电子显微技术PPT课件

合集下载

电子显微图像的衬度ppt课件

电子显微图像的衬度ppt课件
缺陷不可见性判据 对于给定的缺陷R确定,当选用满足: g R = 整数 的g成像时,缺陷衬度消失,即不可见。
§2.电子衍衬成像
§2.电子衍衬成像
位错
位错
b为柏格斯矢量;be为b 的刃分量;u为位错在晶体中的位向;r0为位错核心附近严重畸变区的半径,一般取10-8 cm;为晶体中畸变区内某点的极坐标;为材料的泊松比。 可见任意位错提供的衬度,取决于g b, g be、 g b u三项。
§2.1 电子衍衬成像运动学理论
§2.电子衍衬成像
偏离矢量 衍射面(hkl)偏离精确的布拉格位置的倒空间表示矢量,即衍射面对应的倒易阵点偏离Ewald反射球的距离,方向:与入射束方向相同为“+”,与入射束方向相反为“-”。
§2.电子衍衬成像
消光距离 (1)双光束条件下的散射过程: 设(hkl)处于精确的布拉格位置,入射波被激发为透射波和(hkl)衍射波。当波矢量为k0的入射波到达样品表面时,即开始受到晶体内原子的散射,产生波矢为k的衍射波。随着电子波在晶体内深度方向上的传播,透射波强度不断减弱,若忽略非弹性散射和吸收效应,则相应的能量转移到衍射波方向,使衍射波的强度不断增大。当电子波在晶体内传播到一定深度时,透射波的振幅0下降为零,全部能量转移到衍射波方向,使其振幅g上升为最大。 与此同时注意到,衍射波与(hkl)晶面也成布拉格角,于是在晶体内逐步增强的衍射波也必将作为新的入射波,激发同一晶面的二次衍射,这样激发的二次衍射的方向与透射波的方向相同。这种强烈的动力学相互作用的必然结果是透射束强度和衍射束强度在晶体深度方向上发生周期性振荡,振荡在深度方向的周期定义为消光距离,以g表示。
一、透射函数(transmission function)q(x, y)
(2)
§3.高分辨成像

材料研究方法第四章电子显微分析[可修改版ppt]

材料研究方法第四章电子显微分析[可修改版ppt]
材料研究方法第四 章电子显微分析
电子显微分析
电子显微镜光学基础 透射电子显微分析 扫描电子显微分析 电子探针X射线显微分析
§1 电子显微镜光学基础
一、光学显微镜的局限性 二、电子的波性及波长 三、电磁透镜的像差和理论分辨本领 四、电磁透镜的场深和焦深
一、光学显微镜的局限性— 分辨本领有限
P—动量 m —电子质量 h—普朗克常数 —波长 v —电子运动的速度
De Broglie 波:h/mv
加速电子的动能与 电场加速电压的关系为:
—电子的速度 V —加速电压 m—电子静止质量
与V的关系式
➢ 加速电压较低时
h 12.25(埃)电子束的波
2m0eV V
长随电子枪 加速电压的
➢ 加速电压较高时
增高而减小
12.25
(埃)
V( 10.9781506V)
当加速电压为100kV时,电子束的波长约为可见光波长的 十万分之一。 因此,若用电子束作照明源,显微镜的分辨本领要高得多。
三、电磁透镜的像差和理论分辨本领
•电磁透镜在成像时会产生像差。 像差:不汇聚在一点;不按比例成像;不相似。
* 像差分为:几何像差和色差两类。
相似性:成像原理类似 不同点: (1)OM以可见光作照明束;TEM以电子束为照明 束。 (2)在OM中,将可见光聚焦成像的是玻璃透镜;
在TEM中,相应的为磁透镜。 (3)TEM的像分辨本领高,同时兼有结构分析的功
1、工作原理



照明源:聚焦电子束
子 显
试样:对电子束透明的薄膜
§2 透射电子显微分析
利用透射电子显微镜可以观察和分析材料的 形貌、组织和结构 透射电子显微镜是一种高分辨宰、高放大倍 数的显微镜。它用聚焦电子束作为照明源,使 用对电子束透明的薄膜试祥(几十到几百nm), 以透射电子为成象信号。

