初中数学九年级上册知识点及公式总结大全(人教版)
初三人教版数学上册知识点
初三人教版数学上册知识点初三人教版数学上册主要涵盖以下知识点:
1. 代数式与方程:
- 代数式的定义与性质
- 代数式的加减乘除与化简
- 一元一次方程、一元二次方程的解法
- 代数式与方程在实际问题中的应用
2. 几何与图形的性质:
- 平面图形的基本概念:点、线、面
- 三角形的性质:角的性质、三角形的分类
- 四边形的性质:平行四边形、矩形、菱形和正方形的性质
- 圆的性质:圆的周长、面积与弧长的计算
3. 数与式:
- 分数的定义与性质:分数的化简、分数与整数的四则运算
- 百分数、倍数与比例的概念与计算
- 商与余数的定义与性质:整除与整除关系的应用
- 开方的概念与计算
4. 数据与统计:
- 数据的搜集与整理:频数表、频率表与统计图
- 数据的分析与表示:中心值(平均数、中位数、众数)与离散程度
- 概率的概念与计算:随机事件、概率与概率计算公式
5. 函数:
- 函数的概念与性质:自变量与因变量的关系
- 函数图象与函数方程的关系
- 一次函数与二次函数的性质与图象
- 函数的应用:函数在实际问题中的使用
以上是初三人教版数学上册的主要知识点。
具体的内容和课程安排可以参考教材。
人教版九年级上册数学知识点汇总
一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式为:ax² + bx + c = 0(a ≠ 0)。
2. 解法•配方法:通过配成完全平方形式来解一元二次方程。
步骤包括:移项、除二次项系数、配方、开平方。
•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。
•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。
3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。
二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。
•设:设出未知数。
•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。
•解:解方程,求出未知数的值。
•验:检验方程的解是否保证实际问题有意义,符合题意。
•答:写出答案。
2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。
•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。
•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。
•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。
2. 性质•抛物线的开口方向由a的符号决定:a > 0时,开口向上;a < 0时,开口向下。
(完整版)人教版数学九年级上册知识点归纳,推荐文档
一元二次方程 ax2 bx c 0(a 0) 的求根公式: x b b2 4ac (b2 4ac 0)
2a
有括号的先算括号里的(或先去括号)。
4、因式分解法
我去人也就有人!为UR扼腕入站内信不存在向你偶同意因式调分解剖法沙就是龙利用课因反式分倒解的是手龙段,卷求出风方前程的一解的天方我法,分这种页方符法简Z单N易BX吃噶十 行,是解一元二次方程最常用的方法。
开方数 a 必须是非负数。
ax2 bx c 0(a 0) ,它的特征是:等式左边十一个关于未知数 x 的二次多
2、最简二次根式 若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开
项式,等式右边是零,其中 ax2 叫做二次项,a 叫做二次项系数;bx 叫做一次项,
得尽方的因数或因式,这样的二次根式叫做最简二次根式。
弧也相等。
三、垂径定理及其推论
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三
尽方的因数或因式开出来。 3、同类二次根式
直接开平方法适用于解形如 (x a)2 b 的一元二次方程。根据平方根的定义可知,
几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫 做同类二次根式。
x a 是 b 的平方根,当 b 0 时, x a b , x a b ,当 b<0 时,方程没有
b 叫做一次项系数;c 叫做常数项。
化二次根式为最简二次根式的方法和步骤:
新人教版九年级数学上册知识点归纳
新人教版九年级数学上册知识点归纳
一. 整式的加减法和乘法
- 整式的加减法
- 同类项的加减法原则
- 不同类项的加减法原则
- 整式的乘法
- 单项式乘法
- 多项式乘法
二. 因式分解与整式的乘法
- 因式分解
- 公因式提取法
- 平方差公式
- 立方差公式
- 和差化积公式
- 整式的乘法
- 定积分法
- 化简法
三. 一次函数与二次函数
- 一次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
- 二次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
四. 几何图形的认识
- 点、线和面的基本概念
- 几何图形的分类
- 几何图形的性质和判定方法
五. 平面坐标系
- 平面直角坐标系
