库岸路堑高边坡自动化监测方案
边坡位移自动化监测解决方案
边坡位移自动化监测报价编制单位:上海岩联工程技术有限公司编制时间:2018年6月深层水平位移监测1、固定式测斜仪的用途固定式测斜仪是一种高精度传感器,广泛适用于测量土石坝、面板坝、边坡、路基、基坑、岩体滑坡等结构物的水平或垂直位移、垂直沉降及滑坡,该仪器配合测斜管可反复使用,并可方便实现倾斜测量的自动化。
2、结构组成固定式测斜仪由安装卡板、数据电缆、连接杆、测杆、导向轮等组成。
3、工作原理测斜仪是通过测量测斜管轴线与铅垂线之间夹角变化量(r),来计算水平位移的工程监测仪器。
通常情况下,由多支固定式测斜仪串联装在测斜管内,通过装在每个高程上的倾斜传感器,测量出被测结构物的倾斜角度,以此将结构物的变形曲线描述出来。
4、技术参数表:(除非特别注明,以下均为室温(25℃)环境下的典型值。
)项目测试条件最小值典型值最大值单位工作参数电源电压直流8 24 30静态工作电流VCC=8.00V 25 30 mA 工作温度-40 +85 ℃性能参数测试范围双轴±15 度分辨力0.001 度准确度-12°~ +12°±0.02 度-15°~ +15°±0.05 ±0.1 度重复性±0.003 度零点温度漂移(3-40~+85 ℃±0.002 度/℃灵敏度温度漂移-40~+85 ℃±0.013 %/℃其他参数防水等级探头水深 100米IP685、产品特点轻便、操作简单、智能化高;全固态,不易损坏,日常维护简单;高分辨率、便携式、宽量程,性能稳定;可以和电脑通讯,把测量数据转存到电脑上进行分析。
6、安装示意图7、安装主要尺寸8、安装方法8.1测斜管的安装先将测斜管装上管底盖,用螺丝或胶固定。
测斜管与测斜管之间用管接头连接,测斜管与管接头之间必须用螺丝固定后涂胶填缝密封。
测斜管在安装中应注意导槽的方向,导槽方向必须与设计要求的方向一致。
路堑高边坡监测方案
欢迎共阅路堑高边坡监控量测技术方案一、编制依据1、昆磨高速小勐养至磨憨段两阶段施工图设计(第一册第二分册)。
2、公路路基施工技术规范(JTG F10-2006)。
3、公路工程质量检验评定标准(JTG F80/1-2004)。
项目测区地形以起伏的中低山地形为主,局部零星分布盆地和长条形的宽缓河谷。
地形相对高差200~600m,全线海拔500~1600m,根据地貌特征分类,将测区划分为侵蚀堆积、构造侵蚀、构造溶蚀三大地貌类型。
路线北侧山丘为构造剥蚀低山丘陵区,高程1000m以下,主要以粉质粘土、卵石、泥石为主,该路段地表水体较丰富。
本合同段由于拟建路线较长、地形起伏较大,且跨越不同的微地貌边坡坡率按1:1;1:1;1:1;1:1;1:1.25进行稳定验算,安全系数为1.13;拟对一级进行锚杆框格梁加固、二级、三级、四级边坡进行锚索框格梁加固、五级进行现浇拱形护坡,经验算加固后边坡安全系数为1.28,满足规范要求,并以此控制断面类比其余边坡断面进行工程加固处治设计。
3、边坡坡形、坡率与防护加固形式:①、每级平台均设置截水沟;态,必须建立动态监测体系。
只有对路堑边坡表面、地下变形以及支挡结构物受力状态监测获取的信息进行综合分析,才能把握路堑边坡的安全稳定。
高边坡监测的主要目的有以下几点:(1)、通过对边坡变形的监测,判断边坡的滑动面深度、滑动范围及其变形发展趋势,评估开挖施工对边坡自身稳定性和周围建构筑物的影响情况,提供预警信息;(2)、通过动态监测,依据实际情况进行工序和工艺的调整,以便采取更为合理、有效的支护措施,及时指导施工,优化施工方案。
避免边坡工程事故的发生,确保施工安全、快捷地进行;(3)、通过动态监测,掌握控制边坡的稳定性个中参数和因数随时间和空间上的不断变化的过程,为动态化设计,变更设计方案提供依据;(4)、通过对张拉过程中以及施工期监测,为高边坡科研提供原始(1)、坡面外观观测①、量测目的在平台上设置坡面变形观测点,利用全站仪进行观测。
边坡位移自动化监测解决方案
边坡位移自动化监测报价编制单位:上海岩联工程技术有限公司编制时间:2018年6月深层水平位移监测1、固定式测斜仪的用途固定式测斜仪是一种高精度传感器,广泛适用于测量土石坝、面板坝、边坡、路基、基坑、岩体滑坡等结构物的水平或垂直位移、垂直沉降及滑坡,该仪器配合测斜管可反复使用,并可方便实现倾斜测量的自动化。
2、结构组成固定式测斜仪由安装卡板、数据电缆、连接杆、测杆、导向轮等组成。
3、工作原理测斜仪是通过测量测斜管轴线与铅垂线之间夹角变化量(r),来计算水平位移的工程监测仪器。
通常情况下,由多支固定式测斜仪串联装在测斜管内,通过装在每个高程上的倾斜传感器,测量出被测结构物的倾斜角度,以此将结构物的变形曲线描述出来。
4、技术参数表:(除非特别注明,以下均为室温(25℃)环境下的典型值。
