键强度校核计算及参考.
轴、平键强度计算表
平键联接强度计算
输入值 输入值 自动计算值 自动计算值 输入值
输入转矩 输入轴径 d 自动计算键的高度 h 自动计算键的宽度 b 选择键或被联接件的材料 载荷性质
m 3005.00 N · 90.00 mm 14 mm 25 mm 1 钢 1 静载
输入值
按静联接计算(主要承受转矩的键)
自动计算值 选择值
转矩计算表
输入值 输入值 自动计算值
电机功率 轴的转速 自动计算转矩
30 KW 960 r / min m 298.44 N ·
按 扭 转 强 度 估 算 轴 径
输入值 输入值 输入值
电机功率 轴的转速 按右表选择系数 A
30 KW 960 r / min 120 1
输入值
轴上开键槽数量
单键槽 轴径增加 3%
静联接许用挤压应力 [δ ] p 从上栏选择静联接许用 挤压应力数值 [δ ] p 自动计算键的工作长度 L ≥
125~150 130 73.38 mm
பைடு நூலகம்
自动计算值
按动联接计算(以导向或滑动为主的键)
固定值 输入值
键或被联接件的材料 载荷性质 与键有相对滑动的 被联接件表面热处理状态 动联接许用压强 [ρ ] 自动计算键的工作长度 L ≥
自动计算值
估算轴直径 d (计算为最小轴径)
38.93 mm
按 扭 转 刚 度 估 算 轴 径
输入值 输入值 输入值
电机功率 轴的转速 按右表选择系数 B
1.1 KW 60 r / min 92 1
输入值
轴上开键槽数量
单键槽 轴径增加 3%
自动计算值
估算轴直径 d (计算为最小轴径)
34.68 mm
KISSsoft 渐开线花键强度计算【可用于车桥的制动凸轮轴、半轴、贯通轴花键的校核计算】
KISSsoft 渐开线花键强度计算
渐开线花键的计算,《机械设计》书中有简化的算法,有兴趣可以翻看下。
本例使用KISSsoft软件进行计算。
1.打开KISSsoft软件。
2.软件有语言选择项,根据需要选择。
(本例选择中文。
建议按英文版进行学习。
)
3.选择进入花键强度计算模块。
【也可以在下面箭头所指的地方选择“自行输入”,自己根据需要定义花键参数】
4.进入“负荷”标签栏,选择计算方法(默认是仅计算几何,需要根据需要选择强度计算的方法。
),填写载荷信息。
5.点击计算按钮,完成计算。
此时下边栏会出现计算结果概要。
6.点击“创建报告”按钮获得计算报告。
可以参考详细的计算结果。
【包含有应力信息和安全系数信息】
至此,简单的渐开线花键的强度校核流程就完成了。
【过程仅供参考,请自行购买专业的软件教程进行学习。
】。
DIN5480花键参数及校核
校核计算(参考GB/T 17855-1999)
参数 花键齿数 花键模数 压力角 高变位系数 齿顶高 齿根高 齿根高 齿根高 节圆直径 内齿顶圆直径 内齿根圆直径 内齿根圆直径 内齿根圆直径 外齿顶圆直径 外齿根圆直径 外齿根圆直径 外齿根圆直径 外花键齿厚 内花键齿槽宽 齿根圆角半径
能在10e8循环次以下正常工作
长期无磨损能力 σH 31.92 [σH2] 50
能长期无磨损工作
参数代码 z m α X Hap
Hfp(拉刀) Hfp(滚齿) Hfp(插齿)
D Da2 Df2(拉刀) Df2(滚齿) Df2(插齿) Da1 Df1(拉刀) Df1(滚齿) Df1(插齿) S1 e2 ρ
输入
名称
参数代码 输 入
24 输入扭矩
T
1433
2 弯矩
Mb
0
30 结合长度
L
50
-0.05 材料的屈服强度
50.400 齿面耐磨损许用压应力
[σH1]
75
49.600 齿面耐磨损许用压应力
[σH2]
50
45.600 45.400 45.200 3.026 3.026 0.320
备注: 1.黄色区域输入相关参数; 2.DIN5480花键参数计算仅计算大小径和齿厚等, 公差等查阅DIN5480-1-2006; 3.校核计算参考GB/T 17855-1999花键承载能力计 算方法;校核按照拉刀加工方式计算的参数校核。
花键强度校核结果(GB/T 17855-1999)
校核项目
计算值(MPa) 许用值(MPa)
校核结果
齿面接触强度 σH 31.92 [σH] 252
通过
渐开线花键强度校核
渐开线花键强度校核