《电子显微术》课件

《电子显微术》课件
安全防护
操作电子显微镜时,要佩戴专业眼镜和手套等防 护用品,避免对人体造成伤害。
04
电子显微镜的优缺点
优点
01
高分辨率
电子显微镜的分辨率远高于光 学显微镜,能够观察更细微的 结构。
02观Leabharlann 厚样品电子显微镜可以观察较厚的样 品,而光学显微镜则受限于光 的穿透深度。
03
多种观察模式
电子显微镜有多种观察模式, 如透射、扫描、背散射等,可 以提供更多样化的信息。
《电子显微术》ppt课件
目录
• 电子显微术简介 • 电子显微镜的基本结构 • 电子显微镜的操作与样品制备 • 电子显微镜的优缺点 • 电子显微术的应用实例
01
电子显微术简介
定义与原理
定义
电子显微术是一种使用电子显微镜观 察样品的微观结构和形貌的现代分析 技术。
原理
电子显微镜利用电子替代传统光学显 微镜的光源,通过电子束与样品相互 作用产生信号,再利用图像处理技术 将信号转换成图像。
发展历程
1925年
德国物理学家Max Knoll和Ernst Ruska发 明第一台电子显微镜。
1931年
1940年代
第一台商用电子显微镜 问世。
透射电子显微镜(TEM )和扫描电子显微镜(
SEM)的发展。
1980年代
引入计算机图像处理技 术,提高了成像质量。
种类与应用领域
种类
透射电子显微镜(TEM)、扫描电子显微镜(SEM)、扫描透射电子显微镜(STEM)、环境电子显 微镜(ESEM)等。
控制系统
控制系统是电子显微镜的指挥中心, 负责控制和协调各个系统的正常工作 和操作。
它通常包括各种控制按钮、开关、调 节器和显示器等,操作者可以通过控 制系统来调整电子显微镜的工作状态 和参数,以满足不同的观察需求。

高分辨透射电子显微术优秀课件.ppt

高分辨透射电子显微术优秀课件.ppt
高分辨透射电子显微术优秀课件
波的干涉
Yi
底片
高分辨透射电子显微术优秀课件
高分辨透射电子显微术:是材料原子级别显微组织结构的相 位衬度显微术。它能使大多数晶体材料中的原子成串成像。
高分辨透射电子显微术优秀课件
)首次用电子显微镜拍摄了 Ti2Nb10O29 的二维像,并指出高分辨像中一个亮点对应于 晶体结构中电子束入射方向的一个通道。这是由于通道与周 围相比对电子的散射较弱,因此在像中呈现为亮点。在弱相 位体近似成立的条件下,高分辨电子显微像就是晶体结构在 电子束方向的投影,因此将晶体结构与电子显微像结合起来。 这种直观地显示晶体结构的高分辨像就称为结构像。
高分辨透射电子显微术优秀课件
阿贝成像原理
成像系统光路图如图所示。 当来自照明系统的平行电子束投射
到晶体样品上后,除产生透射束外 还会产生各级衍射束,经物镜聚焦 后在物镜背焦面上产生各级衍射振 幅的极大值。 每一振幅极大值都可看作是次级相 干波源,由它们发出的波在像平面 上相干成像,这就是阿贝光栅成像 原理。
在此期间,人们还致力于发展超高压电镜、扫描 透射电镜、环境电镜以及电镜的部件和附件等, 以扩大电子显微分析的应用范围和提高其综合分 析能力。
高分辨透射电子显微术优秀课件
高分辨电镜可用来观察晶体的点阵像或单原子像等所谓的高 分辨像。这种高分辨像直接给出晶体结构在电子束方向上的 投影,因此又称为结构像(图4-86)。
高分辨TEM
用物镜光阑选择透射波,观察到的象为明场象; 用物镜光阑选择一个衍射波,观察到的是暗场像; 在后焦平面上插上大的物镜光阑可以获得合成象,即高分辨
电子显微像
高分辨透射电子显微术优秀课件
高分辨显微像
高分辨显微像的衬度是由合成的透射波与衍射波的相位差所 形成的。

《电子显微技术》PPT课件

《电子显微技术》PPT课件

可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
ห้องสมุดไป่ตู้
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件
可编辑课件