)项目测试条件最小值典型值最大值单位工作参数电源电压直流8 24 30静态工作电流VCC=8.00V 25 30 mA 工作温度-40 +85 ℃性能参数测试范围双轴±15 度分辨力0.001 度准确度-12°~ +12°±0.02 度-15°~ +15°±0.05 ±0.1 度重复性±0.003 度零点温度漂移(3-40~+85 ℃±0.002 度/℃灵敏度温度漂移-40~+85 ℃±0.013 %/℃其他参数防水等级探头水深 100米IP685、产品特点轻便、操作简单、智能化高;全固态,不易损坏,日常维护简单;高分辨率、便携式、宽量程,性能稳定;可以和电脑通讯,把测量数据转存到电脑上进行分析。
6、安装示意图7、安装主要尺寸8、安装方法8.1测斜管的安装先将测斜管装上管底盖,用螺丝或胶固定。
测斜管与测斜管之间用管接头连接,测斜管与管接头之间必须用螺丝固定后涂胶填缝密封。
测斜管在安装中应注意导槽的方向,导槽方向必须与设计要求的方向一致。
边坡自动化在线监测系统解决方案
边坡自动化在线监测系统解决方案滑坡、崩塌是危害程度仅次于地震的较大地质灾害,与地震相似具有突发性的特点,滑坡、崩塌在我国分布非常广泛。
当下,边坡安全监测缺乏系统的技术研究,管理手段不规范,监测技术落后,缺乏综合考虑,导致人民群众生命财产的损失,造成恶劣的社会影响。
边坡安全事件频发,为及时了解边坡运营情况,对突发事故进行提前预警,对边坡安全监测已经迫在眉睫!建大仁科边坡在线监测系统,可对边坡倾角、降雨量、土壤含水量、水位变化等进行连续实时监测,对灾害发生前的整体稳定性做出判断,快速做出灾害发生的预警预报。
系统概述建大仁科边坡滑坡监测方案由倾角变送器、雨量计、水位计、水压计、沉降计及地质灾害监测平台组成,能因地制宜,集成深部位移监测、滑体地下水渗压监测、滑坡后缘拉张裂缝位移监测、雨量监测、地表水位监测、压力监测、地表水入渗监测等多种监测设备,为有关部门更全面地分析滑坡诱因,提前预警或工程治理设计,提供全面而准确的数据支撑。
主要监测内容1.挡土墙监测:侧向压力、倾斜监测等山体滑坡,雪崩——双轴倾角传感器配合液位传感器用于山体滑坡或雪崩监测,通过无线传感系统将数据传输到中央控制系统,实时监测山体状态,可以有效减小山体滑坡带来的损失。
2.环境监测:降雨量、土壤含水率翻斗式雨量计便是基于以上原理,可以测量并记录各种雨量信息,具有抗干扰能力强、全户外设计、测量准确、传输距离长、体积小、精度高、全自动无人值守、运行稳定等特点,可用于以防洪、供水调度、电站水库水情管理等为目的水文自动测报系统。
管式土壤检测仪可以同时监测温湿度、电导率、土壤ph,能够更方便全面的了解土壤信息。
土壤墒情是进行水文预报、防旱抗旱、农业生产等方面十分重要的参考依据。
3.地下水监测:孔隙水压力监测在工业生产及日常生活的供水系统中,液位作为重要的工艺参数之一,在各个领域中都有广泛的应用,有很多场合需要对液位、水位、油位进行监控,准确指示液位情况,并对其进行自动控制,补充液位介质。
高边坡、路堤监测方案
高路堤、高边坡施工监测方案1 概述黄祁高速公路,路基宽24.5m,路面设计为双向四车道,行车时速80~l00km/h。
对高边坡、高路堤本着安全稳定、经济合理、美观环保的原则进行必要的加固处理。
2 监测技术方案2.1 监测对象本标段选择以下几类边坡作为监测对象:(1)路堑边坡:K35+530--K35+745、K37+670--K37+730、K38+600--K38+700、K38+967--K39+005、K39+410--K39+490、K39+900--K40+010。
(2)路堤边坡:K37+115--K37+159、K39+740--K39+840、K37+590--K37+640。
2.2 监测项目本工程监测项目为:(1)边坡坡体水平位移和垂直位移监测;(2)地表裂缝观测;(3)地下水、渗水与降雨关系的观测;(4)锚索预应力量测;(5)钢锚管预应力量测;(6)锚杆拉力量测;(7)土体分层沉降监测。
3 监测方法与手段3.1 边坡坡体水平位移和垂直位移监测边坡坡体的水平位移和垂直位移监测分别采用极坐标法和测边三角形法进行。
采用极坐标法时,控制点选在边坡变形区以外通视条件好的地点,埋设钢筋砼桩,观测点选在边坡顶及平台或抗滑桩上。
初始观测:用2”级全站仪独立观测两次,每次观测一个测回,多次精测距离取平均值。
当两次观测的平面坐标差符合有关规范要求时取两次观测结果的平均值作为初始观测值。
三角高程测量测高程时,当所测边长~<200m,竖向角≤20。
时,一次观测高程中误差≤4.8mm,两次观测高程差限差≤2 ×4.8=13.5mm时,取两次测量的平均值作为初始观测高程值。
