠KDP=45°.∵PC=a ,PF=b ,PD=c ,∴PN=PK=C 2,∴NF=b c 2-,CK=a c 2-, 又∵CK=CM ,FM=FN ,CF=CM+FM ,∴CF=a b +,又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴1111ab a c b c (a b 222222=⨯+⨯++-)×c 2,化简得:)2a b c c +-------(Ⅰ),又∵若(c )(c )=8化简得:()2ab a b 2c 8++=------(Ⅱ), 将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c =c =-∴2==, 即△CPF 的内切圆半径长为2.【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.11.如图,已知AB 是⊙O 的直径,BC 是弦,弦BD 平分∠ABC 交AC 于F ,弦DE ⊥AB 于H ,交AC 于G .①求证:AG =GD ;②当∠ABC 满足什么条件时,△DFG 是等边三角形?③若AB=10,sin∠ABD=35,求BC的长.【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;(3)BC的长为145.【解析】【分析】(1)首先连接AD,由DE⊥AB,AB是O的直径,根据垂径定理,即可得到AD AE=,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE=∠ABD,又由弦BD平分∠ABC,可得∠DBC=∠ABD,根据等角对等边的性质,即可证得AG=GD;(2)当∠ABC=60°时,△DFG是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;(3)利用三角函数先求出tan∠ABD34=,cos∠ABD=45,再求出DF、BF,然后即可求出BC.【详解】(1)证明:连接AD,∵DE⊥AB,AB是⊙O的直径,∴AD AE=,∴∠ADE=∠ABD,∵弦BD平分∠ABC,∴∠DBC=∠ABD,∵∠DBC=∠DAC,∴∠ADE=∠DAC,∴AG=GD;(2)解:当∠ABC=60°时,△DFG是等边三角形.理由:∵弦BD平分∠ABC,∴∠DBC=∠ABD=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=30°,∴∠DFG=∠FAB+∠DBA=60°,∵DE⊥AB,∴∠DGF=∠AGH=90°﹣∠CAB=60°,∴△DGF 是等边三角形;(3)解:∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°,∵∠DAC =∠DBC =∠ABD ,∵AB =10,sin ∠ABD =35, ∴在Rt △ABD 中,AD =AB•sin ∠ABD =6,∴BD =22AB BD -=8,∴tan ∠ABD =34AD BD =,cos ∠ABD =4=5BD AB , 在Rt △ADF 中,DF =AD•tan ∠DAF =AD•tan ∠ABD =6×34=92, ∴BF =BD ﹣DF =8﹣92=72, ∴在Rt △BCF 中,BC =BF•cos ∠DBC =BF•cos ∠ABD =72×45=145. ∴BC 的长为:145.【点睛】此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.12.如图,AB 是O 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是O 的切线;(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1) 连接OD,由垂径定理证OF为CD的垂直平分线,得CF=DF,∠CDF=∠DCF,由∠CDO=∠OCD,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD⊥DF,结论成立.(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB,FB=OB= OC =2,在直角三角形OCE中,解直角三角形可得CE,再推出CD=2CE.