渐开线花键是一种用于连接轴与套筒的紧固件,其形状为一个渐开线
的花键沟槽。
渐开线花键具有一定的承载能力和连接刚度,因此在工程领
域中得到广泛应用。
为了保证渐开线花键的强度和可靠性,在设计时需要
进行强度校核。
1.确定工作参数:首先需要确定渐开线花键的工作参数,包括轴和套
筒的材料特性、温度等环境因素,以及花键的尺寸和几何形状。
2.计算受力情况:根据花键的几何形状和工作参数,可计算花键在受
力情况下的应力分布情况。
花键的主要受力方式包括拉伸、剪切和弯曲。
3.弹性应力校核:在弹性范围内,花键的应力应小于材料的屈服强度。
根据受力情况和材料特性,计算花键在拉伸、剪切和弯曲等情况下的最大
应力。
4.强度校核:根据花键的尺寸和几何形状,计算花键在最不利受力情
况下的最大应力,并与花键的材料特性进行比较。
如果应力小于材料的屈
服强度,则花键强度合格;否则,需要进行强度优化设计。
5.可靠性校核:在弹性应力校核的基础上,考虑实际工作环境的不确
定性和安全系数,进行可靠性校核。
根据可靠性理论,计算花键的安全系数,并与设计要求进行比较。
在实际工程中,渐开线花键的强度校核需要考虑多个因素,如花键的
几何形状、材料特性、受力情况、工作环境等。
其中,材料的强度和可靠
性是关键因素,需要根据材料的力学性能和可靠性参数进行校核。
总结起来,渐开线花键的强度校核是一个复杂的过程,需要综合考虑多个因素。
通过合理的计算和分析,可以确保渐开线花键的安全可靠性,提高工程的品质和可靠性。
矩形花键校核
参数 花键输入扭矩T 外花键大径D 内花键小径d 结合长度L 最小键宽Sfn 键数N 材料屈服强度σ0.2 材料抗拉强度σb
间接参数
平均圆直径dm 全齿高h 工作齿高hw
名义切向力Ft 载荷计算 单位载荷W
单位 N.m mm mm mm mm
Mpa Mpa
mm mm mm
N
值 22000.00
M(p1.a25~1.5 )
MPa
合格ቤተ መጻሕፍቲ ባይዱ
35.81 1.40 1.25 1.20 1.30 1.40
252.49
齿根弯曲应力σF
齿根抗弯强度 校核
抗弯强度的计算安全系数SF
齿根许用弯曲应力[σF]
比较σF/[σF]
Mpa (1.25~2.0 0) Mpa
合格
23.13
1.50 263.74
转换系数K 作用直径dh
103.00 90.50
254.00 19.05 8.00
965.00 1080.00
96.75 6.25 6.25
454780.36 223.81
齿面压应力σH
齿面接触强度的计算安全系数SH
齿面接触强度 校核
使用系数K1 齿侧间隙系数K2
分配系数K3
轴向偏载系数K4
齿面许用压应力[σH]
比较σH/[σH]
0.45
mm
95.44
齿根抗剪强度
切应力τtn 齿根圆角半径ρ 齿根抗剪强度 h/ρ 应力集中悉数atn 齿根最大切应力τFmx 许用切应力[τF] 比较τFmx/[τF]
Mpa mm
MPa MPa
128.88 0.50
12.50 3.80
489.96 131.87
(完整word版)花键强度校核
花键强度校核一、已知条件1、花键副基本参数齿数:z =21模数:m= 2压力角:a =30º花键结合长度:l=64mm外花键大径:mm D ee 2.45=外花键小径:mm D ie 41=钩身内径D=270mmh 为截面高度δ为截面宽=75mm2、钩身强度计算钩身主弯曲截面(水平截面)A-A 是最危险的截面,其次是与铅垂线成45°的截面B —B 和垂直面C —C 。
(1)截面A-A 内侧最大拉应力:5.2S A A A t D K F Qh σσ≤= A F =4107675.2⨯mm2A K =1)21ln(2-++Dh h h D A A =0。
141 MPa MPa S t 1375.292.92270141.0107675.236910715.245=<=⨯⨯⨯⨯⨯=σσ(2)截面B —B 内侧合成应力:5.2322s t στσσ≤+=∑ 2)5.0(6707.0707.0δδσB B B B t h e Q D K F Qh -⨯+= MPa 88.7775378)5.12755.0(10715.26707.0270144.010835.237810715.2707.02545=⨯-⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯= B F Q 707.05.1⨯=τ=4510835.210715.2707.05.1⨯⨯⨯⨯=10。
