含有零向量的向量组一定线性相关
线性代数第三章向量组的线性相关性与矩阵的秩
第三章向量组的线性相关性与矩阵的秩何建军§3 • 1 概念与性质3.1.1向量的概念和运算1、n维向量:n个数构成的一个有序数组(a i,a2,…,a n),称为一个n维向量,记为〉=佝,a2 ,…,a n ),并称为n维行向量,a i称为〉的第i个分量,〉的转置T T(a1,a2, a n)称为n维向量。
2、相等:若a =@182,…,a n),p =(D,b2,…,b n),当且仅当a i =b i(i =1,2,…,n)时,:,:。
3、加法:」-a b!,a2 b2^ ,a n b n4、数乘:k ka1,ka2,…,ka n ,(k 为常数)5、內积:匕0 】=aQ +a?b2 + …+a“b n3.1.2向量组的线性相关性1、线性组合:给定向量组A : 对于任何一组实数匕出,…,k m,向量k V1 k^ 2肚m称为向量组A的一个线性组合,匕*?,…,k m称为这个线性组合的组合系数2、线性表示:给定向量组A : 〉1「2,i「m和向量:,如果存在一组数n n « n'1, '2, ,‘ m ,使得■- = ‘1〉1 ‘2〉2 •…-'rn'm则向量-能有向量组A线性表示,向量-是向量组A的线性组合。
3、线性相关:给定向量组A : ‘1厂2,厂m,如果存在一组不全为零的数k1 , k2 , , k m,使得kr 1 k2〉2 k m〉m=o则称向量组A是线性相关的。
4、线性无关:向量组A :r,〉2,…,〉m,不线性相关,称向量组A线性无关,即不存在不全为零的数k1,k2, , k m使得1• k2「2•■ k m m=0成立,即只有当k1二Q二=k m=0时,才有k^ 1 k2「2 ' k^' m=0成立。
(如果存在一组数k-k2,,k m 使得k V 1 k^ ■k m「m=0,则必有k1= k2 = = k m=0,称向量组A 线性无关)注:含有零向量的向量组一定线性相关。
一个向量组线性相关的判定方法
交流Experience ExchangeDI G I T C W 经验262DIGITCW2019.05定义:给定一个向量组I ,若存在m 个不全为零的数,使得成立,则称向量组线性相关。
否则,称向量组线性无关。
等价定义:若向量组I 中至少有一个向量能由其余的向量线性表出,则该向量组线性相关。
给出任意一个向量组,判断其线性相关性,有以下几种判定方法:(1)包含零向量的向量组必线性相关。
若,则有,所以向量组线性相关。
(2)只含有一个向量的向量组线性相关该向量是零向量。
“”若,有,所以α线性相关。
“”若线性相关,则存在,使得,得到。
(3)含有两个向量的向量组线性相关它们的对应分量成比例。
“”若线性相关,存在不全为零的数,使得成立。
假设,则有,故对应分量成比例。
“”若对应分量成比例,一定存在数,使得或者,则有线性相关。
例1:对应分量不成比例,所以向量组线性无关。
(4)单位向量组必线性无关。
由于,有,所以单位向量组线性无关。
(5)向量组的向量个数>向量维数,必线性相关。
任意一个向量都可以由单位向量线性表出,即有下,又因为单位向量组是线性无关的,由等价定义可得,该向量组必线性相关。
判断一个向量组是否线性相关等价于判断一个齐次线性方程组是否有非零解,令向量组中向量的维数等于方程的个数,向量的个数等于方程中未知量的个数,即可构成一个齐次线性方程组。
例2:讨论的线性相关性。
解:由向量方程,可以得到齐次线性方程组由于齐次线性方程组系数矩阵A 的秩,故该齐次线性方程组有非零解,即不全为零,所以向量组线性相关。
(6)向量组的向量个数 向量维数时,判断对应的齐次线性方程组是否有非零解,只需要根据其系数行列式和系数矩阵来判定即可,故有以下两种判定方法:方法一:以各向量为列向量组成行列式D ,方法二:以各向量为列向量组成矩阵A ,进行初等行变换,化为行阶梯形矩阵,例3:讨论向量组,,的线性相关性。
解:由向量方程,可以得到齐次线性方程组所以向量组线性相关。
3.3 向量组的线性相关性
~ ~ (a1, a2, a3) 111
0 2 5
742
r
100
0 2 5
522
r
100
0 2 0
022
可见r(a1 a2 a3)2< 3 r(a1 a2)2 故向量组a1 a2 a3线性相关 向量组a1 a2线性无关.
n个 n维向量a1 a2 an线性相关|a1 a2 an|=0; n个 n维向量a1 a2 an线性无关|a1 a2 an|≠0.
上页 下页 返回
二 、线性相关性的判定
定理3.1 向量组A a1 a2 am(m2)线性相关 向量组A中至少有一个向量能由其余m1个向量线性表示.
上页 下页 返回
向量组a1 a2 am线性无关r(a1 a2 am)m. n维单位坐标向量组e1 e2 en是线性无关的.
例3.2 已知
a1(1 1 1)T a2(0 2 5)T a3(2 4 7)T 试讨论向量组a1 a2 a3及向量组a1 a2的线性相关性.
不妨设k10 于是 a1(1/k1)(k2a2 kmam)
即a1能由a2 am线性表示.
上页 下页 返回
二 、线性相关性的判定
定理3.1 向量组A a1 a2 am(m2)线性相关 向量组A中至少有一个向量能由其余m1个向量线性表示.
证 充分性
上页 下页 返回
例3.3 已知向量组a1 a2 a3线性无关 b1a1a2 b2a2a3
b3a3a1 试讨论向量组b1 b2 b3线性相关性.
