高等几何课件

合集下载

高等几何课件

高等几何课件
3. 等价关系 定义1.4 设f 为集合A到自身的一个关系. 如果 (1) 若aA, 都有(a,a)f, 则称f 为自反的, 或称f 具有反身性. (2) 若(a,b)f, 就必有(b,a)f, 则称f 为对称的, 或称f 具有对称 性. (3) 若(a,b)f且(b,c)f, 就必有(a,c)f, 则称f 为传递的, 或称f 具 有传递性. 若f 同时满足上述3条, 则称f 为A上的一个等价关系. A上的一个等价关系必将A的元素分成等价类.
换的定义有
| AB | | BC || AC | | A' B'| | B'C'|| A'C'| .
即A', B', C'仍然为共线三点且B'在A', C'之间. 若A, B, C不共线, 则必有
| AB | | BC || AC | | AB | | BC || AC |
| A' B ' | | B 'C ' || A'C ' | | A' B ' | | B 'C ' || A'C ' |
A
a11 a21
a12
a22
称为的矩阵, 满足AAT=ATA=E, 为二阶正交矩阵.
注1:对于正交变换的矩阵A, 显然有A1=AT, 且|A|=1.
当|A|=1时, 将右手系变为右手系, 称为第一类正交变换;
当|A|= 1时, 将右手系变为左手系, 称为第二类正交变换.
注2:正交变换(1.1)在形式上与平面解析几何中的直角坐标变
(2) 正交变换使得平行直线变为平行直线, 矩形变为与之全等 的矩形.
§ 1.1 引 论

大学高等几何课件

大学高等几何课件
空间几何体的分类
多面体、旋转体、组合体等。
空间几何体的性质
体积、表面积、重心等。
平面几何与立体几何的关系
平面几何是立体几何的基础
01
立体几何中的许多概念和性质都可以从平面几何中推广而来。
空间几何体的投影
02
通过投影将三维空间中的几何体投影到二维平面上,从而将三
维问题转化为平面问题。
空间几何体的展开
数形结合的思想方法
数形结合
在高等几何中,数和形是密不可分的,通过数形结合可以将几何问 题转化为代数问题,或者将代数问题转化为几何问题。
代数方法
利用代数方法研究几何问题,如线性代数中的矩阵和向量等,可以 更深入地研究几何图形的性质和关系。
几何直观
通过几何直观来理解代数概念和性质,使得代数问题更加直观易懂。
05
CATALOGUE
高等几何中的数学思想与方法
抽象思维与具体表达的结合
1 2
抽象思维
高等几何中,点、线、面等基本元素不再是具体 的实物,而是通过抽象思维来定义和理解。
具体表达
高等几何中,通过几何图形、图像等方式将抽象 的数学概念具体化,便于理解和应用。
3
结合应用
抽象思维与具体表达的结合,使得高等几何能够 更深入地探索和研究几何学中的本质和规律。
差异性
然而,射影几何和仿射几何也存在差异性。例如,在射影空 间中,无穷远点是重要的元素,而在仿射空间中则不重要。 此外,射影变换通常会改变图形的形状和大小,而仿射变换 则不会。
04
CATALOGUE
欧式几何与非欧式几何
欧式几何的基本概念
欧式几何
基于平面的二维空间,研究点 、线、面及其性质和关系。
不同空间结构

高等几何讲义(第5章§2 圆环点与欧氏几何)

高等几何讲义(第5章§2  圆环点与欧氏几何)

若 T 作用下,IJ 而 JI,则由 IJ 得
由此得
a11 a12i i a21 a22i

(a22 + a11) i a21 a12 0,
故 a22 a11,a21 a12.(由JI 代入可得相同结果)
反之,不难验证仿射变换(5.9)保持{I, J}不动.
高 等 几 何 ( Higher Geometry )
a11 a22,a12 0.
故圆的齐次坐标方程为
a11x12 a11x22 a33x32 2a13x1x3 2a23x2x3 0. 令 b13 a13/a11,b23 a23/a11,b33 a33/a11,化为 非齐次坐标方程,即得结果.
➢ 通过一个圆环点的虚直线称为迷向直线.
坐标系.
o(1)
o(2)
➢ 建立了齐次直角坐标系的扩
大仿射平面称为扩大欧氏平 面.(如右图)
e
e(2)
e(1)
o(3)
高 等 几 何 ( Higher Geometry )
§2 圆环点与欧氏几何
➢2.3 保距变换与欧氏度量
➢ 在扩大欧氏平面上,有如下重要结论
➢ 定理4 在齐次直角坐标下,度量单位圆的方程为
§2 圆环点与欧氏几何
➢ 在以齐次正交坐标系的第三个基点为圆心的圆中, 指定一确定的圆,称为度量单位圆.
➢ 记度量单位圆与o(1)o(3)的交点为e(2),与o(2)o(3) 的交点为e(1),令e (o(1)e(1))(o(2)e(2)).
➢ 指定了度量单位圆,且如上选取单位点 e 的齐次
正交坐标系 [o(1), o(2), o(3); e ] 称为齐次直角
高 等 几 何 ( Higher Geometry )

