高二数学函数与方程试题答案及解析
高二数学函数与方程试题
![高二数学函数与方程试题](https://img.taocdn.com/s3/m/bda4fecc0b4c2e3f562763b0.png)
高二数学函数与方程试题1.若函数满足,且时,,函数,则函数在区间内的零点的个数为()A.8B.9C.10D.13【答案】B【解析】函数满足知函数的周期,判断函数的零点个数,就是判断和图像的在区间交点个数,因此零点的个数为9个.【考点】函数的零点与函数图像的交点的个数.2.函数的零点必落在区间()A.B.C.D.(1,2)【答案】B【解析】要验证函数的零点存在区间,只需验证在区间有即可,经验证B符合条件.【考点】函数零点所在区间验证.3.方程x3﹣6x2+9x﹣4=0的实根的个数为()A.0B.1C.2D.3【答案】C【解析】方程x3﹣6x2+9x﹣4=0的实根的个数就是函数的零点个数.对函数求导,得,可得在为增函数,在时为减函数,又当时,当时,结合图象可知函数的零点有个,故方程有根.【考点】函数的零点,数形结合.4.已知函数(),若函数在上有两个零点,则的取值范围是()A.B.C.D.【答案】D【解析】显然当x>0时只有一个零点,所以当x≤0时有且只有一个零点,根据指数函数函数值的分布可知a的取值范围是.【考点】(1)函数的零点;(2)函数的性质.5.根据表格中的数据,可以判定函数的一个零点所在的区,则的值为()A.-1 B.0 C.1 D.2【答案】C【解析】由给出的数据,求出对应的函数值f(-1),f(0),f(1),f(2),f(3),根据零点存在性定理:函数是连续不断的,当f(a)f(b)<0时,f(x)在区间(a,b)存在零点,来判断零点所在的区间.解:因为f(-1)=0.37-1<0;f(0)=1-2<0;f(1)=2.72-3<0;f(2)=7.39-4>0;f(3)=20.09-5>0,所以f(1)f(2)<0;所以f(x)在区间(1,2)上有零点.故答案为C【考点】函数零点点评:本题考查了函数零点存在性定理的应用,求出函数在各端点值的符号是解题的关键.6.下列函数在其定义域内,既是奇函数又存在零点的是:()A.B.C.D.【答案】C【解析】函数是奇函数需满足,验证四个选项得B,C满足,当时当时,所以函数不存在零点,因此选C【考点】函数奇偶性即函数零点点评:函数满足在定义域内有,则函数是奇函数,若满足则是偶函数。
高二函数真题及解析及答案
![高二函数真题及解析及答案](https://img.taocdn.com/s3/m/8bb3a1d1112de2bd960590c69ec3d5bbfd0ada95.png)
高二函数真题及解析及答案在高中数学的学习过程中,函数是一个重要的内容。
函数是数学中用来描述两个变量之间关系的工具,它在实际生活和科学研究中有广泛的应用。
在高二阶段,学生们需要掌握更加复杂的函数知识,理解函数的性质、图像以及它们之间的关系。
为了帮助同学们更好地复习和准备高二数学考试,我们为大家整理了一些高二函数真题及解析和答案。
1. 函数f(x) = x^2 - 2x + 1,求解f(x) = 0的解。
解析:要求解f(x) = 0的解,我们需要将该方程转化为二次方程的标准形式:ax^2 + bx + c = 0。
比较两个方程可得:x^2 - 2x + 1 = 0。
由于这是一个完全平方式方程,我们可以将其写成完全平方式:(x - 1)^2 = 0。
根据完全平方式方程的性质,当且仅当(x - 1)^2 = 0时,方程有一个重根。
所以答案为x = 1。
2. 已知函数f(x) = log2(x - 5),求解f(x) = 4的解。
解析:要求解f(x) = 4的解,我们需要将该方程转化为指数方程。
根据对数与指数的关系:f(x) = 4 等价于 log2(x - 5) = 4。
通过移项可得 x - 5 = 2^4 = 16,进一步解得 x = 16 + 5 = 21。
所以答案为x = 21。
3. 已知函数f(x) = a^x + b,其中a和b是常数,若f(2) = 9,f(3) = 16,求解a和b的值。
解析:根据已知条件,我们可以列出方程组:a^2 + b = 9,(1)a^3 + b = 16。
(2)通过解方程组可以得到:a = 2,b = 5。
因此,a和b的值分别为2和5。
通过这些真题的解析过程,我们可以看出高二函数的题目多样,要求灵活运用数学知识解题。
函数这个概念在现实生活中有很多应用,如经济学、物理学、生物学等等。
所以我们在学习函数的过程中,要善于将数学知识与实际问题相结合,加深对函数概念的理解。
高二数学一次函数与二次函数试题答案及解析
![高二数学一次函数与二次函数试题答案及解析](https://img.taocdn.com/s3/m/efc39f7e1611cc7931b765ce050876323112748d.png)
高二数学一次函数与二次函数试题答案及解析1.在自然条件下,某草原上野兔第n年年初的数量记为xn ,该年的增长量yn和 xn与的乘积成正比,比例系数为,其中m是与n无关的常数,且x1<m,(1)证明:;(2)用 xn 表示xn+1;并证明草原上的野兔总数量恒小于m.【答案】(1)详见解析;(2),证明用数学归纳法,过程详见解析.【解析】(1)由已知可得yn 是xn的一个二次函数,利用配方法,注意到就可证明;(2)由已知有该年的增长量,所以第n+1年年初的的数量xn+1=xn+yn,代入即可用xn 表示xn+1;证明草原上的野兔总数量恒小于m,即证对一切非零自然数n,都有xn<m,可考虑用数学归纳法来证明:当n=1时显然成立;再假设当时,命题成立,则对n=k+1时,由于是xk的一个二次函数,结合二次函数的性质,可证成立,从而有对一切正整数n,,即是草原上的野兔总数量恒小于m.试题解析:(1)由题意知,配方得:∵∴当且仅当时,取得最大值,即(5分)(2)(8分)用数列归纳法证明:当n=1时,由题意知,故命题成立假设当时,命题成立是xk的一个二次函数,有对称轴,开口向下,由,则,于是在上均有=m取,即知,∴当时,命题成立,综上知,对一切正整数n,这就是说该草原上的野兔数量不可能无限增长(13分)【考点】1函数的概念;2.二次函数;3.数学归纳法.2.已知是方程的两根,且,,,求的最大值与最小值之和为().A.2B.C.D.1【答案】A【解析】设,根据题意,有,即则直角坐标平面内以为坐标的点的集合对应的区域如下图所示:则的值可看作是过动点和定点的直线的斜率;由图可知,,所以,的最大值与最小值之和为2.故选A【考点】1、一元二次方程根的分布;2、二元一次不等式所表示的平面区域;3、直线的斜率;4、数形结合.3.函数在上是增函数,则的取值范围是_【答案】(-∞,-6]【解析】由于函数在上是增函数,那么二次函数对称轴为,即可知只要,故答案为(-∞,-6]【考点】二次函数单调性点评:解题的关键是理解给定的区间是二次函数增区间的子区间,属于基础题。
高二数学试题大全
![高二数学试题大全](https://img.taocdn.com/s3/m/70e3b874cc22bcd127ff0c01.png)
高二数学试题答案及解析1.已知关于的方程C:.(1)若方程表示圆,求的取值范围;(2)若圆与直线:相交于两点,且=,求的值.【答案】解:(1)方程C可化为………………2分显然时方程C表示圆。
………………4分(2)圆的方程化为圆心 C(1,2),半径…6分则圆心C(1,2)到直线l:x+2y-4=0的距离为………………………………………………8分,有解得m=4 …………10分【解析】略2.函数在区间上的图像如图所示,则n可能是()A.1B.2C.3D.4【答案】A【解析】略3.曲线上的点到直线的最短距离是()A.B.C.D.0【答案】A【解析】略4.直线经过P(2,1),Q(m∈R)两点,那么直线的倾斜角的取值范围是()A.[0,π)B.[0,]∪[,π)C.[0,]D.[0,]∪(,π)【答案】D【解析】略5.设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B 两点,且,,成等差数列。
(1)求;(2)若直线的斜率为1,求b的值。
【答案】(1)由椭圆定义知又 (4)(2)L的方程式为y=x+c,其中设,则A,B 两点坐标满足方程组 (6)化简得则 (8)因为直线AB的斜率为1,所以即 . (10)则解得.【解析】略6.给出下列命题:①已知,则;②为空间四点,若不构成空间的一个基底,那么共面;③已知,则与任何向量都不构成空间的一个基底;④若共线,则所在直线或者平行或者重合.正确的结论为()【答案】①②④)【解析】略7.设x,y满足约束条件,若目标函数z ="ax" + by(a > 0 ,b > 0)的最大值为12 ,则的最小值为A.B.C.D.4【答案】A【解析】略8.已知,则().A. B. C. D.A. B. C. D.【答案】C【解析】略9.如图,在△ABC中,AB=AC,∠C=720,⊙O过A、B两点且与BC相切于点B,与AC交于点D,连结BD,若BC=,则AC=【答案】2【解析】略10.(本小题满分12分)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).【答案】巨响发生在接报中心的西偏北45°距中心处。
高二数学函数的应用试题
![高二数学函数的应用试题](https://img.taocdn.com/s3/m/abd6faf76c85ec3a86c2c5e7.png)
高二数学函数的应用试题1.如果函数在区间D上是增函数,且在区间上是减函数,则称函数在区间D上是缓增函数,区间D叫做缓增区间.若函数在区间D上是缓增函数,则缓增区间D是A.B.C.D.【答案】D【解析】在上是增函数,在上是减函数的缓增区间为.【考点】1、函数的单调性;2、导数的应用.【方法点晴】本题考查函数的单调性、导数的应用,涉及函数与方程思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用数形结合思想由在上是增函数,在上是减函数的缓增区间为.2.函数的一个零点在区间内,则实数的取值范围是 .【答案】【解析】由于函数在上单调递增,且函数的一个零点在区间内,则有且,解得.【考点】1.函数的单调性;2.零点存在定理3.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为________.【答案】【解析】方法1;由题题中给出的定义“关联函数”,可知函数应有两个交点,即:,在区间[0,3]上函数图像有两个交点,画出函数图像有在区间内的交点个数可得;方法2;f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数在[0,3]上有两个不同的零点,【考点】数学阅读能力与函数的零点及数形结合思想.4.(本小题满分12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分按每度0.5元计算.(1)设月用电x度时,应交电费y元.写出y关于x的函数关系式;(2)小明家第一季度交纳电费情况如下:则小明家第一季度共用电多少度?【答案】(1);(2)330.【解析】(1)由题意可知关于的函数关系式为分段函数,而且是关于的一次方程.由题意易得此方程.(2)当时,,由表可知小明家只有三月份用电小于100度,其他两个月均超过100度.将各月电费金额代入相应解析式即可求得当月用电量.试题解析:(1)当时,;当时,.所以所求函数式为(2)据题意,一月份:,得(度),二月份:,得(度),三月份:,得(度).所以第一季度共用电:(度).【考点】分段函数.5.已知函数,若存在唯一的零点,且,则的取值范围是()A.B.C.D.【答案】C【解析】因为,所以,显然当时,不符合题意,当时,函数在上有零点,不符合题意,当时,函数在上减函数,在上增函数,在上减函数,又,所以只需,解得,故选C.点睛:本题考查函数的导数,利用导数求函数的单调区间及函数的零点,属于中档题.处理函数单调性问题时,注意利用导函数的正负,通过对参数的分类,求函数的单调区间,根据极值得到函数大致图象,再分析极小值和极大值,根据图象及极值分析零点个数及范围.6.如果函数在其定义域内的给定区间上存在(),满足,则称函数是上的“均值函数”,是它的一个均值点.例如函数是上的“均值函数”,0就是它的均值点,若函数是上的“均值函数”,则实数的取值范围是.【答案】【解析】由题意得【考点】新定义7.函数的零点所在的区间()A.B.C.D.【答案】C【解析】由题意得,,根据函数零点的判定定理,故选C.【考点】函数零点的判定定理.8.双流中学2016年高中毕业的大一学生假期参加社会实践活动,为提高某套丛书的销量,准备举办一场展销会,据市场调查,当每套丛书售价定为元时,销售量可达到万套,现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10,假设不计其他成本,即销售每套丛书的利润=售价供货价格.问:(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元?(2)每套丛书售价定为多少元时,单套丛书的利润最大?【答案】解:(Ⅰ)每套丛书定价为100元时,销售量为万套,此时每套供货价格为元,················· 3分∴书商所获得的总利润为万元.·········· 4分(Ⅱ)每套丛书售价定为元时,由得,,··· 5分依题意,单套丛书利润·············· 7分∴,∵,∴,由, ······· 10分当且仅当,即时等号成立,此时.答:(Ⅰ)当每套丛书售价定为100元时,书商能获得总利润为340万元;(Ⅱ)每套丛书售价定为140元时,单套利润取得最大值100元.·························· 12分(说明:学生未求出最大值不扣分).【解析】解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+=32(元),书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x元时,由解得0<x<150.依题意,单套丛书利润P=x-(30+)=x--30,∴P=-[(150-x)+]+120.∵0<x<150,∴150-x>0,由(150-x)+≥2=2×10=20,=-20+120=100.当且仅当150-x=,即x=140时等号成立,此时,Pmax∴当每套丛书售价定为100元时,书商获得总利润为340万元,每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.9.为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销活动,经调查测算,该产品的年销量(即该厂的年产量)万件与年促销费用()万元满足(为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均生产投入成本的1.5倍(生产投入成本包括生产固定投入和生产再投入两部分).(1)求常数,并将该厂家2016年该产品的利润万元表示为年促销费用万元的函数;(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?【答案】(1),;(2)2.5万元【解析】(1)已知该产品的年销量万件与年促销费用万元满足,因此将当时,代入,求出即可得到该产品的利润y万元关于年促销费用t万元的函数,需要注意的是定义域要实际问题实际考虑,即;(2)化简函数,再利用基本不等式,求解厂家的利润最大值;试题解析:(1)由题意,当时,,代入中,得,得故,.(2)由(1)知:由基本不等式,当且仅当,即时等号成立,故.答:该厂家2016年的年促销费用投入2.5万元时,厂家利润最大.【考点】1.函数模型及其应用;2.基本不等式的应用;10.二次方程,有一个根比大,另一个根比小,则的取值范围是()A.B.C.D.【答案】C【解析】设,因为方程有一个根比大,另一个根比小,所以整理可得,解得,故选C.【考点】一元二次方程根的存在性及个数的判断.【方法点晴】本题主要考查了一元二次方程根的存在性及个数的判断,属于基础题.解答一元二次方程根的分布问题,通常利用“三个二次”即一元二次方程、一元二次不等式、一元二次函数三者之间的关系,结合一元二次函数的图象,通常考虑开口方向、判别式、对称轴的范围及区间端点的函数值中的某几个列出满足条件的不等式组,求出相应的参数范围.。