证
由于此方程组的系数行
设有x1 x2 x3使 x1b1x2b2x3b30
线性代数 向量组的线性相关性
分布图示★ 线性相关与线性无关★ 例1★ 例2★ 证明线性无关的一种方法线性相关性的判定★ 定理1 ★ 定理2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 定理3 ★ 定理4 ★ 定理5★ 例7★ 内容小结 ★ 课堂练习★ 习题3-3内容要点一、线性相关性概念定义1 给定向量组,,,,:21s A αααΛ 如果存在不全为零的数,,,,21s k k k Λ 使,02211=+++s s k k k αααΛ (1)则称向量组A 线性相关, 否则称为线性无关.注: ① 当且仅当021====s k k k Λ时,(1)式成立, 向量组s ααα,,,21Λ线性无关; ② 包含零向量的任何向量组是线性相关的;③ 向量组只含有一个向量α时,则(1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的;④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例. ⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面.二、线性相关性的判定定理1 向量组)2(,,,21≥s s αααΛ线性相关的充必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示.定理 2 设有列向量组),,,2,1(,21s j a a a nj j j j ΛM =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=α 则向量组s ααα,,,21Λ线性相关的充要条件是: 是矩阵),,,(21s A αααΛ=的秩小于向量的个数s .推论 1 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是: 矩阵),,,(21n A αααΛ= 的秩等于(小于)向量的个数n .推论2 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是:矩阵),,,(21n A αααΛ= 的行列式不等于(等于)零.注: 上述结论对于矩阵的行向量组也同样成立.推论3 当向量组中所含向量的个数大于向量的维数时, 此向量组必线性相关. 定理3 如果向量组中有一部分向量(部分组)线性相关,则整个向量组线性相关. 推论4 线性无关的向量组中的任何一部分组皆线性无关.定理4 若向量组βαα,,,1s Λ线性相关, 而向量组s ααα,,,21Λ线性无关, 则向量β可由s ααα,,,21Λ线性表示且表示法唯一.定理5 设有两向量组,,,,:;,,,:2121t s B A βββαααΛΛ向量组B 能由向量组A 线性表示, 若t s <, 则向量组B 线性相关.推论5 向量组B 能由向量组A 线性表示, 若向量组B 线性无关, 则.t s ≥推论6 设向量组A 与B 可以相互线性表示, 若A 与B 都是线性无关的, 则.t s =例题选讲例1 设有3个向量(列向量):,421,221,101221⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=ααα不难验证,02321=-+ααα 因此321,,ααα是3个线性相关的3维向量.例2 设有二个2维向量:,10,0121⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=e e 如果他们线性相关, 那么存在不全为零的数,,21λλ 使,02211=+e e λλ也就是 ,0100121=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛λλ 即 .0002121=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛λλλλ于是,0,021==λλ 这同21,λλ不全为零的假定是矛盾的. 因此1e ,2e 是线性无关的二个向量.例3 (E01) n 维向量组T n T T )1,,0,0(,,)0,1,0(,)0,,0,1(21ΛΛΛΛ===εεε称为n 维单位坐标向量组, 讨论其线性相关性.解 n 维单位坐标向量组构成的矩阵)(21n E εεε,,,Λ=⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001ΛΛΛΛΛΛΛ 是n 阶单位矩阵.由,01≠=E 知.n E r =即E r 等于向量组中向量的个数, 故由推论2知此向量是线性无关的.例 4 (E02) 已知,1111⎪⎪⎪⎭⎫ ⎝⎛=a ,5202⎪⎪⎪⎭⎫ ⎝⎛=a ⎪⎪⎪⎭⎫⎝⎛=7423a , 试讨论向量组321,,a a a 及21,a a 的线性相关性.解 对矩阵)(321a a a A ,,=施行初等行变换成行阶梯形矩,可同时看出矩阵A 及),(21αα=B 的秩,利用定理2即可得出结论.),,,321(ααα=⎪⎪⎪⎭⎫ ⎝⎛7514212011213r r r r --→⎪⎪⎪⎭⎫ ⎝⎛550220201−−→−-2125r r ,000220201⎪⎪⎪⎭⎫⎝⎛ 易见,,2)(=A r ,2)(=B r 故向量组,,,321ααα线性相关. 向量组21a a ,线性无关.例5 判断下列向量组是否线性相关:.11134,1112,5121321⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=ααα解 对矩阵)(321ααα,,施以初等行变换化为阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1115111312421 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----990330550421⎪⎪⎪⎪⎪⎭⎫⎝⎛000000110421秩,,,32)(321<=ααα所以向量组321ααα,,线性相关.例6 证明:若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 证 设有一组数,,,321k k k 使0)()()(321=+++++αγγββαk k k (1)成立,整理得0)()()(322131=+++++γβαk k k k k k 由γβα,,线性无关,故⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k (2) 因为110011101,02≠=故方程组(2)仅有零解.即只有0321===k k k 时(1)式才成立.因而向量组,βα+,γβ+αγ+线性无关.例7 (E03) 设向量组321,,a a a 线性相关, 向量组432,,a a a 线性无关, 证明 (1) 1a 能由32,a a 线性表示; (2) 4a 不能由321,,a a a 线性表示.证明(1)因432ααα,,线性无关,故32,αα线性无关,而321ααα,,线性相关,从而1α能由32αα,线性表示;(2)用反证法. 假设4α能由321ααα,,线性表示,而由(1)知1α能由32αα,线性表示,因此4α能由32αα,表示,这与432ααα,,线性无关矛盾.证毕.课堂练习1. 试证明:(1) 一个向量α线性相关的充要条件是0=α; (2) 一个向量α线性无关的充分条件是0≠α;(3) 两个向量βα,线性相关的充要条件是βαk =或者αβk =(两式不一定同时成立)。
