学而思七年级尖子班课后答案
学而思初一数学秋季班第2讲.有理数综合运算.尖子班.教师版
学而思初一数学秋季班第2讲.有理数综合运算.尖子班.教师版1初一秋季·第2讲·尖子班·教师版如何计算?实数7级实数初步实数6级绝对值实数5级有理数综合运算满分晋级阶梯漫画释义2有理数综合运算2初一秋季·第2讲·尖子班·教师版知识点切片(4个) 7+2+1+1知识点目标有理数综合运算(7)1、有理数加减法则;2、有理数加法的运算律;3、有理数减法法则;4、有理数乘法法则;5、有理数除法法则;6、有理数乘方;7、有理数混合运算的运算顺序裂项技巧(2)1、分数裂项;2、整数裂项连锁约分(1) 1、连锁约分,简便运算整体思想(1)1、整体思想,化繁为简题型切片(6个)对应题目题型目标乘法分配律的应用例1、练习1 连续自然数的加减交替例2、练习1 有理数综合运算例3、练习2裂项例4、例5、练习3、练习4 连锁约分例6、练习5 整体思想例7、练习6有理数综合运算1.有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加.② 绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③ 一个数同0相加,仍得这个数.2.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变. ()()a b c a b c ++=++(加法结合律).3.有理数减法法则:减去一个数,等于加上这个数的相反数,()a b a b -=+-.4. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.5. 有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数.1a b a b÷=?,(0b ≠)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0. 6. 有理数乘方知识导航知识、题型切片3初一秋季·第2讲·尖子班·教师版概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂. 在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,它表示a 的个数,n a 表示有n 个a 连续相乘. 特别注意:负数及分数的乘方,应把底数加上括号.7. 有理数混合运算的运算顺序:① 先乘方,再乘除,最后加减;② 同级运算,从左到右进行;③ 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.加减法为一级运算,乘除法为二级运算,乘方及开方(以后学)称为三级运算.同级运算,按从左到右的顺序进行;不同级运算,先算三级运算,然后二级,最后一级;如果有括号,先算括号里的,有多重括号时,先算小括号里的,再算中括号里的,最后算大括号里的.④ 在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.【例1】计算:⑴735(1)(36)1246??-+---?-⑵11171110()71110++⑶111(0.25)(5)( 3.5)()2244-?-+?-+-?⑷371(8)32-?-⑸112571113623461236-÷+---+ ? ?????【解析】⑴原式=()735(36)(36)36(1)(36)21273036121246-?-+?-+-?---?-=-+-=- ? ?????.⑵原式11107107111107077257=?+?+?=++=.⑶原式111111()(5)()( 3.5)()2()(5 3.52)0424442=-?---?-+-?=-?-++=.⑷原式33337187188568568323244?=+?=?+?=+= .⑸设112571113623461236a b =-=+---+,,题目中要求a b ,可以先求ba ,则原式=()125711136=182********=7723461236??+---+?---+++- ,∴原式=177.【例2】连续自然数加减交替问题乘法分配律的应用4初一秋季·第2讲·尖子班·教师版⑴填空:12344950-+-++-=L L ;123499100101-+-++-+=L L ;⑵计算:()112341n n +-+-++-?L L .【解析】⑴25-,51;⑵2n -(n 为偶数)或12n+(n 为奇数).针对例2的拓展:⑴1234567891011122009201020112012--++--++--+++--+L ;⑵1234567891011122009201020112012+--++--++--+++--L . 【解析】⑴原式()()()()12345678910111220092010201120120=--++--++--+++--+=L .⑵原式()()()()12345678910111213200620072008200920102011201 2=+--++--++--+++--++--L 1201020112012=+-- 2012=-..【例3】计算:⑴()216123113284 2.5242523412??-÷-?+++--? ???⑵()22213111112190.75242222÷÷-+÷--?--?? ? ?????????⑶()()3220132231313 1.20.33??--?-÷--?÷⑷()()231814511722851755??-?-+-?----?-?? ? ?????????⑸()2323510.3534124111159650.52-÷-÷-?-? ? ? ÷【解析】⑴解:原式16132 6.25121618222532?=--?-+++-- ? ??11 6.251250=++-1.02 6.2512=+- 4.73=-.有理数综合运算5初一秋季·第2讲·尖子班·教师版⑵解:原式341119199232244216=??-+÷-?- ? ????? 11199122216??=-+?-?- 1991816=---69121616=----15316=-.⑶解:原式()32213 1.2 1.23130.30.30.3=?÷-- 14803=--14803=-.⑷解:原式()()11716525285525??=-?-+----?-16112517165=-++-1241 3.2=-++ 119.8=-.⑸解:原式()322855255159650.52-=?÷?-? ???????????÷2281093=÷-? ? ????? 0=.1.分数裂项技巧:⑴()11111n n n n =-++;⑵()1111n n k k n n k ??=- ?++??;⑶()()()()()1111122112n n n n n n n ??=-??+++++;⑷()()()()()1111222n n k n k k n n k n k n k ??=-??+++++.2.整数裂项技巧:⑴()()()()()()()()111121121133n n n n n n n n n n n n +=++--=++--+;⑵思路导航6初一秋季·第2讲·尖子班·教师版()()()()()()()()()()()()1112123112311244n n n n n n n n n n n n n n n n ++=+++--=+++--++.3.连锁约分多个分数相乘通过约掉分子分母中的相同因数简便运算.【例4】计算:⑴11111161111161621212626313136+++++;⑵2310011(12)(12)(123)(1299)(12100)----++++++++++L L L . 【解析】⑴原式1111111111111561111161621212626313136??=-+-+-+-+-+-1115636??=- 136=. ⑵注意到每一项分母两个因子的差恰好等于分子,因此考虑拆项;经过尝试,发现有:2111(12)12=-?++,311(12)(123)12123=-++++++…,所以原式111111212123=----- ? ?++++11129912100??-- ?++++++??L L L112100=+++L 15050=.针对例4的铺垫:计算:⑴1111223344599100+++++L ⑵111113355720112013++++L 【解析】⑴原式111111112233499100=-+-+-++-L11100=- 99100=.⑵原式11111111123355720112013??=?-+-+-++-L11122013??=?- 分数裂项运算7初一秋季·第2讲·尖子班·教师版1201222013=?10062013=. 针对例4的拓展计算:⑴111111315131517293133+++L ;⑵1111111111234567892612203042567290++++++++;⑶11120101111201022009201012011120092200820091??+ ++-+++ L L . 【解析】⑴原式111111120411131315131515172931313313299=-+-++-= ?L . ⑵原式1111111111234567892612203042567290=+++++++++++++++++ ? ? ? ? ? ? ? ? ????()1111111111+2+3+4+5+6+7+8+92612203042567290??=+++ ++++++1111111451223349101945(1)=451010=+-+-+-++-=+-L⑶原式11111201011111111120112010220092010201120102009220082009=++++++-?