- 平面直角坐标系中的点及其坐标- 平面直角坐标系中的线段及其长度- 平面直角坐标系中的图形
六. 相交与平行线
- 直线的概念和表示方法
- 直线的性质和判定方法
- 直线间的位置关系
- 平行线判定的方法
七. 形状与变换
- 图形的相似关系和判定方法
- 图形的全等关系和判定方法
- 图形的对称关系和判定方法
- 图形的平移、旋转和翻转
八. 数据的收集和处理
- 数据的收集和整理方法
- 数据的图表表示
- 数据的统计分析
以上是新人教版九年级数学上册的知识点归纳,包括整式的加减法和乘法、因式分解与整式的乘法、一次函数与二次函数、几何
图形的认识、平面坐标系、相交与平行线、形状与变换,以及数据的收集和处理。
最新人教版初中九年级数学上册知识点笔记总结(内部资料打印版)
21.1 二次根式知识点一 二次根式的概念(1) 一般地,我们把形如a (a ≥0)的式子叫做二次根式。
二次根式a 的实质是一个非负数a 的算术平方根。
其中“”叫做二次根号。
(2) 正确理解二次根式的概念,要把握以下几点: ① 二次根式是在形式上定义的,必须含有二次根号“”。
如4是二次根式,虽然4=2,但2不是二次根式。
② 被开方数a 必须是非负数,即a ≥0.如3-就不是二次根式,但式子)3(-2是二次根式。
③ “”的根指数为2,即“2”,一般省略根指数2,写作“”,注意,不可误认为根指数是“1”或“0”。
提示:判断是不是二次根式,一看形式,二看数值,即形式上要有二次根号,被开方数要是非负数。
知识点二 二次根式的性质 (1)a (a ≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥(a ≥0),我们把这个性质叫做二次根式的非负性。
(2)(a )2= a (a ≥0),这个性质可以正用,也可以逆用,正用时常用于二次根式的化简和计算,可以去掉根号;逆用时可以把一个非负数写成完整平方数的形式,常用于多项式的因式分解。
(3)a 2= a (a ≥0),这个性质可以正用,也可以逆用,正用时用于二次根式的化简,即当被开方数能化为完全平方数(式)时,就可以利用该性质去掉根号;逆用时可以把一个非负数化为一个二次根式。
知识点三 代数式定义:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,叫做代数式。
21.2 二次根式的乘除知识点一 二次根式的乘法法则 一般地,对二次根式的乘法规定:a ·b =ab (a ≥0,b ≥0),即二次根式相乘,把被开方数相乘,根指数不变。
知识点二 积的算术平方根的性质ab =a ·b (a ≥0,b ≥0),积的算术平方根等于积中各个因式的算术平方根的积。
知识点三 二次根式的除法法则 一般地,对二次根式的除法规定:b a =ba (a ≥0,b >0),即两个二次根式相除,把被开方数相除,根指数不变。
人教版九年级数学上册知识点
人教版九年级数学上册知识点人教版九年级数学上册知识点概述一、实数与代数表达式1. 实数的概念与性质- 正实数、负实数、零- 实数的四则运算- 实数的大小比较2. 代数表达式的运算- 整式的加法与减法- 乘法分配律- 幂的乘方与积的乘方- 单项式与多项式的乘法- 多项式的因式分解3. 二次根式的运算- 二次根式的定义- 二次根式的乘法与除法- 二次根式的加法与减法- 完全平方公式与平方差公式二、方程与不等式1. 一元一次方程与不等式- 方程的解法- 含绝对值的一元一次方程- 一元一次不等式的解集2. 二元一次方程组- 代入法与消元法- 方程组的解的情况3. 一元二次方程- 一元二次方程的解法(直接开平方法、配方法、公式法、因式分解法)- 一元二次方程根的判别式三、平面图形的性质1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 角的平分线2. 三角形的性质- 三角形的内角和外角- 等腰三角形与等边三角形的性质- 三角形的中位线定理3. 特殊三角形- 直角三角形的性质与勾股定理- 直角三角形的判定- 含30°角的直角三角形的性质4. 平行四边形与圆- 平行四边形的性质与判定- 圆的基本性质- 圆周角与圆心角的关系- 扇形与弧长四、空间图形的性质1. 空间图形的观察- 视图的画法- 空间图形的展开图2. 空间图形的测量- 体积的计算- 表面积的计算五、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率- 随机事件的概率- 概率的计算- 用树状图法解决简单的概率问题以上是人教版九年级数学上册的主要知识点概述。
这些知识点构成了九年级数学课程的核心内容,学生需要掌握这些概念、公式和解题方法,以便在数学学习中取得良好的成绩。
教师和家长应指导学生通过练习和应用这些知识点,加深理解和记忆,提高解题能力。
(精)最新版人教版九年级数学上册全册知识点
最新版人教版九年级数学全册知识点第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是 2 次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2) 且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为2的形式,ax +bx+c=0(a≠0)则这个方程就为一元二次方程.( 4)将方程化为一般形式:ax 2+bx+c=0 时,应满足( a≠0)21.2降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x- m)2=n (n ≥0) 的方程,其解为x=± m.直接开平方法就是平方的逆运算. 通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为 ax^2+bx+c=0 的形式 ( 即一元二次方程的一般形式)2.系数化 1:将二次项系数化为 13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△的值代入求根公式x=(b2- 4ac≥0) 就可得到方程的根。