高等几何

高等几何

第五章高等几何第一节课程概论1、本课程的起源与发展早自欧洲文艺复兴时期,由于绘图和建筑等的需要,透视画的理论逐步形成,以后便建立了画法几何。

法国数学家蒙日(GaspardMonge,1746-1818)在1768到1799年之间和1809年分别出版了画法几何和微分几何两部经典著作,由于画法几何理论的发展,他的学生彭色列(JeanPoncelet,1788-1867)继承了这两部著作中的综合思想,于1822年写了一本书,它是射影几何方面最早的专者。

继彭色列之后,法国人沙尔(Michel Chasles,1793-1880) 等对射影几何的研究都做出了重要贡献。

出生于德国数学家史坦纳(Jacob Steiner,1796-1863)改进了射影几何的研究工具,并且把它们应用到各种几何领域,因而得到了丰硕结果。

到了19世纪上半叶,几何学的发展经历了它的黄金时代。

在这期间,古典的欧几里得几何学不再是几何学的唯一对象,射影几何学正式成为一门新学科。

英国人凯莱(Cayley,1821-1895)和德国人克莱因(Christian Felix Klein,1849-1925)等人用变换群的方法研究了这个分支,射影几何便成为完整独立的学科。

射影几何的诞生诱发于透视理论,一个射影平面就是由欧几里得平面添加所谓无穷远直线而得到的。

克莱因对于几何学理论的统一性有着执著的追求,他在成功地把几种度量几何统一于射影几何之后,就立即在更深层次上寻求统一各种几何学理论的基础。

在19世纪,人们开始把几何中图形的一些性质看作是一种“变换”运动的结果。

如正方形的“中心对称性”,就是将正方形绕其两条对角线的交点O“旋转”180°后仍重合的结果。

正方形的“轴对称性”,就是将正方形绕过O点的水平轴“反射”(即翻转)180°后仍重合的结果。

这里的“旋转”、“反射”就可以分别被看作是一种“变换”。

更为重要的是,数学家们进一步发现,这个正方形上的所有旋转、反射、平移等变换所构成的集合,满足群的条件,因而构成一个“变换群”。

大学高等几何课件第五讲

大学高等几何课件第五讲

: ∆ 切 切 边 点 证 例题 设 ABC内 圆 三 BC, CA, AB于 D, E, F, 求 : D(CA, EF) = −1. 其 D(CA, EF)表 以 为 束 心 四 直 DC, DA, DE, 中 示 D 线 中 的 条 线 DF的 比 交 .
: 点 BC 平 线 交 G DF H 证明 过 A作 的 行 , DE于 , 交 于 , 则 ∠ = ∠2 = ∠3 = ∠4. 1 故 = AE,同 , 有 AG 理 AH = AF. 由 AE = AF, 故 = AH,即 是 段 的 点 P 表 于 以 AG A 线 GH 中 . ∞ BC HG 交 , 直 GH 线 , 示 与 的 点 用 线 截 束 得 D(CA, EF) = (P A, GH), ∞ HA 但 P A, GH) = (HG, AP ) = (HGA) = ( ∞ = −1 , ∞ GA 故 (CA, EF) = −1. D
二、线束的交比 设 a,b,c,d为 一线 中 束 的四 直 , a和 作 条 线 取 b 为基 , 它们 线 把 的 齐 坐 依 次 标 次表 a, b, c = a + λ1b, d = a + λ2b(a, b既 表 线 又 为 代 直 , 代 表 线 坐 直 的 标向 ). 量 设 直 s截 一 线 此四 于 A, B, C, D,则 线 点 这四 的 点 坐标 次 顺 为 a× s, b× s, c× s = a× s + λ1(b× s), ( AB, CD) = d × s = a× s + λ2 (b× s). 故四 的 比为 点 交
一维射影几何学 : 和线束 一维基本图形 点列 : 射影变换的不变量交比 一、点列的交比 设射影 平面上 A的 点 齐次坐 标为a = (a1, a2 , a3 ),点B的齐次 坐标 为b = (b1, b2 , b3 ), 则 X在 连 点 AB 线上⇔∃λ, µ ∈R, 使点 的齐 X 次坐 标 x = (x1, x2 , x3 )可 表为x = λa + µb. 对 偶地 设 , 直线l的坐标 a = (a1, a2 , a3 ), 直线 的线坐 为 m 标为b = (b1, b2 , b3 ), 则 直线l与m重 ⇔矢量 与b线性相 . 直线 与 相 合 a 关 l m 异 ⇔矢量 与 线 a b 性无 . 关