156 其中:B F =410835.2⨯mm2B K =0。
144 代入5.2322s t στσσ≤+=∑得∑σ=79.85MPa <137MPa所以B-B 截面通过(3)截面C-C 内侧合成应力: 5.221sττττ≤+=∑ 其中:纯剪切应力c F Q 5.11=τ=15。
34MPa C F =410655.2⨯mm2 扭转应力:τδτW e Q )5.0(2-= 62210735.235475291.0⨯=⨯⨯==c h K W δτ 代入得τδτW e Q )5.0(2-==2。
键的强度校核
四、参考文献 《机械设计手册·第二卷》成大先主编P6-19 表6-1-19 《机械设计手册·第二卷》成大先主编P6-19 表6-1-20 《机械设计手册·第二卷》成大先主编P6-21 表6-1-23 计算公式参考《机械设计手册·第二卷》成大先主编P6-19 表 6-1-18
设计输入 1.5 1000 125 82.7 14.325 0.15 计算结果 14.30892803 16.27527458 16.45526724 18.71656577 20 结果 合格
单位 kW r/min 常数 常数 N.m 常数 单位 mm mm mm mm mm 备注 合格
序号 代号 12 Ds 13 14 15 16 17 18 19 A B k
序号 代号 1 2 4 5 6 P n A B T k
序号 代号 9 10 11 d D Dn
实心轴的强度计算 含义 公式/出处 一、按扭转强度、刚度计算 轴所传递的功率 电机功率 轴的工作转速 系数 见14 系数 见15 轴所传递的扭距 T=9550·P/n 增大系数 见16 二、计算结果 含义 公式/出处 轴端直径(强度) d=A·(P/n)ˉ3 轴端直径(刚度) d=B·(P/n)ˉ4 增大后直径(强度) D=d×(1+k) 增大后直径(刚度) D=d×(1+k) 圆整取值 三、设计对比 含义 数值 设计轴径 25
花键强度校核
花键强度校核一、已知条件1、花键副基本参数齿数:z =21模数:m= 2压力角:a =30º花键结合长度:l=64mm外花键大径:mm D ee 2.45=外花键小径:mm D ie 41=钩身内径D=270mmh 为截面高度δ为截面宽=75mm2、钩身强度计算钩身主弯曲截面(水平截面)A-A 是最危险的截面,其次是与铅垂线成45°的截面B-B 和垂直面C-C 。
(1)截面A-A 内侧最大拉应力:5.2S A A A t D K F Qh σσ≤= A F =4107675.2⨯mm2A K =1)21ln(2-++Dh h h D A A =0.141 MPa MPa S t 1375.292.92270141.0107675.236910715.245=<=⨯⨯⨯⨯⨯=σσ 所以A-A 截面通过(2)截面B-B 内侧合成应力:5.2322st στσσ≤+=∑2)5.0(6707.0707.0δδσB B B B t h e Q D K F Qh -⨯+=M P a 88.7775378)5.12755.0(10715.26707.0270144.010835.237810715.2707.02545=⨯-⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯= B F Q 707.05.1⨯=τ=4510835.210715.2707.05.1⨯⨯⨯⨯=10.156 其中:B F =410835.2⨯mm2B K =0.144 代入5.2322s t στσσ≤+=∑得∑σ=79.85MPa <137MPa所以B-B 截面通过(3)截面C-C 内侧合成应力:5.221sττττ≤+=∑ 其中:纯剪切应力c F Q 5.11=τ=15.34MPa C F =410655.2⨯mm2 扭转应力:τδτW e Q )5.0(2-= 62210735.235475291.0⨯=⨯⨯==c h K W δτ 