【详解】(1)证明:连接OD∵CF是⊙O的切线∴∠OCF=90°∴∠OCD+∠DCF=90°∵直径AB⊥弦CD∴CE=ED,即OF为CD的垂直平分线∴CF=DF∴∠CDF=∠DCF∵OC=OD,∴∠CDO=∠OCD∴∠CDO +∠CDB=∠OCD+∠DCF=90°∴OD⊥DF∴DF是⊙O的切线(2)解:连接OD∵∠OCF=90°, ∠BCF=30°∴∠OCB=60°∵OC=OB∴ΔOCB为等边三角形,∴∠COB=60°∴∠CFO=30°∴FO=2OC=2OB∴FB=OB= OC =2在直角三角形OCE中,∠CEO=90°∠COE=60°CE3∠==sin COEOC2∴CF3==∴CD=2 CF23【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.13.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=36.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),∴CD=AE,∵EC=EA,∴AC=2CD.∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形,以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .求证:(1)AD 是⊙B 的切线;(2)AD =AQ ;(3)BC 2=CF×EG .【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=,继而求得67.5ADQ AQD ∠=∠=,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,即可证得Rt DCF ∽Rt GED ,根据相似三角形的对应边成比例,即可证得结论.【详解】证明:()1连接BD ,四边形BCDE 是正方形,45DBA ∴∠=,90DCB ∠=,即DC AB ⊥,C 为AB 的中点,CD ∴是线段AB 的垂直平分线,AD BD ∴=,45DAB DBA ∴∠=∠=,90ADB ∴∠=,即BD AD ⊥,BD 为半径,AD ∴是B 的切线;()2BD BG =,BDG G ∴∠=∠,//CD BE ,CDG G ∴∠=∠,122.52G CDG BDG BCD ∴∠=∠=∠=∠=, 9067.5ADQ BDG ∴∠=-∠=,9067.5AQB BQG G ∠=∠=-∠=, ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=,67.5BFD BDF ∴∠=∠=,22.5GDB ∠=, 在Rt DEF 与Rt GCD 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠,90DCF E ∠=∠=,Rt DCF ∴∽Rt GED ,CF CD ED EG∴=, 又CD DE BC ==,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.15.如图1,D 是⊙O 的直径BC 上的一点,过D 作DE ⊥BC 交⊙O 于E 、N ,F 是⊙O 上的一点,过F 的直线分别与CB 、DE 的延长线相交于A 、P ,连结CF 交PD 于M ,∠C =12∠P . (1)求证:PA 是⊙O 的切线;(2)若∠A =30°,⊙O 的半径为4,DM =1,求PM 的长;(3)如图2,在(2)的条件下,连结BF 、BM ;在线段DN 上有一点H ,并且以H 、D 、C 为顶点的三角形与△BFM 相似,求DH 的长度.【答案】(1)证明见解析;(2)PM =43﹣2;(3)满足条件的DH 的值为632- 或122311+. 【解析】【分析】(1)如图1中,作PH ⊥FM 于H .想办法证明∠PFH=∠PMH ,∠C=∠OFC ,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD ,PD 即可解决问题;(3)分两种情形①当△CDH ∽△BFM 时,DH CD FM BF =. ②当△CDH ∽△MFB 时,DH CD FB MF=,分别构建方程即可解决问题; 【详解】(1)证明:如图1中,作PH ⊥FM 于H .∵PD ⊥AC ,∴∠PHM =∠CDM =90°,∵∠PMH =∠DMC ,∴∠C =∠MPH ,∵∠C =12∠FPM ,∴∠HPF =∠HPM , ∵∠HFP+∠HPF =90°,∠HMP+∠HPM =90°,∴∠PFH =∠PMH ,∵OF =OC ,∴∠C =∠OFC ,∵∠C+∠CMD =∠C+∠PMF =∠C+∠PFH =90°,∴∠OFC+∠PFC =90°,∴∠OFP =90°,∴直线PA 是⊙O 的切线.