++++++ ? L L 1111111111111201120102200920102009220082009??=++++++-++++++ ? ?????????L L 1220112010=12021055=.【例5】计算:⑴12233499100?+?+?++?L ;⑵1335579799?+?+?++?L ;⑶123234484950??+??++??L .【解析】⑴原式()()()11232341345299100101983=??+??-+??-++??-L ()11231232342343459899100991001013=??-??+??-??+??--??+??L 333300=.⑵原式()()()()11351357157939799101956=??++??-+??-++??-L ()1313513535735757995979997991016=+??-??+??-??+??--??+??L 整数裂项运算8初一秋季·第2讲·尖子班·教师版161651=.⑶原式()()()11234234513456248495051474=+-+-++-?L ()11234123423452345345647484950484950514=-+-+--+L 1499400=.【例6】计算:⑴11111111111111241035911+++---- ??? ????? ?????????????????L L⑵11111111111113243546979998100+?+?+?+??+?+ ? ? ? ? ? ???????????????????L【解析】⑴原式3579112468101246810357911==.⑵原式1312413514619799198100113243546979998100+?+?+?+?+?+=L 2222222345989913243546979998100=L 299100?=9950=.【例7】⑴已知1111111112581120411101640+++++++=,111111112581120411101640---+--++的值为. ⑵计算:11111111111111232006232005232006232005+++?++++-++++?+++ ? ? ? ?L L L L .【解析】⑴1111111111111111111225811204111016401111016402581 120411101640---+--++=++-+++++++ ? ?11121111101640??=++-1121101640??=+-165211640=?-131164=-. 整体思想连锁约分运算9初一秋季·第2讲·尖子班·教师版⑵设111232005a =+++L ,则原式 ()22111111200620062006200620062006a a a a a a a a a a =++-++=+++-++= ? ? ? ?.10 初一秋季·第2讲·尖子班·教师版训练1. 计算:1111111261220304256--+-++--+--+ ? ? ? ???????【解析】 4756.训练2. 计算:1111113243517191820+++++L 【解析】原式111111111111232242171921820=-+-++-+- ? ? ? ?????????L1111111111111123351719224461820=-+-++-+-+-++- ? ?????L L1111112192220=-+- ? ?????995311940760=+=.训练3. 33221129234+==??;33322112336344++==??;33332211234100454+++==??;…….⑴ 若n 为正整数,猜想3333123n ++++=L ;⑵ 利用上题的结论来比较3333123100++++L 与()25000-的大小.【解析】⑴()22114n n ??+; ⑵ 3333221123100100101255025004++++=??=L∵2550250025000000>∴()233331231005000++++>-L .训练4. 设三个互不相等的有理数,既可分别表示为1a b a +,,的形式,又可分别表示为0bb,,的形式,则20042001a b +=【解析】先找出这三个数中的1和0.由已知,这两个数组分别对应相等,于是可断定,a b +与a 中有一个为0,ba与b 中有一个为1.但若0a =,则ba 无意义,所以0a ≠,只能0ab +=,于是a b =-.又0a ≠,那么1ba=-,则1b =,故1a =-.此时,()2004200420012001112a b +=-+=.11初一秋季·第2讲·尖子班·教师版乘法分配律的应用、连续自然数的加减交替【练习1】⑴ 计算:()()(){}()34|15|73-+---+-----;⑵ 计算:1111181232-÷-+- ? ?????;⑶ 计算: 135********++++-----L L .【解析】⑴26-;⑵29;⑶50-.有理数综合运算【练习2】计算:4343(27)(2)(2)3-÷---?-+-【解析】 25.裂项【练习3】计算:1111112612203042-----= .【解析】原式11111111111122334455667223677=-----=-----= ? ??L .【练习4】计算:2446688101012?+?+?+?+?. 【解析】原式()()1246468210121486=??+??-++??-L ()1246246468468810121012146=??-??+??-??+-??+??L 11012146=280=. 连锁约分【练习5】计算:111111111111111122334420132013+-+-+-+- ??????????? ???????????????????L【解析】原式111111111111111122334420132013=-+-+-+-+ ??????????? ???????????????L1324352012201422334420132013=L 1201422013=?10072013=. 整体思想【练习6】计算:()()()()222222222222123492350123502349+++++++-+++++++L L L L .【解析】设2222349a =+++L ,则原式()()()()()22222221501505050502500a a a a a a a a a a =++-++=+++-++=数学史复习巩固12 初一秋季·第2讲·尖子班·教师版1+1=2吗?皮亚诺(Peano,Giuseppe )意大利数学家。
学而思初一数学秋季班第1讲.有理数与数轴.尖子班.学生版
1初一秋季·第1讲·尖子班·学生版长度单位实数5级 有理数综合运算实数4级 有理数与数轴 实数3级 有理数的混合运算 满分晋级阶梯漫画释义1有理数与数轴2初一秋季·第1讲·尖子班·学生版知识点切片(3个)2+1+1知识点目标有理数与数轴(2) 1、点表示数;2、比较大小 相反数与数轴(1) 1、相反数的几何意义 绝对值与数轴(1)1、绝对值的几何意义题型切片(6个)对应题目题型目标用数轴表示数 例1、练习1数轴上点、线段的移动 例2、例3、练习2 利用数轴比较大小例4、练习3 利用数轴性质建立方程求点对应的数 例5、练习4 数轴折叠 例6、练习5 周期问题与数轴例7、练习6数轴:规定了原点、正方向和单位长度的直线叫做数轴;原点、正方向、单位长度称为数轴的三要素,三者缺一不可.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π.相反数:只有符号不同的两个数,互称为相反数.特别地,0的相反数是0.数轴上,位于原点两侧且到原点距离相等的点表示的数互为相反数.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.数轴上的点,对应的数绝对值越大,离原点越远.【例1】 ⑴在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”连接起来.⑵如图,数轴上表示数2-的相反数的点是( ) A .点P B .点Q C .点M D .点N ⑶数轴的单位长度为1,点A ,B 表示的数的绝对值相等,那么点A 表示的数是( ) A .4- B .2- C .0 D .4【例2】 ⑴数轴上有一点A ,它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向3210﹣1﹣2P Q M BA3初一秋季·第1讲·尖子班·学生版右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .⑵在数轴上,坐标是整数的点称为“整点”.设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2013厘米的线段AB ,则线段AB 盖住的整点至少有 个, 至多有 个.【例3】 ⑴一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数. ①求3x 、5x 的值.②比较2013x 与2014x 的大小.⑵电子跳蚤在数轴上的某一点0K ,第一步由点0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步由点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94.求电子跳蚤的初始位置点0K 所表示的数.