=b2-4ac的值,当b2- 4ac≥0时,把各项系数a, b, c因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
人教版九年级数学上册知识点整理完整版
人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。
②变量:数量可能改变的量。
③代数式:由数、字母、加减乘除号、括号等符号组成的式子。
④同类项:指含有相同字母并且指数相同的项。
⑤合并同类项:指将同类项合并成一个项。
⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。
⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。
2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。
②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。
⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。
3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。
②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。
④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。
⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。
4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。
②函数的零点:函数 f(x) = 0 的解叫做函数的零点。
即 f(x) = 0 时 x 的解。
③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。
二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。
②射线:在一个端点处向一个方向上延伸的线段,叫做射线。
③直线:没有端点,在一个方向上延伸的线段,称为直线。
④平行线:永远不会相交的两条直线叫做平行线。
⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。
人教版九年级上册数学课本知识点归纳总结全
人教版九年级上册数学课本知识点归纳总结全九年级上册数学课本知识点归纳第21章一元二次方程一、学习目标1、明白一元二次方程的概念2、学会一元二次方程的解法3、了解方程的根与系数的关系4、掌握一元二次方程的实际应用二、重点一、一元二次方程 1、一元二次方程含有一具未知数(一元),同时未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
2、一元二次方程的普通形式)0(02≠=++a c bx ax ,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、落次----解一元二次方程1.落次:把一元二次方程化成两个一元一次方程的过程(别管用啥办法解一元二次方程,基本上要一元二次方程落次)2、直截了当开平办法利用平方根的定义直截了当开平方求一元二次方程的解的办法叫做直截了当开平办法。
直截了当开平办法适用于解形如x 2=b 或b a x =+2)(的一元二次方程。
依照平方根的定义可知,a x +是b 的平方根,当0 ≥b 时,b a x ±=+,b a x ±-=,当b0时,方程有两个实数根。
当ac b 42-=0时,方程有两个相等实数根。
当ac b 42-<0时,方程没有实数根。
5、因式分解法:先将一元二次方程因式分解,化成两个一次式的乘积等于0的形式,再使这两个一次式分不等于0,从而实现落次,这种解叫因式分解法。
这种办法简单易行,是解一元二次方程最常用的办法。
三、一元二次方程根的判不式根的判不式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判不式,通常用“?”来表示,即ac b 42-=?四、一元二次方程根与系数的关系假如方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,由求根公式)04(2422≥--± -=ac b a ac b b x 可算出a b x x -=+21,a cx x =21。
人教版数学九年级上册知识点归纳
人教版数学九年级上册知识点归纳1.二次根式二次根式是指含有二次根号“√”且被开方数a必须是非负数的式子。
最简二次根式是指被开方数的因数和因式都是整数和整式,且被开方数中不含能开得尽方的因数或因式的二次根式。