高二数学函数及其表示试题答案及解析
![高二数学函数及其表示试题答案及解析](https://img.taocdn.com/s3/m/27479c2aec630b1c59eef8c75fbfc77da26997e5.png)
高二数学函数及其表示试题答案及解析1.若函数f(x+2)=,则等于()A.B.-C.2D.-2【答案】D【解析】因为,所以,;所以.考点:分段函数求值.2.已知函数,则下列哪个函数与表示同一个函数( )A.B.C.D.【答案】B【解析】去绝对值可得:所以D错误,同一个函数要求定义域,解析式相同,所以即选B.【考点】函数相等必要三要素相等.3.下列各组函数是同一函数的是()A.与B.与C.与D.与【答案】D【解析】函数的要素由两个:定义域与对应法则。
=x(x-1),所以,是同一函数的是与,选D。
【考点】函数的概念点评:简单题,函数的要素由两个:定义域与对应法则。
4.下列各组函数中,表示同一函数的是( )A.B.C.D.【答案】B【解析】根据题意,对于A,定义域不同,故不成立,对于B,由于定义域和对应法则相同,因此成立,对于C,由于定义域不同,前者是x>1,后者是-1 1 ,故错误,对于D,由于定义域不同,前者是R,后者是,故选B.【考点】同一函数点评:本题考查函数的三要素:定义域、对应法则、值域,只有三要素完全相同,才能判断两个函数是同一个函数,这是判定两个函数为同一函数的标准.5.下列各组函数是同一函数的是①与;②与;③与;④与。
A.①②B.①③C.②③④D.①④【答案】C【解析】根据题意,对于①与,由于定义域分别是R,不同,错误,对于③与;定义域为x ,对应关系式为y=1,故可知是同一函数,那么对②与和④与。
,定义域和对应法则相同,一定为同一函数,故选C.【考点】同一个函数点评:本题考查判断两个函数是否是同一个函数,考查根式的定义域,主要考查函数的三要素,即定义域,对应法则和值域.6.已知函数,函数①当时,求函数的表达式;②若,函数在上的最小值是2 ,求的值;③在②的条件下,求直线与函数的图象所围成图形的面积.【答案】⑴.⑵.⑶=.【解析】⑴∵,∴当时,; 当时,∴当时,; 当时,.∴当时,函数.⑵∵由⑴知当时,,∴当时, 当且仅当时取等号.∴函数在上的最小值是,∴依题意得∴.⑶由解得∴直线与函数的图象所围成图形的面积=.【考点】本题主要考查导数计算,应用导数研究函数的单调性、最值,定积分计算。
高二数学函数试题答案及解析
![高二数学函数试题答案及解析](https://img.taocdn.com/s3/m/d44b2807a7c30c22590102020740be1e650ecc0e.png)
高二数学函数试题答案及解析1.设函数在区间上的导函数为,在区间上的导函数为,若在区间上恒成立,则称函数在区间上为“凸函数”.已知,若对任意的实数满足时,函数在区间上为“凸函数”,则的最大值为()A.4B.3C.2D.1【答案】C【解析】由题意,得,.令对上恒成立,∴,解得,∴,故选C【考点】1、利用导数求最值;2、二次函数的图象应用.2.已知函数().(1)若,求函数的极值;(2)若,不等式恒成立,求实数的取值范围.【答案】(1)在处有极小值;(2).【解析】(1)求极值分三步:首先对函数求导,然后判断的根是否为极值点,最后求出极值;(2)要使,不等式恒成立,只要先利用导数求出的最小值,然后使最小值大于等于零即可.试题解析:解: (1)当时,2分令,解得,所以的单调增区间为(1,+∞);4分,解得,所以的单调减区间为(0,1)..5分所以函数在处有极小值..6分(2)∵<0,由.令列表:_0+8分这是.10分∵,不等式恒成立,∴,∴,∴范围为..12分【考点】1.利用导数求极值最值;2.恒成立问题.3.若函数在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是( )A.B.C.D.不存在这样的实数k【答案】B【解析】根据题意,由于函数在其定义域内的一个子区间(k-1,k+1)内是单调函数,则可知,则可知函数的单调区间为k-1<0.5,k-1,故可知k的取值范围是,故答案为B.【考点】函数的单调性点评:主要是考查了函数单调性的运用,属于基础题。
4.已知,且方程无实数根,下列命题:①方程也一定没有实数根;②若,则不等式对一切实数都成立;③若,则必存在实数,使④若,则不等式对一切实数都成立.其中正确命题的序号是.【答案】①②④【解析】根据题意,由于,且方程无实数根,则对于①方程也一定没有实数根;利用反证法可知成立。
对于②若,则不等式对一切实数都成立;结合二次函数图象与性质可知成立。
2021_2022学年新教材高中数学第三章函数测评含解析新人教B版必修第一册
![2021_2022学年新教材高中数学第三章函数测评含解析新人教B版必修第一册](https://img.taocdn.com/s3/m/44c741c30066f5335b81210e.png)
第三章测评(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021山西运城高一期中)函数f (x )=√x -1+2x 2-4的定义域为( )A.[1,2)B.(2,+∞)C.(-∞,2)∪(2,+∞)D.[1,2)∪(2,+∞),则{x -1≥0,x 2-4≠0,解得{x ≥1,x ≠2.故函数f (x )的定义域是[1,2)∪(2,+∞),故选D .2.(2021北京朝阳高一期末)已知函数y=f (x )可表示为如表所示,则下列结论正确的是( ) A.f (f (4))=3B.f (x )的值域是{1,2,3,4}C.f (x )的值域是[1,4]D.f (x )在区间[4,8]上单调递增f (4)=3,得f (f (4))=f (3)=2,故A 错误;函数的值域为{1,2,3,4},故B 正确,C 错误;由表可知,f (x )在定义域上不单调,故D 错误.故选B .3.(2021山东烟台高一期中)某高三学生去高铁站乘高铁.早上他乘坐出租车从家里出发,离开家不久,发现身份证忘带,于是回到家取上身份证,然后乘坐出租车以更快的速度赶往高铁站,令x (单位:分钟)表示离开家的时间,y (单位:千米)表示离开家的距离,其中等待红绿灯及在家取身份证的时间忽略不计,下列图像中与上述事件吻合最好的是( ),该高三学生离开家的过程中,y 是x 的一次函数,且斜率为正;小明返回家的过程中,y 仍然是x 的一次函数,斜率为负;小明最后由家到高铁站,y 仍然是x 的一次函数,斜率为正值,且斜率比第一段的斜率大,结合图像可知,与上述事件吻合最好的图像为C .故选C .4.(2021山东潍坊高一期中)已知函数f (x )=ax 2+bx+c 满足f (2)<0且f (3)>0,则f (x )在(2,3)上的零点( )A.至多有一个B.有1个或2个C.有且仅有一个D.一个也没有,函数f (x )=ax 2+bx+c 是连续函数,又f (2)<0,f (3)>0,由函数零点存在定理,可知f (x )在(2,3)上的零点个数有且只有一个,故选C .5.(2021浙江杭州中学高一期中)若函数f (x )满足关系式f (x )+2f (1-x )=-3x ,则f (2)的值为( ) A.-3B.32C.-52D.52f (x )+2f (1-x )=-3x,令x=2,则有f (2)+2f (-1)=-32;令x=-1,则有f (-1)+2f (2)=3.由上式可得f (2)=52,故选D .6.(2021河北邯郸高一期中)已知函数f (x )=ax 2+b x是定义在(-∞,b-3]∪[b-1,+∞)上的奇函数.若f (2)=3,则a+b 的值为( ) A.1 B.2 C.3 D.0函数f (x )是定义在(-∞,b-3]∪[b-1,+∞)上的奇函数,∴b-3+b-1=0,即2b=4,解得b=2,则f (x )=ax 2+2x.∵f (2)=3,∴f (2)=4a+22=3,解得2a+1=3,即a=1.因此a+b=1+2=3,故选C .7.已知函数f (x )={x 2+1(x ≤0),2x (x >0),若f (a )=10,则a 的值是( )A.-3或5B.3或-3C.-3D.3或-3或5a ≤0,则f (a )=a 2+1=10,∴a=-3(a=3舍去),若a>0,则f (a )=2a=10,∴a=5,综上可得,a=5或a=-3,故选A .8.(2021广西北海高一期末)已知定义在[-2,2]上的奇函数f (x )满足:对任意的x 1,x 2∈[-2,2]都有f (x 1)-f (x 2)x 1-x 2<0成立,则不等式f (x+1)+f (1-4x )>0的解集为( )A.-14,34B.23,34C.-14,1 D.-14,23解析由f (x 1)-f (x 2)x 1-x 2<0可知函数f (x )在[-2,2]上单调递减,f (x )是奇函数,所以f (x+1)>-f (1-4x )=f (4x-1).所以{-2≤x +1≤2,-2≤1-4x ≤2,x +1<4x -1,解得{-3≤x ≤1,-14≤x ≤34,x >23,所以23<x ≤34,即不等式的解集为23,34.故选B .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列对应关系f ,能构成从集合M 到集合N 的函数的是 ( )A.M=12,1,32,N={-6,-3,1},f 12=-6,f (1)=-3,f32=1B.M=N={x|x ≥-1},f (x )=2x+1C.M=N={1,2,3},f (x )=2x+1D.M=Z ,N={-1,1},f (x )={-1,x 为奇数,1,x 为偶数解析∵M=12,1,32,N={-6,-3,1},f 12=-6,f (1)=-3,f32=1,由定义知M 中的任一个元素,N 中都有唯一的元素和它相对应,∴构成从集合M 到集合N 的函数,故A 正确;由M=N={x|x ≥-1},f (x )=2x+1,能构成从集合M 到集合N 的函数,故B 正确;由M=N={1,2,3},f (x )=2x+1,∵f (2)=5,f (3)=7,5∉{1,2,3},7∉{1,2,3},因此不能构成从集合M 到集合N 的函数,故C 错误;由M=Z ,N={-1,1},f (x )={-1,x 为奇数,1,x 为偶数,因此能构成从集合M 到集合N 的函数,故D 正确.故选ABD .10.(2021重庆八中高一期中)已知函数f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) A.y=f (-x ) B.y=f (x )+x 3 C.y=f (x )xD.y=√x 3f (x )F (x )=f (-x ),其定义域为R ,则有F (-x )=f [-(-x )]=f (x )=-f (-x )=-F (x ),函数y=f (-x )为奇函数,故A 正确;设F (x )=f (x )+x 3,其定义域为R ,则有F (-x )=f (-x )+(-x )3=-[f (x )+x 3]=-F (x ),函数y=f (x )+x 3为奇函数,故B 正确;设F (x )=f (x )x,其定义域为{x|x ≠0},则有F (-x )=f (-x )-x=f (x )x=F (x ),是偶函数,故C 错误;由于函数y=√x 3f (x ),其定义域为[0,+∞),其定义域不关于原点对称,不是奇函数,故D 错误. 故选AB.11.(2020山东日照高二期末)如图是二次函数y=ax 2+bx+c 图像的一部分,图像过点A (-3,0),且对称轴为x=-1,则以下选项中正确的为( )A.b 2>4acB.2a-b=1C.a-b+c=0D.5a<ba<0,与y 轴的交点在y 轴的正半轴上得c>0.因为二次函数的图像与x 轴有2个不同交点,所以Δ=b 2-4ac>0,故A 正确; 因为对称轴方程为x=-1,所以-b2a =-1,即2a-b=0,故B 不正确;又因为图像过点A (-3,0),且对称轴方程为x=-1,所以图像与x 轴的另一个交点是(1,0),把点(1,0)代入解析式得a+b+c=0,故C 不正确;把x=-3代入解析式得9a-3b+c=0,与a+b+c=0联立,两式相加并整理得10a-2b=-2c<0,即5a<b ,故D 正确.故选AD.12.(2021山东临沂高一期中)某校学习兴趣小组通过研究发现形如y=ax+bcx+d (ac ≠0,b ,d 不同时为0)的函数图像可以通过反比例函数的图像平移变换而得到,则对于函数y=x+2x -1的图像及性质的下列表述正确的是( )A.图像上点的纵坐标不可能为1B.图像关于点(1,1)成中心对称C.图像与x 轴无交点D.函数在区间(1,+∞)上单调递减y=x+2x -1=x -1+3x -1=1+3x -1,因此函数y=x+2x -1的图像可以看作是由y=3x的图像先向右平移一个单位,再向上平移一个单位而得到,因此函数图像上点的纵坐标不可能为1,函数图像关于点(1,1)成中心对称,函数图像与x 轴交点为(-2,0),函数y 在区间(1,+∞)上单调递减,故选ABD . 三、填空题:本题共4小题,每小题5分,共20分.13.若函数y=f (x )在定义域R 上的值域为[0,1],则函数y=f (x-1)+1的值域为 .,而只有上下平移才改变函数的值域,因此函数y=f (x-1)+1的值域为[1,2].14.某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为 立方米.x 立方米,所缴水费为y 元,由题意得y={3x ,0≤x ≤10,30+5(x -10),x >10,即y={3x ,0≤x ≤10,5x -20,x >10.由于该职工这个月的实际用水量超过10立方米,所以5x-20=55,解得x=15. 15.已知函数f (x )=3+x 1+x,记f (1)+f (2)+f (4)+…+f (1 024)=m ,f12+f14+…+f11024=n ,则m+n= .解析由题意得f (x )+f1x=x+3x+1+1x +31x+1=x+3x+1+1+3x x+1=4(x+1)x+1=4,f (1)=3+11+1=2,∴m+n=f (1)+f12+f (2)+f 14+f (4)+…+f11024+f (1024)=2+4×512=2050.16.(2021江苏海门中学高一期中)设函数f (x )={-(x -a )2+a 2,x ≤0,-x 2+2x +1-a ,x >0,若f (0)是f (x )的最大值,则a 的取值范围为 .+∞)a>0,则满足题意的函数f (x )的图像如图所示:由数形结合可得Δ=4+4(1-a )≤0,解得a ≥2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021山东德州高一期中)已知函数f (x )=x+1x .(1)用定义法证明f (x )在[1,+∞)上为增函数;(2)若对∀x ∈[2,4],恒有f (x )≤2m-1,求实数m 的取值范围. (1)证明设1≤x 1<x 2,则f (x 2)-f (x 1)=x 2+1x 2-x 1-1x 1=(x 2-x 1)+x 1-x2x 1x 2=(x 2-x 1)1-1x 1x 2=(x 2-x 1)(x 1x 2-1)x 1x 2,因为x 2>x 1≥1,所以x 2-x 1>0且x 1x 2>1. 所以(x 2-x 1)(x 1x 2-1)x 1x 2>0,即f (x 2)-f (x 1)>0,f (x 1)<f (x 2), 所以f (x )在[1,+∞)上是增函数.(1)知f (x )在[2,4]上单调递增,所以f (x )max =f (4)=174.所以2m-1≥174,即m ≥218. 所以m 的取值范围是218,+∞.18.(12分)(2020辽宁朝阳一中高一期中)设函数f (x )=ax 2+ax-1(a ∈R ). (1)当a=12时,求函数f (x )的零点; (2)讨论函数f (x )零点的个数.当a=12时,函数f (x )=12x 2+12x-1,令12x 2+12x-1=0,解得x=1或x=-2.函数f (x )的零点为1,-2.(2)当a=0时,f (x )=ax 2+ax-1=-1,函数没有零点; 当a ≠0时,Δ=a 2+4a.