高等几何讲义(第3章)

高等几何讲义(第3章)
高 等 几 何 ( Higher Geometry )
§1 一维射影变换 记号:“ 记号 ”表示射影对应. 由定义:射影对应是可传递的 射影对应是可传递的.即 射影对应是可传递的 若 {a, b, c, …} {ξ, η , ζ , …},且 {ξ, η , ζ , …} {a/, b/, c/, …} , 则 { a, b, c, …} {a/, b/, c/, …}.
高 等 几 何 ( Higher Geometry )
§1 一维射影变换 同类一维基本形间的透视: 若两个点列是同一线束的 若两个线束是同一点列的 截影,则称这两个点列是 投影,则称这两个线束是 透视的. 透视的 透视的. 透视的 透视轴. 透视轴 线束的心称为透视中心 透视中心. 点列的底称为透视轴 透视中心 它 透视点列的等价定义是它 透视线束的等价定义是它 它 们的对应点连线共点. 们的对应点连线共点 们的对应直线交点共 x 线. x x/ d/ a/ b/ b c/
高 等 几 何 ( Higher Geometry )
a≡
a/
b/
§1 一维射影变换 定理6 c 定理 同类一维基本形间 的非透视射影对应可以分 a// b//Байду номын сангаасc// 解为两个透视的乘积. d// 证明:只需证明同为点列 证明 的情形. 如图,有非透视射影对应 a/ b/ c/ δ{ a, b, c, d,…} δ /{a/, b/, c/, d/, …}. (1) 因 a/{a, b, c, d, …} δ {a, b, c, d, …}, 且 a{a/, b/, c/, d/, …} δ /{a/, b/, c/, d/, …}, 故 a{a/, b/, c/, d/, …} a/{a, b, c, d, …}. 因 a × a/ ≡ a/ × a,故 有

大学高等几何课件第一讲

大学高等几何课件第一讲

1.3 仿射不变性与不变量 定理1 间的平行性是 仿射不变 . 性 定理1.1 两条直线 射不变 形;梯 图 形是 仿射不变 形 图 . 推论 平行四边形是仿 述 定义1 , ( 定义1.1 设A,B,C为共线三点 这三点的简比 ABC)定义为下 有向线段 的比 : AC . BC C在 线段AB上 ,简 ( ABC) < 0, C在 的延长线上 , ( ABC) > 0. 时 比 AB 时 ( ABC) = 在 解析 几何中讲过 线段 定比 的 分割 若点 分割线段 的分割比 , C AB 记 λ,则 为 AC AC λ= =− = −( ABC). CB BC 所 以简 ( ABC)等于点 分割线段 的 比 C AB 分割 比的相反数 .
例如 ,人眼 O处 在 观察水 平面 上的矩 ABCD时 形 , 从O到矩 形的各 点连线 形成一个 投影棱 。若在 眼 锥 人 和矩 形之间 插入一 个平面 ,该平 面截棱 锥所得四边 形 A′B′C′D′即为 矩形ABCD的截 影。 但直观 上看 截影 , 和 原矩 形既不 全等 ,又不相似, 那么 截影与 原形究竟 有 何关 系呢? 这正 是阿尔贝 蒂苦 苦思索 而未 找到答案 的 问题 。 阿 尔贝 蒂还思 考了 以下问题 :同一 原形的 不同截 影之 间究竟 有何关 ? 系 这 些问 题成为 研究 射影几何 的出发 。 点
2. 平 π 到平 π ′的 行 影 透 仿 T 面 面 平 பைடு நூலகம் 或 视 射 平行 射影 的方 l要 既 与π 平 又 与 向 求 不 行 不 注: π′ 平行射影方向改变了 就得出另外的从π到π′ . , 的透 视仿 . 射
⇒(i)透 视仿射 保留同 素性(即几 何元素 点与线 保持原 先的种 ). 类 即: 两平面 间的 平行射 影将一 平面上 的点映 射为第 二平面 上的 , 点 将一平 面上的 直线映 第 为 二平面 上的直 . 线 ⇒(ii)透 . 视仿射 保留结 合性 ( 果这两 直线与 直线间 的透视 射有 仿 一个自 对应点 如 条直线 相 , 两平面 , 交线g 交).同 , 在平面 样 到平面 的透视 射下 若 仿 相交 则 为 自对应 点的轨 , 称为 迹 对应轴 对 , 应直线 与 ′或相 a a 交于轴 , 上 或都 与轴平 . 行 平面的 仿射是 有限 由 回的平 行射影 组成的 即仿 , 射是 ⇒平面到 透视仿 射链 .