线性代数判断题
线性代数判断题线性代数课程组2015年4月最终版判断题(正确的请在括号里打“√” ,错误请打“×” )1、以数k 乘行列式D ,等于用数k 乘行列式的某一行(或某一列). ( )2、行列式01111≠--a a 的充要条件是a≠2且a≠0. ( )3、3阶行列式843576321的值等于行列式853472361的值. ( )4、交换行列式的两列,行列式的值变号. ( )5、行列式321332211321321321321333c c c a b a b a b a a a c c c b b b a a a D +++==成立. ( ) 6、行列式2211221122221111d b d b c a c a d c b a d c b a D +=++++=成立. ( ) 7、行列式25434232124108684642⨯==D 成立. ( )8、n 阶行列式中元素ij a 的余子式ij M 与代数余子式ij A 的关系是ij ij M A -=. ( )9、主对角线右上方的元素全为0的n 阶行列式称为上三角形行列式. ( )10、行列式25479623875156422547962356428751==D 成立. ( ) 11、设D 是行列式,k 是不为零的实数,则kD 等于用k 去乘以行列式的某一行得到的行列式. ( )12、如果行列式D 有两行元素对应相等,则0=D . ( )13、设D 是n 阶行列式,ij A 是D 中元素ij a 的代数余子式.如果将D 按照第n 列展开,则nn nn n n n n A a A a A a D +++= 2211. ( )14、行列式4444543225169454321111=D 是范德蒙行列式. ( ) 15、克拉默法则可用于解任意的线性方程组. ( )16、齐次线性方程组一定有零解,可能没有非零解. ( )17、由n 个方程构成的n 元齐次线性方程组,当其系数行列式等于0时,该齐次线性方程组有非零解. ( )18、行列式1694432111中第三行第二列元素的代数余子式的值为-2. ( )19、设行列式3333231232221131211==a a a a a a a a a D ,则62525253332313123222121131211111=+++=a a a a a a a a a a a a D . ( ) 20、设行列式12211=b a b a ,22211=c a c a ,则3222111=++c b a c b a . ( )21、如果行列式D 有两列元素对应成比例,则0=D . ( )22、设D 是n 阶行列式,则D 的第2行元素与第三行元素对应的代数余子式之积的和为0,即03232223121=+++n n A a A a A a . ( )23、任何阶数的行列式都可以用对角线法则计算其值. ( )24、任意一个矩阵都有主次对角线. ( )25、两个零矩阵必相等. ( )26、两个单位矩阵必相等. ( )27、3阶数量矩阵⎪⎪⎪⎭⎫ ⎝⎛⋅=⎪⎪⎪⎭⎫ ⎝⎛100010001000000a a a a . ( )28、若矩阵A≠0,且满足AB=AC ,则必有B=C. ( )29、若矩阵A 满足T A A =,则称A 为对称矩阵. ( )30、若矩阵A ,B 满足AB=BA ,则对任意的正整数n ,一定有(AB )n =A n B n . ( )31、因为矩阵的乘法不满足交换律,所以对于两个同阶方阵A 与B ,AB 的行列式||AB 与BA 的行列式||BA 也不相等. ( )32、设A 为n 阶方阵:|A|=2,则|-A|=(-1)n 2. ( )33、设A,B 都是三阶方阵,则B A B A +=+. ( )34、同阶可逆矩阵A 与B 的乘积AB 也可逆,且111)(---=B A AB . ( )35、若A ,B 都可逆,则A+B 也可逆. ( )36、若AB 不可逆,则A ,B 都不可逆. ( )37、若A 满足A 2+3A+E=0,则A 可逆. ( )38、方阵A 可逆的充分必要条件是A 为非奇异矩阵. ( )39、只有可逆矩阵,才存在伴随矩阵. ( )40、设A ,B ,C ,E 均为n 阶矩阵,若ABC=E ,可得BCA=E. ( )41、如果A 2-6A=E ,则1-A = A-6E. ( ) 42、设A=⎪⎪⎭⎫ ⎝⎛2531,则A *=⎪⎪⎭⎫ ⎝⎛--1532. ( ) 43、设A 是n 阶方阵,且1=A ,则115)5(---=n T A . ( )44、分块矩阵的转置方式与普通矩阵的转置方式是一样的. ( )45、由单位矩阵E 经过任意次的初等变换得到的矩阵称为初等矩阵. ( )46、矩阵的等价就是指两个矩阵相等. ( )47、设A 是3阶矩阵,交换矩阵A 的1,2两行相当于在矩阵A 的左侧乘以一个3阶的初等矩阵⎪⎪⎪⎭⎫ ⎝⎛=10000101012E . ( )48、对n 阶矩阵A 施以初等行变换与施以相同次数的初等列变换得到的矩阵是相等的. ( )49、设A 是4×5矩阵,)(A r =3,则A 中的所有3阶子式都不为0. ( )50、对矩阵A 施以一次初等行变换得到矩阵B ,则有)()(B r A r =. ( )51、若6阶矩阵A 中所有的4阶子式都为0,则4)(0<≤A r . ( )52、满秩矩阵一定是可逆矩阵. ( )53、矩阵的初等变换不改变矩阵的秩. ( )54、等价的矩阵有相同的秩. ( )55、n 阶矩阵就是n 阶行列式. ( )56、用矩阵A 左乘以矩阵B 等于用矩阵A 与矩阵B 中对应位置的元素相乘. ( )57、设A 为三阶方阵且2-=A ,则=A A T 3108. ( )58、方阵A 可逆的充分必要条件是A 可以表示为若干个初等矩阵的乘积. ( )59、方阵A 可逆的充分必要条件是A 与同阶的单位矩阵等价. ( )60、方阵A 可逆的充分必要条件是A 为满秩矩阵. ( )61、若|A|≠0,则|A*|≠0. ( )62、矩阵的秩是指矩阵的最高阶非零子式的阶数. ( )63、设A ,B 都是n 阶可逆矩阵,O 为n 阶零矩阵,C 为2n 阶分块对角矩阵即⎪⎪⎭⎫ ⎝⎛=B O O A C ,则C 的逆矩阵为⎪⎪⎭⎫ ⎝⎛=--O B A O C 11. ( ) 64、向量组中的任意一个向量都可由这个向量组本身线性表出. ( )65、零向量可由任意向量组线性表出. ( )66、若4321αααα,,,线性无关,则)4(21>n n ααα ,,线性相关.( )67、两个n 维向量线性相关的充要条件是两个n 维向量的各个分量对应成比例. ( )68、若02211=++n n k k k ααα ,则n ααα,,, 21线性相关. ( ) 69、若对任意一组不全为0的数n k k k ,,, 21,都有02211≠+++n n k k k ααα ,则n ααα,,, 21线性无关. ( )70、若向量组A :m ααα,,,21 线性相关,且可由向量组B :s βββ,,,21 线性表出,则s m ≤. ( )71、等价的向量组所含向量个数相同. ( )72、任意一个向量组都存在极大无关组. ( )73、设向量组im i i ααα,,,21 是向量组n ααα,,,21 的一个子组。
《线性代数》向量组的线性相关与线性无关
a11 a21
an1
即行列式 D = a12 a22
an2 = 0 ?
核心问题!
a1n a2n
ann
④若方程组(2)有非零解,则a1,a2,,an线性相关;否则,线性无关.
特殊方法(举例)
亦即
例7. 证明下列单位向量组线性无关.