若Δ=a 2+4a=0,解得a=-4,此时函数f (x )有1个零点. 若Δ=a 2+4a>0,解得a<-4或a>0,此时函数有2个零点. 若Δ=a 2+4a<0,解得-4<a<0,此时函数没有零点. 综上所述,当a=-4时,函数f (x )有1个零点. 当a<-4或a>0时,函数有2个零点, 当-4<a ≤0时,函数没有零点.19.(12分)(2021云南玉溪一中高一期中)已知二次函数f (x )=ax 2+bx+c (a ≠0),满足f (x+1)-f (x )=2x ,且f (0)=1.(1)求函数f (x )的解析式;(2)函数f (x )在区间[n ,1)上的值域是34,1,求n 的取值范围.因为二次函数f (x )=ax 2+bx+c (a ≠0),满足f (x+1)-f (x )=2x ,且f (0)=1,所以a (x+1)2+b (x+1)+c-ax 2-bx-c=2x ,c=1, 即2ax+a+b=2x ,故a=1,b=-1,c=1. 所以函数f (x )的解析式为f (x )=x 2-x+1.(2)因为f (x )=x 2-x+1的开口向上,对称轴x=12,且f12=34,f (0)=f (1)=1,由f (x )在区间[n ,1)上的值域是34,1可得0<n ≤12.故n 的取值范围为0,12. 20.(12分)(2020江苏启东高一期中)已知函数f (x )=1x-1+12(x>0).(1)若m>n>0时,f (m )=f (n ),求1m +1n 的值;(2)若m>n>0时,函数f (x )的定义域与值域均为[n ,m ],求所有m ,n 的值.∵f (m )=f (n ),∴1m -1+12=1n-1+12.∴1m-1=1n-1,∴1m -1=1n -1或1m -1=1-1n . ∵m>n>0,∴1m +1n =2.(2)由题意f (x )={1x -12,0<x ≤1,32-1x,x >1,∴f (x )在(0,1]上单调递减,在[1,+∞)上单调递增. ①0<n<m ≤1,则f (n )=m ,f (m )=n ,∴{1n -12=m ,1m -12=n ,解得m=n=√17-14(舍去).②n<1<m ,则f (x )min =f (1)=12=n ,f (x )max =m=max{f (n ),f (m )}=max 32,f (m ),∴m=32. ③1≤n<m ,则f (n )=n ,f (m )=m ,无解. 综上,m=32,n=12.21.(12分)(2021山东聊城高一期中)为了节能减排,某农场决定安装一个可使用10年的太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为C (x )={m -4x5,0≤x ≤10,m x ,x >10(m 为常数).已知太阳能电池面积为5平方米时,每年消耗的电费为8万元.安装这种供电设备的工本费为0.6x (单位:万元).记F (x )为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和. (1)写出F (x )的解析式;(2)当x 为多少平方米时,F (x )取得最小值?最小值是多少万元?(精确到小数点后一位)(已知√3≈1.7,√10≈3.2)当0≤x ≤10时,C (x )=m -4x 5,由题意8=m -4×55,即m=60.∴C (x )={60-4x5,0≤x ≤10,60x,x >10,则F (x )={10×60-4x5+0.6x ,0≤x ≤10,10×60x +0.6x ,x >10,化简可得F (x )={120-7.4x ,0≤x ≤10,600x+0.6x ,x >10.(2)当0≤x ≤10时,F (x )=120-7.4x ,可得F (x )min =F (10)=46(万元), 当x>10时,F (x )=600x+610x ≥2√600x·610x =6√10≈19.2(万元),当且仅当600x=610x ,即x=10√10≈32平方米时,等号成立,故当x 为32平方米时,F (x )取得最小值,最小值是19.2万元.22.(12分)(2021重庆外国语学校高一期中)已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x.函数f (x )在y 轴左侧的图像如图所示,并根据图像:(1)画出f (x )在y 轴右侧的图像并写出函数f (x )(x ∈R )的单调递增区间; (2)写出函数f (x )(x ∈R )的解析式;(3)若函数g (x )=f (x )+(4-2a )x+2(x ∈[1,2]),求函数g (x )的最小值.函数f (x )是定义在R 上的偶函数,即函数f (x )的图像关于y 轴对称,则函数f (x )图像如图所示.故函数f (x )的单调递增区间为(-1,0),(1,+∞). (2)根据题意,令x>0,则-x<0,则f (-x )=x 2-2x ,又由函数f (x )是定义在R 上的偶函数,则f (x )=f (-x )=x 2-2x ,则f (x )={x 2+2x ,x ≤0,x 2-2x ,x >0.(3)根据题意,x ∈[1,2],则f (x )=x 2-2x ,则g (x )=x 2-2x+(4-2a )x+2=x 2+(2-2a )x+2, 其对称轴为x=a-1,当a-1<1时,即a<2时,g (x )在区间[1,2]上单调递增,g (x )min =g (1)=5-2a ; 当1≤a-1≤2时,即2≤a ≤3时,g (x )min =g (a-1)=1+2a-a 2;当a-1>2时,即a>3时,g (x )在区间[1,2]上单调递减,g (x )min =g (2)=10-4a , 故g (x )min ={5-2a ,a <2,1+2a -a 2,2≤a ≤3,10-4a ,a >3.。
高中数学必修一 《2 3 二次函数与一元二次方程、不等式》课时练习02
![高中数学必修一 《2 3 二次函数与一元二次方程、不等式》课时练习02](https://img.taocdn.com/s3/m/d7efdd1d0a4c2e3f5727a5e9856a561253d3214a.png)
第二章 一元二次函数、方程和不等式2.3 二次函数与一元二次方程、不等式(共2课时)(第1课时)一、选择题1.(2019北京高一期中)不等式x(x +2)<3的解集是( ). A .{x|−1<x <3} B .{x|−3<x <1} C .{x|x <−1 ,或x >3} D .{x|x <−3 ,或x >1} 【答案】B【解析】由题意x(x +2)<3,∴x 2+2x −3<0即(x +3)(x −1)<0,解得:−3<x <1, ∴该不等式的解集是{x|−3<x <1},故选B .2.(2019全国课时练习)已知集合A ={y|y −2>0},集合B ={x|x 2−2x ≤0},则A ∪B = ( ) A .[0,+∞) B .(−∞,2] C .[0,2)∪(2,+∞) D .R 【答案】A【解析】∵集合A ={y|y −2>0},集合B ={x|x 2−2x ≤0}={x|0≤x ≤2}, ∴A ∪B ={x|x ≥0}= [0,+∞),故选A.3.(2019全国课时练习)不等式2620x x --+≤的解集是( )A.21|32x x ⎧⎫-≤≤⎨⎬⎩⎭B.21|32x x x ⎧⎫≤-≥⎨⎬⎩⎭或 C.1|2x x ⎧⎫≥⎨⎬⎩⎭D.3|2x x ⎧⎫≤-⎨⎬⎩⎭【答案】B【解析】22620620(21)(32)0x x x x x x --+≤⇒+-≥⇒-+≥2132或x x ⇒≤-≥.故选B .4.(2019·安徽高一期中)若关于x 的不等式230ax bx ++>的解集为1(1,)2-,其中,a b 为常数,则不等式230x bx a ++<的解集是( ) A .(1,2)- B .(2,1)-C .1(,1)2-D .1(1,)2-【答案】A【解析】由230ax bx ++>解集为11,2⎛⎫- ⎪⎝⎭可得:()11122311122ba a⎧-=-+=-⎪⎪⎨⎪=-⨯=-⎪⎩解得:63a b =-⎧⎨=-⎩ ∴所求不等式为:23360x x --<,解得:()1,2x ∈- 本题正确选项:A5.(2019天津高一课时练习)在R 上定义运算⊗:a ⊗b =ab +2a +b ,则满足x ⊗(x −2)<0的实数x 的取值范围为( ) A .(0,2)B .(−2,1)C .(−∞,−2)∪(1,+∞)D .(−1,2)【答案】B【解析】由定义运算⊙可知不等式x ⊙(x -2)<0为x(x −2)+2x +x −2<0,解不等式得解集为(-2,1)6.(2019全国高一课时练习)一元二次不等式2kx 2+kx ﹣<0对一切实数x 都成立,则k 的取值范围是( )A.(﹣3,0)B.(﹣3,0]C.[﹣3,0]D.(﹣∞,﹣3)∪[0,+∞) 【答案】A【解析】由一元二次不等式2kx 2+kx ﹣<0对一切实数x 都成立,则,解得﹣3<k <0.综上,满足一元二次不等式2kx 2+kx ﹣<0对一切实数x 都成立的k 的取值范围是(﹣3,0). 故选A . 二、填空题7.(2019全国高三课时练习)不等式220x x +-<的解集为___________. 【答案】()2,1-【解析】不等式220(2)(1)0x x x x +-<⇔+-<的解集为()2,1-.8.(2019广州市培正中学高二课时练习)若关于x 的不等式 −12x 2+2x >mx 的解集是{x|0<x <2},则实数m 的值是_____________. 【答案】1.【解析】∵不等式−12x 2+2x >mx 的解集为{x|0<x <2},∴0,2是方程−12x 2+(2−m )x =0的两个根,∴将2代入方程得m =1,∴m =1,故答案为1.9.(2019天津高一课时练习)如果关于x 的不等式5x 2-a≤0的正整数解是1,2,3,4,那么实数a 的取值范围是____. 【答案】[80,125)【解析】由题意知a >0,由5x 2-a ≤0,得−√a5≤x ≤√a5,不等式的正整数解是1,2,3,4,则4≤√a5<5,∴80≤a <125.即实数a 的取值范围是[80,125).10.(2019·全国高一课时练习)当()1,3x ∈时,不等式240x mx -+>恒成立,则实数m 的取值范围是_____________. 【答案】4m <【解析】240x mx -+>,且()1,3x ∈,所以原不等式等价于24x m x+<,不等式恒成立,则24min x m x ⎛⎫+< ⎪⎝⎭,由2444x x x x +=+≥=,当且仅当()21,3x =∈时,24 4minx x ⎛⎫+= ⎪⎝⎭,所以正确答案为4m <。
高二数学试题答案及解析
![高二数学试题答案及解析](https://img.taocdn.com/s3/m/59637d45326c1eb91a37f111f18583d049640f46.png)
高二数学试题答案及解析1.已知实数,设命题:函数在上单调递减;命题:不等式的解集为,如果为真,为假,求的取值范围.【答案】.【解析】命题:函数在上单调递减,可得:. 命题:不等式的解集为,可得,如果为真,为假,可得只能一真一假,解出即可.试题解析:由函数在上单调递减可得,,解得.设函数,可知的最小值为,要使不等式的解集为,只需,因为或为真,且为假,所以只能一真一假,当真假时,有,无解;当假真时,有,可得,综上,的取值范围为.2.设函数,则()A.2B.-2C.5D.【答案】D【解析】由得:,所以,则,故选D.3.“”是“方程为双曲线的方程”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若方程表示椭圆,则,解得且,所以是方程表示椭圆的必要不充分条件,故选B.【考点】椭圆的标准方程;必要不充分条件的判定.4.函数,则的值为( )A.B.C.D.【答案】B【解析】解答:f ( x)=sin x+e x,∴f′(x)=cos x+e x,∴f′(0)=cos0+e0=1+1=2,故选:B5.“”是“”成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由题可得,而,故应选择A.【考点】充要条件6.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是A.B.C.D.【答案】D【解析】略7.如图:已知为抛物线上的动点,过分别作轴与直线的垂线,垂足分别为,则的最小值为_____________.【答案】【解析】抛物线的准线方程是,又根据抛物线的几何性质,抛物线上的点到焦点的距离等于其到准线的距离所以,的最小值就是点到直线的距离,所以点到直线的距离,即的最小值是,故填:.【考点】抛物线的几何意义【方法点睛】本题考查了抛物线的几何性质,属于基础题型,当涉及圆锥曲线内线段和的最小或线段差的最大时,经常使用圆锥曲线的定义进行转化,比如本题,抛物线上任一点到焦点的距离和到准线的距离相等,所以将到轴的距离转化为,这样通过几何图形就比较容易得到结果.8.已知椭圆()的离心率为,短轴的一个端点为.过椭圆左顶点的直线与椭圆的另一交点为.(1)求椭圆的方程;(2)若与直线交于点,求的值;(3)若,求直线的倾斜角.【答案】(1);(2);(3)或.【解析】(1)根据条件可得,,再结合条件,计算得到,和,求得椭圆的标准方程;(2)首先设,根据点的坐标求出直线的方程,并计算得到点的坐标,并表示,最后根据点在椭圆上,满足椭圆方程,计算得到常数;(3)设直线方程与椭圆方程联立,根据弦长公式,解得直线的斜率,最后得到直线的倾斜角.试题解析:(1)∵∴∴椭圆的方程为(2)由(1)可知点,设,则令,解得,既∴又∵在椭圆上,则,∴(3)当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设其为,则由可得,由于,则设可得,,∴∴解得∴直线的倾斜角为或.【考点】1.椭圆方程;2.弦长公式;3.直线与椭圆相交的综合问题.9.已知点是双曲线右支上一点,分别是双曲线的左、右焦点,为的内心,若成立,则双曲线的离心率为()A.4B.C.2D.【解析】如图,设圆I与的三边分别相切于点E、F、G,连接IE、IF、IG,则,它们分别是的高,,其中r是的内切圆的半径.由根据双曲线定义,得,∴2a=c⇒离心率为【考点】双曲线方程及性质10.抛物线的准线与双曲线的两条渐近线所围成的三角形的面积等于.【答案】【解析】抛物线的准线方程为,双曲线的渐近线方程为,所以所要求的三角形的面积为;【考点】1.抛物线的几何性质;2.双曲线的几何性质;11.命题“”的否定是()A.B.C.D.【答案】D【解析】由特称命题的否定为全称命题可知,所求命题的否定为,,故应选.【名师】本题主要考查特称命题的否定,其解题的关键是正确理解并识记其否定的形式特征.先把存在量词(或全称量词)改为全称量词(或存在量词),再否定结论即可;扎根基础知识,强调教材的重要性,充分体现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力.【考点】含一个量词的命题的否定.12.已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为()A.B.C.D.【解析】依题意有,解得,所以方程为.【考点】双曲线的概念与性质.13.设抛物线的焦点为,直线过且与交于两点,若,则的方程为()A.或B.或C.或D.或【答案】C【解析】设A(x1,y1),B(x2,y2),又F(1,0),则=(1-x1,-y1), =(x2-1,y2),由题意知=3,因此即又由A、B均在抛物线上知解得直线l的斜率为=±,因此直线l的方程为y= (x-1)或y=- (x-1).故选C.14.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)函数关系式为,则使该生产厂家获取最大年利润的年产量为.【答案】9万件【解析】求出函数的导函数,由导函数等于0求出极值点,结合实际意义得到使该生产厂家获取最大年利润的年产量.解:由,得:y′=﹣x2+81,由﹣x2+81=0,得:x1=﹣9(舍),x2=9.当x∈(0,9)时,y′>0,函数为增函数,当x∈(9,+∞)时,y′<0,函数为减函数,所以当x=9时,函数有极大值,也就是最大值,为(万元).