化简二次根式的方法和步骤包括:将被开方数是分数或分式的式子先写成分式形式,再利用分母有理化进行化简;将被开方数是整数或整式的式子先分解因数或因式,再将能开得尽方的因数或因式开出来。
同类二次根式是指几个二次根式化成最简二次根式后,它们的被开方数相同。
2.一元二次方程一元二次方程是指含有一个未知数,且未知数的最高次数是2的整式方程。
一元二次方程的一般形式是ax2+bx+c=0(其中a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
解一元二次方程的方法有直接开平方法、配方法和公式法。
直接开平方法适用于解形如(x+a)2=b的一元二次方程,利用平方根的定义直接开平方求解。
配方法是利用完全平方公式将一元二次方程转化为(x±b)2的形式,再求解。
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法,求根公式为x=(-b±√(b2-4ac))/(2a)。
关于y轴对称的点的特征:当两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反。
即点P(x,y)关于y 轴的对称点为P’(-x,y)。
第四单元圆:一、圆的相关概念1、圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”。
二、弦、弧等与圆有关的定义1、弦:连接圆上任意两点的线段叫做弦(如图中的AB)。
2、直径:经过圆心的弦叫做直径(如图中的CD),直径等于半径的2倍。
3、半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
人教版九年级数学上册知识点整理(完整版)
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
人教版初三数学公式总结归纳
人教版初三数学公式总结归纳1、同旁内角互补,两直线平行2、两直线平行,同位角相等3、两直线平行,内错角相等4、两直线平行,同旁内角互补5、定理三角形两边的和大于第三边6、推论三角形两边的差小于第三边7、三角形内角和定理三角形三个内角的和等于180°8、推论1直角三角形的两个锐角互余9、推论2三角形的一个外角等于和它不相邻的两个内角的和10、推论3三角形的一个外角大于任何一个和它不相邻的内角11、全等三角形的对应边、对应角相等12、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等13、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等14、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等15、边边边公理(SSS)有三边对应相等的两个三角形全等16、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等17、定理1在角的平分线上的点到这个角的两边的距离相等18、定理2到一个角的两边的距离相同的点,在这个角的平分线上19、角的平分线是到角的两边距离相等的所有点的集合20、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21、推论1等腰三角形顶角的平分线平分底边并且垂直于底边22、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23、推论3等边三角形的各角都相等,并且每一个角都等于60°24、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25、推论1三个角都相等的三角形是等边三角形26、推论2有一个角等于60°的等腰三角形是等边三角形27、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28、直角三角形斜边上的中线等于斜边上的一半29、定理线段垂直平分线上的点和这条线段两个端点的距离相等30、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32、定理1关于某条直线对称的两个图形是全等形33、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形38、定理四边形的内角和等于360°39、四边形的外角和等于360°40、多边形内角和定理n边形的内角的和等于(n-2)×180°41、推论任意多边的外角和等于360°42、平行四边形性质定理1平行四边形的对角相等43、平行四边形性质定理2平行四边形的对边相等44、推论夹在两条平行线间的平行线段相等45、平行四边形性质定理3平行四边形的对角线互相平分46、平行四边形判定定理1两组对角分别相等的四边形是平行四边形47、平行四边形判定定理2两组对边分别相等的四边形是平行四边形48、平行四边形判定定理3对角线互相平分的四边形是平行四边形49、平行四边形判定定理4一组对边平行相等的四边形是平行四边形50、圆是定点的距离等于定长的点的集合51、圆的内部可以看作是圆心的距离小于半径的点的集合52、圆的外部可以看作是圆心的距离大于半径的点的集合53、同圆或等圆的半径相等54、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆55、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线56、到已知角的两边距离相等的点的轨迹,是这个角的平分线57、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线58、定理不在同一直线上的三点确定一个圆。