采用测边三角形法时,控制点布设于变形区以外,且与道路中心线平行,观测点如极坐标法布设。
在观测点上安置仪器,测量观测点到控制点的边长和竖直角,用2”级全站仪观测,测距精度为2mm+2ppm·d,对中误差≤0.5mm。
高边坡滑坡监测方案
边坡滑坡监测方案2015—09—17 编制1.概述为实现无人值守的边坡监测自动化,我公司推出了应用于边(滑)坡或大坝等的基于系统集成技术的边坡自动化监测系统。
该系统是一种综合性的自动化远程监测系统,可对边坡岩土体内部沉降、倾斜、错动、土壤湿度、孔隙水压力变化等进行连续监测,及时捕捉边坡性状变化的特征信息,通过有线或无线方式将监测数据及时发送到监测中心。
结合地表监测的雨量、位移等信息,由专用的计算机数据分析软件处理,对边(滑)坡的整体稳定性做出判断,快速做出诸如山体边坡崩塌、滑坡等灾害发生的预警预报,更加准确、有效地监测灾情发生,且可为保证地质安全和整治工程设计提供信息参考。
2监测方案系统构成系统由传感器(渗压计、多点位移计、钢筋计、固定式测斜仪、雨量计、土体位移计、拉线式位移计)、MCU-32型自动采集单元、通信模块、数据库服务器、数据采集软件等组成。
见下图3测量项目3.1孔隙水压力边坡除了受到恒定的重力作用以外,地下水的作用对其稳定性通常也是一个不能忽视的因素。
而由于降雨等原因,地下水位往往会在一定范围内往复变化,使得在稳定的地下水位以上的部分岩土体经常处于干湿交替的状态。
这对边坡的长期稳定性十分不利。
VWP型振弦式渗压计适用于长期埋设在水工结构物或其它混凝土结构物及土体内,测量结构物或土体内部的渗透(孔隙)水压力,并可同步测量埋设点的温度。
渗压计加装配套附件可在测压管道、地基钻孔中使用。
3.2土体分层沉降坑外土体分层竖向位移可通VWM多点位移计测量。
土体分层竖向位移的初始值应在分层竖向位移标埋设稳定后进行,稳定时间不应少于1周并获得稳定的初始值;监测精度不宜低于1mm。
每次测量应重复进行2次,2次误差值不大于1mm。
采用分层沉降仪法监测时,每次监测应测定管口高程,根据管口高程换算出测管内各监测点的高程。
VWM型振弦式多点位移计适用于长期埋设在水工结构物或土坝、土堤、边坡、隧道等结构物内,测量结构物深层多部位的位移、沉降、应变、滑移等,并可同步测量埋设点的温度。
高边坡监测实施方案
高边坡监测实施方案某建设工程高边坡监测实施方案编制:审核:审准:XXXX年XX月目录一、前言二、监测目的三、监测内容四、监测方法五、监测周期六、监测数据处理七、监测报告八、监测结果分析九、监测措施十、应急预案十一、监测责任十二、监测经费十三、监测安全十四、监测设备十五、监测人员十六、附录本文旨在制定某建设工程高边坡监测实施方案,以确保工程施工期间高边坡的稳定性和安全性。
监测目的是为了及时发现高边坡的变形和病害,预防高边坡发生滑坡等事故,保障工程施工的安全性。
监测内容包括高边坡的位移、应变、裂缝、地下水位、降雨量等方面的监测。
监测方法主要采用现场观测和自动化监测相结合的方式,确保监测数据的准确性和及时性。
监测周期为每月一次,特殊情况下可根据实际需要进行调整。
监测数据处理主要采用专业软件进行处理和分析,确保数据的科学性和可靠性。
监测报告应每季度提交一次,内容包括监测数据、分析结果和监测措施等方面的内容。
监测结果分析主要根据监测数据和实际情况进行分析,及时发现问题并提出解决方案。
监测措施主要包括加固措施、排水措施、防护措施等方面的措施,以确保高边坡的稳定性和安全性。
应急预案主要包括应急措施、应急人员、应急装备等方面的内容,以应对突发情况。
监测责任由专业监测机构负责,确保监测工作的科学性和专业性。
监测经费由建设单位承担,确保监测工作的顺利开展。
监测安全是监测工作的重要保障,应严格按照安全规定进行操作。
监测设备应选用具有高精度和高可靠性的设备,确保监测数据的准确性和可靠性。
监测人员应具有专业的技能和经验,确保监测工作的科学性和专业性。
附录包括监测设备清单、监测人员名单、应急预案等方面的内容。
工程概况:该工程边坡高度最高处超过20米,土层松软,坡度较陡,地表及地下水流量大,这些因素对边坡整体稳定性产生影响。
监测内容:本高边坡监测主要包括人工巡视、裂缝观测、坡面观测和水平位移观测。
1.人工巡视和裂缝观测:监测组将每天安排专人进行人工巡视,及时在坡体表面发现裂缝时,埋设裂缝观测装置,通过观测裂缝的变化过程和规律来分析坡体的变形情况和破坏趋势。
边坡安全自动化监测解决方案
1边坡监测的重要性边坡的安全与否关乎国家与百姓利益和安全,边坡出现安全隐患将造成人民财产的巨大损失,为确保边坡能够更好的发挥社会效益与经济效益,边坡的安全管理工作非常重要,必须对边坡的安全进行实时监测,随时掌控边坡的实时动态,同时也为边坡的维护提供有效依据,保障边坡的安全,就是保障国家与人民的安全。