高等几何讲义第4章

高等几何讲义第4章

c// s
b//
q
共线.
c/
a
b/
§1. 配极与二次曲线
在完全四点形 sa//cb// 的对角线 ab上,有
(ba; pc//) 1,
因 a、b 在曲线上,故 p 与 c//是一对共轭点.
又 p 在 c/ 的极线 ab上,故 p 与 c/ 共轭.
因此,p 的极线是 c/c//.
同理,q 的极线是 a/a//, p
➢3. 二次曲线方程的简化形式
➢ 因以自极三点形为坐标三点形时,配极可化为标 准形式,故二次曲线的点坐标方程可简化为: b1x12 b2x22 b3x32 0.
➢ 下面是另一种简化形式: ➢ 定理6 以二次曲线的一个二切线点和由此点作出
的二切线的切点构成的三点形为坐标三点形,则 曲线方程可写为:
§1. 配极与二次曲线
➢ 推论 不在曲线上的点是无切线点 其极线是
无切点线.
➢ 例1 已知二次曲线 : x12 3x22 x32 2x1x2 4x1x3 0 和点 a(1, 0, 1),试判定点 a 是二次曲 线 的哪一类点.
解法1: 方程可改写为:
1 1 2x1
(x1, x2, x3) 1 3
➢ 下面证明此处定义的切线与通常的切线定义一致.
➢ 例7 证明:直线为二次曲线的切线 此直线与 二次曲线交于二重点.
证明:选取如推论中的坐标系,则 的点坐标方 程为:x12 x2x3 0,其对应矩阵为
2 0 0 (aij) 0 0 1.
0 1 0
§1. 配极与二次曲线
1 0 0
此矩阵的伴随矩阵为:
两条切线 、 的切点分
别为 y、z.
y
因 y、z 的极线 、 过 x,

大学高等几何课件第二讲

大学高等几何课件第二讲
平面到自身的有限回透视仿射链组成平面内的仿射或仿射变换
定理1.7 给定平面内的两个三角形,至多利用三回透视仿射可 使一个三角形变为另一个三角形。
经过仿射变换可以相互转换的图形称为是仿射等价的。 所以任意两个三角形是仿射等价的。直线、四边形也是仿 射等价的。
平面仿射几何基本定理:设P1,
P 2
,
P 是平面内不共线的 3
中心投影:设 f : 是平面到平面 的一一点对应, 且满足对应点的连线通过一个定点,则称 f 是从平面 到 平面 的中心投影.
问题:中心投影是不是数学意义下的一一对应? 分析:当照射光线OP0与l平行时, P0在l上的投影不存在,而引 起P0的投影不存在的原因是平行没有交点这一约定. 解决办法: 取消平行线没有交点的限制,在直线上引进"新点".
(1) 空间中任何一组平行直线有且仅有一个公共的点 无穷远点.
(2) 一直线与它的平行平面交于一个无穷远点. (3) 一组平行平面相交于一条无穷远直线.
仿射直线与射影直线 仿射直线(平面):引入了无穷远点的欧氏直线(平面)称为
仿射直线(平面). 射影直线(平面): 将仿射直线(平面)上的无穷远点与通常的
无穷远元素 规定1: 在平面内对任何一组平行线引进唯一一点叫做无穷远 点(记作P )与之对应,此点在组中的每一直线上,而不在组外的 任何直线上. 规定2: 平面内无穷远点的集合是一条无穷远直线,记作l. 规 定 3 : 空间中所有无穷远点的集合是一个平面,叫做无穷远平
面, 记做 .
在这些规定下, 可以证明 :

a
2经过伸缩变换

y


b a
(a y,

0, b

大学高等几何课件第二讲

大学高等几何课件第二讲

x2 y2 例 . 求 圆 2 + 2 =1的 积 题 椭 面 。 a b
′ b x = x 2 2 : 取 射 换 椭 变 圆 2 解 选 仿 变 a 将 圆 成 x′ + y′ = b . y′ = y S椭圆 S∆OAB 因 面 之 是 射 变 , 为 积 比 仿 不 量 故 = , S圆 S∆OA′B ab 所 S椭圆 = 2 ⋅πb2 = π ab. 以 b
推论1 仿 变 下 何 对 应 边 面 之 等 推论1 在 射 换 , 任 一 对 多 形 积 比 于 数换 话 , 任 两 多 形 积 比 仿 不 常 . 句 说 意 个 边 面 之 是 射 变 量 . 推论2 仿 变 下 意 条 闭 曲 所 成 面 推论2 在 射 换 , 任 两 封 凸 线 围 的 积 比 仿 不 量 之 是 射 变 .
α1 β1
α2 a1 − a0 = b − b0 β2 1
a2 − a0 b2 − b0
≠ 0.
最 一 等 不 于 是 为 共 的 点 后 个 式 等 零 因 不 线 三 ′ 不 线 O, E , E2的 O′, E′, E2也 共 。 像 1 1
射 换 特 仿 变 的 例 x′ = ax, 1. 位 变 (a ≠ 0) 似 换 y′ = ay x′ = x, 2. x轴 的 匀 缩 换 (a > 0). 上 均 伸 变 y′ = ay 当 =1 为 等 换 a 时 恒 变 . x′ = x, 过 缩 换 例 , x2 + y2 = a2经 伸 变 如 圆 b (a > 0, b > 0)后 y′ = a y, x′2 y′2 变 椭 为 圆 2 + 2 =1. a b 3. 运 变 ( 移 旋 或 移 旋 的 统 为 动 动 换 平 , 转 平 与 转 积 称 运 ) x′ = x cosθ − y sinθ +α0 y′ = x sinθ + y cosθ + β0 x′ = x 4. 关 x轴 反 于 的 射 y′ = −y