人教版九年级上册数学知识点
**人教版九年级上册数学知识点梳理**
一、预备知识
1. 实数:了解实数的概念,包括有理数和无理数,能进行实数的四则运算。
二、一元二次方程
1. 一元二次方程的标准形式:ax^2 + bx + c = 0 (a ≠ 0)。
2. 解一元二次方程的常用方法:因式分解法、公式法(韦达定理)、配方法等。
3. 判别式Δ = b^2 - 4ac 的应用:判断方程的根的情况(实根或虚根)。
三、一元二次方程的根与系数的关系
1. 韦达定理:对于一元二次方程 ax^2 + bx + c = 0 的根 x₁和 x₂,有 x₁ + x₂ = -b/a 和x₁× x₂ = c/a。
四、因式分解
1. 因式分解的方法:差平方公式、完全平方公式、分组分解法等。
五、函数及其图象
1. 平面直角坐标系:理解坐标系中点的坐标,掌握点的坐标与平面位置的关系。
2. 函数的定义和性质:了解函数的定义、自变量和因变量的关系,理解函数的图象及其变化规律。
3. 一次函数和正比例函数:理解一次函数 y = kx + b 和正比例函数 y = kx 的图象及其性质。
4. 反比例函数:理解反比例函数 y = k/x 的图象及其性质。
六、概率初步
1. 概率的基本概念:了解概率的定义,掌握概率的取值范围(0 ≤ P(A) ≤ 1)。
2. 等可能条件下的概率计算方法:根据问题中已知的信息和公式 P(A) = 事件A出现的次数/全部基本事件总数来计算概率。
以上内容为九年级上册数学的部分知识点,学习时建议结合课本与教师讲解进行深入理解和掌握。
希望以上内容对你有帮助!。
(人教版九年级上册数学)概念定义公式归纳
九年级上册数学概念、定义、公式归纳一、二次根式1.2.二次根式的被开方数为非负数。
所有二次根式都是非负数。
3.4.二次根式乘法法则:反过来也适用。
5.二次根式除法法则:,反过来也适用。
6.被开方数不含分母、不含能开得尽方的因数或因式的二次根式,称为最简二次根式。
7.二次根式加减法则:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
二、一元二次方程8.等号的两边都是整式,只含有一个未知数,并且未知数的最高次数是2,这样的方程叫一元二次方程。
9.一元二次方程的一般形式:ax²+bx+c=0(a≠0),其中a叫做二次项系数,b叫做一次项系数,c是常数项。
10.解一元二次方程的基本思路是“降次”。
方法有四种:①直接开平方法。
如果方程能化成x²=p或(mx+n)²=p(p≥0)的形式,那么x=±√p,或mx+n=±√p。
②配方法:(1)移项,把常数项移到等号右边。
(2)系数化为1,方程两边同除以二次项系数。
(3)配方,等号两边同加一次项系数一半的平方。
(4)直接开平方。
③公式法。
(1)运用根的判别式b²-4ac判断根的情况。
若判别式△小于0,则方程无实数根;若等于0,则有两个相等的实数根;若大于0,则有两个不相等的实数根。
(2)△≥0时,运用一元二次方程的求根公式“-b±√b²-4ac /2a”来解方程。
④因式分解法。
把方程化为mn=0的形式。
11.求两个单位时间段平均增长(减少)率公式:a(1±x)²=b三、旋转12.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。
点O叫旋转中心,转动的角叫旋转角,转动方向有顺时针和逆时针两种。
13.旋转的性质:①对应点到旋转中心距离相等。
②对应点与旋转中心所连线段的夹角等于旋转角。
③旋转前后图形全等。
14.把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形中心对称。
九上数学公式归纳人教版
九上数学公式归纳人教版在九年级数学公式归纳部分,根据人教版教材,我们主要学习了以下几个内容:1.一次幂的公式归纳:对于任意实数a,a^1 = a。
这个公式告诉我们,一个数的1次幂就是其本身。
2.幂的乘法公式归纳:对于任意实数a和正整数m,a^m × a^n = a^(m+n)。
这个公式告诉我们,相同底数的幂数相乘,等于底数不变、指数相加的幂。
3.幂的除法公式归纳:对于任意实数a和正整数m,a^m ÷ a^n = a^(m-n)。
这个公式告诉我们,相同底数的幂数相除,等于底数不变、指数相减的幂。
4.幂的乘方公式归纳:对于任意实数a和正整数m,(a^m)^n =a^(m × n)。
这个公式告诉我们,一个幂的乘方等于这个幂的指数乘以乘方的指数。
除了以上几个主要内容,数学公式归纳还包括了二次幂的公式归纳、平方根的公式归纳等其他内容。
但是在九年级数学中,这些内容并没有明确提及。
需要注意的是,数学公式归纳部分需要学生通过观察、思考和验证,加深对数学定理的理解,并运用这些定理解决实际问题。
在学习过程中,可以通过一些习题来拓展提高:1.进一步拓展幂的乘法公式,尝试证明负指数的幂的乘法公式a^(-m) × a^(-n) = a^(-m-n)。
2.探索零指数的特殊情况,讨论a^0的定义以及其与其他幂的关系。
3.深入理解幂的除法公式,尝试解决一些实际问题,如模拟计算科学记数法中的幂的除法。
4.研究幂的乘方公式的特殊情况,探索指数为零、一的情况,思考这两种情况与其他情况的联系。