【例4】 ⑴有理数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小.4初一秋季·第1讲·尖子班·学生版0ba⑵已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )DCB A a bab 0abb a【例5】 ⑴如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=.试问:数轴上的原点在哪一点上?A B C D MNabcd⑵如图,数轴上标出若干个点,每相邻的两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d .①若2a b c d +++=-,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点② 若7a b +=,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点⑶如图,在数轴上有若干个点,每相邻两个点之间的距离是一个单位长,有理数a 、b 、c 、d 所表示的点是这些点中的4个,且在数轴上的位置如图所示,已知343a b =-,求2c d +的值.A5初一秋季·第1讲·尖子班·学生版dc b a【例6】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1表示的点与1-表示的点重合,则2-表示的点与数 表示的点重合: ⑵ 若1-表示的点与3表示的点重合,则5表示的点与数 表示的点重合;⑶ 若数轴上A 、B 两点之间的距离为c 个单位长度,点A 表示的有理数是a ,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【例7】 如图所示,数轴被折成90︒,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3.先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2013将与圆周上的数字 重合?初一秋季·第1讲·尖子班·学生版987654312367初一秋季·第1讲·尖子班·学生版训练1. 已知a b +与a b -互为相反数,求2000200020032003a b a b ++-训练2. 在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 .训练3. 设a 是大于1的有理数,若a ,23a +,213a +在数轴上对应的点分别记作A ,B ,C ,则A ,B ,C 三点在数轴上自左至右的顺序是 .训练4. ⑴ a 、b 、c 、d 分别为有理数,a 是绝对值最小的有理数,b 是最小的正整数,c 的相反数是其本身,d 为负数且它的倒数是本身.求:①ab 的值;②a b c d ++-的值.⑵ 非零整数m ,n 满足||||50m n +-=,所有这样的有序(即()(),,m n n m 和不同)整数组()m n ,共有 组.8初一秋季·第1讲·尖子班·学生版用数轴表示数【练习1】 一辆货车从超市出发,向东走了3km 到达小彬家,继续向前走了1.5km 到达小颖家,然后向西走了9.5km 到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km ,在数轴上表示出小明,小彬,小颖家的位置. ⑵小明家距离小彬家多远? ⑶货车一共行驶了多少千米?数轴上的点、线段的移动【练习2】 ⑴在数轴上,点A 和点B 都在与154-对应的点上,若点A 以每秒3个单位长度的速度 向动,点B 以每秒2个单位长度的速度向左运动,则7秒之后,点A 和点B 所处的位置对应的数是什么?这时线段AB 的长度是多少?⑵在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2007cm 的线段AB .被线段AB 盖住的整数有( )个.A .2005或2006B .2006或2007C .2007或2008D .2008或2009利用数轴比较大小 【练习3】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为 .利用数轴性质建立方程求点对应的数9初一秋季·第1讲·尖子班·学生版【练习4】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的整数a 、b 、c 、d ,且29b a -=,那么数轴的原点对应点是( ).A .A 点B .B 点C .C 点D .D 点DCB A数轴折叠【练习5】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1-表示的点与5表示的点重合,则7表示的点与数 表示的点重合; ⑵ 若数轴上A 、B 两点之间的距离为8个单位长度,点A 表示的有理数是10-,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?周期问题与数轴【练习6】 如图,圆的周长为3,在圆的三等分点处标上数字0、1、2. 圆从图示的位置向右滚动,那么数轴上的2013将与圆上哪个数字重合?120…201321﹣1数轴是谁最先发现的?勒内·笛卡儿1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。
学而思初一数学秋季班第1讲.有理数与数轴.尖子班.教师版
1初一秋季·第1讲·尖子班·教师版长度单位实数5级 有理数综合运算实数4级 有理数与数轴 实数3级 有理数的混合运算 满分晋级阶梯漫画释义1有理数与数轴2初一秋季·第1讲·尖子班·教师版知识点切片(3个)2+1+1知识点目标有理数与数轴(2) 1、点表示数;2、比较大小 相反数与数轴(1) 1、相反数的几何意义 绝对值与数轴(1)1、绝对值的几何意义题型切片(6个)对应题目题型目标用数轴表示数 例1、练习1数轴上点、线段的移动 例2、例3、练习2 利用数轴比较大小例4、练习3 利用数轴性质建立方程求点对应的数 例5、练习4 数轴折叠 例6、练习5 周期问题与数轴例7、练习6数轴:规定了原点、正方向和单位长度的直线叫做数轴;原点、正方向、单位长度称为数轴的三要素,三者缺一不可.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π.相反数:只有符号不同的两个数,互称为相反数.特别地,0的相反数是0.数轴上,位于原点两侧且到原点距离相等的点表示的数互为相反数.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.数轴上的点,对应的数绝对值越大,离原点越远.【例1】 ⑴在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”连接起来.⑵如图,数轴上表示数2-的相反数的点是( )A .点PB .点QC .点MD .点N ⑶数轴的单位长度为1,点A ,B 表示的数的绝对值相等,那么点A 表示的数是( ) A .4- B .2- C .0 D .4【解析】⑴分别将数的对应点在数轴上画出,如图,按数轴上从左到右的点对应从小到大的实数,得到 1420 2.552-<-<<< ⑵A .⑶B .【例2】 ⑴数轴上有一点A ,它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .3210﹣1﹣2P Q M BA 52.50-2123初一秋季·第1讲·尖子班·教师版⑵在数轴上,坐标是整数的点称为“整点”.设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2013厘米的线段AB ,则线段AB 盖住的整点至少有 个, 至多有 个.【解析】 ⑴由数轴的基本定义可知为62-+,.⑵2013;2014针对例2⑵的铺垫:1、⑴在数轴上,表示1999-和1999的两个点之间有 个整数(含1999-和1999). ⑵在数轴上,表示1999.1-和1999.9的两个点之间有 个整数. 【解析】 ⑴3999;⑵ 3999.针对例2⑵的拓展:1、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长120132厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.2、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长M (M 为正整数)厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.3、设数轴的单位长度是1厘米,若在这个数轴上随意画出一条长M (1m M m <<+,m为正整数)厘米的线段AB ,则线段AB 盖住的整点至少有 个,至多有 个.【解析】 1、2013;2014. 2、M ,1M +.3、m ,1m +.【例3】 ⑴一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数. ①求3x 、5x 的值.②比较2013x 与2014x 的大小.⑵电子跳蚤在数轴上的某一点0K ,第一步由点0K 向左跳1个单位到点1K ,第二步由点1K 向右跳2个单位到点2K ,第三步由点2K 向左跳3个单位到点3K ,第四步由点3K 向右跳4个单位到点4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好是19.94.求电子跳蚤的初始位置点0K 所表示的数.【解析】⑴①33x =,51x =.②2013405x =,2014404x =,20132014x x <.