1
0
0
0
α1
=
0
,
0
α2
=
1
,
0
α3
=
0 1
,
α4
=
k1,k2, ,kn,使
k1a1+k2a2+ + knan=o 成立 .
由向量的运算性质可得
k1a1+k2a2+ +kn an=o,即
a11 a21
an1 0
k1
a12 ...
+
k2
a22 ...
+
...
+
kn
an2 ...
=
0 ...
a1n a2n
故
β
=
(-
l1 l
)α 1
+
(-
l2 l
)α 2
+
+
(-
lm l
)α m
,
即b可由向量组a1,a2, ,am线性表示.
定理2 设向量组 a1,a2, ,am ,b 线性相关,而a1,a2, ,am线性无关,则b 可由a1,a2, ,am线性表示,且表
示式是惟一的.
证明: 再证表示法惟一.
设b可表示成以下两种形式,
结论: 1.含有零向量的向量组一定线性相关.
知识点(线代3)
3.设α,β,γ都是n维向量,k,l是数,下列运算成立的个数为()
(1)α+β=β+α;
(2)(α+β)+γ=α+(β+γ);
(3)α,β对应分量成比例,可以说明α=β;
(4)α+(-α)=0
(5)1×α=α;
(6)(kl)α=k(lα);
(1)α+β=β+α;
(2)(α+β)+γ=α+(β+γ);
(3)α+0=α;
(4)α+(-α)=0
(5)1×α=α;
(6)k(α+β)=kα+kβ;
(7)(k+l)α=kα+lα;
(8)(kl)α=k(lα)。
(9)α,β对应分量成比例,可以说明α=β
A、8B、9C、6D、7
【正确答案】A【答案正确】
3.α1=(1,0,0),α2=(2,1,0),α3=(0,3,0),α4=(2,2,2)的极大无关组是()
A、α1,α2B、α1,α3C、α1,α2,α4D、α1,α2,α3
【正确答案】C【答案正确】
【答案解析】 故极大无关组为α1,α2,α4或α1,α3,α4。
知识点向量组的秩做题结果
1.向量组(1,2,0,1),(0,3,1,1),(1,1,-1,0)的秩为()
1.含有零向量的向量组( )
A、可能线性相关B、必线性相关
C、可能线性无关D、必线性无关
【正确答案】B【答案正确】
【答案解析】含有零向量的向量组必线性相关。
2.设α1,α2…αm线性相关,则任意扩充后的α1,α2…αm+k向量组( )
A、一定线性无关B、一定线性相关
C、不一定线性无关D、不一定线性相关
《线性代数(经管类)》综合测验题库
《线性代数(经管类)》综合测验题库一、单项选择题1.下列条件不能保证n阶实对称阵A为正定的是( ) 正定没有负的特征值的正惯性指数等于n 合同于单位阵2.二次型f(x1,x2,x3)= x12+ x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是( )A.是正定的B.其矩阵可逆C.其秩为1D.其秩为23.设f=X T AX,g=X T BX是两个n元正定二次型,则( )未必是正定二次型。
(A+B)X4.设A,B为正定阵,则( ),A+B都正定正定,A+B非正定非正定,A+B正定不一定正定,A+B正定5.二次型f=x T Ax经过满秩线性变换x=Py可化为二次型y T By,则矩阵A与B( )A.一定合同B.一定相似C.即相似又合同D.即不相似也不合同6.实对称矩阵A的秩等于r,又它有t个正特征值,则它的符号差为( )7.设(x1,x2,x3)= x12-2x1x2+4x32对应的矩阵是( )9.设A是n阶矩阵,C是n阶正交阵,且B=C T AC,则下述结论( )不成立。
与B相似与B等价与B有相同的特征值与B有相同的特征向量10.下列命题错误的是( )A.属于不同特征值的特征向量必线性无关B.属于同一特征值的特征向量必线性相关C.相似矩阵必有相同的特征值D.特征值相同的矩阵未必相似11.下列矩阵必相似于对角矩阵的是( )12.已知矩阵有一个特征值为0,则( )==1==013.已知3阶矩阵A的特征值为1,2,3,则|A-4E|=( )14.已知f(x)=x2+x+1方阵A的特征值1,0,-1,则f(A)的特征值为( ),1,1,-1,-2,1,-1,0,115.设A的特征值为1,-1,向量α是属于1的特征向量,β是属于-1的特征向量,则下列论断正确的是( )A.α和β线性无关B.α+β是A的特征向量C.α与β线性相关D.α与β必正交16.设α是矩阵A对应于特征值λ的特征向量,P为可逆矩阵,则下列向量中( )是P-1AP对应于λ的特征向量。
向量组的线性相关与线性无关分析
向量组的线性相关与线性无关1.线性组合设12,,,n t a a a R ⋅⋅⋅∈,12,,,t k k k R ⋅⋅⋅∈,称1122t t k a k a k a ++⋅⋅⋅+为12,,,t a a a ⋅⋅⋅的一个线性组合。
【备注1】按分块矩阵的运算规则,12112212(,,,)t t t t k k k a k a k a a a a k ⎛⎫⎪ ⎪++⋅⋅⋅+=⋅⋅⋅ ⎪ ⎪⎝⎭。
这样的表示是有好处的。
2.线性表示设12,,,n t a a a R ⋅⋅⋅∈,n b R ∈,如果存在12,,,t k k k R ⋅⋅⋅∈,使得1122t t b k a k a k a =++⋅⋅⋅+则称b 可由12,,,t a a a ⋅⋅⋅线性表示。
1122t t b k a k a k a =++⋅⋅⋅+,写成矩阵形式,即1212(,,,)t t k k b a a a k ⎛⎫ ⎪ ⎪=⋅⋅⋅ ⎪ ⎪⎝⎭。
因此,b 可由12,,,t a a a ⋅⋅⋅线性表示即线性方程组1212(,,,)t t k k a a a b k ⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪ ⎪⎝⎭有解,而该方程组有解当且仅当1212(,,,)(,,,,)t t r a a a r a a a b ⋅⋅⋅=⋅⋅⋅。
3.向量组等价设1212,,,,,,,n t s a a a b b b R ⋅⋅⋅⋅⋅⋅∈,如果12,,,t a a a ⋅⋅⋅中每一个向量都可以由12,,,s b b b ⋅⋅⋅线性表示,则称向量组12,,,t a a a ⋅⋅⋅可以由向量组12,,,s b b b ⋅⋅⋅线性表示。
如果向量组12,,,t a a a ⋅⋅⋅和向量组12,,,s b b b ⋅⋅⋅可以相互线性表示,则称这两个向量组是等价的。
向量组等价的性质:(1) 自反性 任何一个向量组都与自身等价。
(2) 对称性 若向量组I 与II 等价,则向量组II 也与I 等价。
3-1向量组的线性相关性
~
1 0 2 0 1 1 0 0 0
因为r ( A) r ( Ab) 2, 所以方程组有解(且解唯一). 故 b 可由1, 2 线性表示. 21 2 b
问 若向量以行向量的形式出现,该如何处理?