希望以上的回答和拓展能对你有所帮助!。
人教版九年级上册数学各单元知识点归纳总结
人教版九年级上册数学各单元知识点归纳总结数学九年级上册共有十个单元,分别是集合与函数、有理数与运算、整式的加减、整式的乘法、一次函数与方程、比例与百分数、线性方程组、平方根与整式的除法、直角三角形与勾股定理、统计与概率。
下面将详细介绍这些单元的知识点。
一、集合与函数:1.集合:元素、属于、不属于、集合的相等、全集、子集、交集、并集、差集、互斥集、余集。
2.函数:自变量、因变量、函数的值、定义域、值域、函数的相等、奇函数、偶函数、函数的和差积商、反函数。
3.函数的图象:平移、伸缩、翻折、求过给定点的直线方程。
二、有理数与运算:1.有理数:整数、分数、有理数的相反数、绝对值、有理数的大小、有理数的加减乘除。
2.小数:有限小数、无限小数、循环小数、无理数、实数。
3.数轴与有理数:数轴上的点、有理数与数轴的对应关系、有理数的大小关系、有理数的加法减法、有理数的乘法除法。
4.分式:分数的性质、带分数、分数的加减乘除。
三、整式的加减:1.代数式:字母、代数式的加减、整式、项、系数、常数项。
2.同类项:同类项的合并与分拆、整式的加法、整式的减法。
四、整式的乘法:1.乘法基本公式:乘法基本公式的应用、平方差公式、差的平方公式、完全平方公式、立方差公式、立方和公式、整式的乘法。
2.因式与倍式:因式分解、互质、最大公因式。
五、一次函数与方程:1.函数与方程:线性函数、一次函数、函数的表示、函数的图象、函数的性质、函数关系、一元一次方程、方程的解。
2.解一次方程:等式的性质、移项变号、等式的逆运算、绝对值不等式。
六、比例与百分数:1.比例:比例的概念、比例的扩大与缩小、比例的性质、四边形的对边比、折线的边长比。
2.百分数:百分数与百分数、百分数与小数、百分数与分数、百分数的运算、平均数、加权平均数。
七、线性方程组:1.二元一次方程组:线性方程组、二元一次方程组、方程组的解、解二元一次方程组。
2.三元一次方程组:解三元一次方程组。
数学公式初中九年级上册
数学公式初中九年级上册九年级上册数学公式(人教版)一、一元二次方程。
1. 一般形式。
- 一元二次方程的一般形式为ax^2+bx + c = 0(a≠0)。
2. 求根公式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
3. 根的判别式。
- Δ=b^2-4ac- 当Δ>0时,方程有两个不相等的实数根。
- 当Δ = 0时,方程有两个相等的实数根。
- 当Δ<0时,方程没有实数根。
二、二次函数。
1. 一般式。
- 二次函数的一般式为y = ax^2+bx + c(a≠0)。
- 对称轴公式为x =-(b)/(2a)。
- 顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。
2. 顶点式。
- y=a(x - h)^2+k(a≠0),其中(h,k)为顶点坐标,对称轴为x = h。
三、旋转。
1. 点(x,y)绕原点旋转90^∘(逆时针)后的坐标。
- 变为(-y,x)。
2. 点(x,y)绕原点旋转180^∘后的坐标。
- 变为(-x,-y)。
四、圆。
1. 圆的周长公式。
- C = 2π r(r为圆的半径)。
2. 圆的面积公式。
- S=π r^2。
3. 弧长公式。
- l=(nπ r)/(180)(n为弧所对圆心角的度数,r为圆的半径)。
4. 扇形面积公式。
- S_扇形=frac{nπ r^2}{360}=(1)/(2)lr(n为圆心角的度数,r为半径,l为弧长)。
5. 圆锥侧面积公式。
- S_侧=π rl(r为圆锥底面半径,l为圆锥母线长)。
6. 圆锥全面积公式。
- S_全=π rl+π r^2。
人教版九年级上册数学公式汇总
交通信号灯及控制系统设备安装与施工详解交通信号系统包括机箱、灯杆、SCATS检测线圈、电缆与电线、取电电源、防雷与接地、管井与管道等设施设备,下面介绍各个部分的材料、安装要求和施工工序。
机箱1.信号机箱无特殊情况时一般安装在路口的西南角。
2.信号机箱的安装应考虑设置在人行横道上视野宽阔、不妨碍行人及车辆通行、能观察到交叉口的交通状况和信号灯的变化状况、并能容易驳接电源的地点。
3.信号机箱的基础位置与人行横道的路缘距离应在50~100cm,与路缘平行,基础高于地面20cm,平面尺寸应和信号机箱底座尺寸一致,地面以下的水泥钢筋基础至少70cm深。
4.在有可能积水的地面安装信号机箱时,应适当增加基础高度,防止信号机被积水淹没。
5.信号机箱安装完毕后,应将机箱底部的接线孔用填充物密封,防止潮气侵蚀。
6.信号机箱安装时,保护接地线、避雷器接地线的接地施工应符合GB50169《电气装置安装工程接地装置施工及验收规范》的规定;接地完毕,测量信号机箱接地电阻小于4Ω。
灯杆灯杆制作1.信号灯杆所属的立柱、法兰盘、地脚螺栓、螺母、垫片、加强筋等金属构件及悬臂、支撑臂、拉杆、抱箍座、夹板等附件的防腐性能应符合GB/T18226《高速公路交通工程钢构件防腐技术条件》的规定。
2.信号灯杆应采用圆形或多棱形经热镀锌处理的钢管制造。
3.信号灯杆安装前须经过防锈处理,底层喷涂富锌防锈底漆,外层喷涂银灰色瓷漆。
4.机动车立柱式灯杆距路面约350mm 处留有拉线孔和拉线孔门,人行道和非机动立柱式灯杆距路面约300mm 处留有拉线孔和拉线孔门。
5.立柱式灯杆拉线孔门应设有防盗措施,孔内设置接地端子座,以便接驳地线。