⑵假设电子跳蚤的起点0K 为0x ,规定向左为负,向右为正,根据题意可得: 01234569910019.94x -+-+-+--+=,030.06x =-.【例4】 ⑴有理数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小. 0ba4初一秋季·第1讲·尖子班·教师版⑵已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )DCB A a bab 0abb a【解析】⑴根据a b ,在数轴上的位置可知,00a b <>,,且a 的绝对值比2b 的绝对值大,所以a b a a b b b a -<<+<-<<-.⑵ C ,根据题意,00a b <>,,且在数轴上a 的对应点与原点的距离较b 的对应点大.【例5】 ⑴如图,数轴上标出若干点,每相邻的两点相距一个单位长度,点A 、B 、C 、D 对应的数分别为整数a 、b 、c 、d ,且24d a -=.试问:数轴上的原点在哪一点上?A B C D MNabcd⑵如图,数轴上标出若干个点,每相邻的两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d .①若2a b c d +++=-,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点② 若7a b +=,那么与数轴原点最接近的点是( )A .A 点B .B 点C .C 点D .D 点⑶如图,在数轴上有若干个点,每相邻两个点之间的距离是一个单位长,有理数a 、b 、c 、d 所表示的点是这些点中的4个,且在数轴上的位置如图所示,已知343a b =-,求2c d +的值.dc b a【解析】⑴由数轴可知,3d a =+,代入24d a -=得324a a +-=,解得1a =-所以原点应在点B 处.⑵①C .(3)(4)(7)2a a a a ++++++=-,4a =-,1b =-,0c =,3d =. ② A .37a a ++=,4a a +=,∴0a >,2a =.⑶2-. 提示:2b a =+.【例6】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1表示的点与1-表示的点重合,则2-表示的点与数 表示的点重合: ⑵ 若1-表示的点与3表示的点重合,则5表示的点与数 表示的点重合;⑶ 若数轴上A 、B 两点之间的距离为c 个单位长度,点A 表示的有理数是a ,并且A 、A5初一秋季·第1讲·尖子班·教师版B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【解析】 ⑴ 2;⑵3-; ⑶此时折线与数轴的交点表示的有理数是12a c ±.【例7】 如图所示,数轴被折成90︒,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3.先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2013将与圆周上的数字 重合?98765431023【解析】201345031÷=,则与数字0重合. 针对例7的铺垫:如图所示,圆的周长为4个单位长度,在圆的4等分点处 标上数字0,1,2,3.先让圆周上数字0所对应的点与数轴上的数1-所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数2012-将与圆周上的数字 重合.3210-5-4-3-2-10【解析】20124503÷=,则与数字0重合. 针对例7的拓展:1、如图所示,一数轴被折围成长为3,宽为2的长方形,圆的周长为4且圆上刻一指针,若1在数轴固定的情况下,圆紧贴数轴沿数轴正方向滚动,当圆与7接触的时候,指针的方向是( )DCBA76543210-12、如图,边长为1的等边三角形ABC 从图示的位置开始在数轴上顺时针无滑动地向右滚动,当三角形的一个顶点落在2013x =处时,三角形停止滚动. ①落在2013x =处的点是ABC △的哪个顶点?说明理由. ②在滚动过程中,点A 走过的路程是多少?…20131C B A6初一秋季·第1讲·尖子班·教师版3、把一数轴折成如图所示,第1段为1个单位长度,第2段为2个单位长度,第3段为3个单位长度,……,点O 处有一个圆,圆上刻一指针,开始指针朝东,圆周为4个单位长度,圆紧贴数轴沿着数轴的正方向滚动,当圆与点A 接触时,指针指向 (东、南、西、北),当圆与2009接触时,指针指向 (东、南、西、北).O 北西南东A-10【解析】1、C .2、①顶点C ;②894π.3、在直的数轴上,线段41AO =,414101=⨯+,指针指向北;2009(14)2023--=,因为636420162⨯=,202320167-=,故2009在点O 的西边,202345053÷=+,指针指 向西.7初一秋季·第1讲·尖子班·教师版训练1. 已知a b +与a b -互为相反数,求2000200020032003a b a b ++-【解析】 0. 因为a b +与a b -互为相反数,所以0a b a b ++-=,从而得到00a b ==,所以原式等于0.训练2. 在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 . 【解析】 2000.训练3. 设a 是大于1的有理数,若a ,23a +,213a +在数轴上对应的点分别记作A ,B ,C ,则A ,B ,C 三点在数轴上自左至右的顺序是 .(人大附中期中)【解析】 B C A .训练4. ⑴ a 、b 、c 、d 分别为有理数,a 是绝对值最小的有理数,b 是最小的正整数,c 的相反数是其本身,d 为负数且它的倒数是本身.求:①ab 的值;②a b c d ++-的值.⑵ 非零整数m ,n 满足||||50m n +-=,所有这样的有序(即()(),,m n n m 和不同)整数组()m n ,共有 组.(清华附中期中)【解析】 ⑴ 0ab =,2a b c d ++-=;⑵ 5m n +=,若1m =,4n =,有()14,,()14-,,()14-,,()14--,; 若2m =,3n =,有()23,,()23-,,()23-,,()23--,; 若3m =,2n =,有()32-,,()32,,()32-,,()32--,; 若4m =,1n =,有()41,,()41-,,()41--,,()41-,. 所以共有16组.8初一秋季·第1讲·尖子班·教师版用数轴表示数【练习1】 一辆货车从超市出发,向东走了3km 到达小彬家,继续向前走了1.5km 到达小颖家,然后向西走了9.5km 到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km ,在数轴上表示出小明,小彬,小颖家的位置. ⑵小明家距离小彬家多远? ⑶货车一共行驶了多少千米? 【解析】⑴如图所示:小颖家小彬家超市小明家西东-6-5-4-3-2-154321⑵小明距离小彬家8km⑶货车共行驶了3 1.59.5519km +++=. 数轴上的点、线段的移动【练习2】 ⑴在数轴上,点A 和点B 都在与154-对应的点上,若点A 以每秒3个单位长度的速度向右运动,点B 以每秒2个单位长度的速度向左运动,则7秒之后,点A 和点B 所处的位置对应的数是什么?这时线段AB 的长度是多少?⑵在数轴上表示整数的点称为整数点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长2007cm 的线段AB .被线段AB 盖住的整数有( )个.A .2005或2006B .2006或2007C .2007或2008D .2008或2009【解析】⑴点A 对应的数是694,点B 对应的数是714-,线段AB 的长度是35;⑵C.利用数轴比较大小 【练习3】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为 .【解析】a c b d +<+.利用数轴性质建立方程求点对应的数【练习4】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的整数a 、b 、c 、d ,且29b a -=,那么数轴的原点对应点是( ).A .A 点B .B 点C .C 点D .D 点DCB A【解析】C .2(4)9b b --=,1b =-.9初一秋季·第1讲·尖子班·教师版数轴折叠【练习5】 已知在纸面上有一数轴(如图),折叠纸面.1⑴ 若1-表示的点与5表示的点重合,则7表示的点与数 表示的点重合; ⑵ 若数轴上A 、B 两点之间的距离为8个单位长度,点A 表示的有理数是10-,并且A 、B 两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【解析】⑴ 3-;⑵此时折线与数轴的交点表示的有理数是6-或14-.周期问题与数轴【练习6】 如图,圆的周长为3,在圆的三等分点处标上数字0、1、2. 圆从图示的位置向右滚动,那么数轴上的2013将与圆上哪个数字重合?120…201321﹣1【解析】1.数轴是谁最先发现的?勒内·笛卡儿1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。
学而思初一数学秋季班第3讲.绝对值.尖子班.教师版