代入得τδτW e Q )5.0(2-==2.34MPa 代入5.221s ττττ≤+=∑得MPa MPa s 21.795.233435.2075.18=⨯=<=∑ττ s τ为材料的剪切许用应力所以C-C 截面通过二、吊钩头部耳孔计算1、已知条件板钩直柄部分宽度b=280mm耳孔曲率系数α,查表得α=3.5耳顶到耳孔中心的距离0h =220mm2、头部耳孔计算耳孔水平截面E-E 和垂直截面D-D 为危险截面截面E-E 中直径d1的耳孔内侧拉应力最大,5.2b S t Q σδασ≤= 代入数据得MPa MPa Q t 13725.4575108.25.310715.2b 25<=⨯⨯⨯⨯==δασ 所以E-E 截面通过在耳孔垂直面D-D 中,切向拉应力最大5.2)25.0()25.0(220220S t d h d d h Q σδσ≤-+= 代入数据得t σ=30.58MPa<137MPa所以D-D 截面通过三、钩身挠度计算:1、已知条件:钩身截面的垂直惯性矩3101039.4mm I ⨯=起升质量m=Kg 4103.5⨯小车运行加速度2/078.0s m =α吊耳中心到钩头中心距离L= 31002.2⨯mm弹性模量E= Pa 111010.2⨯动载系数5.15=φ2、挠度计算主要计算小车行驶方向钩身的最大挠度y ≤L/1000钩身垂直力P= N m 34510201.6078.0103.55.1⨯=⨯⨯⨯=αφ钩头的最大弯矩Nmm PL M 7331025.11002.210201.6⨯=⨯⨯⨯== 钩身的最大挠度EIPL y 33=代入数据得y=0.002mm<L/1000=2.02mm 所以钩身挠度符合使用要求。
轴键强度校核公式
轴的强度校核:1.按扭转强度条件计算:τT=TW T≈9550000P n0.2d3≤[τT]式中:τT–––––––扭转切应力,MP a;T–––––––轴所受的扭矩,N·mm;W T–––––––轴的抗扭截面系数,mm3;n–––––––轴的转速,r/min;P–––––––轴传递的功率,kW;d–––––––计算截面处轴的直径,mm;[τT] –––––––许用扭转切应力,MP a。
2.按弯扭合成强度条件计算:σca=MW2+4αT2W2=M2+αT2W≤σ−1式中:σca–––––––轴的计算应力,MP a;M–––––––轴所受的弯矩,N·mm;T–––––––轴所受的扭矩,N·mm;W–––––––轴的抗弯截面系数,mm3;[σ−1]–––––––对称循环变应力时轴的许用弯曲应力。
键的强度校核:1.平键连接强度计算:普通平键连接强度条件:σp=2T×103kld≤σp导向平键连接和花间连接的强度条件:p=2T×103kld≤p式中:T–––––––传递的扭矩,N·m;k–––––––键与轮毂键槽的接触高度,k=0.5h,此处h为键的高度,mm;l–––––––键的工作长度,mm,圆头平键l=L−b,平头平键l=L,这里L为键的公称长度,mm;b为键的宽度,mm;d–––––––轴的直径,mm;σp–––––––键、轴、轮毂三者中最弱材料的许用挤压应力,MP a;p–––––––键、轴、轮毂三者中最弱材料的许用压力,MP a。
2.花键连接强度计算静连接σp=2T×103ψzhld m≤σp动连接p=2T×103ψzhld m≤p式中:ψ–––––––载荷分配不均系数,与齿数多少有关,一般取ψ=0.7~0.8,齿数多时取偏小值;z–––––––花键的齿数;l–––––––齿的工作长度,mm;h–––––––花键齿侧面的工作高度,矩形花键,h=D−d2−2C,此处D为外花键大径,d为内花键小径,C为倒角尺寸,单位为mm;渐开线花键,α=30°,h=m,α=45°,h=0.8m,m为模数。
(二)键的选择及平键的强度校核.
(二)键的选择及平键的强度校核
一.键的选择 →(工作要求) 键的类型→按轴径 d选 键的b × h→选键长L(标准 ; 短于轮毂寛度) 表6-1 二.平键的强度校核
1.静联接 →压溃→挤压强度
p
2T 103 kld
p
2.动联接
→磨损→压强
p 2T 103 p
kld
圆头: l =L-b 平头: l =L 单圆头: l =L-b/2
p p -查表6-2 材料不同时,如何选取?