(2)解:如图1中,∵∠A =30°,∠AFO =90°,∴∠AOF =60°,∵∠AOF =∠OFC+∠OCF ,∠OFC =∠OCF ,∴∠C =30°,∵⊙O 的半径为4,DM =1,∴OA =2OF =8,CD =3DM =3 ,∴OD =OC ﹣CD =4﹣3 ,∴AD =OA+OD =8+4﹣3 =12﹣3 ,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×33 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM 3BF =3,CM =2DM =2,CD 3 , ∴FM =FC ﹣CM =3﹣2, ①当△CDH ∽△BFM 时,DH CD FM BF = , ∴34432=- ,∴DH =632 ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =-,∴DH 1223+ , ∵DN ()22443833--=-,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为62- 或1211+. 【点睛】 本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.。
初三数学圆基础经典练习题
初三数学圆基础经典练习题一、选择题1. 在平面直角坐标系内,点A(-2, 3)和点B(4, -1)分别是圆心在x轴上和y轴上的两个圆的直径的端点,则这两个圆的半径之和为:A. 4B. 2C. 6D. 82. 已知圆O的半径为r,点A在圆上的弧AO的长度为3π,则弧AO所对的圆心角的度数为:A. 45°B. 60°C. 90°D. 120°3. 圆心角为20°的圆弧所对的弦长是7cm,则该圆的半径为:A. 1.5 cmB. 3.5 cmC. 7 cmD. 14 cm二、填空题4. 设点A(3, -4)和点B(-5, 2)是在平面直角坐标系内的两点,若O为圆心在AB中点的圆的圆心,则圆的半径为____________。
5. 已知圆O的半径为6,点A在圆上的弧AO的度数是60°,则圆心角所对的弦长为____________。
三、解答题6. 在平面上有一个半径为12的圆,点A、B、C在圆上,且弧AB 是弧AC的1/3。
若弧AB的长度为x,则弧AC的长度为多少?注:此题的具体位置可以自行添加。
7. 图中O为半径为r的圆的圆心,圆上有一点A,过A点作圆的切线BC,BC与圆的半径OA交于点D且OD=6。
求r的值。
注:此题的图形可以自行绘制。
四、应用题8. 图中的ABCD为一个矩形,圆O与矩形的BC边和CD边分别相切于点E和F。
若矩形的长为8,宽为6,求圆的半径。
注:此题的图形可以自行绘制。
五、综合题9. 有一个圆O,圆心为O,半径为r。
过点O作圆的切线AC和圆弧AC交于点A和点C。
若AO的长度为x,圆弧AC的弧度为α,则弧度α与弧AC所对的圆心角的角度关系为?注:此题可以用文字描述,无需具体的图形辅助。
以上为初三数学圆基础经典练习题,希望能够帮助你巩固圆的基本概念和应用。
参考答案请参照实际解答情况或向老师求证。
祝你学习成功!。
初三圆的经典题型练习题
初三圆的经典题型练习题题一:已知半径为8 cm 的圆的周长是多少?解析:圆的周长公式为C=2πr,其中π约等于3.14,r为半径。
代入已知数据可得C=2×3.14×8=50.24 cm。
题二:已知半径为10 cm 的圆的面积是多少?解析:圆的面积公式为A=πr²,其中π约等于3.14,r为半径。
代入已知数据可得A=3.14×(10²)=314 cm²。
题三:已知半径为6 cm 的圆的直径是多少?解析:圆的直径是半径的两倍,即直径=2r。
代入已知数据可得直径=2×6=12 cm。
题四:已知圆的周长为18.84 cm,求其半径和直径分别是多少?解析:圆的周长公式为C=2πr,其中π约等于3.14,r为半径。
由已知周长可得18.84=2×3.14×r,解得r≈3 cm。
圆的直径是半径的两倍,即直径=2r,所以直径≈6 cm。
题五:已知圆的面积为254.34 cm²,求其半径和直径分别是多少?解析:圆的面积公式为A=πr²,其中π约等于3.14,r为半径。
由已知面积可得254.34=3.14×r²,解得r≈9 cm。
圆的直径是半径的两倍,即直径=2r,所以直径≈18 cm。
题六:已知圆的直径为14 cm,求其周长和面积分别是多少?解析:圆的周长公式为C=2πr,其中π约等于3.14,r为半径。
由已知直径可得半径=r/2=14/2=7 cm。
代入公式可得C=2×3.14×7≈43.96 cm。
圆的面积公式为A=πr²,代入半径可得A=3.14×(7²)≈153.86 cm²。