1初一秋季·第3讲·尖子班·教师版饕餮盛宴实数7级 实数初步实数6级 绝对值实数5级 有理数综合运算满分晋级阶梯漫画释义3绝对值2初一秋季·第3讲·尖子班·教师版题型切片(5个)对应题目 题型目标 aa的化简例1;练习1 无条件的绝对值的化简例2;练习2 零点分段法例3;练习3 用绝对值的几何意义求两点间的距离例4;练习4 用绝对值的几何意义求代数式的最值 例5,例6;练习51.绝对值:在数轴上,一个数a 所对应的点与原点的距离称为该数的绝对值,记作a . 2.绝对值的性质:⑴ 绝对值的非负性,可以用下式表示:0a ≥,这是绝对值非常重要的性质; ⑵ (0)(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ 0 ;⑶ 若a a =,则0a ≥;若a a =-,则0a ≤; ⑷ 若a b =,则a b =或a b =-; ⑸ a a =- . ⑹当0a >时,1a aa a==; 当0a <时,1a aa a==-.(主要考察分类讨论)【例1】 ⑴若a b ,均为非零的有理数,求a ba b-的值. ⑵若a b c ,,均为非零的有理数,求a b ca b c++的值. 【解析】 ⑴①当a b ,都是正数时,原式=0a ba b=-. ②当a b ,一个是正数,一个是负数时,原式=2±.∴原式的值为202-、、.⑵①当a b c ,,都是正数时,原式3a b ca b c=++=. ②当a b c ,,都是负数时,原式3=-.③当a b c ,,有两个正数一个负数时,原式1=. ④当a b c ,,有两个负数一个正数时,原式1=-.aa的化简3初一秋季·第3讲·尖子班·教师版∴原式的值为3113--、、、.针对例1进行拓展1.已知a b c abcx a b c abc=+++,且a b c ,,都不等于0,求x 的所有可能值【解析】 4或0或4-2.已知a b c ,,是非零整数,且0a b c ++=,求a b c abca b c abc +++的值. 【解析】 因为a b c ,,是非零有理数,且0a b c ++=,若a b c ,,中有一正二负,不妨设000a b c ><<,,,则原式()()11110a b c abc a b c abc =+++=+-+-+=--. 若a b c ,,中有二正一负,同理原式=0 综上,原式=03. 若a b c ,,均为非零的有理数,求a b c d a b c d+++的值.【解析】 420±±、、.老师可以继续下去,给学生们总结一下到n 的规律.【例2】 化简下列各式⑴1x -; ⑵3x -. 【解析】 ⑴当x ≥1时,则11x x -=-;当1x <时,则11x x -=-+,∴()()111=11x x x x x ⎧-⎪-⎨-+<⎪⎩≥.⑵当3x ≥时,则33x x -=-;当3x <时,则33x x -=-,∴()()333=33x x x x x ⎧-⎪-⎨-<⎪⎩≥.【例3】 阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下三种情况:·⑴当1x <-时,原式()()1221x x x =-+--=-+.零点分段法无条件的绝对值化简4初一秋季·第3讲·尖子班·教师版⑵当12x -<≤时,原式()123x x =+--=. ⑶当2x ≥时,原式1221x x x =++-=-.综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥.通过阅读上面的文字,请你解决下列的问题:. ⑴分别求出2x +和4x -的零点值; ⑵化简代数式24x x ++-.【解析】⑴分别令20x +=和40x -=,分别求得2x =-和4x =,所以2x +和4x -的零点值分别为2x =-和4x =⑵当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当24x -<≤时,原式()246x x =+--=;当4x ≥时,原式2422x x x =++-=-. 所以综上讨论,原式()()()222624224x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥.针对例3进行拓展1.求12m m m +-+-的值.【解析】先找零点,0m =,10m -=,20m -=,解得0m =,1,2.依这三个零点将数轴分为四段:0m <,01m ≤<,12m ≤<,2m ≥. 当0m <时,原式()()1233m m m m =-----=-+; 当01m ≤<时,原式()()123m m m m =----=-+; 当12m ≤<时,原式()()121m m m m =+---=+; 当2m ≥时,原式()()1233m m m m +-+-=-.2.化简:121x x --++.【解析】先找零点.10x -=,1x =.10x +=,1x =-.120x --=,12x -=,12x -=或12x -=-,可得3x =或者1x =-;综上所得零点有1,-1,3 ,依次零点可以将数轴分成四段.⑴ 3x ≥,10x ->,120x --≥,10x +>,12122x x x --++=-; ⑵ 13x <≤,10x -≥,120x --<,10x +>,1214x x --++=; ⑶ 11x -<≤,10x -<,120x --<,10x +≥,12122x x x --++=+; ⑷ 1x <-,10x -<,120x --<,10x +<,12122x x x --++=--.5初一秋季·第3讲·尖子班·教师版a b -表示数轴上数a 与数b 两点之间的距离. 且a b b a -=-.【例4】 ⑴ m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.① x 的几何意义是数轴上表示 的点与 之间的距离;x 0x -② 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;③ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .④ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则x = .⑤ 当1x =-时,则22x x -++= .⑵ 如图表示数轴上四个点的位置关系,且它们表示的数分别 为p ,q ,r ,s .若10p r -=,12p s -=,9q s -=, 则q r -= .⑶ 不相等的有理数,,a b c 在数轴上的对应点分别为A ,B ,C ,如果a b b c a c -+-=-,那么点A ,B ,C 在数轴上的位置关系是( )A .点A 在点B ,C 之间 B .点B 在点A ,C 之间 C .点C 在点A ,B 之间D .以上三种情况均有可能【解析】 ⑴ ①x ,原点;=;② 1;③x ,3,2或4;④x ,2-,0或4-;⑤4;⑵ 7;⑶ B. 【点评】此题是对绝对值几何意义的考察.【例5】 利用绝对值的几何意义完成下题:已知2x =,利用绝对值的几何意义可得2x =±;若21x +=,利用绝对值的几何意义可得1x =-或3-.已知125x x -++=,利用绝对值在数轴上的几何意义得x = . 利用绝对值的几何意义求12x x -++的最小值 .52x x ++-的最小值为 . 214x x x ++-+-的最小值 . 7326x x x x ++++-+-的最小值 . 归纳: 若1221n a a a +<<<,当x 时,1221n x a x a x a +-+-++-取得最 小值. 若122n a a a <<<,当x 满足 时,122n x a x a x a -+-++-取得最小值.【解析】 2x =或3x =-;3;7; 6;18;1n x a +=;1n n a x a +≤≤. 用绝对值的几何意义求代数式的最值用绝对值的几何意义求两点间的距离sr q p6初一秋季·第3讲·尖子班·教师版【点评】 若1221n a a a +<<<,当1n x a +=时,1221n x a x a x a +-+-++-取得最小值.若122n a a a <<<,当x 满足1n n a x a +≤≤时,122n x a x a x a -+-++-取得最小值.【例6】 如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?城市G【解析】 因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄B C、之间,7个村庄依次排列为A B G C D E F 、、、、、、.设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:4101215171920y x x x x x x x =-+-+-+-+-+-+-因为4101215171920<<<<<<,所以当15x =时y 有最小值,所以活动中心应当建在C 处.【选讲题】【例7】 有理数a 、b 、c 在数轴上的位置如图所示:若11m a b b a c c =+------,则1000m = .【解析】 由图可知,01b a c <<<<,∴()a b a b +=-+,11b b -=-,a c c a -=-,11c c -=-10001000(11)1000(2)2000m a b b c a c =⨯---+-+-+=⨯-=-.【例8】 ①化简:124x x x -+++-②求15y x x =--+的最大值和最小值. 【解析】 ①当4x >时,则12433x x x x -+++-=-当14x <≤时,则1245x x x x -+++-=+ 当21x -<≤时,则1247x x x x -+++-=-+ 当2x -≤时,则12433x x x x -+++-=-+ ②法一:根据几何意义可以得答案;法二:找到零点5-,1,可以分为以下三段进行讨论:当5x -≤时,15156y x x x x =--+=-++=; 当51x -<<时,151524y x x x x x =--+=---=--; 当1x ≥时,15156y x x x x =--+=---=-; 综上所得最小值为6-,最大值为6.c ba初一秋季·第3讲·尖子班·教师版78初一秋季·第3讲·尖子班·教师版训练1. 