2边坡安全监测系统边坡安全监测系统主要有以下几部分组成:1、数据感知部分:各监测指标各类型智能传感器;2、数据采集部分:自动化采集系统;3、数据传输部分:有线/无线;4、控制分析部分:监控中心软件,数据显示平台系统功能:1、实现对边坡重要数据的实时采集、传输、计算、分析;2、直观显示各项监测数据,监测数据的历史变化过程及当前状态;3、一旦出现紧急情况,系统能及时发出预警信息;4、可实现安全监测信息的多级共享;5、可实现安全预警信息的发布。
边坡监测内容与设备选择,表面位移监测:GPS接收机、静力水准仪;内部位移监测:固定测斜仪、多点位移计;渗流量监测:渗压计、土壤墒情仪;降雨量监测:雨量计;裂缝监测:测缝计;支护结构监测:应变计、钢筋计、土压力计。
3边坡安全监测仪器设备ELT-15X型斜坡倾斜仪(智能)VWP型振弦式渗压计(智能)VWD-J型振弦式测缝计(智能)GN-1B型固定式测斜仪(智能)MCU-32自动测量单元GDA1602(4)单点采集模块南京葛南实业有限公司创建于1998年,是专业从事岩土工程安全监测仪器及系统的研发、生产、销售、服务的高科技型企业。
公司智能振弦式传感器及自动化采集系统在国内处于领先水准,产品出口16个国家和地区,应用在2000多个水电站、大型桥梁及军事工程。
公司始终注重新技术的研发投入和应用转化,致力于向客户提供承载最新技术、精准优质的仪器设备。
公司现有产品十五大类二百多个品种:应变、应力、水位、压力、位移、温度、倾斜、沉降、标定设备、电缆及附件、测量仪表、自动测量单元、单点采集模块、水雨情监测、软件及云平台。
边坡位移自动化监测解决方案
边坡位移自动化监测解决方案xxx市政科技有限公司目录1、概述 (1)2、监测内容 (2)3、系统构成 (4)4、安装示意图 (7)1、概述近年来,我国地质灾害发生频繁。
由于气候异常等原因,滑坡灾害更是每年都有增无减。
其每年造成的经济损失高达数十亿元,造成的人员伤亡高达数百人。
因此,做好地质灾害监测和预警,特别是滑坡体的监测和预警,对于有效减少直接经济损失和人员伤亡显得尤为重要。
为实现无人值守的边坡监测自动化,推出了应用于边(滑)坡或大坝等的基于系统集成技术的HC边坡自动化监测系统。
该系统是一种综合性的自动化远程监测系统,可对边坡岩土体内部沉降、倾斜、错动、土壤湿度、孔隙水压力变化等进行连续监测,及时捕捉边坡性状变化的特征信息,通过有线或无线方式将监测数据及时发送到监测中心。
结合地表监测的雨量、位移等信息,由专用的计算机数据分析软件处理,对边(滑)坡的整体稳定性做出判断,快速做出诸如山体边坡崩塌、滑坡等灾害发生的预警预报,更加准确、有效地监测灾情发生,且可为保证地质安全和整治工程设计提供信息参考。
2、监测内容图1 边坡在线监测项目示意图2.1、表面位移监测监测目的:掌握边坡整体表面位置的变化及其变化速率(包括平面位移和垂直沉降),确定边坡整体位移变形的情况,是确定边坡稳定性重要指标之一。
监测手段:GPS、边坡地滑仪、水准仪、静力水准仪、全站仪、经纬仪、引张线2.2、深部位移监测目的:掌握边坡内部的位移变化及其变化速率,结合表面综合位移信息可确定尾矿坝坝体整体位移变形情况。
为于边坡稳定性评价提供重要的数据参考。
监测手段:多点位移计、固定测斜仪、钢丝水位位移计、引张线、激光准直仪等。
2.3、渗流量、含水量监测监测目的:掌握边坡内部地下水的分布情况。
;监测手段:渗压计、土壤含水量、水位计等2.4、降雨量监测监测目的:掌握边坡区域环境参数情况。
有较大降雨时进行报警监测手段:翻斗式雨量计、数字雨量计、遥测雨量计等2.5、裂缝监测监测目的:掌握边坡区域相关裂缝的变化情况;监测手段:裂缝计2.6、支护结构监测监测目的:掌握支护结构所受应力应变的情况,推断边坡稳定情况监测手段:应变计、土压力计、钢筋计、锚索计、锚杆计等综合以上内容,边坡在线监测项目及采用设备汇总如下表:表1 边坡在线监测指标及设备3、系统构成边坡在线监测系统主要有以下几部分组成:1) 数据感知部分(各监测指标各类型传感器);2) 数据采集部分(采集单元);3) 数据传输部分(有线、无线);4)控制分析部分(监控中心软件、显示)。
高边坡监测实施方案
高边坡监测实施方案一、前言高边坡是指坡度大于30°的土质或岩石边坡,由于其地质条件复杂,易受自然因素和人为活动影响,因此需要进行监测和管理。
本文档旨在提出一套高边坡监测实施方案,以确保边坡的稳定和安全。
二、监测目标1. 监测边坡的位移和变形情况,及时发现异常情况并采取相应措施;2. 监测边坡的地下水位变化,了解地下水对边坡稳定性的影响;3. 监测边坡的裂缝情况,及时发现并处理裂缝;4. 监测边坡的土体松动情况,了解土体的稳定性。