题七:已知圆的半径为5 cm,求其周长和面积分别是多少?解析:圆的周长公式为C=2πr,其中π约等于3.14,r为半径。
代入已知数据可得C=2×3.14×5≈31.4 cm。
初三数学圆专题经典-(含答案)
九年级数学第二十四章圆测试题(A )一、选择题(每小题3分,共33分)1.(2005·资阳)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )A .2b a +B .2b a - C .22b a b a -+或 D .b a b a -+或 2.(2005·浙江)如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .83.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( )A .40°B .80°C .160°D .120°4.如图24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( )A .20°B .40°C .50°D .70°5.如图24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A .12个单位B .10个单位C .1个单位D .15个单位6.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( )A .80°B .50°C .40°D .30°7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26mB .26m πC .212mD .212m π9.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .310 B .512 C .2 D .3 图24—A —5 图24—A —6图24—A —1图24—A —2 图24—A —3 图24—A —411.如图24—A —7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( )A .D 点B .E 点C .F 点D .G 点二、填空题(每小题3分,共30分)12.如图24—A —8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.圆的定义及相关概念【考点速览】考点1:圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
考点2:确定圆的条件;圆心和半径①圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;考点3:弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
直径是圆中最大的弦。
弦心距:圆心到弦的距离叫做弦心距。
弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(请务必注意区分等弧,等弦,等圆的概念)弓形:弦与它所对应的弧所构成的封闭图形。
弓高:弓形中弦的中点与弧的中点的连线段。
(请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高)固定的已经不能再固定的方法:求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。
如下图:考点4:三角形的外接圆:例 2 .已知,如图,CD是直径, EOD 84 ,AE 交⊙ O 于 B ,且 AB=OC ,求∠ A 的度数。
例 3 ⊙O 平面内一点 P 和⊙O 上一点的距离最小为________ cm 。
例 4 在半径为 5cm 的圆中,弦 AB ∥CD ,AB=6cm , CD=8cm ,则 AB 和 CD 的距离是多 少?例 5 如图 , ⊙ O 的直径 AB 和弦 CD 相交于点 E ,已知AE=6cm , EB=2cm, CEA 30 , 求 CD 的长.例 6. 已知:⊙ O 的半径 0A=1,弦 AB 、 AC 的长分别为 2, 3 ,求 BAC 的度数.锐角三角形的外心在 ,直角三角形的外心在 , 钝角三角形的外心在 考点 5点和圆的位置关系 设圆的半径为 r ,点到圆心的距离为 d , 则点与圆的位置关系有三种。
①点在圆外d > r ;②点在圆上d=r ;③点在圆内 d <r ;典型例题】∠ ACB =90°, AC =2, BC =4,CM 是AB 边上的中线, 以点C 为圆心,以 5 A,B,M 三点分别与⊙ C 有怎样的位置关系,并说明你的理由。