若a 、b 互为相反数,b 、c 互为倒数,并且m 的立方等于它本身.⑴ 试求223a bbc ++的值;⑵ 若1a >,且0m <,12322S a b b m b =----+.试求()()()42222a S a S a S -+---的值.⑶ 若0m ≠,试讨论:x 为有理数时,x m x m +--是否存在最大值,若存在,求出这个最大值,并写出解答过程;若不存在,也请你说明理由. (八一中学期中)【解析】 ⑴ 1⑵ 1a > 1b <- ∵0m <, ∴1m =-∴1232(1)()2S a b b b =-++++=522a +∴原式=105a S -=5105(2)2a a -+=252-⑶ ∵0m ≠ ∴1m =或者1m =-当1m =时,||||x m x m +--=|1||1|x x +--最大值为2; 当1m =-时,|||||1||1|x m x m x x +--=--+最大值为2 ∴当x 为有理数时,||||x m x m +--的最大值为2训练2. a b c ,,为非零有理数,且0a b c ++=,则a b b c c a a bb cc a++的值等于多少?【解析】 由0a b c ++=可知,,a b c 里存在两正一负或者一正两负;a b b c c a b c aa b c a bb cc aa b b c c a++=⋅+⋅+⋅ 若两正一负,那么1111b c aa b c a b b c c a⋅+⋅+⋅=--=-; 若一正两负,那么1111b c aa b c a b b c c a⋅+⋅+⋅=--=-.9初一秋季·第3讲·尖子班·教师版综上所得1a b b c c a a bb cc a++=-.训练3. 如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?【解析】 因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄B C、之间,7个村庄依次排列为A B G C D E F 、、、、、、.设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:4101215171920y x x x x x x x =-+-+-+-+-+-+-因为4101215171920<<<<<<,所以当15x =时y 有最小值,所以活动中心应当建在C 处.训练4. 有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是12-=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.⑴若小明依次输入3,4,5,则最后输出的结果是_______; ⑵若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m ,则m 的最大值为_______;⑶若小明将1到n (n ≥3)这n 个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m . 探究m 的最小值和最大值. (海淀期末)【解析】 ⑴4;⑵2010;⑶对于任意两个正整数1x ,2x ,21x x -一定不超过1x 和2x 中较大的一个,对于任意三个正整数1x ,2x ,3x ,123x x x --一定不超过1x ,2x 和3x 中最大的一个,以此类推,设小明输入的n个数的顺序为,,,n x x x 21则,||||||||321n x x x x m ----= m 一定不超过,,,n x x x 21中的最大数,所以0m n ≤≤,易知m 与12n +++的奇偶性相同;1,2,3可以通过这种方式得到0:3210--=; 任意四个连续的正整数可以通过这种方式得到0: |||(1)|(3)|(2)|0a a a a -+-+-+=①;下面根据前面分析的奇偶性进行构造,其中k 为非负整数,连续四个正整数结合指的是按①式结构计算. 当4n k =时,12n +++为偶数,则m 为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n ,则最大值为n ; 当41n k =+时,12n +++为奇数,则m 为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n ,则最大值为n ;10 初一秋季·第3讲·尖子班·教师版当42n k =+时,12n +++为奇数,则m 为奇数,从1开始连续四个正整数结合得到0,仅剩下n 和1n -,则最小值为1,从2开始连续四个正整数结合得到0,仅剩下1和n ,最大值为1n -; 当43n k =+时,12n +++为偶数,则m 为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n ,则最大值为1n -.初一秋季·第3讲·尖子班·教师版a a 的化简 【练习1】 若a 、b 、c 都不为0,求c a b a b c ++的值. 【解析】 3±或1±. 无条件的绝对值的化简 【练习2】 化简:23x -. 【解析】 当23x ≥时,则2332x x -=-; 当23x <时,则2323x x -=-, 零点分段法【练习3】 化简:212x x ---.【解析】 由题意可知:零点为122x x ==,. 当12x <时,原式1x =--. 当122x <≤时,原式33x =-. 当2x ≥时,原式1x =+用绝对值的几何意义求两点间的距离【练习4】 (1)阅读下面材料:点A 、B 在数轴上分别表示的数是a 、b ,A 、B 两点之间的距离表示为AB ,特别地,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,则0AB OB b a b ==-=-;当A 、B 两点都不在原点时:如图2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-.如图4,点A 、B 在原点的两边,AB OA OB a b a b a b =+=+=-=-。
尖子生培优教材数学七年级上第四讲。平方根与立方根讲义及答案
尖子生培优教材数学七年级上第四讲。
平方根与立方根讲义及答案第四讲:平方根与立方根知识导引:平方根和立方根的概念在数学中起到了十分重要的作用。
这些概念是通过逆运算来建立的,并且有多种不同的情况。
因此,理解这些概念的最好方法是从平方和立方的概念开始。
此外,还应该学会使用平方根、立方根等知识去解决一些简单的实际问题。
1.有关平方根:1) 一个正数有正负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
2) 算术平方根a的双重非负性:a≥0;a≥0.3) a的三层含义:开方的运算符号,表示对a进行开方运算;特征符号,表示a的算术平方根;表示一种新的数,是开不尽方的数(即无理数)的表示形式。
2.有关立方根:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
因此,任何数都有立方根。
3.实数的几种非负形式:1) a≥0(a为实数);2) a < 0,|a|≥0(a为实数)。
4.算术平方根的主要性质:1) (√a)²=a;2) a≥0,√(a²)=a;3) ab≥0,√(ab)=√a·√b(a≥0,b≥0);4) a≥0,b>0,(√a/√b)²=a/b。
典例精析:例1:填空题:1) (-3)的算术平方根是______。
2) 平方根等于它本身的数是______。
3) 和数轴上的点一一对应的数是______。
例1-1:下列说法正确的有:(填入相应的序号)。
①-8是64的平方根;②4的算术平方根是2;③任何数都有立方根;④6根2是2;⑤根是±8;⑥9=±3.例1-2:已知x+2+y-3+(z+1)²=______,求x+y+z的平方根。
例2:比较大小:1) -23与-32.2) 1/2,x,x,x(<x<1)。
例2-1:设a=3-2,b=2-3,c=3-2,则a、b、c的大小关系是( )。
A、a>b>cB、a>c>bC、c>b>aD、b>c>a例3:观察下列等式:32/22=23,33=33=43,34.可得出一般规律是______。
学而思寒假七年级尖子班讲义第2讲实数三大概念
专题二实数的三大概念目标一理解算术平方根、平方根、立方根的概念目标二掌握开平方、开立方的计算方法目标三熟练运用..a的双重非负性表二表三106、、25642的平方根为 __________题型一:概念应用例 1(1)求下列各数的算术平方根和平方根被开方 数4225169361121 361? 160.09 0.16 0.0001 算术平 方根平方根被开方数232234537262190.1算术平方 根平方根(3)求下列各数的算术平方根和平方根:81U _6)2.0.01,081 .0.04.324124 25、:J900的平方根为 ______ J ( 6)2的算术平方根为 _________例2(1) 一个非负数的平方根是 2a 1和a 5,则这个非负数是多少(2)已知2a 1与 a 2是m 的平方根,求 m 的值。
练(1)(洪山区2015-2016七下期中)一个正数 a 的平方根是3x 4与2 2x ,则这个正数 (2)已知x 1与2x 4是k 的平方根,求k 的值。
(、、2013)2 =(5)2的算术平方根为 _______J 0.1)2 —竞赛链接(2009联赛)已知a,b是正整数, 且满足2 t15 , 是整数, 则这样的有序数对(a,b)共有例 3 (1)若•一x 1 y 3 0 ,求.x y 的值。