所以使该生产厂家获取最大年利润的年产量为9万件.故答案为9万件.点评:本题考查了函数在某点取得极值的条件,考查了运用导函数判断原函数的单调性,此题是基础题.15.求下列函数的导数:(1);(2).【答案】(1);(2).【解析】直接利用导数的乘除法则及基本初等函数的求导公式求解.试题解析:(1)(2).16.已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.(1)求椭圆的方程;(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.【答案】(Ⅰ);(Ⅱ)(1);(2),.【解析】(1)本问主要考查待定系数法求椭圆标准方程,首先设椭圆方程为,然后根据条件列方程组,求解后即得到椭圆标准方程;(2)本问主要考查直线与椭圆的综合问题,分析可知,内切圆面积最大时即为内切圆半径最大,的面积可以表示为,由椭圆定义可知的周长为定值,这样的面积转化为,然后再根据直线与椭圆的位置关系,的面积表示为,这样可以联立直线方程与椭圆方程,消去未知数,得到关于的一元二次方程,根据韦达定理,表示出,最后转化为关于的函数,即可求出最值.试题解析:(Ⅰ)由题意可设椭圆方程为.则,解得:椭圆方程为,(Ⅱ)设,不妨,设的内切圆的半径,则的周长为因此最大,就最大,由题知,直线的斜率不为零,可设直线的方程为,由得,得 .则,令,可知,则,令,则,当时,,在上单调递增,有,即当时,,这时所求内切圆面积的最大值为.故直线内切圆面积的最大值为.点睛:直线与圆锥曲线问题一直以来都是考查的热点,一方面考查学生数形结合、划归转化思想的能力,另一方面考查学生分析问题及计算的能力.解题时注意到直线的斜率为0以及斜率不存在这两种特殊情况,这就决定我们在设直线方程时是选择用,还是用,这样可以避免讨论.在解决最值问题时,可以通过换元法,转化为函数、导数问题求最值,也可以利用不等式思想求最值,重点考查学生函数方程、不等式思想的应用.17.(本题满分13分)已知椭圆的离心率为,且它的一个焦点的坐标为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设过焦点的直线与椭圆相交于两点,是椭圆上不同于的动点,试求的面积的最大值.【答案】(Ⅰ);(Ⅱ)的直线为l,分【解析】(Ⅰ)根据椭圆的离心率和焦距即可求出标准方程;(Ⅱ)设过焦点F1两类,若l的斜率不存在,求出答案,若l的斜率存在,不妨设为k,则l的方程为y=kx+1,根据韦达定理,弦长公式,点到直线的距离公式,得到,构造函数,利用导数求出函数的最值,问题得以解决试题解析:(Ⅰ)设椭圆的半焦距为,则.又由,可解得,所以,所以,椭圆的标准方程为.(Ⅱ)设过焦点的直线为.①若的斜率不存在,则,即,显然当在短轴顶点或时,的面积最大,此时,的最大面积为.②若的斜率存在,不妨设为,则的方程为.设.联立方程:消去整理得:,所以则.因为,当直线与平行且与椭圆相切时,此时切点到直线的距离最大,设切线,联立消去整理得:,由,解得:.又点到直线的距离,所以,所以.将代入得.令,设函数,则,因为当时,,当时,,所以在上是增函数,在上是减函数,所以.故时,面积最大值是.显然,所以,当的方程为时,的面积最大,最大值为.【考点】直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.18.如图,已知椭圆的上、下顶点分别为A,B,点P在椭圆上,且异于点A,B,直线AP,BP与直线分别交于点M,N,(1)设直线AP,BP的斜率分别为,求证:为定值;(2)求线段MN的长的最小值;(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.【答案】(Ⅰ);(Ⅱ);(Ⅲ)或.【解析】(Ⅰ)随点运动而变化,故设点表示,进而化简整体消去变量;(Ⅱ)点的位置由直线,生成,所以可用两直线方程解出交点坐标,求出,它必是的函数,利用基本不等式求出最小值;(Ⅲ)利用的坐标求出圆的方程,方程必含有参数,消去一个后,利用等式恒成立方法求出圆所过定点坐标.试题解析:(Ⅰ),令,则由题设可知,∴直线的斜率,的斜率,又点在椭圆上,所以,(),从而有.(Ⅱ)由题设可以得到直线的方程为,直线的方程为,由,由,直线与直线的交点,直线与直线的交点.又,等号当且仅当即时取到,故线段长的最小值是.(Ⅲ)设点是以为直径的圆上的任意一点,则,故有,又,所以以为直径的圆的方程为,令解得,以为直径的圆是否经过定点和.【考点】直线的交点,圆的方程,圆过定点问题,基本不等式的应用.19.已知命题,则为()A.B.C.D.【答案】C【解析】命题为全称命题,则命题的否定应该将全称量词改为特称量词,然后否定结论,因此为:,故选D.【考点】全称命题的否定.20.已知命题,命题,若是的充分不必要条件,求的取值范围.【答案】【解析】根据一元二次不等式的解法分别求出命题和,由是的充分不必要条件,可知,从而求出的范围:试题解析::,解得;:,解得.∵,,∴,故有且两个等号不同时成立,解得,因此,所求实数的取值范围是.【考点】充分条件和必要条件的应用21.过抛物线y2=4x的焦点F的直线l与抛物线交于A、B两点,若A、B两点的横坐标之和为,则|AB|=()A. B. C. 5 D.【答案】D【解析】由抛物线定义得,选D.【考点】抛物线定义【方法点睛】1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.本题中充分运用抛物线定义实施转化,其关键在于求点的坐标.2.若P(x0,y)为抛物线y2=2px(p>0)上一点,由定义易得|PF|=x+;若过焦点的弦AB的端点坐标为A(x1,y1),B(x2,y2),则弦长为|AB|=x1+x2+p,x1+x2可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.22.2x2-5x-3<0的一个必要不充分条件是()A.-<x<3B.-<x<0C.-3<x<D.-1<x<6【答案】D【解析】由,解得,所以的一个必要不充分条件是,故选D.【考点】充分条件与必要条件的判定.23.若,则“”是“”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】因为,,所以,或;反之,时,一定可以得到,故“”是“”的必要而不充分条件,选B.【考点】充要条件24.已知命题p:x2+mx+1=0有两个不等的负根;命题q:4x2+4(m﹣2)x+1=0无实根.若命题p与命题q有且只有一个为真,求实数m的取值范围.【答案】m≥3,或1<m≤2【解析】根据题意,首先求得p、q为真时m的取值范围,再由题意p,q中有且仅有一为真,一为假,分p假q真与p真q假两种情况分别讨论,最后综合可得答案试题解析:若方程x2+mx+1=0有两不等的负根,则解得m>2,即命题p:m>2若方程4x2+4(m-2)x+1=0无实根,则Δ=16(m-2)2-16=16(m2-4m+3)<0解得:1<m<3.即q:1<m<3.因“p或q”为真,所以p、q至少有一为真,又“p且q”为假,所以命题p、q至少有一为假,因此,命题p、q应一真一假,即命题p为真,命题q为假或命题p为假,命题q为真.∴解得:m≥3或1<m≤2.【考点】1.复合命题的真假;2.一元二次方程的根的分布与系数的关系25.抛物线的焦点坐标是______【答案】(1,0)【解析】由抛物线方程可知焦点在y轴上,由,所以焦点为【考点】抛物线方程及性质26.设为直线与双曲线左支的交点,是左焦点,垂直于轴,则双曲线的离心率【答案】:【解析】设,则由题意,知.因为垂直于轴,则由双曲线的通径公式知,即,所以.又由,得,所以.【考点】双曲线的性质.【方法点睛】讨论椭圆的性质,离心率问题是重点,求椭圆的离心率的常用方法有两种:(1)求得的值,直接代入求得;(2)列出关于的一个齐次方程(不等式),再结合消去,转化为关于的方程(或不等式)再求解.27.设、分别为双曲线的左右项点,双曲线的实轴长为,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线与双曲线的右支交于、两点,且在双曲线的右支上存在点使,求的值及点的坐标.【答案】(1);(2),点.【解析】(1)由于实轴长为,可得,由双曲线的焦点到渐进线的距离可得,从而得其方程;(2)设,根据向量关系可得,联立直线方程与双曲线方程消去得关于的一元二次方程,由韦达定理可得,代入直线方程可得,从而得,再根据点在双曲线上,满足双曲线方程,解方程组即可得到点的坐标和的值.试题解析:(1)由实轴长为,得,渐近线方程为,即,焦点到渐近线的距离为,,又,双曲线方程为:. (2)设,则,由,,,解得.【考点】双曲线的标准方程及直线与双曲线的位置关系.【方法点晴】本题主要考查了双曲线的标准方程的求解及直线与圆锥曲线的位置关系问题,同时涉及到了向量的线性运算及坐标表示,考查考生分析问题和解决问题的能力,属于中档题.本题第一问解答时,可求出渐近线方程,利用点到直线的距离公式求得,也可以直接利用结论求解,第二问解答的关键是通过向量加法的坐标表示建立点坐标和坐标的关系,通过韦达定理即可求解.28.顶点在原点,且过点的抛物线的标准方程是A.B.C.或D.或【答案】C【解析】当焦点在轴时,设方程为,代入点,所以方程为,同理焦点在轴时方程为【考点】抛物线方程29.命题:“”的否定为________;【答案】【解析】全称命题“”的否定是“”,所以命题“”的否定是“”【考点】含有一个量词命题的否定.30.命题“若,则”的逆命题是A.若,则B.若,则C.若,则D.若,则【答案】C【解析】“若则”的逆命题是“若则”,所以原命题的逆命题是“若,则”,故选C.【考点】四种命题。
2024高二数学试题及答案
![2024高二数学试题及答案](https://img.taocdn.com/s3/m/6399507dfd4ffe4733687e21af45b307e971f904.png)
2024高二数学试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为:A. 0B. 1C. 2D. 3答案:B2. 已知圆的方程为(x-3)^2+(y+1)^2=16,该圆的半径为:A. 2B. 4C. 6D. 8答案:B3. 若直线l的方程为y=2x+3,且与x轴交于点A,与y轴交于点B,则|AB|的长度为:A. 5B. √5C. √10D. √13答案:D4. 已知数列{an}的通项公式为an=2n+1,求该数列的前n项和Sn:A. n^2+2nB. n^2+nC. n^2+2n+1D. n^2+n+1答案:A5. 函数f(x)=x^3-3x^2+2在区间[0,2]上的最大值为:A. 0B. 1C. 2D. 3答案:C6. 已知向量a=(2,-1),b=(1,3),则向量a与向量b的数量积为:A. 1B. -1C. 5D. -5答案:C7. 若复数z满足|z-1|=2,且|z|=3,则z的实部为:A. 1B. 2C. -1D. -2答案:B8. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1,且双曲线的渐近线方程为y=±(1/2)x,则a与b的关系为:A. a=2bB. a=b/2C. b=2aD. b=a/2答案:A9. 已知函数f(x)=x^2-4x+3,求f(x)的单调递增区间:A. (-∞,2)B. (2,+∞)C. (-∞,2)∪(2,+∞)D. (-∞,+∞)答案:B10. 若矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],求矩阵A的行列式:A. -2B. 2C. -5D. 5答案:A二、填空题(每题3分,共15分)11. 已知等差数列{an}的首项a1=1,公差d=2,则该数列的第10项a10为________。
答案:1912. 函数f(x)=x^2-6x+8的顶点坐标为________。
高二数学函数与方程试题
![高二数学函数与方程试题](https://img.taocdn.com/s3/m/6b3a65ec0b4e767f5bcfce77.png)
高二数学函数与方程试题1.已知函数若方程有两个不相等的实根,则实数的取值范围是()A.B.C.D.【答案】B【解析】由于要使有两个不相等的实根,则与的图象有两个交点,当,,代入得,解得,此时有一个交点;当,此时有一个交点,要使与的图象有两个交点,则.【考点】函数图象的交点.2.已知函数,若存在唯一的零点,且,则的取值范围是( ). A.B.C.D.【答案】C【解析】显然当时,不符合题意;因为,所以;当时,令,得,则在处取得极大值,若存在唯一的零点,且,则(舍去);当时,令,得,则在处取得极小值,若存在唯一的零点,且,则,即.考点:函数的零点.3.方程有两个根,则的范围为【答案】【解析】注意到,方程有两个根等价于函数的图象与直线有两个不同的交点,如图,所以有:从而得到:.【考点】函数的图象与方程的根.4.函数f(x)=2x+x3-2在区间(0,1)内的零点个数是( )A.0B.1C.2D.3【答案】B【解析】,在范围内,函数为单调递增函数.又,,,故在区间存在零点,又函数为单调函数,故零点只有一个.【考点】导函数,函数的零点.5.已知函数,方程有五个不同的实数解时,的取值范围为.【答案】;【解析】方程有五个不同的实数解,等价于有五个不同的实数解;有函数的图象知有两个不同的解,有三个不同的实数解,则.【考点】函数的零点、数形结合思想.6.若函数有极值点,且,则关于的方程的不同实根的个数是()A.3B.4C.5D.6【答案】A【解析】函数有极值点,说明方程的两根为,所以方程的解为或,若,即是极大值点,是极小值点,由于,所以是极大值,有两解,,只有一解,所以此时只有3解;若,即是极小值点,是极大值点,由于,所以是极小值,有2解,,只有一解,所以此时只有3解;综上可知,选A.【考点】函数的极值与方程的解.7.如图是函数的大致图象,则等于A.B.C.D.【答案】D【解析】由图象知f(x)=0的根为0,-1,2,∴d=0.∴.∴的两个根为-1和2.∴b=-1,c=-2.∴.∴.∵x1,x2为的两根,∴.∴,故选D.【考点】函数的导数与零点.8.若函数在区间上存在一个零点,则的取值范围是( )A.B.或C.D.【答案】B【解析】因为函数为一次函数或常数函数,又函数在区间上存在一个零点,所以函数只能是一次函数,根据一次函数的图像可知,要在区间上存在一个零点,只须即即,解是或,故选B.【考点】1.一次函数的图像与性质;2.函数的零点;3.二次不等式.9.在下列区间中,函数的零点所在的区间为()A.(-,0)B.(0,)C.(,)D.(,)【答案】C【解析】由函数零点存在定理,将选项代入检验,故选C。
高二数学函数图像试题答案及解析
![高二数学函数图像试题答案及解析](https://img.taocdn.com/s3/m/38a87407bfd5b9f3f90f76c66137ee06eff94ee8.png)
高二数学函数图像试题答案及解析1.幂函数的图像经过点,则的值为 _________________【答案】2【解析】设函数的解析式为,由已知得,解得,因此.【考点】幂函数的定义与性质2.已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有()A.10个B.9个C.8个D.1个【答案】A【解析】当,函数的最大值为1,对于函数,当时,,因此交点只看,的图形与图象每半个周期有一个交点,因此有5个周期,共10个交点.【考点】图象交点的个数.3.函数在同一平面直角坐标系内的大致图象为()【答案】C【解析】对于函数偶函数,当时,,此时函数为单调递减函数,故可排除;对于函数,两边平方可得,可知此时图象表示的是以原点为圆心,1为半径的下半圆,故排除.故选.【考点】函数图象的判断.4.现有四个函数:①;②;③;④的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是()A.①④②③B.①④③②C.④①②③D.③④②①【答案】A【解析】由于从左到右图象的第一个图象关于y轴对称,所以其对应函数是偶函数,而已知的四个函数中①是偶函数,②是奇函数,③是奇函数,④非奇非偶函数;故第一个图象对应的函数只能是①,这样就右排除C和D了,对于A和B,第二个图象对应的函数均是④,所以只须看第三个图象:在y轴右侧图象有在x轴的下方的部分,而函数③,当时,显然,所以第三个图象对应的函数不能是③,故只能是②,这样就排除B,而应选A.【考点】函数的图象.5.若函数,且)的图像如右图所示,则下列函数图像正确的是【答案】B【解析】由已知得:,则对于A:是一个R上的减函数,所以不正确,对于B:是奇函数且在R上是增函数,所以正确,对于C:是一个R上的减函数,所以不正确,对于D:的图象与的图象关于y轴对称,所以不正确,只有B是正确的,故选B.【考点】函数图象.6.已知函数f(x)=,若方程f(x)+2a-1=0恰有4个实数根,则实数a的取值范围是()A.(-,0 ]B.[-,0 ]C.[1,)D.(1,]【答案】A【解析】方程恰有四个实数根,等价于函数与函数的图象恰有四个不同的交点,在同一坐标系中画出函数与函数的图象如下:由图可知,当时,即时,两图象恰有四个不同的交点,所以答案选A.【考点】1、函数的图象;2、数形结合的思想.7.下列命题中:(1)若满足,满足,则;(2)函数且的图象恒过定点A,若A在上,其中则的最小值是;(3)设是定义在R上,以1为周期的函数,若在上的值域为,则在区间上的值域为;(4)已知曲线与直线仅有2个交点,则;(5)函数图象的对称中心为(2,1)。