三、监测方法1. 定点监测:选择边坡上、中、下部位点进行定点监测,通过设置测点,采用全站仪、GPS等仪器定期测量边坡的位移情况;2. 遥感监测:利用遥感技术,对边坡进行定期遥感监测,了解边坡的整体变化情况;3. 地下水位监测:在边坡周围设置地下水位监测井,定期测量地下水位的变化;4. 非接触式监测:利用无人机等设备进行边坡的非接触式监测,获取边坡的立体信息,以及裂缝、松动等情况。
四、监测频次1. 定点监测:每月进行一次定点监测,重点关注雨季和地震等自然灾害发生后的边坡变化情况;2. 遥感监测:每季度进行一次遥感监测,及时发现整体变化情况;3. 地下水位监测:每月进行一次地下水位监测,关注地下水位对边坡稳定性的影响;4. 非接触式监测:每季度进行一次非接触式监测,了解边坡立体信息及裂缝、松动等情况。
五、监测数据处理与分析1. 对监测数据进行及时处理和分析,制作监测报告;2. 根据监测数据,进行边坡稳定性评估,判断边坡的安全状况;3. 对发现的异常情况,及时采取相应的措施,确保边坡的安全。
六、监测结果应用1. 监测结果应用于边坡的管理和维护,为边坡的维护提供科学依据;2. 监测结果应用于边坡的风险评估和预警,及时发现并处理边坡的安全隐患;3. 监测结果应用于相关工程的设计和施工,避免边坡稳定性对工程造成影响。
七、总结本文档提出了一套高边坡监测实施方案,通过定点监测、遥感监测、地下水位监测以及非接触式监测等手段,对高边坡进行全面监测,以确保边坡的稳定和安全。
边坡位移自动化监测解决方案
边坡位移自动化监测解决方案边坡位移自动化监测解决方案是指采用现代传感技术和监测设备对边坡进行实时监测和预警,旨在保障边坡的稳定性和安全性。
该解决方案结合了传统边坡监测手段和现代信息技术手段,实现了对边坡位移的精确测量、数据实时传输和智能分析。
1.传感器选择与布设:选择合适的传感器对边坡进行位移、倾斜、应力等相关参数的监测。
常见的传感器有全站仪、测距仪、应变计、倾斜传感器等,并合理布设在边坡上以实现全方位监测。
2.数据采集与传输:采用现场数据采集器对传感器采集的数据进行集中处理和存储,并通过有线或无线网络将监测数据传输给监测中心。
数据传输可以选择实时传输或定期上传,以满足监测需求。
3.数据库建立与管理:建立边坡位移监测的数据库,用于存储和管理监测数据。
数据库应具备良好的数据结构和查询功能,以便对数据进行统计分析和后期处理。
4.数据分析与预警系统:通过对实时监测数据进行实时分析,可以掌握边坡的变形趋势和变形速率。
利用传感器数据分析软件可以实现对边坡位移的趋势预测和预警,一旦超过预警值,即可及时采取措施防止边坡灾害的发生。
5.监测报告与决策支持:自动化监测系统能够生成边坡位移监测报告,对边坡的变形情况进行定期汇报和分析。
报告可用于决策者的决策支持,提供重要的参考意见。
1.高精度监测:自动化监测系统能够实现对边坡位移的高精度测量,精确度能够达到毫米级。
相比传统手动测量方法,大大提高了监测数据的准确性和可靠性。
2.实时预警:自动化监测系统可以实时采集和传输数据,及时发现边坡变形的异常情况,并通过预警系统发出警报,为采取防灾措施提供决策支持。
3.智能分析:自动化监测系统具备智能分析功能,能够通过对监测数据的分析,实现对边坡变形趋势的预测,提前发现潜在的边坡灾害隐患,为灾害预防提供重要依据。
4.降低人力成本:自动化监测系统能够实现对边坡的长期、连续监测,减少人力资源的投入和成本,提高工作效率。
总之,边坡位移自动化监测解决方案通过采用现代传感技术和监测设备,实现对边坡位移的实时监测和预警,可以提高边坡的稳定性和安全性,为防止边坡灾害提供重要的技术支持。
高边坡监测方案
高边坡监测方案一、背景介绍高边坡工程是指在土石质较差、坡度较大、地形较陡的区域进行的一种土木工程。
由于地质条件的限制,这类工程往往面临着比较高的风险,特别是在地震、降雨等自然灾害发生时更容易出现边坡滑坡等安全隐患。
因此,对高边坡进行有效的监测是确保工程安全运行的关键一环。
二、监测目标高边坡监测的目标是及时掌握边坡的变形、位移和稳定性等指标,以提前预警和采取相应的防护措施,保护人民生命财产安全和工程的持续稳定运行。
三、监测指标1. 边坡位移监测:采用位移传感器对边坡进行实时位移监测,通过监测数据分析,及时发现边坡位移的趋势和异常情况。
常用的位移传感器包括测距仪、倾斜计、GPS等。
2. 边坡应力监测:通过应力传感器对边坡的应力状态进行监测,如岩体裂缝应力、支护结构应力等。
及时了解边坡的应力状况,为工程安全评估和风险预测提供参考依据。
3. 地下水位监测:地下水位是边坡稳定性的重要因素之一。
采用水位监测仪器对边坡及周边地区的地下水位进行实时监测,掌握地下水位的变化趋势和影响范围,为工程安全评估提供数据支持。