(2)已知3x 2y 1 、5x_5,求6x 3y的平方根练若(x 2y 2)2与2x_y—5互为相反数,求x y的算术平方根例4 (1)若根式j x—2有意义,则x应满足_______若根式45—x有意义,则x应满足_________若根式J3 x和J x 3有意义,则x应满足____________若根式&~x 丘~1有意义,则x应满足_________________ _ ___ 5⑵已知y . 2x 3 . 3 2x 5,求x y 的平方根2(3)(梅苑中学2015-2016七下期中)若y勺x? 4 J4 x?,则2x y的平方根为________________x 2练(1)若(x y)2.,厂..^"X,求x y的值(2)已知y , 2x 1 J 2x 16x,求、.xy的平方根例5(1)已知2015 a J a 2016 a,求a 20152的值(2)已知2a 4 b 2 J(a 3)b2 4 2a,求a b 的值练已知5 x j x—6 x 4,求―2的平方根拓已知....X y 8 8 x y , x 2y a x y a,求x y a的算术平方根模块二立方根3^25 ______ 勺64 ------------------ 旷27 ___V27 _ 引0.0008 _ V 512 __ 旷27的立方根等于_______ 3G03的立方根等于 ___________________________ 3 ~ a^64的立方根为_______ 3 ( 2)3__38的立方根为 ________書64的立方根为_______ 旷8的立方根为________例7(1)(洪山区2015-2016七下期中)求一个数的立方根,有些可以直接求,如 3 8 2,有些数则不能直接求得,如39,但可以利用计算器求得,还可以通过一组数的内在联系,运用规律求得,请同学们观察下表:已知V2"16 1-293,V21?6 2785,返16 6,运用你发现的规律,求321600000(2) 7036 _________ 屈_________________ 73600 ______________已知V102.01 10.1,则V1-0201 _______已知J1.477 1.215,(4.77 3.843,则J0.01477 ______练(汉阳区2015-2016七下期中)观察下列计算过程,猜想立方根3 3 3 3 3 3 3 3 31 1,2 8,3 27,4 64,5 125,6 216,7 343,8 512,9 729 。
学而思练习册答案7年级
学而思练习册答案7年级【数学练习题及答案】一、选择题1. 下列哪个数是最小的正整数?A. -2B. 0C. 1D. 5答案:C2. 如果一个数的平方等于16,这个数是什么?A. 4B. -4C. 4或-4D. 16答案:C二、填空题1. 一个数的绝对值是其本身或其相反数,这个数是______。
答案:非负数2. 如果一个三角形的两边长分别为3和4,第三边长x满足的不等式是______。
答案:1 < x < 7三、计算题1. 计算下列表达式的值:(1) (-3) × (-2) = ______答案:6(2) √25 = ______答案:5四、解答题1. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,求这个长方体的体积。
答案:体积 = 长× 宽× 高= 8 × 6 × 5 = 240立方厘米。
【语文练习题及答案】一、选择题1. 下列哪个成语用来形容人非常聪明?A. 画龙点睛B. 画蛇添足C. 聪明绝顶D. 笨鸟先飞答案:C2. “不入虎穴,焉得虎子”这句话出自哪部古籍?A. 《史记》B. 《左传》C. 《论语》D. 《孟子》答案:A二、填空题1. “明月几时有,把酒问青天”出自苏轼的《________》。
答案:《水调歌头》2. 鲁迅的代表作《________》是中国现代文学史上的里程碑。
答案:《狂人日记》三、阅读理解阅读以下段落,回答问题:“春天来了,万物复苏,大地一片生机勃勃。
小草从土里探出头来,好奇地打量着这个世界。
”1. 这段文字描述了哪个季节?答案:春天2. 这段文字中,小草代表了什么?答案:新生和希望【结束语】以上是学而思练习册7年级的部分练习题及答案,希望能够帮助同学们更好地复习和巩固所学知识。
学习是一个不断积累和思考的过程,希望同学们能够享受学习带来的乐趣,不断进步。
学而思寒假七年级尖子班讲义第1讲平行线四大模型
目录Contents第1平行四大模型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯第2数三大体念⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7第3平面直角坐系⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3第4坐系与面初步⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 1第5二元—次方程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 7第6含参不等式()⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 9第1页共12页平行线四大模型知识目标目标一娴熟掌握平行线四大模型的证明目标二娴熟掌握平行线四大模型的应用目标三掌握协助线的结构方法,熟习平行线四大模型的结构秋天回首平行线的判断与性质、平行线的判断依据平行线的定义,假如平面内的两条直线不订交,就能够判断这两条直线平行,可是,因为直线无穷延长,查验它们能否订交有困难,因此难以直接依据定义来判断两条直线能否平行,这就需要更简单易行的判断方法来判断两直线平行.判断方法l:两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判断方法2:两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判断方法3:两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+∠4=180°,则AB∥CD(同旁内角互补,两直线平行).还有平行公义推论也能证明两直线平行:平行公义推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行.2、平行线的性质利用同位角相等,或许内错角相等,或许同旁内角互补,能够判断两条直线平行.反过来,假如已知两条直线平行,当它们被第三条直线所截,获得的同位角、内错角、同旁内角也有相应的数目关系,这就是平行线的性质.性质1:第2页共12页两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔”模型点P在EF右边,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=360°;结论2:若∠P+∠AEP+∠PFC=360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左边,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右边,在AB、CD外面“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.第3页共12页模型四“骨折”模型点P在EF左边,在AB、CD外面“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.稳固练习平行线四大模型证明(1)已知AE//CF,求证∠P+∠AEP+∠PFC=360°.2)已知∠P=∠AEP+∠CFP,求证AE∥CF.3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P=∠CFP-∠AEP,求证AE//CF.第4页共12页模块一平行线四大模型应用1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3=.(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=.(4)如图,射线AC∥BD,∠A=70°,∠B=40°,则∠P=.练(1)以下图,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为.(七一中学2015-2016七下3月月考)如图,AB∥CD,∠B=30°,∠O=∠C.则∠C=.第5页共12页2如图,已知 AB ∥DE ,BF 、DF 分别均分∠ABC 、∠CDE ,求∠C 、∠F 的关系.练如图,已知 AB ∥DE ,∠FBC=1∠ABF ,∠FDC=1∠FDE. n n(1)若n=2,直接写出∠C 、∠F 的关系 ;若n=3,尝试宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).3 如图,已知AB ∥CD ,BE 均分∠ABC ,DE 均分∠ADC .求证:∠E=2(∠A+∠C).练 如图,己知 AB ∥DE ,BF 、DF 分别均分∠ABC 、∠CDE ,求∠C 、∠F 的关系.第6页共12页4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D=180°.