(一般不会发生键的剪断,故一般不作剪断强度校核)
键的尺寸大小取决于轴径 d,不同轴径 d键的大小不同 一个键的强度不够可采用双键,但只按 1 . 5个计算
键的选择计算一般步骤 工作要求→ 键的类型
依轴径 d → 键的b × h
(查标准)
轮毂寛度B→ 选键长L (L<B并套标准 ) 强度校核
化学键的强度与键能的计算公式
化学键的强度与键能的计算公式化学键是连接原子的力,其强度与键能密切相关。
本文将讨论化学键的强度与计算键能的公式。
首先,我们需要了解化学键以及其相关的概念和定义。
1. 化学键的定义与概念在化学中,原子通过化学键结合在一起形成分子或化合物。
化学键可以分为共价键、离子键和金属键等不同类型。
- 共价键:共用一对电子,通常形成于非金属之间。
它是一种相对较强的化学键,能够通过共享电子而形成分子。
- 离子键:由正负离子吸引力形成,常见于金属与非金属之间的化合物。
离子键通常较强,但也易于解离。
- 金属键:金属中的离子通过自由电子形成,共享电子云。
金属键通常较强,但较为弹性。
2. 化学键的强度与键能化学键的强度与键能的概念存在着密切的联系。
化学键的强度指的是键在受到外力作用下的抗拉能力,是一种物理性质。
而键能是产生和断裂化学键所需要的能量,是一种热力学性质。
3. 强度与键能的关系化学键的强度与键能之间存在一定的关系,但并不完全一致。
键能是评估键的稳定性和化学反应的重要指标,而强度则更多地反映了键在外力作用下的稳定程度。
化学键的强度与键能可通过以下公式计算:强度 = 断裂能 / 断面积其中,断裂能是指断裂一个单位长度的键所需要的能量,单位通常为焦耳/摩尔。
断面积则指单位长度断裂后键的切面面积。
键能可通过以下公式计算:键能 = 断裂能 ×键长度这个公式是基于键能是断裂能与断开键的长度之积的计算。
在实际应用中,我们可以利用各种实验和计算方法来测定化学键的强度和键能。
例如,拉伸实验可以通过在一个小样品上施加外力,使其断裂,并根据断裂过程中释放出的能量来计算键能。
总结:化学键的强度与键能密切相关,但并不完全一致。
化学键的强度反映了键在外力作用下的稳定程度,而键能则是评估键的稳定性和化学反应的重要指标。
强度与键能可以通过相关公式进行计算,从而在理论上或实验上评估化学键的特性。
随着科学技术的不断发展,人们对化学键的了解也在不断深入。
渐开线花键强度校核
渐开线花键强度校核1.确定花键尺寸:首先,需要确定花键的几何尺寸,包括齿顶直径D、齿根直径d、齿宽B和齿高h。
这些尺寸通常是根据设备的转矩和载荷要求来确定的。
2.计算花键的主要参数:根据花键的尺寸数据,可以计算出花键的主要参数,包括齿顶圆直径Da、齿根圆直径df、侧厚T1、顶厚T2和侧角α。
这些参数可以使用以下公式计算:Da=D+2hdf = d + 2hT1=B-hT2=T1+hα = atan((Da-df)/(2B))3.校核花键强度:校核花键的强度通常涉及两个方面,即弯曲强度和剪切强度。
a.弯曲强度校核:首先,需要计算花键的弯曲应力σb和弯曲扭矩Mb。
弯曲应力可以使用以下公式计算:σb=(32T1Mb)/(πd^3)其中,Mb为传递给花键的扭矩。
然后,需要计算花键的弯曲强度判据:σbc = 0.9σy / SF其中,σy为材料的屈服应力,SF为安全系数。
最后,将计算得到的弯曲应力σb与弯曲强度判据σbc进行比较。
如果σb小于σbc,则花键通过弯曲强度校核。
b.剪切强度校核:花键承受的剪切应力可以使用以下公式计算:τ=2Mb/(πd^2B)然后,需要计算花键的剪切强度判据:τc=0.75σy/SF最后,将计算得到的剪切应力τ与剪切强度判据τc进行比较。
如果τ小于τc,则花键通过剪切强度校核。
4.确定花键材料:校核花键强度的结果还需要考虑花键的材料特性。
需要选择一种适当的材料,以满足弯曲强度和剪切强度校核的要求。
综上所述,渐开线花键的强度校核需要根据花键的几何尺寸和传递的转矩,计算花键的主要参数,并进行弯曲强度和剪切强度的校核。
校核结果需要与材料的强度特性进行比较,以确定花键是否满足强度校核要求。
这一完整计算过程可以保证花键在工作时具有足够的强度和可靠性。
轴、平键强度计算表
输入值电机功率30KW 输入值轴的转速960r / min 自动计算值