高二函数真题及解析答案
![高二函数真题及解析答案](https://img.taocdn.com/s3/m/d9d59b2c6d175f0e7cd184254b35eefdc8d315c4.png)
高二函数真题及解析答案在高中数学的学习过程中,函数概念是一个非常重要的内容。
函数作为数学中的一种基本概念,它在学习上有着非常重要的地位。
同时,函数也是高二阶段数学考试中的重点考点之一。
在高二数学考试中,函数一般会涉及到函数定义、图像、性质以及函数图像的变换等方面的内容。
下面我将结合一些高二阶段常见的函数真题,对其中一些较为复杂的题目进行详细解析。
例题一:已知函数 f(x) = (x-1)^2,求函数 f(x) 的最小值。
解析:首先,需要先了解函数的性质。
函数的性质有很多种,其中最常见的有最值性质和单调性质。
而我们需要求的函数的最小值,属于最值性质的一种。
对于给定的函数 f(x),要求其最小值,我们可以通过求导数的方法来得到。
首先,我们对函数 f(x) = (x-1)^2 求导数。
由于这是一个求导数的简单例子,我们可以直接运用求导法则进行计算。
对于 f(x) = (x-1)^2,求其导数 f'(x):f'(x) = 2(x-1)。
接下来,我们需要令 f'(x) = 0,从而求出函数 f(x) 的临界点。
解方程 2(x-1) = 0,得到 x = 1。
得到函数 f(x) 的临界点为 x = 1。
然后我们将这个临界点带入原函数 f(x) = (x-1)^2,计算出对应的函数值。
即可得到最小值。
当 x = 1 时,f(x) = (1-1)^2 = 0。
所以,函数 f(x) 的最小值为 0。
在这个例子中,我们通过求导数的方法,得到函数的临界点,并通过计算函数的函数值,得到了 f(x) 的最小值。
例题二:已知函数 f(x) = 2x^3 + ax^2 + bx + c,若函数图像经过点 (1, 4)、(-1, 8) 和 (2, 15),求常数 a、b 和 c 的值。
解析:这道题目是一个求常数的问题。
通过已知函数图像所经过的点,我们可以建立三个方程,从而求解出常数的值。
根据已知条件,我们可以得到以下三个方程:f(1) = 2(1)^3 + a(1)^2 + b(1) + c = 4,f(-1) = 2(-1)^3 + a(-1)^2 + b(-1) + c = 8,f(2) = 2(2)^3 + a(2)^2 + b(2) + c = 15。
2023年新高考数学一轮复习2-3 二次函数与一元二次方程、不等式(真题测试)解析版
![2023年新高考数学一轮复习2-3 二次函数与一元二次方程、不等式(真题测试)解析版](https://img.taocdn.com/s3/m/18444f1acd1755270722192e453610661ed95a8b.png)
专题2.3 二次函数与一元二次方程、不等式(真题测试)一、单选题1.(2021·河北·沧县中学高一阶段练习)函数()()()[]224,,21,2,2,1x x x f x x x ∞∞⎧--+∈--⋃+⎪=⎨-+∈-⎪⎩的值域为( )A .(],4∞-B .(],2-∞C .[)1,+∞D .(),4-∞【答案】A 【解析】 【分析】利用分段函数的性质求解. 【详解】解:()()()[]224,,21,2,2,1x x x f x x x ∞∞⎧--+∈--⋃+⎪=⎨-+∈-⎪⎩, 当[]2,1x ∈-,()[]21,4f x x =-+∈,当()()1,,2x ∈+∞⋃-∞-,()()2154f x x =-++<,所以()(,4]∈-∞f x , 故选:A2.(2008·江西·高考真题(文))已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是 A .[4,4]- B .(4,4)-C .(,4)-∞D .(,4)-∞-【答案】C 【解析】 【详解】当2160m ∆=-<时,显然成立当4,(0)(0)0m f g ===时,显然不成立; 当24,()2(2),()4m f x x g x x =-=+=-显然成立;当4m <-时12120,0x x x x +,则()0f x =两根为负,结论成立故4m <,故选C.3.(2014·北京·高考真题(文))加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p=at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟【答案】B 【解析】 【详解】由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数2p at bt c =++的图象上,所以930.7{1640.82550.5a b c a b c a b c ++=++=++=,解得0.2, 1.5,2a b c =-==-,所以20.2 1.52p t t =-+-=215130.2()416t --+,因为0t >,所以当153.754t ==时,p 取最大值, 故此时的t=3.75分钟为最佳加工时间,故选B.4.(2022·河南·焦作市第一中学高二期中(文))设p :二次函数()()210f x ax ax a =++≠的图象恒在x 轴的上方,q :关于x 的方程22210x ax a -+-=的两根都大于-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】 由p 可得20Δ40a a a >⎧⎨=-<⎩,由q 可得1111a a ->-⎧⎨+>-⎩,进而判断两集合关系,即可得到答案. 【详解】由p ,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<;由q ,方程22210x ax a -+-=的两根为11x a =-,21x a =+,则1111a a ->-⎧⎨+>-⎩,解得0a >,因为{}04a a << {}0a a > ,所以p 是q 的充分不必要条件, 故选:A5.(2022·陕西·长安一中高一期中)设奇函数()f x 在[1,1]-上是增函数,(1)1f -=-.若函数()221f x t at ≤-+对所有的[1,1]x ∈-都成立,则当[1,1]a ∈-时,t 的取值范围是( ) A .22t -≤≤B .1122t -≤≤C .2t ≤-,或0=t ,或2t ≥D .12t ≤-,或0=t ,或12t ≥【答案】C 【解析】 【分析】求出函数()f x 在[1,1]-上的最大值,再根据给定条件建立不等关系,借助一次型函数求解作答. 【详解】因奇函数()f x 在[1,1]-上是增函数,(1)1f -=-,则max ()(1)(1)1f x f f ==--=, 依题意,[1,1]a ∈-,22211()20t at g a ta t -+≥⇔=-+≥恒成立,则有22(1)20(1)20g t t g t t ⎧-=+≥⎨=-≥⎩,解得2t ≤-或0=t 或2t ≥, 所以t 的取值范围是2t ≤-或0=t 或2t ≥. 故选:C6.(2016·浙江·高考真题(文))已知函数f(x)=x 2+bx ,则“b <0”是“f(f(x))的最小值与f(x)的最小值相等”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】【详解】试题分析:由题意知222()()24b b f x x bx x =+=+-,最小值为24b -.令2=+t x bx ,则2222(())()(),244b b b f f x f t t bt t t ==+=+-≥-,当0b <时,(())f f x 的最小值为24b-,所以“0b <”能推出“(())f f x 的最小值与()f x 的最小值相等”;当0b =时,4(())=f f x x 的最小值为0,()f x 的最小值也为0,所以“(())f f x 的最小值与()f x 的最小值相等”不能推出“0b <”.故选A .7.(2022·广东佛山·二模)设,,R a b c ∈且0a ≠,函数2(),()(2)()g x ax bx c f x x g x =++=+,若()()0f x f x +-=,则下列判断正确的是( ) A .()g x 的最大值为-a B .()g x 的最小值为-a C .()()22g x g x +=- D .()()2g x g x +=-【答案】D 【解析】 【分析】根据给定条件,用a 表示b ,c ,再结合二次函数的性质求解作答. 【详解】依题意,232()(2)()(2)(2)2f x x ax bx c ax a b x b c x c =+++=+++++,因()()0f x f x +-=,则()f x 是奇函数,于是得2020a b c +=⎧⎨=⎩,即2,0b a c =-=, 因此,22()2(1)g x ax ax a x a =--=-,而0a ≠,当0a >时,()g x 的最小值为-a ,当0a <时,()g x 的最大值为-a ,A ,B 都不正确;2(2)(1)g x a x a +=+-,2(2)(1)g x a x a -=-+-,22()(1)(1)g x a x a a x a -=---=+-,即()()22g x g x +≠-,()()2g x g x +=-,因此,C 不正确,D 正确. 故选:D8.(2022·浙江金华第一中学高一阶段练习)当11x -时,21ax bx c ++恒成立,则( )A .当2a =时,||||1b c +=B .当2a =时,||||2b c +=C .当1b =时,||0a c +=D .当1b =时,||||0a c +=【答案】AC 【解析】 【分析】先举出反例,排除BD 选项,对于A 选项,根据绝对值三角不等式,得到11b -≤≤,31c -≤≤-,再根据14b f ⎛⎫-≤ ⎪⎝⎭得到288c b ≥-,综合得到88c =-,288b -=-,求出1c =-,0b =,从而判断出A 正确;D 选项,利用类似方法得到0a c +=,验证后得到结论. 【详解】当2a =时,221x bx c ++在11x -上恒成立,可取0,1b c ==-,验证可知符合题意,此时2b c +≠,B 错误;当1b =时,21ax x c ++在11x -上恒成立,可取11,44a c ==-,验证可知符合题意,故D 错误;对于A 选项,令()22f x x bx c =++,必有()()11,11f f ≤-≤,即21,21b c b c ++≤-+≤,则222222b c b c b c b c b ≥+++-+≥++-+-=, 解得:11b -≤≤,则()f x 的对称轴1,144b x ⎡⎤=-∈-⎢⎥⎣⎦,同理:2222222b c b c b c b c c ≥+++-+≥+++-+=+, 所以21c +≤,解得:31c -≤≤-,于是()1f x ≤要满足()()28114811212111b c b f f b c b c f ⎧⎧⎛⎫--≤≤⎪ ⎪⎪⎝⎭⎪⎪⎪⎪-≤⇒-+≤⎨⎨⎪⎪++≤≤⎪⎪⎪⎪⎩⎩①②③,由①知:288c b ≥-,因为11b -≤≤,故2888c b ≥-≥-④, 因为31c -≤≤-所以88c ≤-⑤,综合④⑤,可知:88c =-, 解得:1c =-,此时288b -=-,解得:0b =,所以()221f x x =-,经验证满足题意,且||||1b c +=,A 正确;对于C 选项,令()2g x ax x c =++,由()111g a c =++≤,()111g a c -=-+≤可得:2002a c a c -≤+≤⎧⎨≤+≤⎩,故0a c +=, 则()2g x ax x a =+-,所以211ax x a -≤+-≤恒成立,即211x ax a x --≤-≤-,易知:1122a -≤≤即可,故C 正确 故选:AC 【点睛】对于含有绝对值不等式的二次不等式问题,要充分考虑函数图象,以及对称轴和端点值的取值范围,结合绝对值三角不等式进行求解. 二、多选题9.(2021·江西·丰城九中高二阶段练习)如图,二次函数()20y ax bx c a =++≠的图像与x 轴交于A B ,两点,与y 轴交于C 点,且对称轴为1x =,点B 坐标为()10-,,则下面结论中正确的是( ) A .20a b += B .420a b c -+<C .240b ac ->D .当0y <时,1x -<或4x >【答案】ABC 【解析】 【分析】根据二次函数的图象和二次函数的性质,可以判断各个小题的结论是否成立,即可求出答案.【详解】因为二次函数()20y ax bx c a =++≠的图象的对称轴为1x =,所以12bx a=-=得20a b +=,故A 正确; 当2x =-时,420y a b c =-+<,故B 正确;该函数图象与x 轴有两个交点,则240b ac ->,故C 正确;因为二次函数()20y ax bx c a =++≠的图象的对称轴为1x =,点B 坐标为()10-,,所以点A 的坐标为()3,0,所以当0y <时,1x -<或x 3>,故D 错误. 故选:ABC.10.(2022·全国·模拟预测)已知二次函数()()241230f x mx mx m m =-+-<,若对任意12x x ≠,则( )A .当124x x +=时,()()12f x f x =恒成立B .当124x x +>时,()()12f x f x <恒成立C .0x ∃使得()00f x ≥成立D .对任意1x ,2x ,均有()()831,2i f x m i ≤-=恒成立 【答案】AD 【解析】 【分析】二次函数开口向下,对称轴为2x =,结合二次函数的性质对选项逐一判断即可. 【详解】依题意,二次函数()()241230f x mx mx m m =-+-<的对称轴为422-=-=mx m. 因为0m <,所以其函数图象为开口向下的抛物线,对于A 选项,当124x x +=时,1x ,2x 关于直线2x =对称, 所以()()12f x f x =恒成立,所以A 选项正确;对于B 选项,当124x x +>,若12x x >,则不等式可化为1222x x ->-, 所以()()12f x f x <;若12x x <,则不等式可化为2122x x ->-,所以()()21f x f x <,所以B 选项错误; 对于C 选项,因为0m <,所以()()224412332120m m m m m ∆=---=-+<,所以二次函数()()241230f x mx mx m m =-+-<的图象开口向下,且二次函数与x 轴无交点,所以不存在0x 使得()00f x ≥成立,所以C 选项错误;对于D 选项,()()max 24812383f x f m m m m ==-+-=-,所以对任意1x ,2x ,均有()()831,2i f x m i ≤-=恒成立,所以D 选项正确, 故选:AD.11.(2022·河北·石家庄二中模拟预测)命题“23,208x R kx kx ∀∈+-<”为真命题的一个充分不必要条件是( )A .