大学高等几何课件第四讲

大学高等几何课件第四讲

同样, 在平面上, 我们把非齐次的笛卡尔坐标( x, y )推广为齐次笛 卡尔坐标( x1 , x2 , x3 ), 使 x1 x2 x , y , x3 0. x3 x3 并规定对于任何 ( 0), ( x1 , x2 , x3 ) (x1 , x2 , x3 )和( x1 , x2 , x3 )代表 平面上的同一个点.当x3 0, 而x1 , x2不同时为零时, ( x1 , x2 ,0)代表以x1 , x2为方向参数的直线上的无穷远点. (0,0,0)不代表任何点. (1,0,0)代表 x轴上的无穷远点, (0,1,0)代表y轴上的无穷远点, (0,0,1)代表原点. 一点为无穷远点的特征是x3 0, 所以x3 0取作无穷远直线的方 程. 按射影的观点, x3 0跟其它的点没有区别.
由此可见, 用矢量表示, 则直线a, 即a x 0和直线b, 即b x 0 的交点坐标为 x a b. 以上讲的是点坐标, 下面介绍线坐标.
直线 a : a1 x1 a2 x2 a3 x3 0 ( 0)和[a1 , a2 , a3 ]代表同一直线. 我们把不全为零的三个数 u1 , u2 , u3称为直线 u x u1 x1 u2 x2 u3 x3 0 何值, 线坐标[1,0,0], [0,1,0], [0,0,1]分别表示y轴, x轴和无穷远直线. 两点a (a1 , a2 , a3 ), b(b1 , b2 , b3 )联线的方程可写为 x1 x2 a1 a2 b1 b2 x3 a3 0, 即(a2b3 a3b2 ) x1 (a3b1 a1b3 ) x2 (a1b2 a2b1 ) x3 0, b3
2.2
齐次坐标 点和直线的概念已经拓广,描述点和直线的代数表示也应作

高等几何课件

高等几何课件
总结:在平面上添加无穷远元素之后,没有破坏点与直线 的关联关系,同时使得中心射影成为双射.
§ 1.1 拓广平面
理解约定1.1(1), (2)
1、对应平面上每一方向,有惟一无穷远点. 平行的直线交于同 一无穷远点;交于同一无穷远点的直线相互平行.
2、每一条通常直线上有且仅有一个无穷远点. 3、平面上添加的无穷远点个数=过一个通常点的直线数. 4、不平行的直线上的无穷远点不同. 因而,对于通常直线:
平行
无穷远点
两直线 不平行 交于惟一 有穷远点
平面上任二直线总相交
5、空间中每一组平行直线交于惟一无穷远点. 6、任一直线与其平行平面交于惟一无穷远点.
)
1、无穷远直线为无穷远点的轨迹. 无穷远直线上的点均为无穷 远点;平面上任何无穷远点均在无穷远直线上.
2、每一条通常直线与无穷远直线有且仅有一个交点为该直线 上的无穷远点.
给平行线添加交点!
§ 1.1 射影平面
一、中心射影 二、无穷远元素
目标: 改造空间,使得中心射影成为双射 途径: 给平行直线添加交点 要求: 不破坏下列两个基本关系
两条相异直线确定惟一一个点(交点)
} 点与直线的关联关系
两个相异点确定惟一一条直线(连线)
§ 1.1 拓广平面
二、无穷远元素
约定1.1 (1) 在每一条直线上添加惟一一个点,此点不是该直 线上原有的点. 称为无穷远点(理想点),记作P∞
•训练理性思维、抽象思维、逻辑推理能力,增强数 学审美意识,提高数学修养。
•新颖性,趣味性,技巧性,反馈于初等几何,提高 观点,加深理解,举一反三。
课程概论
一、高等几何的内容 二、高等几何的与方法 三、开课目的 四、计划及注意点

高等几何讲义(第2章)

高等几何讲义(第2章)