例 1 在⊿ ABC中, 为半径作圆,AB D例 7. 如图,已知在 ABC 中, A 90 ,AB=3cm ,AC=4cm ,以点 A 为圆心, AC 长为半 径画弧交 CB 的延长线于点 D ,求 CD 的长.例 8、如图,有一圆弧开桥拱,拱的跨度 AB = 16cm ,拱高 CD = 4cm ,那么拱形的半径是 _m 。
CA. 思考题D如图所示,已知⊙ O 的半径为 10cm ,P 是直径 AB 上一点,弦CD 过点P,CD=16cm,过点 A 和B 分别向 CD 引垂线 AE 和 BF,求 AE-BF 的值 .考点速览】考点 1 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条孤.推论 1:①平分弦(不是直径)的直径重直于弦,并且平分弦所对的两条孤. ② 弦的垂直平分线经过圆心,并且平分弦所对的两条孤..垂径定理及其推论B③ 平分弦所对的一条孤的直径 ,垂直平分弦,并且平分弦所对的另一条孤. 推论 2.圆的两条平行弦所夹的孤相等. 垂径定理及推论 1 中的三条可概括为:① 经过圆心;②垂直于弦;③平分弦 ( 不是直径 ) ;④平分弦所对的优弧;⑤平分弦所对的劣弧.以上五点已知其中的任意两点,都可以推得其它两点F 。
求证: CE=DF .例 3 如图所示,⊙ O 的直径 AB =15cm ,有一条定长为 9cm 的动弦 CD 在弧 AmB 上滑 动(点 C 与点 A ,点 D 与 B 不重合),且 CE ⊥CD 交 AB 于 E , DF ⊥ CD 交 AB 于 F 。
1)求证: AE = BF2)在动弦 CD 滑动的过程中,四边形 CDEF 的面积是否为定值?若是定值,请给出证典型例题】例 1 如图 AB 、CD 是⊙ O 的弦, 求证: AB=CD .例 2 已知, 不过圆心的直线 M 、 N 分别是 AB 、 CD 的中点,且l 交⊙O 于 C 、D 两点, AB 是⊙ O 的直径, AE ⊥ l 于 E ,BF ⊥ l 于明,并求出这个定值,若不是,请说明理由。
例 4 如图,在⊙ O 内,弦 CD 与直径 AB 交成 450角,若弦 CD 交直径 AB 于点 P ,且⊙O例 5. 如图所示, 在⊙ O 中,弦 AB ⊥ AC ,弦 BD ⊥BA ,AC 、BD 交直径 MN 于 E 、F. 求证: ME=NF.例 6. (思考题)如图, o 1与 o 2交于点 A ,B ,过 A 的直线分别交 o 1, o 2于 M,N ,半径为 1,试问:22 PC2PD2是否为定值?BC 为 MN 的中点, P 为 O 1O 2的中点,求证: PA=PC.三.圆周角与圆心角【考点速览】 考点 1圆心角 :顶点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数。
圆周角 :顶点在圆周上,角两边和圆相交的角叫圆周角。
两个条件缺一不可.Eg: 判断下列图示中,各图形中的角是不是圆周角,并说明理由考点 2定理 :一条弧所对的圆周角等于它所对的圆心角的一半.Eg: 如下三图,请证明。
13. 如图,已知 A 、B 、C 、D 是⊙O 上的四个点, AB =BC ,BD 交AC 于点E ,连接 CD 、 AD .(1)求证: DB 平分∠ ADC ;(2)若 BE = 3,ED =6,求 AB 的长 .14. 如图所示,已知 AB 为⊙ O 的直径, CD 是弦,且 AB CD 于点 E .连接 AC 、OC 、 BC .(1)求证: ACO= BCD .(2)若 EB= 8cm ,CD= 24cm ,求⊙ O 的直径.D15. 如图,在Rt△ABC中,∠ ACB=90°,AC=5,CB=12,AD是△ ABC的角平分线,过A、C、D 三点的圆与斜边AB交于点E,连接DE。
1)求证:AC=AE;2)求△ ACD外接圆的半径。
16. 已知:如图等边△ ABC内接于⊙ O,点P是劣弧BC上的一点(端点除外),延长BP 至D ,使BD AP ,连结CD .(1)若AP过圆心O ,如图①,请你判断△PDC 是什么三角形?并说明理由.(2)若AP不过圆心O ,如图②,△PDC 又是什么三角形?为什么?D四.圆心角、弧、弦、弦心距关系定理考点速览】圆心角, 弧,弦,弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的孤相等,所对的弦相等,所对的弦的弦心距相等推论:在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等.(务必注意前提为:在同圆或等圆中)例 1 .如图所示,点O 是∠ EPF 的平分线上一点,以O 为圆心的圆和角的两边分别交于A、B和C、D,求证:AB=CD .F 例2、已知:如图,EF为⊙ O的直径,过EF上一点P作弦AB、CD,且∠ APF=∠CPF。