()30-,B .(]30-,C .()31--,D .()3∞-+,【答案】AC 【解析】 【分析】先求命题“23,208x R kx kx ∀∈+-<”为真命题的等价条件,再结合充分不必要的定义逐项判断即可.【详解】因为23,208x R kx kx ∀∈+-<为真命题,所以0k =或230k k k <⎧⎨+<⎩30k ⇔-<≤, 所以()30-,是命题“23,208x R kx kx ∀∈+-<”为真命题充分不必要条件,A 对, 所以(]30-,是命题“23,208x R kx kx ∀∈+-<”为真命题充要条件,B 错, 所以()31--,是命题“23,208x R kx kx ∀∈+-<”为真命题充分不必要条件,C 对, 所以()3∞-+,是命题“23,208x R kx kx ∀∈+-<”为真命题必要不充分条件,D 错, 故选:AC12.(2021·江苏·高一单元测试)已知函数()1y f x =-的图象关于直线1x =对称,且对于()()y f x x R =∈,当12,(,0)x x ∞∈-时,()()12210f x f x x x -<-恒成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则实数a 的范围可以是下面选项中的( )A .()B .(),1-∞C .(0D .)+∞【答案】AC 【解析】 【分析】根据题意求得函数()f x 为偶函数,且在()0-∞,上为减函数,在()0+∞,上为增函数,把不等式转化为2221ax x <+,得到不等式4224(44)10x a x +-+>恒成立,设20t x =≥,令()224(44)1g t t a t =+-+,结合二次函数的性质,即可求解. 【详解】因为函数()1y f x =-的图象关于1x =对称, 可得函数()f x 关于y 轴对称,即()f x 为偶函数,又当12,(,0)x x ∞∈-时,()()12210f x f x x x -<-恒成立,所以()f x 在()0-∞,上为减函数,则()f x 在()0+∞,上为增函数, 又因为()()2221f ax f x <+,所以2221ax x <+,即22424441a x x x <++恒成立,即4224(44)10x a x +-+>恒成立,设20t x =≥,令()224(44)1g t t a t =+-+,即()0g t >在区间[0,)+∞上恒成立,当2102a t -=≤时,即11a -≤≤时,()g t 在[0,)+∞为单调递增函数,则满足()min (0)10g t g ==>,符合题意;当当2102a t -=>时,即1a <-或1a >时,要使得()0g t >在区间[0,)+∞上恒成立,则满足22(44)160a ∆=--<,解得a <0a ≠,即1a <<-或1a <<综上可得,实数a 的取值范围是(, 结合选项,选项A 、C 符合题意. 故选:AC.三、填空题13.(2012·江苏·高考真题)已知函数的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为__________. 【答案】9. 【解析】 【详解】∵f(x)=x 2+ax +b 的值域为[0,+∞),∴Δ=0,∴b -24a =0,∴f(x)=x 2+ax +14a 2=12x a ⎛⎫+ ⎪⎝⎭2.又∵f(x)<c 的解集为(m ,m +6),∴m ,m +6是方程x 2+ax +24a-c =0的两根.由一元二次方程根与系数的关系得()226{64m a a m m c +=-+=-解得c =9.14.(2022·天津·耀华中学二模)已知不等式28(8)0x x a a -+-<的解集中恰有五个整数,则实数a 的取值范围为___________. 【答案】[)(]1,26,7⋃ 【解析】 【分析】根据一元二次不等式的解法,结合已知分类讨论进行求解即可. 【详解】28(8)0()[(8)]0x x a a x a x a -+-<⇒---<,当4a =时,原不等式化为2(4)0x -<,显然x ∈∅,不符合题意; 当4a >时,不等式的解集为8a x a -<<,其中解集中必有元素4,若五个整数是0,1,2,3,4时,可得18045a a -≤-<⎧⎨<≤⎩,此时解集为空集,若五个整数是1,2,3,4,5时,08156a a ≤-<⎧⎨<≤⎩,此时解集为空集,若五个整数是2,3,4,5,6时,18267a a ≤-<⎧⎨<≤⎩67a ⇒<≤,若五个整数是3,4,5,6,7时,28378a a ≤-<⎧⎨<≤⎩,此时解集为空集,若五个整数是4,5,6,7,8时,38489a a ≤-<⎧⎨<≤⎩,此时解集为空集;当4a <时,不等式的解集为8a x a <<-,其中解集中必有元素4,若五个整数是0,1,2,3,4时,可得10485a a -≤<⎧⎨<-≤⎩,此时解集为空集,若五个整数是1,2,3,4,5时,01586a a ≤<⎧⎨<-≤⎩,此时解集为空集, 若五个整数是2,3,4,5,6时,1212687a a a ≤<⎧⇒≤<⎨<-≤⎩, 若五个整数是3,4,5,6,7时,23788a a ≤<⎧⎨<-≤⎩,此时解集为空集, 五个整数是4,5,6,7,8时,38489a a ≤-<⎧⎨<≤⎩,此时解集为空集, 故答案为:[1,2)(6,7].15.(2015·湖北·高考真题(文))a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()h a . 当=a _________时,()h a 的值最小.【答案】2.【解析】【详解】因为函数2()||f x x ax =-,所以分以下几种情况对其进行讨论:①当0a ≤时,函数22()f x x ax x ax =-=-在区间[0,1]上单调递增,所以max ()()1f x g a a ==-;②当02a <<时,此时22()()2224a a a a f a =-⨯=,(1)1f a =-,而22(2)(1)2044a a a +--=-<,所以max ()()1f x g a a ==-; ③当22a ≤<时,22()f x x ax x ax =-=-+在区间(0,)2a 上递增,在(,1)2a 上递减.当2a x =时,()f x 取得最大值2()24a a f =; ④当2a ≥时,22()f x x ax x ax =-=-+在区间[0,1]上递增,当1x =时,()f x 取得最大值(1)1f a =-,则()21,2{,2241,2a a a h a a a a -<=≤<-≥在(,2)-∞上递减,2,)+∞上递增,即当2a =时,()g a 的值最小.故答案为:2.16.(2022·全国·高三专题练习(文))已知()283f x ax x =++,对于给定的负数a ,有一个最大的正数()M a ,使得()0,x M a ∈⎡⎤⎣⎦时,都有()5f x ≤,则()M a 的最大值为___________.【解析】【分析】二次函数配方得到()f x 的含有参数的最大值,研究二次函数最值与5的大小关系,分类讨论,求出()M a 的最大值.【详解】()22416833f x ax x a x a a ⎛⎫=++=++- ⎪⎝⎭,当1635a ->,即80a -<<时,要使()5f x ≤在()0,x M a ∈⎡⎤⎣⎦上恒成立,要使()M a 取得最大值,则()M a 只能是2835ax x ++=的较小的根,即()M a =当1635a-≤,即8a ≤-时,要使()M a 取得最大值,则()M a 只能是2835ax x ++=-的较大的根,即()M a =当80a -<<时,()12M a ==<,当8a ≤-时,()M a =()M a .四、解答题17.(2022·山西运城·高二阶段练习)已知函数2()2(0)f x ax ax b a =-+>的定义域为R ,且在区间[0,3]上有最大值5,最小值1.(1)求实数a ,b 的值;(2)若函数()()22g x f x mx m =-+-,求()0>g x 的解集.【答案】(1)1,2a b ==(2)答案见解析【解析】【分析】(1)由二次函数的性质可知函数在[0,1]上单调递减,在[1,3]上单调递增,则()()11,35,f f ⎧=⎪⎨=⎪⎩从而可求出a ,b 的值,(2)由(1)得2()(2)2(2)()g x x m x m x x m =-++=--,然后分2m =,2m >和2m <三种情况解不等式(1)∵22()2(1)(0)f x ax ax b a x b a a =-+=-+->,在[0,1]上单调递减,在[1,3]上单调递增,∴()()11,35,f f ⎧=⎪⎨=⎪⎩即21,965,a a b a a b -+=⎧⎨-+=⎩解得1,2.a b =⎧⎨=⎩ (2)由(1)知2()(2)2(2)()g x x m x m x x m =-++=--,①2m =时,()0>g x 的解集为{}2x x ≠;②2m >时,()0>g x ,则x m >或2m <,故2m >时,()0>g x 的解集为{x x m >或2}x <;③2m <时,()0>g x ,则2x >或x m <,故2m <时,()0>g x 的解集为{2x x >或}x m <.综上,当2m =时,解集为{}2x x ≠;当2m >时,解集为{x x m >或2}x <;当2m <时,解集为{2x x >或}x m <. 18.(2015·浙江·高考真题(理))已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是()f x 在区间[1,1]-上的最大值.(1)证明:当2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求a b +的最大值.【答案】(1)详见解析;(2)3.【解析】【详解】(1)分析题意可知()f x 在[1,1]-上单调,从而可知{}(,)max (1),(1)M a b f f =-,分类讨论a 的取值范围即可求解.;(2)分析题意可知,0{,0a b ab a b a b ab +≥+=-<,再由(,)2M a b ≤可得1(1)2a b f ++=≤,1(1)2a b f -+=-≤,即可得证.试题解析:(1)由22()()24a a f x xb =++-,得对称轴为直线2a x =-,由2a ≥,得 12a -≥,故()f x 在[1,1]-上单调,∴{}(,)max (1),(1)M a b f f =-,当2a ≥时,由 (1)(1)24f f a --=≥,得{}max (1),(1)2f f -≥,即(,)2M a b ≥,当2a ≤-时,由(1)(1)24f f a --=-≥,得{}max (1),(1)2f f --≥,即(,)2M a b ≥,综上,当2a ≥时,(,)2M a b ≥;(2)由(,)2M a b ≤得1(1)2a b f ++=≤,1(1)2a b f -+=-≤,故3a b +≤,3a b -≤,由,0{,0a b ab a b a b ab +≥+=-<,得3a b +≤,当2a =,1b =-时,3a b +=,且221x x +-在[1,1]-上的最大值为2,即(2,1)2M -=,∴a b +的最大值为3.19.(2014·辽宁·高考真题(文))设函数()211f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ;(2)当x M N ∈⋂时,证明:221()[()]4x f x x f x +≤. 【答案】(1)4|03M x x ⎧⎫=≤≤⎨⎬⎩⎭;(2)详见解析. 【解析】【详解】试题分析:(1)由所给的不等式可得当1x ≥时,由()331f x x =-≤,或 当1x <时,由()11f x x =-≤,分别求得它们的解集,再取并集,即得所求.(2)由4g x ≤() ,求得N ,可得3{|0}4M N x x ⋂=≤≤.当x ∈M∩N 时,f (x )=1-x ,不等式的左边化为211()42x --,显然它小于或等于14,要证的不等式得证. (1)33,[1,)(){1,(,1)x x f x x x -∈+∞=-∈-∞ 当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤; 当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<;所以()1f x ≤的解集为4{|0}3M x x =≤≤.(2)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4M N x x ⋂=≤≤. 当x M N ∈⋂时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +=+2111()(1)()424xf x x x x ==-=--≤. 20.(2021·河北·沧县中学高一阶段练习)已知二次函数()()223R f x x kx k =-+∈.(1)若()f x 在区间[)1,+∞上单调递增,求实数k 的取值范围;(2)若()2f x ≥在()0,x ∈+∞上恒成立,求实数k 的取值范围.【答案】(1)1k ≤(2)1k ≤【解析】【分析】(1)利用二次函数的单调性求解;(2)将()2f x ≥在()0,x ∈+∞上恒成立,转化为12k x x≤+在()0,x ∈+∞恒成立求解. (1)解:因为()f x 在()1,x ∈+∞单调递增,所以()212k --≤, 解得1k ≤;(2)因为()2f x ≥在()0,x ∈+∞上恒成立,所以2210x kx -+≥在()0,x ∈+∞恒成立, 即12k x x≤+在()0,x ∈+∞恒成立.令()1g x x x =+,则()12g x x x =+≥=, 当且仅当1x =时等号成立.所以1k ≤.21.(2021·江苏·无锡市市北高级中学高一期中)某运输公司今年初用49万元购进一台大型运输车用于运输.若该公司预计从第1年到第n 年(*)n ∈N 花在该台运输车上的维护费用总计为2(5)n n +万元,该车每年运输收入为25万元.(1)该车运输几年开始盈利?(即总收入减去成本及所有费用之差为正值)(2)若该车运输若干年后,处理方案有两种:①当年平均盈利达到最大值时,以17万元的价格卖出;②当盈利总额达到最大值时,以8万元的价格卖出.哪一种方案较为合算?请说明理由.【答案】(1)3年(2)方案①较为合算【解析】【分析】(1)由22549(5)0n n n --+≥,能求出该车运输3年开始盈利.(2)方案①中,22549(5)4920()6n n n n n n--+=-+≤.从而求出方案①最后的利润为59(万);方案②中,2222549(5)2049(10)51y n n n n n n =--+=-+-=--+,10n =时,利润最大,从而求出方案②的利润为59(万),比较时间长短,进而得到方案①较为合算.(1)由题意可得22549(5)0n n n --+≥,即220490n n -+≤,解得1010n ≤≤3n ∴≥,∴该车运输3年开始盈利.;(2)该车运输若干年后,处理方案有两种:①当年平均盈利达到最大值时,以17万元的价格卖出,22549(5)4920()6n n n n n n--+=-+≤, 当且仅当7n =时,取等号,∴方案①最后的利润为:25749(4935)1759⨯--++=(万);②当盈利总额达到最大值时,以8万元的价格卖出,2222549(5)2049(10)51y n n n n n n =--+=-+-=--+,10n ∴=时,利润最大,∴方案②的利润为51859+=(万),两个方案的利润都是59万,按照时间成本来看,第一个方案更好,因为用时更短, ∴方案①较为合算.22.(2009·江苏·高考真题)设a 为实数,函数2()2()f x x x a x a =+--.(1)若(0)1f ≥,求a 的取值范围;(2)求()f x 的最小值;(3)设函数()(),(,)h x f x x a =∈+∞,直接写出(不需给出演算步骤)不等式()1h x ≥的解集.【答案】(1) (2)22min 2,0(){2,03a a f x a a -≥=<(3) 当26(,)22a ∈时,解集为(,)a +∞;当62(,)22a ∈--时,解集为223232(,][,)33a a a a a --+-⋃+∞; 当[a ∈时,解集为)+∞. 【解析】【详解】(3)。
