中考数学 直角三角形的边角关系 培优 易错 难题练习(含答案)含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学直角三角形的边角关系培优易错难题练习(含答案)含答案
一、直角三角形的边角关系
1.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=1
2
∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;
(2)通过观察、测量、猜想:BF
PE
=,并结合图2证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE
的
值.(用含α的式子表示)
【答案】(1)证明见解析(2)
1
2
BF
PE
=(3)
1
tan
2
BF
PE
α
=
【解析】
解:(1)证明:∵四边形ABCD是正方形,P与C重合,
∴OB="OP" ,∠BOC=∠BOG=90°.
∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).
(2)BF1
PE2
=.证明如下:
如图,过P作PM//AC交BG于M,交BO于N,
∴∠PNE=∠BOC=900,∠BPN=∠OCB.
∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.
∴NB=NP.
∵∠MBN=900—∠BMN,∠NPE=900—∠BMN,∴∠MBN=∠NPE.
∴△BMN ≌△PEN (ASA ).∴BM=PE .
∵∠BPE=12∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900. 又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=
12BM . ∴BF=12PE , 即BF 1PE 2
=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,
∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.
由(2)同理可得BF=
12
BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN . ∴BM BN PE PN
=. 在Rt △BNP 中,BN tan =
PN α, ∴BM =tan PE α,即2BF =tan PE α. ∴BF 1=tan PE 2
α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .
(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2
=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=
12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由
BM BN PE PN =和Rt △BNP 中BN tan =PN α即可求得BF 1=tan PE 2
α.
2.如图,在△ABC 中,∠ABC=∠ACB ,以AC 为直径的⊙O 分别交AB 、BC 于点M 、N ,点P 在AB 的延长线上,且∠CAB=2∠BCP .
(1)求证:直线CP 是⊙O 的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
【答案】(1)证明见解析(2)4(3)20
【解析】
试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;
(2)利用锐角三角函数,即勾股定理即可.
试题解析:(1)∵∠ABC=∠ACB,
∴AB=AC,
∵AC为⊙O的直径,
∴∠ANC=90°,
∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,
∵∠CAB=2∠BCP,
∴∠BCP=∠CAN,
∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,
∵点D在⊙O上,
∴直线CP是⊙O的切线;
(2)如图,作BF⊥AC
∵AB=AC,∠ANC=90°,
∴CN=CB=,
∵∠BCP=∠CAN,sin∠BCP=,
∴sin ∠CAN=
, ∴
∴AC=5,
∴AB=AC=5, 设AF=x ,则CF=5﹣x ,
在Rt △ABF 中,BF 2=AB 2﹣AF 2=25﹣x 2,
在Rt △CBF 中,BF 2=BC 2﹣CF 2=2O ﹣(5﹣x )2,
∴25﹣x 2=2O ﹣(5﹣x )2,
∴x=3,
∴BF 2=25﹣32=16,
∴BF=4,
即点B 到AC 的距离为4.
考点:切线的判定
3.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:
如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:
把图1中的△AEF 绕点A 顺时针旋转.
(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)记AC BC
=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)
【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为
33
时,CPE V 总是等边三角形
【解析】
【分析】