求证:PA=PC。
例 3.如图所示,在 ABC 中,∠ A=72 ,⊙O 截 ABC 的三条边长所得的三条弦等长, 求∠ BOC.例 4.如图,⊙ O 的弦 CB 、 ED 的延长线交于点 A ,且 BC=DE .求证: AC=AE .如图所示,已知在⊙ O 中,弦 AB=CB ,∠ ABC=120 , OD ⊥ AB 于 D , OE ⊥BC 于 E .例 6. 如图所示,已知△ ABC 是等边三角形,以 BC 为直径的⊙ O 分别交 AB 、AC 于点 D 、E 。
1)试说明△ ODE的形状;求证: ODE 是等边三角形.C2)如图2,若∠ A=60o,AB≠AC,则①的结论是否仍然成立,说明你的理由。
例7 弦DF∥ AC,EF的延长线交BC的延长线于点G.(1)求证:△ BEF是等边三角形;2)BA=4,CG=2,求BF的长.例8已知:如图,∠ AOB=90 °,C、D是弧AB的三等分点,求证:AE=BF=CD 。
AB分别交OC、OD于点E、F。
六.会用切线,能证切线考点速览:考点 1 直线与圆的位置关系C CEO FB C G图形公共点个数直线与圆的位置关系d与r 的关系0d>r相离1d=r相切2d<r相交考点2切线:经过半径外端并且垂直于这条半径的直线是圆的切线。
符号语言∵ OA ⊥ l 于A,OA 为半径∴ l 为⊙ O 的切线考点3 判断直线是圆的切线的方法:①与圆只有一个交点的直线是圆的切线。
②圆心到直线距离等于圆的半径的直线是圆的切线。
③经过半径外端,垂直于这条半径的直线是圆的切线。
(请务必记住证明切线方法:有交点就连半径证垂直;无交点就做垂直证半径) 考点4切线的性质定理:圆的切线垂直于经过切点的半径。
推论1:经过圆心且垂直于切线的直线必经过切点。
推论2:经过切点且垂直于切线的直线必经过圆心。
请务必记住切线重要用法:见切线就要连圆心和切点得到垂直)1、如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ ACB=∠DCE.(1) 判断直线CE与⊙ O的位置关系,并证明你的结论;(2) 若AB=3,BC=4,DE=D,C求⊙ O的半径.2.如图, AB 是半圆 O 的直径,过点O 作弦 AD 的垂线交半 圆 O 于点 E ,交 AC 于点 C ,使 BED C .(1)判断直线 AC 与圆 O 的位置关系,并证明你的结论;3.如图,已知 R t △ABC ,∠ABC =90°,以直角边 AB 为直径作 O ,交斜边 AC 于点 D ,连结 BD .(1)取 BC 的中点 E ,连结 ED ,试证明 ED 与⊙ O 相切. (2)在( 1)的条件下,若 AB =3,AC =5,求 DE 的长;4.如图,已知 AB 是⊙ O 的直径,点 C 在⊙O 上,过点 C 的直线与 AB 的延长线 交于点 P ,AC=PC ,∠ COB=∠2 PCB.1)求证: PC 是⊙ O 的切线;DEFO16. 如图,四边形 ABCD 是平行四边形,以 AB 为直径的⊙ O 经过点 D ,E 是⊙O 上一点,(1)若∠ AED =45o .试判断 CD 与⊙O 的关系,并说明理由. (2)若∠ AED=60o,AD=4,求⊙ O 半径。
7. 在 Rt △ACB 中,∠ C=90°, AC=3cm ,BC=4cm ,以 BC 为直径作⊙ O 交 AB 于点 D.(1)求线段 AD 的长度;2)求证: BC=2 AB ;5. 如图,在△ ABC 中,AB=AC ,D 是 BC 中点, AE 平分∠ BAD 交 BC 于点 E ,点 O是 AB 上一点,⊙ O 过 A 、E 两点 , 交 AD 于点 G ,交 AB 于点 F .1)求证: BC 与⊙ O 相切;2)当∠ BAC=120°时,求∠ EFG 的度数DEAFOD(2)点 E 是线段AC上的一点,试问当点 E 在什么位置时,直线ED与⊙O 相切?请说明理由.B8. 如图,已知△ ABC内接于⊙ O,AC是⊙O的直径,D是A⌒B 的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F1)求证:EF⊙是O的切线;2)若AB=8,EB=2,求⊙ O的半径.如图,已知⊙ O 是△ABC 的外接圆,AB 为直径,若PA⊥AB ,PO 过AC 的中点M,求证:PC 是⊙O 的切线。