定义 称 n 阶单位矩阵 I 的行向量组
例3 ( 2001年华农)
当k 为何值时,向量 (1, k )T 可由1 ( 2,1,1)T 2,
2 ( 1,2,7 )T , 3 (1,1,4)T , 4 (1,4,11)T
线性表示,并写出其线 性表达式.
1 1 ( t1 6t 2 4)1 ( 3t1 7t 2 3) 2 t1 3 t 2 4 5 5 t1 , t 2 为任意常数. 4 3 ( k1 6k2 )1 ( 3k1 7k2 ) 2 5k1 3 5 5 5k2 4 k1 , k2 为任意常数.
则 可由1 , 2 ,, s 线性表示且表示法唯一 .
证 (反证法)
例 设 t1 , t 2 ,, t r 是互不相同的数 ( r n).
证明向量组1 (1, t1 , t12 ,, t1n1 ), 2 n 1 2 n 1 2 (1, t 2 , t 2 ,, t 2 ),, r (1, t r , t r ,, t r )
2 当 r<n 时 令 1 (1, t1 , t12 ,, t1r 1 ),
2 (1, t 2 , t ,, t
2 2
r 1 2
),
r (1, t r , t r2 ,, t rr 1 ).
由 1)的证明知 1 , 2 ,, r 线性无关,
而1, 2 ,, r 是 1 , 2 ,, r 添加分量所得, 所以1, 2 ,, r 线性无关.
向量组的线性相关性
向量组的线性相关性1.1向量组的线性相关性的概念与判定1.1.1向量组的线性相关性概念定义1: 给定向量组12(,,)m A ααα=⋅⋅⋅,如果存在不全为零的数 12,,,m k k k ⋅⋅⋅,使11220m m k k k ααα++⋅⋅⋅+=则称向量组A 是线性相关的, 否则称它是线性无关的.定义2:若向量组A 中每一个向量(1,2,,)i i t α= 都可由向量组{}1,,s B ββ= 线性表示,则称A 可由B 线性表示。
若两个向量组可互相线性表示,则称这两个向量组等价.性质:向量组的等价具有1)反射性;2)对称性;3)传递性.定义3: 向量组{}s αα,,1 称为线性无关,若它不线性相关,或:由11220s s k k k ααα+++= ,则必021====s k k k 。
即:11220s s x x x ααα+++= 只有唯一零解.定义6:一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身是线性无关的,并且从这向量组中任意添一个向量(如果还有的话).所得的部分向量组都线性相关.定义7:一个向量组的极大线性无关组所含向量个数称为这个向量组的秩数.性质:1.向量组{}r αα,,1 线性无关⇔{}r αα,,1 秩r =. 向量组{}r αα,,1 线性相关⇔{}r αα,,1 秩r <. 2.等价向量组的秩数相同.n P 中向量组的极大线性无关组的求法. 注意1: 对于任一向量组而言, 不是线性无关的就是线性相关的. 注意2: 若12,,m ααα⋅⋅⋅线性无关, 则只有当120m λλλ==== 时, 才有11220m m λαλαλα++⋅⋅⋅+=成立.注意3: 向量组只包含一个向量α 时,若0α=则说α线性相关; 若0α≠, 则说α 线性无关.注意4: 包含零向量的任何向量组是线性相关的.注意5: 对于含有两个向量的向量组, 它线性相关的充要条件是两向量的分量对应成比例, 几何意义是两向量共线; 三个向量线性相关的几何意义是三向量共面.1.1.2线性相关性的判定向量组12,,m ααα⋅⋅⋅ (当m 2≥时)线性相关的充分必要条件是12,,m ααα⋅⋅⋅中至少有一个向量可由其余1m -个向量线性表示.证明: 充分性. 设12,,m ααα⋅⋅⋅中有一个向量(比如m α)能由其余向量线性表示,即有112211m m m αλαλαλα--=++⋅⋅⋅+也就是112211(1)0m m m λαλαλαα--++⋅⋅⋅++-=因121,,,m λλλ-⋅⋅⋅,(-1)这m 个数不全为0,故12,,m ααα⋅⋅⋅线性相关.必要性. 设12,,m ααα⋅⋅⋅线性相关. 则有不全为0的数12,,,m k k k ⋅⋅⋅,使11220m m k k k ααα++⋅⋅⋅+=不妨设10k ≠, 则有32123111()()().m m k k k k k k αααα=-+-++- 即1α能由其余向量线性表示. 证毕1.2 向量组线性相关性的性质和应用1.2.1向量组线性相关性的性质:1.含零向量的向量组必线性相关,即{}s ααθ,,,1 线性相关.θααθ=⋅++⋅+⋅s 00112.一个向量组若有部分向量线性相关,则此向量组线性相关。
高等代数(2016秋季)自测题补充
一、单项选择题1、若((),())1f xg x=,则以下命题为假的是( B ).A.23((),())1f xg x= B.(),(),u x f x v x g x+=∀有()()()() 1.u x v xC.()|()()+=f xg x f x g xg x f x h x必有()|()g x h x D.(()(),()())12、下列命题为假的是( D ).A.在有理数域上存在任意次不可约多项式B.在实数域上3次多项式一定可约C.在复数域上次数大于0的多项式都可约D.在实数域上不可约的多项式在复数域上没有重根3、下列命题为真的是( C ).A.若2()()p x f x,则()p x是()f x二重因式B.若()p x是(),(),()'''的公因式,则()p x的根f x f x f x是()f x的三重根C.()f x有重根'⇔有一次因式(),()f x f xD.若()f x有重根,则()f x有重因式,反之亦然4、下列命题为假的是( A ).A.三个本原多项式之积未必是本原多项式B.实系数多项式只有一次或含共轭非实复根的二次多项式的实数域上不可约C.任何(0)n n >次复系数多项式在复数域上有且仅有n 个根(重根按重数计算)6、排列134782695的逆序数是【 B 】(A)9 ; (B)10 ; (C)1 ; (D)12 。
7、对任意n 阶方阵A 、B ,总有【 B 】(A) AB =BA (B) |AB |=|BA |(C) (AB )T =A T B T (D) (AB )2=A 2B 28. 设CB A ,,均为n 阶方阵,且,E CA BC AB === 则=++222C B A ( A );(A )3E ;(B )2E ;(C )E ;(D )0.9.设A 为n 阶方阵,T B A A =-,则必有( C ); ();()2;();()0.T T A B B B B A C B B D B ===-= 10、设n 阶方阵A 满足20A E -=,其中E 是n 阶单位矩阵,则必有【 C 】(A )A E =; (B )A E =-;(C )1A A -=; (D )1A =。
向量组的线性相关性
向量组线性无关性的判定定理 m维向量组 A: , , , 线性无关 1 2 n 如果 k11 k22 knn (零向量),则必有 k1 = k2 = … = kn =0 . n 元齐次线性方程组 Ax = 0 只有零解. 矩阵A = 1 2 n 的秩等于向量的个数 n . 即:r(A)=n
, ,
k1( ) k2( ) k3( ) (k1 k2 ) (k2 k3 ) (k1 k3 )
因为向量组 , , 线性无关,所以
k1 k3 0 k1 k2 0 k2 k3 0
,如果存
11 2 2 nn
则称向量 是向量组 A 的线性组合,这时称向量 能由向量
组A 线性表示.
