可靠性报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于可靠性和控制性能对电机类型的选择
无刷直流电动机是随着电动机控制技术、电力电子技术和微电子技术发展而出现的一种新型电动机,它的最大特点就是以电子换向线路替代了由换向器和电刷组成的机械式换向结构,同时保持了调速方便的特点,有着功率密度高、特性好、无换向火花及无线电干扰等优点。近年来,DSP在其控制电路中的应用使得无刷直流控制系统的综合性能大为提高,其强大的数据处理能力使得复杂算法数字化得以实现,其单周期乘、加运算能力,可以优化与缩短反馈回路,控制策略得到优化,且它的面向电动机控制的片内外设,使控制系统硬件结构得到简化,有助于实现闭环控制,整个系统的抗负载扰动能力强、频响高、动态性能、稳态精度得到显著提高。
正是考虑到无刷直流电机既具有直流电机效率高、调速性能好等优点,又具有交流电机的结构简单、运行可靠、寿命长、维护方便等优点,其转子惯量小,响应快,同时无刷电动机绕组在定子上,容易散热,也容易做成隔槽嵌放式双余度绕组,并且其以电子换相代替直流电机的机械换相,易做到大容量、高转速,高可靠性的快响应伺服控制系统,因此,舵机系统采用无刷直流电动机作为驱动电机。
采用多余度技术是当前高性能高可靠性要求系统为了提高安全可靠性和任务可靠性的一种重要的工程设计方法。于余度技术是提高系统安全性与可靠性的一种手段,因而在需要高可靠性或超高可靠性的系统,如航空航天飞行控制、通信系统的计算机管理等工程应用领域得到广泛应用。舵机作为飞控系统的执行部件, 它的故障将直接影响飞行器系统的正常工作, 因此多余度舵机是改进飞行控制系统性能, 提高飞行器可靠性、安全性的关键技术。
对于舵机系统,电机绕组、功率逆变器、转子位置传感器在当今技术条件下仍为系统的薄弱环节,在航空航天等高可靠性领域,采用单通道设计往往不能满足要求。因此,在电机定子中隔槽嵌放两套独立绕组,采用两套独立的功率逆变器和两套独立的转子位置传感器构成双余度无刷直流电动机控制系统可以提高整机可靠性。双余度系统通常工作在热备份方式,当一个电气通道发生故障,另一个通道仍能继续工作,系统可靠性大为提高。
双绕组无刷直流电机及其控制系统
双绕组无刷直流电机其定子绕组是由两套空间相差3 0 °电角度的三相集中绕组构成,采用双Y形接法,共用一个永磁转子。两套绕组在电路上是独立的,但彼此之间存在互感。双电枢绕组大大地减少电机电磁转矩的脉振,提高了电机的效率。
双绕组无刷直流电机在控制时采用脉宽调制( P W M ) 1 2 0 °方波驱动的电压源型逆变器供电,每6 0 °触发一次换相,两套定子绕组分别由两套逆变器供电,由于两套绕组空间相差300 °电角度,则两套控制器的换相角度错开300 °。这时,电机两套绕组产生的输出转矩同时作用在电机转子上,则输出转矩为两套绕组输出转矩之和。两套逆变器的控制电路相互独立,以实现电气双余度控制。
驱动器由两套独立的驱动逆变电路构成,逆变器由六个MOSFET 管和六个反向并联二极管组成,由IR2130 来驱动。当某一驱动器发生故障后,系统由双余度工作模式转为单通道工作模式,但仍能完成上位机发出的命令。
图3. 双余度无刷直流电机驱动系统
从表面上看,两套逆变器增加了功率器件的使用数量,但是当两套绕组同时工作时,通过功率器件的电流是一套绕组单独工作时的一半,从而大大减小了单个功率器件的导通应力,提高了系统的可靠性。而且当一路出现故障时,可以马上切断,剩余的一路还可以正常工作,并且完成工作任务,实现“故障——工作”的控制模式。
双余度驱动电机本体结构的可靠性设计
1.电机双余度技术
余度在可靠性工程中定义为:使用一套以上的设备来完成给定的任务,即构成余度。余度技术是指通过为系统增加多重资源,包括硬件与软件的重复配置,实现对多重资源的合理管理,从而提高产品和系统可靠性的设计方法。
实现余度控制一般有两种形式:冷备份和热备份。冷备份是指在正常情况下,只有一个余度正常工作,另一余度不工作。当系统出现故障时,立刻切除发生故障的余度,同时另一余度开始工作;热备份是指在正常情况下,两余度同时工作,当某一余度出现故障时,系统切除发生故障的余度,启用单余度方式。为了提高系统的利用率,在电机的余度控制系统中一般采用双余度的热备份控制方式。
2.双余度电机本体结构设计
双余度电机主要有串联式结构和并联式结构,并联式双余度电机本体结构如图1所示,串联式双余度电机本体结构如图2所示。
图1. 并联式双余度电机本体结构
图2. 串联式双余度电机本体结构
对于串联式双余度结构,由两个独立的永磁电机同轴同壳安装,有两套独立的绕组,两个分开的转子及两套位置传感器,但具有共同的电机轴。在这种结构中,几乎不存在两套绕组间的磁耦合现象,控制简单;但其实际上是由两台电机串联组成的,因此体积较大。同时一个电机发生故障时,该电机会成为另一台电机的负载,从而使得电机的机电时间常数变大,动态特性降低。而且,由于两台电机是共轴结构,会造成力矩扭转现象,使得轴承的寿命减短,因此,一般不采用串联式的双余度结构。另外采用双绕组同轴驱动结构既可避免由于并行驱动所引起的结构和舵面的疲劳破坏,又可提高系统的可靠性,同时可降低系统的机电时间常数,提高系统的动态性能。
对于并联式双余度结构,由两套绕组是相差30°(电角度)的独立绕组,定子槽内嵌放两套独立的电枢绕组,互为备份,两套绕组隔槽嵌放。两套位置传感器共用电动机轴及转子,形成并联式双余度结构。由于转子位置传感器与电机绕组存在严格的对应关系,由于电机的两套绕组相差30°的电角度,故两套传感器也相差30°电角度关系。定子绕组为三相星形联接,采用方波驱动方式,三相六状态运行。由两套独立的电路驱动,从而实现电气双余度控制。控制策略采用热备份方式。采用同轴驱动既可避免由于并行驱动所引起的结构和舵面的疲劳破坏,又可提高系统的可靠性,同时可降低系统的机电时间常数,提高系统的动态性能。与串联式双余度结构相比,并联式结构减小了系统的体积,但电机绕组嵌放比较困难,两套绕组间会存在磁耦合,控制相对比较复杂。考虑到系统对体积、重量、可靠性的要求,考虑到加工工艺的可行性、结构的紧凑性、控制技术的成熟性等设计制造因素,余度舵系统的驱动电机采用并联式双绕组无刷直流电机这种双余度结构。