6.立柱式灯杆顶部安装灯具处应留有出线孔,并配备橡胶护套、电缆线回水弯挂钩,灯杆顶部应安装塑料或经防腐处理的内套式金属防水管帽。
7.悬臂式灯杆悬臂杆与支撑杆使用圆形或多棱形的变截面型材制作,悬臂与灯杆连接端宜焊接固定法兰盘,悬臂下应留有进线孔和出线孔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学(上)知识点
(2)被开方数中不含有开得尽方的整数或整式。
3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。
注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。
8、二次根式的混合运算:
二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。
在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。
9、比较两数大小的常用方法:
(1)平方法:若a>0,b>0,且a²>b²,则a>b;
(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。
第二十二章一元二次根式
一.知识框
二.知识概念
1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.
2 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax +bx+c=0(a≠0).
2
这种形式叫做一元二次方程的一般形式.其中ax 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.
一元二次方程的解法:
2
(1)运用开平方法解形如(x+m) =n(n≥0)的方程;领会降次──转化的数学思想.
2
(2)配方法:将一元二次方程变形为(x+p) =q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.
2 2
(3)公式法:将方程化为一般形式ax +bx+c=0,当b -4ac≥0时,将a、b、c代入式子
第二十三章旋转
一.知识框架
二.知识概念 1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
注意:图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)
2.旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
二.知识概念
1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
6.圆锥侧面展开图是一个扇形。
这个扇形的半径称为圆锥的母线。
7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O 外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
8.直线与圆有3种位置关系:无公共点为
相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直
线叫做圆的切线,这个唯一的公共点叫做切点。
9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一
公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。
两圆圆心之间
的距离叫做圆心距。
两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
10.切线的判定方法:经过半径外端点并且垂直于这条半径的直线是圆的切线。
11.切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
12.垂径定理:垂直于弦的直径平分弦,并且平分
弦所对的两条弧。
13.有关定理:
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(2)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
(3)在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
(4)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直
径.14.圆的计算公式:
(1)圆的周长C=2πr=πd;
2
(2)圆的面积S=πr ;
2 2
(3)扇形弧长l=nπr/180;(4)扇形面积S=π(R -r );
(5)圆锥侧面积S=πrl;
第二十五章概率
一.知识框架
二.知识概念
1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P
(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1
2.随机事件发生的可能性(概率)的计算方法:
(1)只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模
型进行的计算;
(2)通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率.。