4. 预警监测:结合位移、应力、水位等监测指标,建立预警模型和预警指标体系,通过实时数据的监测、分析和对比,判断边坡的安全状态,提前发出风险预警,为工程部门和相关人员做出相应的决策和措施。
四、监测方法1. 定点监测法:选择合适的位置固定传感器设备,通过对这些设备的数据采集和分析,了解边坡的变形和稳定状态。
该方法相对简单,适用于规模较小的边坡工程。
2. 无人机监测法:利用无人机载荷能力强、灵活性高的特点,通过无人机搭载的监测设备对边坡进行遥感监测。
该方法适用于规模较大、地形复杂的边坡工程,可以覆盖更广泛的监测区域。
3. 遥感监测法:利用遥感技术对边坡进行监测,通过卫星或航空影像的获取和解译,得到边坡的变形和稳定性信息。
该方法适用于大范围坡体监测,具有快速、准确、经济的特点。
五、监测周期高边坡监测周期应根据工程实际情况而定,常见的监测周期有日、周、月三种。
边坡、挡墙及路堑开挖监测方案
陡路堤、挡土墙及路堑边坡监测方法一、填方路基的监测为及时了解和掌握路基填筑过程中的位移和变形,确保路基填筑的顺利完成和控制不均匀沉降,同时根据测定数据预测稳定时间和工后沉降量,同时利用观测数据监测地表水平位移及隆起情况和侧向变形情况,以确保路堤填筑施工安全和稳定。
所以对路基填筑施工进行全过程现场监测非常必要。
1、监测点位布设原则监测点布设在土路肩、路基中心以及坡脚处,根据边坡的地质情况按照50m间距布设一条横断面且每处高填或陡坡路堤不少于一条监测断面。
监测点位的布设位置应符合如下原则:(1)同一路段不同监测项目的测点布置在同一断面上,这样有利于测点保护,便于集中观测,统一观测频率,更重要的是便于各观测项目数据的综合分析。
(2)测点及观测元件的埋设位置应符合设计要求,且埋设准确、埋设稳定。
观测期间对测点采取有效的保护措施,防止施工机械的碰撞,人为因素的破坏,务必使观测数据能连续,确保数据的有效性。
2、监测断面类型及适用条件见下表。
监测断面类型位移桩埋设位置:设计路基坡脚线向外1m处、5m处各1个,路基填土前埋设。
挡墙位移钉埋设:挡墙外侧向内0.2m处,挡土墙施工完毕时埋设。
3、监测频率沉降观测频率取决于沉降量的大小、加载方法。
本项目的路堤填筑采用分级填筑加载的方法,要求施工期每填筑1层应观测一次,若两层填筑间隔较长时,则每7天应观测一次,直到路基施工期结束,沉降稳定,路槽交验结束。
4、判稳条件路堤在填筑过程中,如沿路堤中线地面沉降速率≥1.0cm/d或水平位移速率≥0.5cm/d,视为不稳定状态出现,应立刻停止填土。
当停止填筑后每天仍需进行观测,当连续观测三次沉降量或位移量在规定控制范围之内时,才能继续填筑施工。
当填筑至上路床顶面时,连续两个月的观测沉降量每月不超过8mm,确定为沉降稳定,此时方可开始路面施工。
5、埋设要点沉降板在填土前埋设;沉降板用8mm厚500×500mm的钢板焊接φ40的测杆而成,测杆外套PVC管保护,测杆和套管每节长1.0米,随填土的升高而加长。
高边坡监测方案热门
高边坡监测方案热门
一、高边坡监测方案
1、采用测滑定点观测监测法
高边坡监测方案中最常用的监测方法是采用测滑定点观测法,主要是
在边坡上设置水平方向的测滑线,两两相邻的测滑线之间可以定期测量距
离变化,从而推测边坡的滑动方向、变形的大小。
另外还可以设置监测点,用仪器相对应地测量边坡的短线变形,大中小三类预警值的设定可以看出
边坡的变形及坡面的滑动程度。
2、采用监测测斜仪
采用监测测斜仪,可以测量边坡的水平和垂直变形,这种变形可以及
时发现边坡变形的信息,从而采取措施避免坡面的滑动危险;此外,还可
以采用测斜仪测量不同角度的坡面变形,以便对边坡进行更精确的监测。
3、采用地质点测斜监测
采用地质点测斜监测,主要是通过定期测量边坡上的地质点的变形情况,来对边坡的变形及滑动趋势进行监测,以便对边坡变形及地质稳定性
进行评估,从而防止边坡发生滑动,更好地保护边坡的稳定性。
4、采用倾斜仪监测
采用倾斜仪监测,是指采用便携式倾斜仪系统对边坡的水平和垂直变
形进行实时监测,可以及时发现边坡变形的信息,从而采取措施避免坡面
的滑动危险;此外。
路堑高边坡监控量测方案