P.110 定理4.1 的结论: 向量 能由 向量组 A 线性表示 线性方程组 Ax = 有解
r ( A) r ( A, )
由于零向量可由向量组A线性表示:0 01 02 0n n元齐次线性方程组 Ax =0 有非零解
已知向量组A:
k1 0 kl 1 k n 0
含有零向量的向量组线性相关
4、n维基本单位向量组 1, 2 n
1 0 1 0
0 1 2 0
0 0 n 1
所以向量组 1, l ,l 1 ,n 也线性相关
部分相关 整体相关, 整体无关 部分无关
例4 、
分析:
性质3、已知向量组 1,2 , ,n ,若其中至少有一个向量能表示成其余向量 的线性组合,不妨假设
1 k202 kn 0n
则其次线性方程组
线性相关的判定
,
线性无关的充分必要条件是由
n
1,2, ,n构成的n阶行列式
a11 a12
a1n
a21 a22
a2n 0.
an1 an2
ann
例8 判断向量组1 (1, 2, 0),2 (1,3, 0),3 (1, 1,1)
k11 k22 krr +0r+1+ +0s =0,
注:因这此个,向定量理组的等1,价2说, 法,是r线:如性果相一关个. 向量组线性无
关,则其中任一个部分向量组也必线性无关.
也即一向量组部分线性相关,则整体必线性相关,一
向量组整体线性无关,则其部分组必线性无关.
推论 含有零向量的向量组必线性相关
于向量个数m ;向量组线性无关的充分必要条件是 R( A) m.
证明 (略)
下面举例说明定理的应用.
例1 n 维向量组
e1 1,0,,0T ,e2 0,1,,0T ,,en 0,0,,1T
称为n维单位坐标向量组,讨论其线性相关性 .
解 n维单位坐标向量组构成的矩阵 E (e1, e2 ,, en )
是n阶单位矩阵. 由 E 1 0,知R(E ) n. 即R( E )等于向量组中向量个数,故由定理2知此 向量组是线性无关的.
例2
已知 1
0
2
1
1
,
2
2
,
3
4
,
1
5
7
试讨论向量组1, 2, 3及1, 2的线性相关性.
解 分析
对矩阵(1, 2, 3),施行初等行变换变
成行阶梯形矩阵,可同时看出矩阵(1, 2, 3)
一个含有有限个向量的向量组,总可以看成
线性代数 向量组的线性相关性
(5-7)
这与已知的v1, … , vk 线性无关相矛盾, 故λ≠ 0.
于是, 于是,可将 写成
λ1v1 + ⋯ + λk vk + λ v = 0
λ1 λ )v1 + ⋯ + (− k )vk , λ λ
(5(5-7′)
v=a1v1+…+ak vk ,
v=b1v1+…+bk vk ,
两式相减, 两式相减,得 0 = (a1 − b1 )v1 + ⋯ + (ak − bk )vk , 由 v1, … , vk 线性无关, 线性无关,得
⋯ , α r中 的 证明 不 妨 设 向 量 组 α 1 , ⋯ , α s, α s +1,
α 1 , ⋯ , α s线 性 相 关 ,∃ 不不不零的不 k1 ,⋯ , k s, 使得k1α1 + ⋯ + ksα s = 0.
取 k s +1 = ⋯ = kr = 0, 则 k1 ,⋯ , k s , k s +1 , ⋯ , k r不 不 不 零 ,
故 λ 1 = 0, λ 2 = 0, λ3 = 0,
证得 v1 , v 2 ,v 3 线性无关.
解三
解四
性质1 向量组部分向量线性相关⇒整个向量组线性相关.