电子显微分析 PPT

电子显微分析 PPT

电磁透镜得特点
4、 焦深
所谓焦深就是指在不影响透镜成象分辨率得前 提下,象平面可以沿透镜轴移动得距离。焦深反映了 观察屏或照相底板可在象平面上上、下沿镜轴移动 得距离。
电磁透镜得焦深大:对多级电磁透镜组成得电子 显微镜来说,终象得焦深超过10-20cm。电磁透镜 得这一特点给电子显微图象得照相记录带来极大方 便。只要在荧光屏上图象就是聚焦清晰得,那么在荧 光屏上或下十几厘米放置照相底片,所拍摄得图象都 将就是清晰得。
m kV,电子波长0、00251-0、
00536 nm,大约就是可见
(nm) 光得十万分之一。
电磁透镜
电子在磁场中得运动 电子在磁场中运动时所受到得洛伦茨力 F =e(v×B ) 1、 v与B平行 F=0 2 v与B垂直: F = ev B, 方向反平行与v×B,电子
运动速 度大小不变,只改变方向,做圆周运动。 evB = mv2/R, R= mv/eB
透射电子显微镜得构造
成象系统
成象原理:一次成象,多级放大。
该系统包括样品室、物镜、中间镜、反差光栏、衍射光栏 投射镜以及其它电子光学部件。
经过会聚镜得到得平行电子束照射到样品上,穿过样品后就 带有反映样品特征得信息,经物镜与反差光栏作用形成一次电 子图象,再经中间镜与投射镜放大一次后,在荧光屏上得到最 后得电子图象。
如果把中间镜得物平面与物镜得像平面重合,则在荧光屏上 得到一幅放大像这就就是电子显微镜中得成像操作;如果把 中镜得物平面与物镜得背焦面重合,则在荧光屏上到一幅电子 衍射花样,这就就是透射电子显微镜中电子衍射操作。
透射电子显微镜得构造
透射电子显微镜得构造
观察照相室
电子图象反映在荧光屏上。荧光发光与电子束流成正比。 把荧光屏换成电子干板,即可照相。干板得感光能力与其波长 有关。

第十二章高分辨透射电子显微术ppt课件

第十二章高分辨透射电子显微术ppt课件
第二篇 材料电子显微分析
第八章 电子光学基础 第九章 透射电子显微镜 第十章 电子衍射 第十一章 晶体薄膜衍衬成像分析 第十二章 高分辨透射电子显微术 第十三章 扫描电子显微镜 第十四章 电子背散射衍射分析技术 第十五章 电子探针显微分析 第十六章 其他显微结构分析方法
1
第十二章 高分辨透射电子显微术
图12-14 Al-Si合金粉末的高分辨像 a)、SEM像 b)和TEM明场像 c) 22
第三节 高分辨电子显微术的应用
六、高分辨像的计算机模拟
由图12-15可说明,Si3N4晶界上有一非晶层, NiAl2O4 与NiO相界为稳定界面, Fe2O3表面为其(0001)面
图12-15 几种平面界面的高分辨像 a) Ge的晶界 b) Si3N4的晶界
的实验像a)、b)、c)及模拟高分辨像d)、e)、f)
16
第三节 高分辨电子显微术的应用
材料的微观结构与缺陷结构,对材料的物理、化学和力 学性质有重要影响。利用高分辨电子显微术,可以在原子尺 度对材料微观结构和缺陷进行研究,其应用主要包括 1) 晶体缺陷结构的研究 2) 界面结构的研究 3) 表面结构的研究 4) 各种物质结构的研究 下面给出一些典型的高分辨像,用图示说明高分辨透射电镜 在材料原子尺度显微组织结构、表面与界面以及纳米粉末结 构等分析研究中的应用
电子束倾斜和样品倾斜均会影响高分辨像衬度,电子 束 轻微倾斜,将在衍射束中引入不对称的相位移动
图12-6所示为 Ti2Nb10O29 样品厚度为7.6 nm时的高分辨模 拟 像。图中清楚表明,电子束或样品即使是轻微倾斜,对高 分 辨像衬度也会产生较明显影响
样品倾斜 / mrad
电子束倾斜 / mrad
六、高分辨像的计算机模拟
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h
mv
h: Plank’s constant (6.62610-34J.s) m: mass of moving electron v: velocity of moving electron
19
In the TEM we impart momentum to the electron by accelerating it through a accelerating voltage V, giving it a kinetic energy eV. This potential energy must equal the kinetic energy.
9
微结构分析方法(2)
2. 电子显微分析
优点:
• 分辨率高 TEM (1Å), SEM (6Å)
• 可把形貌观察、结构分析与成分分析结 合起来
– 形貌观察(TEM, SEM)
– 结构观察(电子衍射)
– 成分分析(X射线谱,电子能量损失谱)
• 可观察表面与内部结构
10
微结构分析方法(3)
(续) 2. 电子显微分析 局限性: • 仪器贵 (几十万,上百万美元) • 不直观, 分析困难 • 操作复杂 • 样品制备复杂
4