高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面 一般地,记 a、b所连直线为 a b,其坐标方程为 x1 x2 x3 a1 a2 a3 0. b1 b2 b3 其参数方程为:
x1 a1 b1 x2 a2 b2,、 R 且 2 2 0. x3 a3 b3
高 等 几 何 ( Higher Geometry )
§2. 射影平面
故又可写成分解式: (x1, x2, x3) (x1/1)(1, 0, 0) (x2/2)(0, 2, 0) (x3/3)(0, 0, 3), (2.2) 代数形式上,(x1/1, x2/2, x3/3) 与 (x1, x2, x3) 应 表示同一点的坐标.
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面
2. 点的齐次仿射坐标
定义 设 = [O; e1, e2 ]是平面仿射坐标系.在 之下,满足下述条件的有序实数组 (x1, x2, x3) (0, 0, 0) 称为平面上点的齐次仿射坐标: 1.若 0,则 ( x1, x2, x3) 与 (x1, x2, x3)为同 一点的齐次仿射坐标; 2.若 x3 0,则 (x1, x2, x3)是(非齐次)仿射坐标为 x = x1/x3 , y = x2/x3 的普通点的齐次仿射坐标; 3.齐次仿射坐标为(x1,x2,0)的点称为无穷远点. 注意:条件 2 给出了普通点的(非齐次)仿射坐标 与齐次仿射坐标之间互化的方法.
3. 点 c 与直线 ab 的结合对应于由 (c) 生成的一
维子空间包含在由 (a) 和 (b) 生成的二维子空间.
高 等 几 何 ( Higher Geometry )

《高等数学教学课件》09空间解析几何

《高等数学教学课件》09空间解析几何
2 2 2
a , b垂直 x1 x2 y1 y2 z1 z2 0
4. a b ( y1 z2 y2 z1 )i ( z1 x2 z2 x1 ) j ( x1 y2 x2 y1 )k i x1 x2 j k y1 z1 y2 z 2
k i
j
注意向量自身叉积为0,且在右手系下: i j k, j k i ,k i j.
解 设N ( x, y, z )为所求直线任一点,则 x 1 y 1 z 4 . MN // a 1 1 1 例 求到点O1 (0,1,0)距离为1的点的轨迹. 解 设M ( x , y , z )为所求轨迹任一点,则 O1 M 1,
即 ( x 0) ( y 1) ( z 0) 1
b
b
b sin( a , b )
3.向量的混合积 a (b c )叫作a , b , c的混合积.
a
混合积性质: a (b c ) 以a , b , c为棱的平行六面体体积.
向量垂直 a b 0.
向量平行 a b 0.
bc
设i , j , k为相互垂直且依顺序 构成右手系的三单位向量,则 i j k, j k i ,k i j.
当a、b反向时,有 =
向量的乘法(积) 向量的夹角 两非零向量a , b把起点放在一起, 构成的不
超过的角叫向量a , b的夹角.记为 : (a , b ), (a , b ).
1.向量的数量积(点积)——投影向量长度乘积 a , b为两向量,称数 a b cos(a , b )为向量a , b的
3. x轴上点 y 0, z 0; 4. O点 x 0, y 0, z 0; y轴上点 x 0, z 0; z轴上点 x 0, y 0; 向量运算的坐标表示 设 a OM x1i y1 j z1k ( x1 , y1 , z1 ),

高等几何第一章PPT课件

高等几何第一章PPT课件
教材分析
本章地位
从透视仿射(平行射影)引入仿 射不变性与仿射不变量,为拓广 欧氏平面作准备。
本章内容
定义透视仿射,学习仿射不变性与 仿射不变量,证明平面仿射几何基 本定理,引入仿射变换的代数表示。 将注意力集中在仿射变换及其特 征上,学习用综合法、代数法证 明几何命题的方法。
3
学习注意
高等几何──朱维宗
y
OPPP2 OPPP2. 1 1
P( x, y)
P2பைடு நூலகம்
B T 3 ( B) B T ( B )
19
高等几何──朱维宗
1.4平面内的一般仿射
1.本节主目的
在1.3中,我们知道一条对应轴和一对对应点完全 确定平面内的一个透视放射变换。当每一个透视 仿射确定时,就确定了由它们所组成的放射变换。 但这种确定的方法必须先知道组成放射变换的透 视仿射的个数及每一个透视仿射的自对应轴。因 而受到限制。实际上不能依靠这样的方法。怎么 去确定一个仿射变换呢?这就是本节所要解决的。
7
高等几何──朱维宗
1.2仿射不变性与不变量
2.重要结论例讲
(1)定理1.4.一直线上任两线段之比是仿射不变量(Ex1.11)
A [证]设 A、B、C、D是直线a上任意四点, 、B、C 、D 是其仿射象,则
AB AB BD AB BD CD BD CD DB CD 简比是仿射量 AB BD AB . DB C D C D
T 1 T2 Tn1
T Tn1 T2T1 , k k1k2 kn1
则SAn BnCn kSABC
或 SAn BnCn SABC k
13
高等几何──朱维宗
推论1:在仿射变换下,任意一对对应多边形面积 之比是常量。