性质3 对一组给定向量v1, … , vk , 若将其每 个向量vi 都删去若干个具有相同序号的分量, 都删去若干个具有相同序号的分量,形成 一组“截短”向量a1, … , ak , 则当a1, … , ak 线性无关时, 原向量v1, … , vk 必线性无关. 证明 性质4 给定一组向量 v1, … , vk , 若对其每个
解二
线性代数判断题及其答案
线性代数判断题线性代数课程组判断题(正确的请在括号里打“√” ,错误请打“×” )1、以数k 乘行列式D ,等于用数k 乘行列式的某一行(或某一列). ( )2、行列式01111≠--a a 的充要条件是a≠2且a≠0. ( )3、3阶行列式843576321的值等于行列式853472361的值. ( ) 4、交换行列式的两列,行列式的值变号. ( )5、行列式321332211321321321321333c c c a b a b a b a a a c c c b b b a a a D +++==成立. ( )6、行列式2211221122221111d b d b c a c a d c b a d c b a D +=++++=成立. ( )7、行列式25434232124108684642⨯==D 成立. ( )8、n 阶行列式中元素ij a 的余子式ij M 与代数余子式ij A 的关系是ij ij M A -=. ( )9、主对角线右上方的元素全为0的n 阶行列式称为上三角形行列式. ( )10、行列式25479623875156422547962356428751==D 成立. ( ) 11、设D 是行列式,k 是不为零的实数,则kD 等于用k 去乘以行列式的某一行得到的行列式. ( )12、如果行列式D 有两行元素对应相等,则0=D . ( )13、设D 是n 阶行列式,ij A 是D 中元素ij a 的代数余子式.如果将D 按照第n 列展开,则nn nn n n n n A a A a A a D +++= 2211. ( )14、行列式4444543225169454321111=D 是范德蒙行列式. ( )15、克拉默法则可用于解任意的线性方程组. ( )16、齐次线性方程组一定有零解,可能没有非零解. ( )17、由n 个方程构成的n 元齐次线性方程组,当其系数行列式等于0时,该齐次线性方程组有非零解. ( )18、行列式1694432111中第三行第二列元素的代数余子式的值为-2. ( )19、设行列式3333231232221131211==a a a a a a a a a D ,则62525253332313123222121131211111=+++=a a a a a a a a a a a a D . ( ) 20、设行列式12211=b a b a ,22211=c a c a ,则3222111=++c b a c b a . ( )21、如果行列式D 有两列元素对应成比例,则0=D . ( )22、设D 是n 阶行列式,则D 的第2行元素与第三行元素对应的代数余子式之积的和为0,即03232223121=+++n n A a A a A a . ( ) 23、任何阶数的行列式都可以用对角线法则计算其值. ( ) 24、任意一个矩阵都有主次对角线. ( ) 25、两个零矩阵必相等. ( ) 26、两个单位矩阵必相等. ( )27、3阶数量矩阵⎪⎪⎪⎭⎫ ⎝⎛⋅=⎪⎪⎪⎭⎫ ⎝⎛100010001000000a a a a . ( )28、若矩阵A≠0,且满足AB=AC ,则必有B=C. ( ) 29、若矩阵A 满足T A A =,则称A 为对称矩阵. ( )30、若矩阵A ,B 满足AB=BA ,则对任意的正整数n ,一定有(AB )n=A n B n . ( ) 31、因为矩阵的乘法不满足交换律,所以对于两个同阶方阵A 与B ,AB 的行列式||AB 与BA 的行列式||BA 也不相等. ( ) 32、设A 为n 阶方阵:|A|=2,则|-A|=(-1)n 2. ( ) 33、设A,B 都是三阶方阵,则B A B A +=+. ( )34、同阶可逆矩阵A 与B 的乘积AB 也可逆,且111)(---=B A AB . ( ) 35、若A ,B 都可逆,则A+B 也可逆. ( )36、若AB 不可逆,则A ,B 都不可逆. ( ) 37、若A 满足A 2+3A+E=0,则A 可逆. ( )38、方阵A 可逆的充分必要条件是A 为非奇异矩阵. ( ) 39、只有可逆矩阵,才存在伴随矩阵. ( )40、设A ,B ,C ,E 均为n 阶矩阵,若ABC=E ,可得BCA=E. ( )41、如果A 2-6A=E ,则1-A = A-6E. ( )42、设A=⎪⎪⎭⎫ ⎝⎛2531,则A *=⎪⎪⎭⎫ ⎝⎛--1532. ( )43、设A 是n 阶方阵,且1=A ,则115)5(---=n T A . ( )44、分块矩阵的转置方式与普通矩阵的转置方式是一样的. ( )45、由单位矩阵E 经过任意次的初等变换得到的矩阵称为初等矩阵. ( ) 46、矩阵的等价就是指两个矩阵相等. ( )47、设A 是3阶矩阵,交换矩阵A 的1,2两行相当于在矩阵A 的左侧乘以一个3阶的初等矩阵⎪⎪⎪⎭⎫ ⎝⎛=10000101012E . ( )48、对n 阶矩阵A 施以初等行变换与施以相同次数的初等列变换得到的矩阵是相等的. ( )49、设A 是4×5矩阵,)(A r =3,则A 中的所有3阶子式都不为0. ( ) 50、对矩阵A 施以一次初等行变换得到矩阵B ,则有)()(B r A r =. ( ) 51、若6阶矩阵A 中所有的4阶子式都为0,则4)(0<≤A r . ( ) 52、满秩矩阵一定是可逆矩阵. ( )53、矩阵的初等变换不改变矩阵的秩. ( ) 54、等价的矩阵有相同的秩. ( ) 55、n 阶矩阵就是n 阶行列式. ( )56、用矩阵A 左乘以矩阵B 等于用矩阵A 与矩阵B 中对应位置的元素相乘. ( )57、设A 为三阶方阵且2-=A ,则=A A T 3108. ( )58、方阵A 可逆的充分必要条件是A 可以表示为若干个初等矩阵的乘积. ( ) 59、方阵A 可逆的充分必要条件是A 与同阶的单位矩阵等价. ( ) 60、方阵A 可逆的充分必要条件是A 为满秩矩阵. ( ) 61、若|A|≠0,则|A*|≠0. ( )62、矩阵的秩是指矩阵的最高阶非零子式的阶数. ( )63、设A ,B 都是n 阶可逆矩阵,O 为n 阶零矩阵,C 为2n 阶分块对角矩阵即⎪⎪⎭⎫⎝⎛=B O O A C ,则C 的逆矩阵为⎪⎪⎭⎫⎝⎛=--O BA O C 11. ( ) 64、向量组中的任意一个向量都可由这个向量组本身线性表出. ( )65、零向量可由任意向量组线性表出. ( )66、若4321αααα,,,线性无关,则)4(21>n n ααα ,,线性相关.( )67、两个n 维向量线性相关的充要条件是两个n 维向量的各个分量对应成比例. ( ) 68、若02211=++n n k k k ααα ,则n ααα,,, 21线性相关. ( )69、若对任意一组不全为的数n k k k ,,, 21,都有02211≠+++n n k k k ααα ,则n ααα,,, 21线性无关. ( )70、若向量组A :m ααα,,,21 线性相关,且可由向量组B :s βββ,,,21 线性表出,则s m ≤. ( )71、等价的向量组所含向量个数相同. ( ) 72、任意一个向量组都存在极大无关组. ( )73、设向量组im i i ααα,,,21 是向量组n ααα,,,21 的一个子组。