高二数学函数与方程试题
![高二数学函数与方程试题](https://img.taocdn.com/s3/m/991ee4ed5f0e7cd18525360c.png)
高二数学函数与方程试题1.已知二次函数的二次项系数为,且不等式的解集为,(1)若方程有两个相等的实根,求的解析式;(2)若的最大值为正数,求的取值范围.【答案】(1);(2)【解析】(1)抓住二次函数的图像与横坐标的交点、二次不等式解集的端点值、二次方程的根是同一个问题.解决与之相关的问题时,可利用函数与方程的思想、化归的思想将问题转化,(2)结合二次函数的图象来解决是当不等式对应的方程的根个数不确定时,讨论判别式与0的关系,(3)当a>0时,配方法最大值,也可用顶点坐标,或在对称轴处取得最大值试题解析:由题意可设,且,即, 2分(1),即有两个相等的实根,得,即,而,得,即,整理得. 6分(2),即,而,得,即, 9分,或,而,得的取值范围为. 12分【考点】二次函数和一元二次不等式解的关系及二次函数的最值2.函数的零点所在区间为()A.B.C.D.【答案】C【解析】已知,可计算,,所以可得零点所在的区间是,故选C.【考点】函数零点存在性定理.3.已知函数,若函数恰有4个零点,则实数的取值范围为.[来【答案】 1 < a< 2【解析】由函数解析式可知函数为基本初等函数,故先绘出函数图象:要使有四个零点,即函数的图象与的图象有四个交点。
由图形特点可知.无论取多少都在轴左侧有两个及其以上交点。
当时,两图像在左侧有一个交点。
当的图象与在左侧相切时,即,则.当时,共有5个交点;当时,共有3个交点.故.【考点】函数零点,函数图象,函数交点三者关系4.若函数满足,且时,,函数,则函数在区间内的零点的个数为()A.8B.9C.10D.13【答案】B【解析】函数满足知函数的周期,判断函数的零点个数,就是判断和图像的在区间交点个数,因此零点的个数为9个.【考点】函数的零点与函数图像的交点的个数.5.已知f(x)是定义在R上的奇函数,当时,,则函数的零点的集合为A.B.C.D.【答案】D【解析】设x<0,则-x>0,从而有,又因为f(x)是定义在R上的奇函数,所以有,从而得到:,则函数,令解得:,故选D.【考点】1.函数的奇偶性;2.函数的零点.6.设函数,若,,则关于的方程的解的个数为()A.1B.2C.3D.4【答案】C.【解析】由,可得,当时,有两个解,当时,显然有一个解,故选C.【考点】分段函数.7.一轮船行驶时,单位时间的燃料费u与其速度v的立方成正比,若轮船的速度为每小时10km 时,燃料费为每小时35元,其余费用每小时为560元,这部分费用不随速度而变化.已知该轮船最高速度为25km/h, 则轮船速度为 km/h时,轮船航行每千米的费用最少.【答案】20【解析】设轮船的燃料费u与速度v之间的关系是:u=kv3(k≠0),由已知,当v=10时,u=35,∴⇒k=,∴∴轮船行驶1千米的费用当且仅当,即v=20(km/h)时,等号成立.【考点】正比例函数、均值不等式的应用,函数模型的选择与应用.8.设函数中,为奇数,均为整数,且均为奇数.求证:无整数根。
高二数学函数试题答案及解析
![高二数学函数试题答案及解析](https://img.taocdn.com/s3/m/198144c088eb172ded630b1c59eef8c75fbf95e2.png)
高二数学函数试题答案及解析1. .给出定义:若函数在上可导,即存在,且导函数在上也可导,则称在上存在二阶导函数,记.若在上恒成立,则称f(x)在上为凸函数.以下四个函数在上不是凸函数的是_________.(把你认为正确的序号都填上)①;②;③;④.【答案】④【解析】对于①,,当时,恒成立,所以是凸函数;对于②,,当时,恒成立,所以是凸函数;对于③,,当时,恒成立,所以是凸函数;对于④,,当时,恒成立,所以不是凸函数.【考点】函数的二阶导数.2.已知函数()的图象如图所示,则不等式的解集为________.【答案】【解析】①:当时,,观察函数在的图像,可得在上单调递减,即当时,,∴;②:当时,,观察函数在的图像,可得在上单调递减,即当时,,∴,综上:不等式的解集为.【考点】导数的运用.3.函数的单调递减区间是________________.【答案】【解析】函数的定义域为,解得;构造函数,则在上单调递增,在上单调递减,由复合函数的单调性知的单调递减区间是.【考点】定义域的求法、复合函数的单调性.4.函数的单调增区间为()A.B.C.D.【答案】D【解析】因为,因为函数的定义域为,由,故选D.【考点】函数的单调性与导数.5.函数f(x)=x3+sin x+1(x∈R)若f(a)=2,则f(-a)的值为 ( ).A.3B.0C.-1D.-2【答案】B【解析】f(a)=a3+sin a+1,f(-a)=-a3-sin a+1∴f(a)+f(-a)=2,f(-a)=2-f(a)=2-2=0.6.已知函数().(1)若,求函数的极值;(2)若,不等式恒成立,求实数的取值范围.【答案】(1)在处有极小值;(2).【解析】(1)求极值分三步:首先对函数求导,然后判断的根是否为极值点,最后求出极值;(2)要使,不等式恒成立,只要先利用导数求出的最小值,然后使最小值大于等于零即可.试题解析:解: (1)当时,2分令,解得,所以的单调增区间为(1,+∞);4分,解得,所以的单调减区间为(0,1)..5分所以函数在处有极小值..6分(2)∵<0,由.令列表:_0+8分这是.10分∵,不等式恒成立,∴,∴,∴范围为..12分【考点】1.利用导数求极值最值;2.恒成立问题.7.已知函数满足:(),(1)用反证法证明:不可能为正比例函数;(2)若,求的值,并用数学归纳法证明:对任意的,均有:.【答案】(1)主要是考查了反证法的运用,先反设,在推理论证得到矛盾,得出结论。
第二章 一元二次函数、方程和不等式(章末测试)(解析版)
![第二章 一元二次函数、方程和不等式(章末测试)(解析版)](https://img.taocdn.com/s3/m/1bdd4d89804d2b160a4ec0c9.png)
第二章 一元二次函数、方程和不等式章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项是正确答案,每题5分,共40分)1.(2020·浙江高一单元测试)若12a <<,13b -<<,则-a b 的值可能是( ). A .4- B .2-C .2D .4【答案】C 【解析】13b -<<,31b ∴-<-<,23a b ∴-<-<.故选:C.2.(2020·浙江高一单元测试) 不等式(x +3)2<1的解集是( ) A .{x |x >-2} B .{x |x <-4} C .{x |-4<x <-2} D .{x |-4≤x ≤-2}【答案】C【解析】原不等式可化为x 2+6x +8<0,解得-4<x <-2.选C.3.(2020·浙江高一单元测试)若0a <b <,则下列结论中不恒成立的是( )A .a b >B .11a b> C .222a b ab +> D .a b +>-【答案】D【解析】因为0a <b <,所以0->->a b 所以a b >,11a b -<-即11a b>,故A ,B 正确.因为()20a b -≥,所以222a b ab +≥,所以222a b ab +>故C 正确.当 2,1a b =-=-时, +<-a b D 错误.故选:D4.(2020·浙江高一单元测试)已知不等式220ax bx ++>的解集是()1,2-,则+a b 的值为( ). A .1 B .1-C .0D .2-【答案】C 【解析】由已知得212,12b a a-=-+=-⨯,解得1,1a b =-=,故0a b +=,故选:C .5.(2020·浙江高一课时练习)已知a 、b 、c 满足c b a <<且0ac <,则下列选项中不一定能成立的是( ) A .ab ac > B .()0c b a -> C .22cb ca < D .()0ac a c -<【答案】C 【解析】c b a <<且0ac <,0a ∴>,0c <且b 的符号不确定.对于A 选项,b c >,0a >,由不等式的基本性质可得ab ac >,A 选项中的不等式一定能成立;对于B 选项,a b >,则0b a -<,又0c <,()0c b a ∴->,B 选项中的不等式一定能成立;对于C 选项,取0b =,则22b a <,0c <,22cb ca ∴>;取3c =-,1b =-,2a =,则22cb ca >,C 选项中的不等式不一定成立; 对于D 选项,0a >,0c <,则0ac <,0a c ->,()0ac a c ∴-<,D 选项中的不式一定能成立.故选:C.6.(2020·驻马店市基础教学研究室高二期末(理))已知正实数x ,y 满足22x y xy +=.则x y +的最小值为( )A .4 BC D 32【答案】D【解析】由22x y xy +=,得1112x y+=, 因为x ,y 为正实数,所以11133()()122222x y x y x y x y y x +=++=+++≥=,当且仅当2y x x y =,即2122x y ==时取等号,所以x y +32, 故选:D7.(2020·安徽省舒城中学高二期末(文))如图在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.我们教材中利用该图作为一个说法的一个几何解释,这个说法正确的是( )A .如果0a b >>,>B .如果0a b >>,那么22a b >C .对任意正实数a 和b ,有222a b ab +≥, 当且仅当a b =时等号成立D .对任意正实数a 和b,有a b +≥当且仅当a b =时等号成立 【答案】C【解析】通过观察,可以发现这个图中的四个直角三角形是全等的,设直角三角形的长直角边为a ,短直角边为b ,如图,整个大正方形的面积大于等于4个小三角形的面积和,即22142a b a b ⎛⎫+≥⨯⋅ ⎪⎝⎭,即222a b ab +≥.当a b =时,中间空白的正方形消失,即整个大正形与4个小三角形重合.其他选项通过该图无法证明,故选C8.(2020·全国高一)已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( ) A .[7,26]- B .[1,20]- C .[4,15] D .[1,15]【答案】B【解析】令m x y =-,4n x y =-,,343n m x n m y -⎧=⎪⎪⇒⎨-⎪=⎪⎩, 则855520941,33333z x y n m m m =-=--≤≤-∴≤-≤ 又884015333n n -≤≤∴-≤≤,因此80315923z x y n m -=-=-≤≤,故本题选B.二、多选题(每题至少有一个选项为正确答案,少选且正确得3分,每题5分,共20分) 9.(2020·浙江高一单元测试)已知函数11(0)y x x x=++<,则该函数的( ). A .最小值为3 B .最大值为3 C .没有最小值 D .最大值为1-【答案】CD【解析】0x <,∴函数111()12(11()y x x x x x ⎡⎤=++=--++--=-⎢⎥-⎣⎦,当且仅当1x =-时取等号,∴该函数有最大值1-.无最小值.故选:CD .10.(2020·江苏省天一中学高一期中)对于实数,,a b c ,下列说法正确的是( ) A .若0a b >>,则11a b<B .若a b >,则22ac bc ≥C .若0a b >>,则2ab a <D .若c a b >>,则a bc a c b>-- 【答案】ABC【解析】A.在0a b >>三边同时除以ab 得110b a>>,故A 正确; B.由a b >及2c ≥0得22ac bc ≥,故B 正确;C.由0a b >>知a b >且0a >,则2a ab >,故C 正确;D.若1,2,3c a b =-=-=-,则2a c a =--,32b c b =--, 322-<-,故D 错误.故选:ABC.11.(2020·湖南高新技术产业园区。
高二数学函数及其表示试题
![高二数学函数及其表示试题](https://img.taocdn.com/s3/m/c24569e7c281e53a5902ff0a.png)
高二数学函数及其表示试题1.设函数,记则()A.B.C.D.【答案】D【解析】对求导,得,所以得在R上递增,,故选D.【考点】函数单调性.2.幂函数的图像经过点,则的值为 _________________;【答案】2【解析】设函数的解析式为,由已知得,解得,因此.【考点】幂函数的定义与性质3.下列四组中的f(x),g(x),表示同一个函数的是().A.f(x)=1,g(x)=x0B.f(x)=x-1,g(x)=-1C.f(x)=x2,g(x)=()4D.f(x)=x3,g(x)=【答案】D【解析】A:函数的定义域为,函数的定义域为,所以定义域不相同,B:函数的定义域为,函数的定义域为,所以定义域不相同,C:函数的定义域为,函数的定义域为,所以定义域不相同.【考点】函数的三要素.4.设,则为()A.B.C.D.【答案】D.【解析】因为,所以,所以。
【考点】本题考查求导公式。
点评:直接应用求导公式计算,属于基础题目。
但一定要把求导公式和导数的运算法则记熟。
5.对于三次函数,定义是函数的导函数。
若方程有实数解,则称点为函数的“拐点”。
有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心。
根据这一发现,对于函数,则的值为。
【答案】【解析】因为g(x)函数的对称中心为,因此可知变量和为1,函数值和为3,因此可知所求解的为6.已知函数则。
【解析】因为函数关系式可知原式等于f(2)=0.7.函数是奇函数,当时,,则【答案】-2【解析】解:因为函数是奇函数,当时,,则8.已知函数f(x)满足:+ .【答案】30【解析】解:因为+9.已知函数在[1,+∞)上为增函数,且,,∈R.(1)求θ的值;(2)若在[1,+∞)上为单调函数,求m的取值范围;(3)设,若在[1,e]上至少存在一个,使得成立,求的取值范围.【答案】(1).(2).(3)【解析】(1)解本小题关键是把题目条件转化为≥0在上恒成立,即恒成立问题来解决.(2)由(1),得..在其定义域内为单调函数,然后解题的关键就转化为或者在[1,+∞)恒成立,下面可以考虑变量与参数分离求解.(3)构造函数,本小题就转化为F(X)的最大值大于零即可(1)由题意,≥0在上恒成立,即.∵θ∈(0,π),∴.故在上恒成立,只须,即,只有.结合θ∈(0,π),得.(2)由(1),得..∵在其定义域内为单调函数,∴或者在[1,+∞)恒成立.等价于,即,而,()=1,∴.max等价于,即在[1,+∞)恒成立,而∈(0,1],.综上,m的取值范围是.(3)构造,.当时,,,,所以在[1,e]上不存在一个使得成立.当时,.因为,所以,,所以在恒成立.故在上单调递增,,只要,解得故的取值范围是10.已知函数是函数的极值点,其中是自然对数的底数.(Ⅰ)求实数的值;(Ⅱ)直线同时满足:①是函数的图象在点处的切线,②与函数的图象相切于点.求实数b的取值范围.【答案】(Ⅰ)a =1(Ⅱ)①②【解析】(1)根据建立关于a的方程,解出a值;(2)根据条件(1)可确定l:根据条件(2) 直线与函数的图象相切于点,,切线的方程为即的方程为:然后根据两个方程为同解方程可得到方程组然后转化为,利用导数确定其值域即可.解:(Ⅰ)……………2分由已知,得a ="1" ………4分(Ⅱ)时,函数的图象在点处的切线的方程为:……6分直线与函数的图象相切于点,又,所以切线的斜率为故切线的方程为即的方程为:……………………8分得…………………10分所以实数b的取值范围是……………………………………………15分11.已知,猜想的表达式为A.;B.;C.;D..【答案】B【解析】解:因为这样分析选项,把不满足f(1)=1的排除掉C,D,然后对A,B选项验证,可以得到,满足已知关系式的只有B12.已知,若,则______.______.【答案】,【解析】,,,,……13.已知函数为偶函数,则的值A.B.C.D.【答案】B【解析】(1)当时,非奇非偶(2)当时,因为二次函数是偶函数,故对称轴为y轴即一次项系数为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学函数与方程试题答案及解析1.已知函数有零点,则的取值范围是.【答案】【解析】由题意知有解,即方程有解,可转化为直线与方程所表示的曲线有交点,用数形结合思想可得的取值范围。