大学高等几何课件第四讲

大学高等几何课件第四讲

由 可 , 用 量 示 则 线 ,即 ⋅ x = 0和 线 ,即 ⋅ x = 0 此 见 矢 表 , 直 a a 直 b b 的 点 标 交 坐 为 x = a×b. 以 讲 是 上 的 点坐标 面 绍 点坐标下 介 线坐标 , .
直 线 a : a1x1 + a2 x2 + a3x3 = 0 由 的 数 a1, a2 , a3 ]决 (线 标 方 号 ]表 ), 并 [λa1, λa2 , λa3 ] 它 系 [ 定 坐 用 括 [ 示 且 (λ ≠ 0)和 a1, a2 , a3 ]代 同 直 . [ 表 一 线 我 把 全 零 三 数 们 不 为 的 个 u1, u2 , u3称 直 为 线 u ⋅ x = u1x1 + u2 x2 + u3x3 = 0 的 坐 , 矢 λu(λ ≠ 0)和 量 代 同 条 线 而 论 子 (≠ 0)为 线 标 量 矢 u 表 一 直 , 不 因 λ 何 , 线 标1 0,0],[0,1 0],[0,0,1]分 表 y轴 x轴 无 远 线 值 坐 [, , 别 示 , 和 穷 直 . 两 a(a1, a2 , a3 ), b(b , b2 , b3 )联 的 程 写 点 线 方 可 为 1 x1 x2 a1 a2 x3 a3 = 0,即 a2b3 − a3b2 )x1 + (a3b − a1b3 )x2 + (a1b2 − a2b )x3 = 0, ( 1 1
2 a11x1 + 2a12x1x2 + a22x2 + 2a13x1x3 + 2a23x2 x3 + a33x3 = 0. 2 2
它 x1, x2 , x3的 次 次 . 是 二 齐 式 斜 为 的 线 = kx + b的 次 程 x2 = kx + bx3, 和 穷 率 k 直 y 齐 方 为 无 1 远 线 3 = 0联 求 得 点 标 x1 : x2 : x3 =1: k : 0.故 直 x 立 解 交 坐 为 斜 率 k的 线 的 穷 点 (1 k,0). 为 直 上 无 远 是 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则单比为
( p1, p2 , p3 )
x3 x1 x3 x2
y3 y1 y3 y2
第一章、仿射坐标与仿射变换
第一章、仿射坐标与仿射变换
对图形作有限次的平移、旋转、 轴反射的结果
欧氏几何
研究图形的 正交变换不变性的科学
仿射几何
平行射影
透视仿射变换
有限次平行射影的结果
仿射变换
仿射几何 仿射不变性
研究图形的
仿射变换不变性的科学
比如——平行性、两平行 线段的比等等
射影几何
中心射影
透视变换
有限次中心射影的结果
射影变换
射影几何
研究图形的 射影变换不变性的科学
射影不变性
比如——几条直线共点、 几个点共线等等
射影变换将彻底改变我们原有的几何 空间观念!
课程概
一、高等几何的内容 论
二、高等几何的方法
综合法
给定公理系统(一套相互独立、 无矛盾、完备的命题系统),演 绎出全部内容
解析法
形、数结合,利用代数、分析 的方法研究问题
本课程
以解析法为主,兼用综合法
课程概 一、高等几何的内容 论
作与L平行的直线 A, B,CL
与b交于 A' , B' , C ' ,L
即得a到b的一个一一映射,
称为透视仿射对应。
注:透视仿射对应与L的方向无关。若a与b相交,交点称为自对应点。
第一章、仿射坐标与仿射变换
a
两条直线间的透视仿射对应 C B A
o A/
L
B/ C/
b
第一章、仿射坐标与仿射变换
两个平面间的透视仿射对应
A1
B1
C1
1
M
B
C
A
L
第一章、仿射坐标与仿射变换 2、定义
1)设 P1, P2 , P 为共线三点
P1
P2
P