5
电子显微分析
本分内容选自清华大学材料科学与工程 系章晓中教授所做的SLIDES
6
绪论
• 研究对象
– 微结构与显微成分 – 微结构与性能的关系 – 微结构形成的条件与过程机理
• 材料的性能由微结构所决定,人们可通 过控制材料的微结构,使其形成预定的 结构, 从而具有所希望的性能。
7
微结构涉及的内容
For glass lens: ~900,sin~0.95. When the medium is air, n=1, the resolution is
d 0.61 ~1
10.95 2
Wavelength of visible light: 4000—8000 Å Resolution of optical microscope ~2000 Å
To improve the resolution, use short wavelength ! X-ray: wavelength is ~Å, but cannot be focused. Electron: wavelength is ~10-2Å, can be focused!
18
Wavelength of electron
16
3 Theoretical resolution of optical microscope
d0.61 0.61 nsin NA
=>d; NA =>d
: wavelength of the light
n: refractive index of the medium between the object and the objective lens : semi-angle镜口角 NA=nsin : numerical aperture镜口率 17
eV 1 mv2 2
20
When accelerating voltage V<500V, the velocity of mass is much smaller than the speed of light, m=m0 (mass of static electron, 9.10910-31kg). so
11
电子显微学研究的尺度
细胞 病毒
纳米科学
扫描探针显微镜(表面结构与性能)
近场光学显微镜
电子显微镜(内部与表面结构与性能)
?
光学显微镜
10-6m
10-8m nanometer 10-10m 纳米
10-12m
12
课程内容
• 电子光学基础 • 电子与物质的相互作用 • 光学显微镜 • 透射电镜技术(电子衍射、电子衍衬像) • 扫描电镜技术和电子能谱学 • 扫描探针显微技术 • 其他电子显微分析方法简介
13
Basic Electron Optics 电子光学基础(原理)
14
1 Resolution分辨率
Resolution of human eye : 0.1-0.2mm Resolution of optical lens
15
2 Rayleigh criterion
Two point objects are just resolved when the first dark fringe in the diffraction pattern of one falls directly on the central bright fringe in the diffraction pattern of the other.
h h h 1.2 25
mvm0v 2m0eV V
( is in unit of Å, V is in unit of kV)
点击此处输入 相关文本内容
2

D C B A
10
20
3 0 2θ
40
50
60
70
图4.9 不同温度下Hap晶体的XRD图谱 A:常温; B:500℃; C:700℃; D:1100℃
3

(002)
(300)
Hale Waihona Puke C(002)(300)
B
β-TCP
(300)
(002)
A
10
20
30
40
50
60
70

图4.3 不同反应时间产物Hap煅烧后的XRD图谱 A:10 min; B:1 h; C:2 h
X-射线衍射(续)-思考题
• (3 0 0 ) (0 0 2 ) C
B A
0
10
20
3 0 2θ
40
50
60
70
80
2?
图3.3囊泡体系制备Hap不同温度煅烧后的XRD图谱
A:未煅烧; B:500℃煅烧; C:700℃煅烧
1
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
• 晶体结构与晶体缺陷(面心立方,位错) • 显微化学成分(基体与析出相的成分) • 晶粒尺寸与形态 • 相的成分、结构、形态、含量与分布 • 界面(表面,相界,晶界) • 位向关系(新相与母相,孪生相) • 夹杂物
8
微结构分析方法(1)
1. 光学显微镜 优点: 简单,直观 局限性:
– 分辨本领低(0.2微米,常规)(?) – 只能观察表面形貌(常规,?) – 不能做微区成分分析
相关文档
最新文档