自动计算转矩
N ·
m 输入值电机功率30KW 输入值轴的转速960r / min 输入值
按右表选择系数 A
3%
自动计算值
估算轴直径 d (计算为最小轴径)mm
输入值电机功率55KW 输入值轴的转速15r / min 输入值
按右表选择系数 B
3%
自动计算值
估算轴直径 d (计算为最小轴径)mm
单键槽轴上开键槽数量轴径增加输入值
轴上开键槽数量1
单键槽轴径增加129183.86按 扭 转 刚 度 估 算 轴 径
转 矩 计 算 表
120298.44按 扭 转 强 度 估 算 轴 径
输入值
38.931
平键联接强度计算
按静联接强度校核计算
按动联接强度校核计算。
DIN5480花键参数及校核
花键强度校核结果(GB/T 17855-1999)
校核项目
计算值(MPa) 许用值(MPa)
校核结果
齿面接触强度 σH 31.92 [σH] 252
通过
齿根弯曲强度 σF 38.45 [σF] 396
通过
扭转与弯曲强度 σv 140.84 [σv] 315
通过
齿面耐磨损能力 σH 31.92 [σH1] 75
50.400 齿面耐磨损许用压应力
[σH1]
75
49.600 齿面耐磨损许用压应力
[σH2]
50
45.600 45.400 45.200 3.026 3.026 0.320
备注: 1.黄色区域输入相关参数; 2.DIN5480花键参数计算仅计算大小径和齿厚等, 公差等查阅DIN5480-1-2006; 3.校核计算参考GB/T 17855-1999花键承载能力计 算方法;校核按照拉刀加工方式计算的参数校核。
参数代码 z m α X Hap
Hfp(拉刀) Hfp(滚齿) Hfp(插齿)
D Da2 Df2(拉刀) Df2(滚齿) Df2(插齿) Da1 Df1(拉刀) Df1(滚齿) Df1(插齿) S1 e2 ρ
输入
名称
参数代码 输 入
24 输入扭矩
T
1433
2 弯矩
Mb
0
30 结合长度
L
50
-0.05 材料的屈服强度
能在10e8循环次以下正常工作
长期无磨损能力 σH 31.92 [σH2] 50
能长期无磨损工作
DIN5480花键参数计算
校核计算(参考GB/T 17855-1999)
参数 花键齿数 花键模数 压力角 高变位系数 齿顶高 齿根高 齿根高 齿根高 节圆直径 内齿顶圆直径 内齿根圆直径 内齿根圆直径 内齿根圆直径 外齿顶圆直径 外齿根圆直径 外齿根圆直径 外齿根圆直径 外花键齿厚 内花键齿槽宽 齿根圆角半径
平键连接的选择与强度校核
平键连接的选择与强度校核传递较大转矩时,可采用由两个1:100的上、下面互相平行.需两边打人。
定心性差Z、的单边倾斜楔键组成的切向键连接。
键,适用于不要求准确定心、低速运转的场2.平键连接的选择与强度校核1)健的选择平键是标准件,其本身不需要设计,只需根据具体情况选择即可。
选择键时应考虑类型和尺寸两个方面。
键的类型选择应考虑键连接的结构特点、使用要求和工作条件;键的尺寸选择应考虑是否符合标准规格和强度要求。
在尺寸选择中,考虑键的主要尺寸,即键的截面尺寸(一般以键宽bX键高h表示)和键长L,键的截面尺寸b Xh按轴的直径d由标准中选定;键的长度L一般应等于或略短于轮毅的长度。
一般轮毅的长度可取为L'=,-- (1.5-2)d,这里d为轴的直径.同时键长也应符合标准规定的长度系列(见表7-1及附表7-1)重要的键连接在选出键的类型和尺寸后,还应进行强度校核计算。
键的材料通常用45钢,如果强度不够,通常采用双键.两个平键最好沿周向相隔1800布置;两个半圆键应布置在轴的同一母线上;两个楔键则应布置在沿周向相隔第7章粕毅连接125900---1200.考虑到载荷分布的不均匀性,在强度校核中可按].5个键计算.3.花键连接花键连接是由轴上加工出多个纵向键齿的花键轴和轮毅孔上加工出同样的键齿槽组成。
工作时靠键齿的侧面互相挤压传递转矩.花键连接具有承载能力强、对轴和毅的强度削弱程度小、定心精度高和导向性好等优点。
其缺点是需要专用设备加工,成本较高。
因此,花键连接适用于定心精度要求高和载荷较大的场合.在汽车、拖拉机、航空航天等工业中都获得广泛的应用。
花键已标准化,按齿廓的不同,可分矩形花键和渐开线花键。
本文来源于地磅转载请请注明。