零向量和任意向量线性相关
零向量和任意向量线性相关关于零向量和任意向量线性相关,零向量这个问题很多朋友还不知道,今天小六来为大家解答以上的问题,现在让我们一起来看看吧!线性相关因k*向量0+0*向量a=0(其中k≠0)关于零向量和任意向量线性相关,零向量这个问题很多朋友还不知道,今天小六来为大家解答以上的问题,现在让我们一起来看看吧!1、乘,分为点乘,数乘。
2、如果是点乘,则零向量乘零向量为0,虽然零向量和零向量的夹角未知,但是总要乘以系数0 ,所以结果是0,而这就是数量积。
3、数乘不知道你学过没,零向量数乘零向量是没有意义的。
由于零向量与任意一个向量线性相关,所以如果一个向量组中含有零向量,则这个向量组中至少有一个向量可被其他向量线性表出,因此这组向量线性相关。
因为一组向量,如果能找到一组不全为0的系数,使得这组向量和系数相乘后相加,得到0向量,那么就是线性相关,如果不能找到这样一组不全为0的系数,就是线性无关。
如果向量组中,有1个0向量,那么只要这个0向量的系数不为0,其他向量的系数都为0,那么这就是一组不全为0的系数,而这样相乘相加后,结果就是0向量。
所以含有0向量的向量组一定线性相关。
扩展资料:减少向量的个数,不改变向量的无关性。
(注意,原本的向量组是线性无关的)一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。
若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。
若行列式为零,则向量组线性相关;否则是线性无关的。
零向量的方向与任一向量平行,与任意向量共线,与任意向量垂直。
零向量的方向不确定,但模的大小确定。
零向量与任意向量的数量积为0。
零向量的方向不确定,但模的大小确定。
但是注意向量与向量不能比较大小。
例如,若向量a的模大于零,则向量a大于零向量的说法是错误的,因为实数之间可用比较大小,而向量之间不能比较大小。
线性无关解的个数和秩的关系
线性无关解的个数和秩的关系
主要是解与矩阵的秩的关系。
设矩阵A的秩r(A)=r,A为m*n矩阵,则齐次线性方程组AX=0的基础解系含n-r(A)个向量。
系数矩阵常常用来表示一些项目的数学关系,比如通过此类关系系数矩阵来证明各项目的正反比关系。
对于任一向量组而言,,不是线性无关的就是线性相关的。
向量组只包含一个向量a时,a为0向量,则说A线性相关;若a≠0,则说A线性无关。
包含零向量的任何向量组是线性相关的。
含有相同向量的向量组必线性相关。
扩展资料:
若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。
若行列式为零,则向量组线性相关;否则是线性无关的。
矩阵的乘积的秩Rab<=min{Ra,Rb}。
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含有零向量的向量组一定线性相关
答案:
是对的
如:0,a2,a3
有:1*0 + 0*a2 +0*a3 = 0
即有上组不全为零的数1,0,0使得那个线性组合等于0
故0,a2,a3 线性相关.
首先,如果向量组线性相关,那就是存在一组不全为0的数k1...kn,使得k1a1+...+knan=0,其中a1...an是列向量。
现在如果a1...an里面有一个零向量,比如说a3是零向量其他的不是,那么k3就可以带任何不为0的数,什么k3乘a3都得0,而其他的k 就放0,显然条件就达成了,不全为0的k1...kn使得k1a1+...+knan=0成立。
几何意义上,显然一个非零向量的向量组必定无关;而两个向量共线时线性相关;三个向量共面时线性相关。
那现在想想在两个向量中如果有一个是零向量,那这两个向量必定共线。
而在三个向量中有一是零向量,那三个向量肯定共面,这是因为空间中任意两个向量必定共线/共面,你加一个零向量不影响什么。
含有零向量的向量组显然线性相关,例如向量组(1,0),(0,1),(0,0)
则0*(1,0)+0*(0,1)+k*(0,0)=0, K为不等于0的任意数
是不是找到一组不全为零的数0,0, k,使上式为零。
你说的情况,都乘以0,只有0解,所以线性无关,但是它并不是只有0解啊,还有其他解。
必须加上"当且仅当"k1,k2,k3都等于0,使k1*a1+k2*a2+k3*a3=0,才是线性无关的。
向量组中含有零向量就一定呈线性相关吗?
向量组中含有零向量一定呈线性相关。
向量组等价的基本判定是:两个向量组可以互相线性表示。
需要重点强调的是:等价的向量组的秩相等,但是秩相等的向量组不一定等价。
向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。
区别:
(一)含义不同
1、向量组是由若干同维数的列向量(或同维数的行向量)组成的集合。
2、矩阵是一个按照长方阵列排列的复数或实数集合,由向量组构成。
(二)特点不同:向量组是有限个相同维数的行向量或者列向量,其中向量是由n个实数组成的有序数组,是一个n*1的矩阵(n维列向量)或是一个1*n的矩阵(n维行向量)。
包含0向量的向量组一定线性相关才对。
因为一组向量,如果能找到一组不全为0的系数,使得这组向量和系数相乘后相加,得到0向量,那么就是线性相关,如果不能找到这样一组不全为0的系数,就是线性无关。
如果向量组中,有1个0向量,那么只要这个0向量的系数不为0,其他向量的系数都为0,那么这就是一组不全为0的系数,而这样相乘相加后,结果就是0向量。
所以含有0向量的向量组一定线性相关。
扩展资料:
减少向量的个数,不改变向量的无关性。
(注意,原本的向量组是线性无关的)一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。
若向量组所包含向量个数等于分量个数时,判定向量组是否线性相关即是判定这些向量为列组成的行列式是否为零。
若行列式为零,则向量组线性相关;否则是线性无关的。
零向量的方向与任一向量平行,与任意向量共线,与任意向量垂直。
零向量的方向不确定,但模的大小确定。
零向量与任意向量的数量积为0。
零向量的方向不确定,但模的大小确定。
但是注意向量与向量不能比较大小。
例如,若向量a的模大于零,则向量a大于零向量的说法是错误的,因为实数之间可用比较大小,而向量之间不能比较大小。