二广高速公路怀集至三水段第十一合同段(YK42+750~YK44+820)路基高边坡监控量测方案编制:复核:中铁四局集团第四工程有限公司二广高速公路怀集至三水段十一合同段项目经理部日期:2007年6月10日目录第一章编制依据......................................................... - 2 - 第二章工程概况......................................................... - 2 - 第三章监控量测的目的................................................... - 2 - 第一节监控量测的目的................................................. - 2 - 第二节适用范围....................................................... - 3 - 第四章量测项目、量测仪器及内容......................................... - 3 - 第五章监控量测组织机构与管理........................................... - 3 - 第六章监控量测方法..................................................... - 4 - 第一节地面位移监测................................................... - 4 - 第二节人工巡视和裂缝观测............................................. - 7 - 第三节量测数据的分析和整理........................................... - 8 - 第七章监控量测的注意事项.............................................. - 15 - 第八章安全保证措施.................................................... - 16 -第一章编制依据1、二广高速公路怀集至三水段第十一标段工程地质勘察报告;2、交通部《公路路基施工技术规范》(JTJ F10—2006);3、二广高速公路怀集至广宁段高边坡第三方监测方案;4、二广高速公路怀集至三水段第十一标段两阶段施工图设计;5、二广高速公路怀集至三水段第十一合同段实施性施工组织设计。
路堑高边坡监测方案(2021年-2022年)
路堑高边坡监控量测技术方案一、编制依据1、珠江三角洲环线高速公路黄岗至花山段两阶段施工图设计(第一册第二分册)。
2、公路路基施工技术规范(JTG F10-2006)3、公路工程质量检验评定标准(JTG F80/1-2004)4、公路工程施工安全技术规范(JGJ076-95)二、工程概况本合同段起点桩号为K5+300,终点桩号K9+074,路线长 3.774km,位于肇庆高新技术产业开发区东北部,地处粤境南岭山系南麓与珠江三角洲北部平原结合处。
线路南侧为开阔平坦的珠江三角洲平原夹剥残蚀丘,平原高程一般为5~30m,地形相对平缓,多辟为旱地或鱼塘,残丘高程为30~60m,多呈肾状或椭圆状缓坡丘包,地表植被发育。
路线北侧山丘为构造剥蚀低山丘陵区,高程50~100m,主要由岩浆岩和砂岩构成山体,由于坡面径流水的冲刷侵蚀作用,出露的岩石普遍岩质较坚硬,沟谷发育较陡,沟谷狭窄下切深,槽谷多呈“V ”字型,平面上沟谷呈树枝状,地表植被发育。
本标段内,深路堑边坡共计 1 处,最大边坡高度为40.1m,合计160m。
具体段落见下表;1、深路堑段落一览表边坡地段序号桩号位置最大坡高(m)坡长(m)备注级数高边坡 1 K7+180~K7+340 左侧40.1 160 四级2、高边坡段岩性与地质构造(1)、地层岩性:①、第四系更新统残坡积层(Q3dl +el ):根据其成因及其物理力学性质不同,分为 2 个亚层,现分别介绍如下:a、粉质黏土: 黄褐色,硬塑,由粉、黏粒组成,含少量石英颗粒。
层顶高程49.15m,层厚0.80m;b、粉质黏土: 黄褐色,硬塑,由粉、黏粒组成,含少量石英颗粒,由花岗岩风化残积而成,泡水易软化崩解。
层顶高程48.35m,层厚6.00m;本层取样 2 件(其物2(3)理力学性质指标见土工试验报告及统计表) ;进行标准贯入试验 2 次,实测击数 N=25~ 30 击( 剔除 1 个离散性大的标准贯入试验 ) ,平均 25 击;②、基岩(燕山期 γ 5花岗岩):据岩石的风化程度及其物理力学性质不同,按风化由深至浅分为全风化岩、强风化岩、中风化岩及微风化岩,本场区仅揭露至强风化岩,现介绍如下:a 、全风化岩:褐色、褐黄色,岩石风化剧烈,岩芯坚硬土状,遇水易软化崩解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
库岸路堑高边坡自动化监测方案
摘要:依托某水库库岸路堑高边坡内部开挖放水隧洞工程,根据现场勘测,对其危险区域进行安全监测方案设计。
通过整合应用表面三维位移监测、土压力监测、深层位移监测,利用远程数据传输及控制技术,实现对该处库岸高边坡无人值守的实时安全监控,可为同类工程的安全监测设计提供了积极的工程参考。