( P1P2 P)
P1P P2 P
为共线三点 P1, P2 , P 的单比, P1, P2 叫基点
P 叫分点。
ቤተ መጻሕፍቲ ባይዱ
uuur uuur P1P, P2 P 是有向线段 P1P, P2P 的数量
二、高等几何的方法 三、开课目的
• 学习射影几何,拓展几何空间概念,引入几何变换 知识,接受变换群思想
• 训练理性思维、抽象思维、逻辑推理能力,增强数 学审美意识,提高数学修养
• 新颖性,趣味性,技巧性,反馈于初等几何和其他 学科,提高观点,加深理解,举一反三
四、几何的发展历史线索
射影几何学是一切的几何学 ──[英] Cayley
第一章 仿射坐标与仿射变换
本章地位 本章内容
学习射影几何的基础
阐明仿射变换的概念,研 究仿射变换的不变量与不 变性质。
学习注意
认真思考,牢固掌握基本 概念,排除传统习惯干扰
第一章、仿射坐标与仿射变换
透视仿射对应
一、概念
1、同一平面内两直线a到b间的透视对应,设L为平面上另外一直线,a与 b不
平行。过a上的点
本课程
主要介绍平面射影几何 知识(教材前五章)
……
课程概 一、高等几何的内容 论
什么是射影几何?
直观描述
鸟瞰下列几何学
欧氏几何
仿射几何
射影几何
十九世纪名言
一切几何学都是射影几何
欧氏几何(初等几何)
研究图形在“搬动”之下保持不变的性质和数 量(统称不变性,如距离、角度、面积、体积等)
搬动
正交变换
非欧几何
经验几何
演绎化
论证几何 (欧氏几何)
(远古─元前600年)
积累了丰富的 经验,但未上 升成系统理论
(元前600年─ 400年)
埃及几何跟希腊逻辑 方法相结合,以抽象 化、逻辑化为特点
几何基础(公理 几何)
解析几何
微分几何
射影几何
拓扑学
四、几何的发展历史线索
代数曲线
解析几何 (17世纪)
(坐标法)
1,2 ,L ,n 是 a1到a2, a2到a3,L , an1到an 的透视仿射对应
经过这一串对应,得到 a1到an 的透视仿射对应,
这个对应称为 a1到an 的仿射对应。
记作: nn1 L 21
第一章、仿射坐标与仿射变换
如图所示:
第一章、仿射坐标与仿射变换 如图
第一章、仿射坐标与仿射变换 二、性质
点集拓扑 代数拓扑 解析拓扑
分形几何
微分拓扑 微分流形 纤维丛
五、课程简介
• 周学时3,一个学期,学习第一章~第六章
• 主要参考书:
•梅向明、门淑惠等编《高等几何》,高等教育出版社出版,2008年; • 朱德祥、朱维宗等编《高等几何》(第二版),高等教育出版社出版,2010年; •罗崇善编《高等几何》,高等教育出版社出版,1999年6月; •朱德祥、李忠映、徐学钰等编《高等几何习题解答》。
(1)保持同素性和结合性; (2)保持共线三点的单比不变; (3)保持直线的平行性不变。
注:仿射对应下,对应点的连线不一定平行。
为什么?
第一章、仿射坐标与仿射变换
反之,若两个平面间的一个点对应(变换)保持同 素性、结合性和共线三点的单比不变,则这个点对应 (变换)称为仿射对应(变换)
例1、平行四边形经仿射(对应)变换仍变为平行 四边形
代数法
代数几何
代数曲面 代数族 域上多胞形
微分几何 (19世纪)
(分析方法)
张量分析 微分流形、黎曼流形、复流形 大范围微分几何
射影几何 (19世纪)
(综合法、爱尔 兰根纲领代数法)
仿射几何 画法几何
四、几何的发展历史线索
非欧几何
(19世纪)
罗氏几何 黎曼几何
拓扑学
(几何与代数、 分析相结合, 多样化发展)
教师授课助手 学生自修向导——
高等几何多媒体课件
课程概
一、高等几何的内容 论
高等几何
数学与应用数学专业主干课程之一
前三高
数学分析 高等代数
hxjj jzk 后三高
实变函数 近世代数
高等几何
高等几何 cjujzczzzzzcz
点集拓扑
综合大学:空间解几+仿射几何、射影几何, 一个学期
射影几何 几何基础
§ 1 透视仿射对应
2). 符号
3).与定比的区别 (P1P2P)表示一个数, 是有向线段P1P与P2P的比值, 与解几中的定比分点反号.
§ 1 透视仿射对应
二性质 1保同素性和结合性
2保单比不变 3保平行性
第一章、仿射坐标与仿射变换
•第二节、 仿射对应与仿射变换
一、概念 设同一平面内有n条直线,a1, a2 ,L , an 如下图
例2、两平行线段之比经仿射对应不变
例3、仿射对应保持平形性不变
第一章、仿射坐标与仿射变换
第三节、仿射坐标系
1、定义 笛卡尔坐标系在仿射对应下的像叫做
仿射坐标系, (x', y') 叫点 P' 的仿射坐标
记为 P' (x', y' )
2、设共线三点 P1, P2, P3 的仿射坐标为
(x1, y1), (x2 , y2 ), (x3, y3 )
相关文档
最新文档