【考点】函数的零点与相应的方程根的关系及数形结合思想的应用。
2.已知是定义在上且周期为3的函数,当时,,若函数在区间上有10个零点(互不相同),则实数的取值范围是.【答案】【解析】由于函数在区间上有10个零点(互不相同),因此与函数有10个不同的交点,由于函数周期为3,所以与函数在一个周期内交点个数为4,对于函数,当时,,为翻折之后抛物线的顶点,由于恒成立,要使在一个周期内的交点为4,满足,此时,函数在区间上有10个零点(互不相同).【考点】函数的交点.3.下列图象表示的函数能用二分法求零点的是()【答案】C【解析】函数在区间上存在零点,满足两条:一是函数在区间连续,二是,满足这两条的是【考点】函数的零点.4.函数的零点所在区间为()A.B.C.D.【答案】A【解析】,;则,所以函数的零点所在区间为.【考点】零点存在定理.5.已知符号表示不超过的最大整数,若函数有且仅有3个零点,则的取值范围是()A.B.C.D.【答案】C【解析】因为,有且仅有3个零点,则方程在(0,+∞)上有且仅有3个实数根,且 a>0.∵x>0,∴[x]≥0;若[x]=0,则=0;若[x]≥1,因为[x]≤x<[x]+1,∴<<1,∴<a≤1,且随着[x]的增大而增大.故不同的[x]对应不同的a值,故有[x]=1,2,3,4.若[x]=1,则有<≤1;若[x]=2,则有<≤1;若[x]=3,则有<≤1;若[x]=4,则有<≤1;综上所述,<a≤,故选C.考点:函数零点,对新概念的理解,分类整合思想6.函数的零点个数为 ( )A.0B.1C.2D.3【答案】B【解析】在同一个直角坐标系中画出的图像,易知两图像的交点只有一个,故选B。
【考点】利用函数图像判断函数零点的个数。
7.函数f(x)=lnx–的零点所在的大致区间是( )A.(1, 2)B.(2, 3)C.(1,)和(3, 4)D.(e, +∞)【答案】B【解析】由于,所以选B.【考点】函数的零点.8.函数的零点所在区间为()A.B.C.D.【答案】B【解析】根据指数函数与幂函数的知识易知为上的单调递增函数,且,,所以根据函数的零点存在定理可知在区间至少存在一个零点,而该函数的单调递增函数,所以该函数只有一个零点且该零点在区间内,故选B.【考点】函数的零点.9.已知函数,若函数在上有两个不同零点,则的取值范围是( ) A.B.C.D.【答案】D.【解析】根据函数有一个零点,所以只需要有一个根即可,即,当时,,所以,即.【考点】函数的零点.10.若函数的零点与的零点之差的绝对值不超过,则可以是()A.B.C.D.【答案】D【解析】如图所示,的零点位于之间,A的零点为,B的零点为,C的零点为,D的零点为,所以满足零点之差的绝对值不超过的函数为.【考点】函数的零点.11.设函数中,为奇数,均为整数,且均为奇数.求证:无整数根。
【答案】详见解析.【解析】采用反证法,假设有整数根,则,进而均为奇数,即为奇数,为偶数,即可得到也为奇数,即可得到为奇数,即与均为奇数,这与,为奇数,为奇数时,为偶数矛盾,故命题得证.证明:假设有整数根,则(2分)而均为奇数,即为奇数,为偶数,(4分),∵为奇数,∴也为奇数(6分)∵为奇数,∴为奇数;∴与均为奇数(9分)∵,为奇数,为奇数,∴又为偶数矛盾(11分)∴无整数根(12分)【考点】函数与方程的综合运用.12.已知函数的定义域为,部分对应值如下表,函数的大致图像如下图所示,则函数在区间上的零点个数为()-204A.2 B5【答案】C【解析】根据题意,由于函数的定义域为,那么导数的图象可知,函数在(-2,-1),(0,2)递增,在(-1,0),(2,4)上递减,则可知结合在x=-2,x=0x=4的函数值可知,,函数的零点个数为4个,故选C.【考点】函数零点点评:主要是考查了函数伶仃的求解的运用,属于基础题。
13.函数的零点个数是A.0B.1C.2D.3【答案】C【解析】令f(x)=0得x=1或x=-2,∴函数的零点个数是2个,故选C【考点】本题考查了零点的概念点评:熟练掌握函数零点的概念及一元二次方程的求解是解决此类问题的关键,属基础题14.根据表格中的数据,可以断定方程的一个根所在的区间是A. B. C. D.【答案】C【解析】根据表格中的数据,可以断定方程的一个根所在的区间故可知选C【考点】零点的判定点评:解题的关键是借助于零点存在性定理来得到零点满足的区间,属于基础题。
15.用“二分法”求方程在区间内的实根,取区间中点为,那么下一个有根的区间是 .【答案】【解析】解:设f(x)=x3-2x-5, f(2)=-1<0,f(3)=16>0, f(2.5)= -10=>0, f (x)零点所在的区间为[2,2.5],方程x3-2x-5=0有根的区间是,故填写【考点】二分法求方程的根点评:本题考查用二分法求方程的根所在的区间的方法,方程的实根就是对应函数f(x)的零点,函数在区间上存在零点的条件是函数在区间的端点处的函数值异号16.设用二分法求方程在区间(1,2)上近似解的过程中,计算得到,则方程的根落在区()A.(1,1.25)B.(1.25,1.5)C.(1.5, 1.75)D.(1.75,2)【答案】B【解析】,函数在上连续,由函数零点定理可知零点在区间内【考点】函数零点定理点评:函数零点定理:若函数在上连续,则函数在上存在零点的充分条件是17.若方程x2+(a+2)y2+2ax+a=0表示一个圆,则()A.a=-1B.a=2C.a=-2D.a=1【答案】A【解析】因为方程x2+(a+2)y2+2ax+a=0表示一个圆,那么可知x2,y2的系数一样,因此可知a+2=1,a=-1,此时方程为x2+y2-2x-1=0表示的为圆心为(1,0),半径为的圆,故选A.18.方程有两个不等实根,则k的取值范围是()A.B.C.D.【答案】D【解析】令,原方程有两个不等的实根,就是半圆与直线有两个不同的交点,由圆心到直线的距离可求出两曲线相切时k应满足.再由A(-2,0),B(2,3)的斜率可知,所以k的取值范围是.19.若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是()A.a<-1B.a>1C.-1<a<1D.0≤a<1【答案】B【解析】方程对应的函数f(x)=2ax2-x-1在(0,1)内恰有一解,必有f(0)•f(1)<0,即-1×(2a-2)<0,解得a>1故选A20.使得函数有零点的一个区间是 ( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)【答案】C【解析】解:因为f(x)是递增函数,并且f(2)<0,f(3)>0,因此零点的一个区间是(2,3),选C21.函数在区间内有零点,则()A.B.C.D.的符号不定【答案】D【解析】解:因为函数在区间内有零点,则的符号不定选D22.已知函数,若方程有且只有两个不相等的实数根,则实数的取值范围是( )A.B.C.D.【答案】C【解析】当,所以f(x)的周期为1,作出函数f(x)的图像,然后观察直线y=x+a与函数y=f(x)有两个公共点时,知a的取值范围为.23.,对任意使,则的取值范围是( )A.B.C.D.【答案】B【解析】因为.任意使,所以即.24.已知a是函数的零点,若0<x0<a,则f(x)的值满足().A.f(x0)=0B.f(x)>0C.f(x)<0D.f(x)的符号不确定【答案】C【解析】当x接近0时,函数值为负,又x=a时,函数值为0,所以0<x0<a,则f(x)的值为负。
25.,设,则函数的零点个数为()A.4B.3C.2D.1【答案】A【解析】解:利用图像法可知,是偶函数,那么,在对称区间的零点个数,只需要作出在的图像即可,然后根据图像来得到y=1/2与其交点的个数问题,显然有两个,那么结合对称性,共有4个交点。
26.已知函数(1)试求b,c所满足的关系式;(2)若b=0,方程有唯一解,求a的取值范围.【答案】(1)由,得∴b、c所满足的关系式为……………3分(2)由,,可得.……………4分方程,即,可化为,令,则由题意可得,在上有唯一解,令,由,可得,………6分当时,由,可知是增函数;当时,由,可知是减函数.故当时,取极大值,此处也是最大值2.…………9分由函数的图象可知,当或时,方程有且仅有一个正实数解.故所求的取值范围是或.【解析】略27.如果方程的两个实根一个小于‒1,另一个大于0,求实数m的取值范围【答案】解:设,则由题意得:,即,解得。
【解析】略28.已知关于的一元二次方程,求使方程有两个大于零的实数根的充要条件【答案】解:设x1,x2是方程的两根,则原方程的两个根都大于0的等价条件是即解得∴a的取值范围是【解析】略29.要建造一座跨度为16米,拱高为4米的抛物线拱桥,建桥时,每隔4米用一根柱支撑,两边的柱长应为____________【答案】【解析】略30.已知函数,且定义域为(0,2).(1)求关于x的方程+3在(0,2)上的解;(2)若是定义域(0,2)上的单调函数,求实数的取值范围;(3)若关于x的方程在(0,2)上有两个不同的解,求k的取值范围。
【答案】(1),+3即当时,,此时该方程无解………………1分当时,,原方程等价于:此时该方程的解为.综上可知:方程+3在(0,2)上的解为. ………………3分(2),………………4分,……………… 5分可得:若是单调递增函数,则………………6分若是单调递减函数,则,……………… 7分综上可知:是单调函数时的取值范围为.………8分(2)[解法一]:当时,,①当时,,②若k=0则①无解,②的解为故不合题意……………9分若则①的解为,(Ⅰ)当时,时,方程②中故方程②中一根在(1,2)内另一根不在(1,2)内,……………… 10分设,而则又,故,【解析】略31.已知点的坐标分别是,. 直线相交于的,且它们的斜率之和是2,则点的轨迹方程为【答案】【解析】略32.已知函数.(1)设,写出数列的前5项;(2)解不等式【答案】(1)f(1)=-3,f(2)=-4,f(3)=21,f(4)=32,f(5)=45(2)不等式的解集是或【解析】解:(1)由题设知∴f(1)=-3,f(2)=-4,f(3)=21,f(4)=32,f(5)="45. "(2)由得由得∴不等式的解集是或33.已知函数,则其在点x=1处的切线方程是()A.B.C.D.【答案】C【解析】略34. 20.已知函数(1)求函数的极值;(2)设函数若函数在上恰有两个不同零点,求实数的取值范围.【答案】要使K(x)在上恰有两个不同零点,则只需要即则【解析】略35.做一个无盖的圆柱形水桶,若要使体积是27π,且用料最省,则圆柱的底面半径为.【答案】3【解析】设圆柱的高为h,半径为r则由圆柱的体积公式可得,πr2h=27π,即,要使用料最省即求全面积的最小值,而S=πr2+2πrh==全面积(法一)令S=f(r),结合导数可判断函数f(r)的单调性,进而可求函数取得最小值时的半径=πr2+2πrh==,利用基本不等式可求用料最小时的r (法二):S全面积解:设圆柱的高为h,半径为r则由圆柱的体积公式可得,πr2h=27π=πr2+2πrh==S全面积(法一)令S=f(r),(r>0)=令f′(r)≥0可得r≥3,令f′(r)<0可得0<r<3∴f(r)在(0,3)单调递减,在[3,+∞)单调递增,则f(r)在r=3时取得最小值=πr2+2πrh==(法二):S全面积==27π当且仅当即r=3时取等号当半径为3时,S最小即用料最省故答案为:3点评:本题主要考查了圆柱的体积公式及表面积的最值的求解,解答应用试题的关键是要把实际问题转化为数学问题,根据已学知识进行解决.36.已知方程的两根是,且,则的取值范围是()A.(-2,-)B.[-2,-)C.(-1,-)D.(-2,-1)【答案】A【解析】令,由题意,得,即,令;画出线性条件的可行域(如图),表示过(0,0)与可行域内的点的直线的斜率;由图像得.【考点】二次方程根的分布情况、线性规划.37.函数的零点可能位于区间()A.(3,4)B.(2,3)C.(1,2)D.(5,6)【答案】B【解析】∵函数,∴f(2)=<0,f(3)=>0,∴f(2)f(3)<0,故函数的零点一定位于区间(2,3)上,故选:B.【考点】函数的零点.38.设定义域为R的函数,若关于的函数有8个不同的零点,则实数的取值范围为.【答案】.【解析】令,则的图像如图所示,则要使有8个零点,则有两个不等实根,且,则,即,解得.【考点】1.函数的零点;2.数形结合思想.39.已知是奇函数.(1)求的值;(2)判断并证明在上的单调性;(3)若关于的方程在上有解,求的取值范围.【答案】(1)2;(2)单调递减;(3).【解析】(1)利用奇函数的定义进行求解;(2)利用函数的单调性的定义进行证明;(3)先将方程化为:,利用代换法和分离参数法进行变形,再利用基本不等式进行求解.解题思路:1.奇函数在处有定义,则;2.利用函数的单调性的定义证明单调性的步骤:作差、变形、定号.试题解析:(1)因为是奇函数,故对定义域内的,都有即,即,于是.(2)在上的单调递减,对任意的故,即在上的单调递减解法一:方程可化为:,令,于是在上有解设(1)在上有两个零点(可重合),令无解.(2)在上有1个零点,令,得综上得解法二:方程可化为:,令,于是,则的值域为,故【考点】1.函数的奇偶性;2.函数的单调性;3.函数的零点.40.已知函数(Ⅰ)当时,求使成立的的值;(Ⅱ)当,求函数在上的最大值;(Ⅲ)对于给定的正数,有一个最大的正数,使时,都有,试求出这个正数,并求它的取值范围.【答案】(1);(2);(3).【解析】(1)代入,利用分解因式进行求解;(2)去掉绝对值符号,得到分段函数,讨论对称轴与区间的关系进行求解;(3)将不等式恒成立问题转化为求函数的最值问题.解题思路:1研究二次函数的单调性与最值时,一要判定开口方向,而要判对称轴与所给区间的关系;2.处理含有绝对值的函数式时,往往先利用绝对值的代数意义去掉绝对值符号,得到分段函数再进行求解.试题解析:(Ⅰ)当时,由得,解得;(Ⅱ)当,,最大值在中取.当;当;当时,在上单调递减,单调递增,且是函数的对称轴,由于,所以,综上(Ⅲ)因为当时,,故问题只需在给定区间内恒成立,由,当时,是方程的较小根,即时,,当时,是方程的较大根,即时,,综上,【考点】1.绝对值方程;2.分段函数的最值;3.不等式恒成立.41.函数,则函数的所有零点所构成的集合为.【答案】.【解析】令,由,得或,即或,则或或或,解得或或或,所以函数的所有零点所构成的集合为.【考点】1.分段函数;2.函数的零点.42.函数为奇函数,则实数_________________;若函数存在零点,则实数的取值范围_________________.【答案】【解析】是奇函数有零点与有交点,的取值范围为函数的值域【考点】1.函数奇偶性单调性;2.函数与方程的转化43.方程有三个不同的实根,则的取值范围是()A.()B.(C.D.【答案】D.【解析】令,则,则在为正,在为负,在为正,即在递增,在递减,在递增,且,;若有三个不同的实数根,则.【考点】1.图像的交点;2.三次函数的单调性与极值.44.如果函数的零点所在的区间是,则正整数.【答案】2【解析】根据对数函数的单调性和与函数单调性的运算性质,可知在上是增函数,再通过计算,,,所以,根据零点存在性定理,可得函数的零点所在区间为,故【考点】1.根的存在性定理;2.函数零点的判断.45.已知函数,则关于的方程的实根个数不可能为()A.个B.个C.个D.个【答案】A【解析】设,结合两函数图像可知:时,,值有4个;时,值有6个;时,有4个,对应的值有8个,时,对应的值有7个,时,值有4个,时,值有3个,时,有一个为正,值有2个【考点】1.函数图像;2.分情况讨论;3.数形结合法46.已知函数,则关于的方程的实根个数不可能为()A.个B.个C.个D.个【答案】A【解析】设,结合两函数图像可知:时,,值有4个;时,值有6个;时,有4个,对应的值有8个,时,对应的值有7个,时,值有4个,时,值有3个,时,有一个为正,值有2个【考点】1.函数图像;2.分情况讨论;3.数形结合法47.已知函数(k∈R)为偶函数.(1)求k的值;(2)设,若函数f(x)与g(x)图像有且只有一个公共点,求实数a的取值范围。