关键词:库岸边坡滑坡自动化监测
滑坡是指在一定地形、地质条件下,受外界条件变化的影响,破坏了边坡内部原有的力学平衡条件,使得边坡上的不稳定岩土体在自重或其他荷载的共同作用下,沿一定的软弱带移动破坏的一种不良地质现象[1]。
根椐不完全统计世界上70%的滑坡都不同程度地与人类工程建设活动有关[2]。
近年来,随着我国水利水电、公路、铁路、采矿工程等基础建设项目的不断增加,发生在不良地质条件下的工程活动日益增多,加强对危险边坡的安全监测、推动边坡安全监测技术的发展,已成为工程领域的重要发展方向。
本文依托山东某大型水库施工期库岸边坡稳定监测项目,对该类工程的安全监测技术进行了探讨。
1 工程概况
山东省某水库,肩负着供水、灌溉、防洪、补源等重要任务。
由于设施结构老化等因素,原放水洞已不能满足实际需求,设计在水库西北侧的山体内部开挖新的水工隧洞。
其上部为陡峭岩质边坡,易发生
碎石滚落;中部设有砌石路堑挡土墙,墙体较高(约7-9m);下部以破碎石灰岩及强风化破碎页岩为主,局部区域存在明显的剪切斜裂缝,受降雨、行车震动等因素的影响,时有表层破碎岩体滑落。
同时,整个山坡地表植被破坏较重,大量地表水入渗,曾出现多次出现孤石滚落或局部滑坡现象,属于重点监测滑坡体。
2 安全监测的必要性分析
支挡构造物通过提供外力支撑使边坡达到一定的力学平衡,但边坡内部岩土体力学作用复杂多变,从地质勘察到处治设计均难以完全考虑边坡内部的真实力学效应,仅基于简化计算进行的设计,安全性难以保证。
因此,为达到消除工程隐患和减少重大工程事故发生的目的,加强边坡工程稳定性监测具有极其重要的意义[3]。
针对本工程,由于新水工隧洞施工不仅会产生较大的震动应力,同时还会破坏边坡内部原有的应力平衡条件,山体在力学平衡调整的过程中极易产生局部滑塌或崩落;同时,受交通荷载等附加应力的影响,易诱发下级坡体产生推动式滑坡。
针对上述情况,单靠理论分析很难把握其稳定状态,必须建立实时的监测体系,随时掌握边坡的位移、内力变化情况和发展趋势,为工程加固和安全预警提供及时可靠地基础资料。
3 监测内容及技术方案
秉承整体稳定性监测为主,兼顾局部区域的稳定性监测的设计原则,根据边坡地质构造特点和潜在危险程度的大小,设计对该处库岸路堑高边坡以表面三维变形监测为主,同时进行土压力和深层位移监测,并根据施工进度及水文条件的变化,对监测内容和监测频率进行相应调整。
该监测系统能胜任多测点、密测次的监测任务,可实现数据采集、分析及报警等实时监控功能。
3.1 表面三维变形监测
现场监测系统由全站仪、基准控制点及变形监测点组成。
通过TCA2003自动监测全站仪对监测点棱镜按照设定周期进行观测,实时的把变形控制点的三维坐标传送至系统控制中心进行自动处理、分析和反馈。
3.2 墙后土压力监测
挡土墙土压力监测采用三层“分层分布式”结构。
第一层由分布在挡土墙后的土压力盒传感器组成;第二层由数据采集仪(MCU-32)组成;第三层由PC微机和服务器构成的计算机局域网络组成。
数据采集装置对土压力盒按照设定周期采集信号,并实时的把土压力值传送至系统控制中心进行处理、分析和反馈。
3.3 深层位移监测
边坡整体滑动主要表现为深层蠕动变形,在初期变形量小、蠕动
速度慢,但当位移累积到一定程度后,则表现为大面积、快速率的滑动,其引起的后果不堪想象。
因此,在下部滑坡体内埋设五根测斜导管,由测斜仪根据设定周期对坡体深层位移进行量测,并实时的将监测数值传输回控制中心,对其进行分析、处理。
4 监测系统远程自动化集成
本监测方案中:表面位移监测系统、土压力监测系统及深层位移监测系统的数据采集终端与上位机(台式、手提电脑,服务器等)均能实现无线数据传输,以实现整个监测系统的远程无人值守的自动化监测,可通过合理设置预警阀值[4],实现对监测工程的危险预警。
(如图1)
5 建议与结论
(1)通过监测终端、通讯方式及远程控制技术的整合,可实现工程运营安全远程无人值守的自动化监测,利于在工程项目中实现物联网,并能极大的优化资源配置。
(2)文中应用的安全监测系统,可广泛应用于设有抗滑(如抗滑桩等)或其他支挡结构(如挡土墙等)的危险高边坡的稳定性监测,具有施工简便、安全可靠的特点。
参考文献
[1] 向俊红.概论滑坡稳定性影响因素[J].铁道勘察,2009(4).
[2] 韩建设.岩土工程中滑坡监测的主要技术方法简述[J].西北水电,2002(2).
[3] 南京水利科学研究院勘察设计院,常州金土木工程仪器有限公司.岩土工程安全监测手册(第二版)[M].北京:中国水利水电出版社,2008.
[4] 周小文,包伟力,吴昌瑜,等.现代化堤防安全监测与预警系统模式研究[J].水利学报,2002(6).。