练(武昌七校2015-2016七下期中)如图,AB⊥BC,AE均分∠BAD交BC于E,AE⊥DE,∠l+∠2=90°,M、N分别是BA、CD的延长线上的点,∠ EAM和∠EDN的均分线订交于点F则∠F的度数为().A.120°B.135°C.145°D.150°模块二平行线四大模型结构例5如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP=50°,则∠GHM=.练如图,直线AB∥CD,∠EFG=100°,∠FGH=140°,则∠AEF+∠CHG=.第7页共12页6已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=l0°,求:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.如(l),已知MA1∥NA n,探究∠A1、∠A2、⋯、∠A n,∠B1、∠B2⋯∠B n-1之的关系.如(2),己知MA1∥NA4,探究∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之的关系.如(3),已知MA1∥NA n,探究∠A1、∠A2、⋯、∠A n之的关系.如所示,两直AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.第8页共12页挑战压轴题(粮道街2015—2016七下期中)如图1,直线AB∥CD,P是截线MN上的一点,MN与CD、AB分别交于E、F.(1)若∠EFB=55°,∠EDP=30°,求∠MPD的度数;(2)当点P在线段EF上运动时,∠CPD与∠ABP的均分线交于Q,问:Q能否为定值?假如定值,请DPB求出定值;若不是,说明其范围;(3)当点P在线段EF的延长线上运动时,∠CDP与∠ABP的均分线交于Q,问Q的值足否认值,请DPB在图2中将图形增补完好并说明原因.第9页共12页第一讲 平行线四大模型(课后作业) 1.如图,AB//CD//EF, EH ⊥CD 于H,则∠BAC+∠ACE+∠CEH 等于().A.180°B.270°C.360°D.450° 2.(武昌七校2015-2016七下期中)若AB ∥CD ,∠CDF=2∠CDE ,∠ABF=2 ∠ABE ,则∠E :∠F=(). 3 3A .2:1B .3:1C .4:3D .3:23.如图3,己知AE ∥BD ,∠1=130°,∠2=30°,则∠C= .4.如图,已知直线 AB ∥CD ,∠C=115°,∠A=25°,则∠E= .5.如阁所示, AB ∥CD ,∠l=ll0°,∠2=120°,则∠α=. 6.以下图, AB ∥DF ,∠D=116°,∠DCB=93°,则∠B= .第10页共12页7.如图,将三角尺的直角极点放在直线a上,a∥b.∠1=50°,∠2=60°,则∠3的度数为. 8.如图,AB∥CD,EP⊥FP,已知∠1=30°,∠2=20°.则∠F的度数为.如图,若AB∥CD,∠BEF=70°,求∠B+∠F+∠C的度数.10.已知,直线AB∥CD.如图l,∠A、∠C、∠AEC之间有什么关系?请说明原因;(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明原因;(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是.此中专业理论知识内容包含:保安理论知识、消防业务知识、职业道德、法律知识、保安礼仪、救护知识。
(word版)学而思寒假七年级尖子班讲义第3讲平面直角坐标系
领先中考培优课程MATHEMATICS3平面坐标系知识目标目标一理解有序数对、有序数对、点的坐标的概念目标二掌握象限、坐标轴、坐标轴夹角平分线的点的坐标特征目标三灵活运用点和线的平移变换。
点的对称变换求坐标1模块一平面直角坐标系的相关概念知识导航1有序数对有顺序的两个数a与b组成的数对,叫做有序数对,记作〔a,b),利用有序数对可以可以很准确的表示出一个位置。
2平面直角坐标系ⅠⅡ第一象限第二象限原点ⅢⅣ第三象限第四象限在平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系、水平的数轴称为x轴或横轴,习惯上取向右为正方向:竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面坐标系的原点。
如左图,建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成了Ⅰ ,Ⅱ,Ⅲ,Ⅳ四个局部,每个局部称为象限,分别叫做第一象限、第二象限、第三象限、第四象限。
坐标轴上的点不属于任何象限。
3、点的坐标平面内的点可以用一个有序数对表示,这个有序数对就叫做点的坐标。
对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫做该点横坐标、纵坐标。
如图,点p为坐标平面内一点,过点p作x轴的垂线,垂足M在x轴上对应点的数是-2,那么-2就是p的横坐标;过点p作y轴的垂线,垂足N在y轴上对应的数为3,那么3为点p的纵坐标,点p就可以用有序数对〔-2,-3〕来表示,记作p〔-2,3〕。
由坐标确定点的方法:要确定由坐标〔a,b)所表示的点 p的位置,先在x轴上找到表示a的点,过这点作x轴的垂线;再在y轴上找到表示b的点,过这点作y轴的垂线,两条垂线的交点p即为所求的位置。
由点求坐标的方法:先由点p分别向x轴和y轴作垂线,设垂足分别为A和B,再求出A在x轴上的坐标a和B在轴上的坐标b,那么点p的坐标为〔a,b)2稳固练习点的坐标在图1的平面直角坐标系中描出以下个点:A(3,4),B(-2,3),C(-5,-2),D(4,-1),E(1,0),F(0,3),G(-2,0),H(0,-4).写出图2中点A、B、C、D、E、F、G、H的坐标。
学而思初一数学暑假尖子讲义
成就/Achievements 章节/Section 标题/Title 级别/Level 页码/Page number 第一章 有理数与数轴 1第一关 有理数 ★★☆☆☆☆ 初级理解 31‐1 认识负数 ★★☆☆☆☆ 初级理解 41‐2 认识有理数 ★★☆☆☆☆ 初级理解7第二关 数轴 ★★★☆☆☆ 高级理解92‐1 用数轴来表示数 ★★★☆☆☆ 高级理解102‐2 用数轴求点的距离 ★★★☆☆☆ 高级理解13第三关 相反数 ★★★☆☆☆ 高级理解153-1 认识相反数 ★★★☆☆☆ 高级理解163-2 化简多重符号 ★★★☆☆☆ 高级理解18第二章 绝对值与有理数加减 19第一关 绝对值 ★★★☆☆☆ 高级理解211‐1 理解绝对值的意义 ★★★☆☆☆ 高级理解221‐2 用绝对值的非负性进行运算 ★★★☆☆☆ 高级理解24第二关计算有理数的加法★★★☆☆☆ 高级理解272‐1计算有理数的加法★★★☆☆☆ 高级理解28第三关 计算有理数的减法 ★★★☆☆☆ 高级理解313‐1 计算有理数的减法 ★★★☆☆☆ 高级理解 32第四关 混合计算有理数的加减法 ★★★☆☆☆ 高级理解374‐1 混合计算有理数的加减法 ★★★☆☆☆ 高级理解 38第三章 有理数的乘除 39第一关 计算有理数的乘法 ★★★☆☆☆ 高级理解411‐1 计算有理数的乘法 ★★★☆☆☆ 高级理解42第二关 计算有理数的除法 ★★★☆☆☆ 高级理解452‐1 计算有理数的除法 ★★★☆☆☆ 高级理解46 YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0成就/Achievements 章节/Section 标题/Title 级别/Level 页码/Page number第四章 有理数的乘方与科学记数法 49第一关 计算有理数的乘方 ★★★☆☆☆ 高级理解511‐1 计算有理数的乘方 ★★★☆☆☆ 高级理解521‐2 计算含乘方的混合运算 ★★★☆☆☆ 高级理解54第二关 有理数混合运算 ★★★★☆☆ 高级理解572‐1 有理数的混合运算 ★★★★☆☆ 高级理解58第三关 科学计数法 ★★★☆☆☆ 高级理解613-1 用科学计数法计数 ★★★☆☆☆ 高级理解623-2 近似数 ★★★☆☆☆ 高级理解64第五章 整式的相关概念 67第一关 代数式的相关概念 ★★☆☆☆☆ 初级理解691‐1 代数式的概念 ★★☆☆☆☆ 初级理解70第二关 整式的相关概念 ★★★☆☆☆ 高级理解732‐1 理解单项式的相关概念 ★★☆☆☆☆ 初级理解742‐2 理解多项式的相关概念 ★★☆☆☆☆ 初级理解76第三关 认识同类项 ★★★☆☆☆ 高级理解793-1 识别同类项 ★★★☆☆☆ 高级理解80第六章 合并同类项 83第一关 多项式升降幂排序 ★★★☆☆☆ 高级理解851‐1 将多项式按照升幂或降幂排序 ★★★☆☆☆ 初级理解86第二关 合并同类项 ★★★☆☆☆ 高级理解872‐1 识别同类项 ★★☆☆☆☆ 初级理解882‐2 会添括号、去括号的相关计算 ★★★☆☆☆ 高级理解90 YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0成就/Achievements 章节/Section 标题/Title 级别/Level 页码/Page number第三关 整式加减 ★★★☆☆☆ 高级理解933‐1 会整式加减的相关运算 ★★★☆☆☆ 高级理解94第七章 一元一次方程 95第一关 等式与方程 ★★☆☆☆☆ 初级理解971‐1 理解等式的概念及性质 ★★☆☆☆☆ 初级理解981‐2 辨别方程及方程的解 ★★☆☆☆☆ 初级理解991‐3 判别一元一次方程 ★★☆☆☆☆ 初级理解100第二关 一元一次方程的解法(移项) ★★★☆☆☆ 高级理解1012‐1 移项 ★★★☆☆☆ 高级理解102第八章 一元一次方程的解法二 103第一关 一元一次方程的解法 ★★★☆☆☆ 高级理解1051‐1 去括号 ★★★☆☆☆ 高级理解1061‐2 去分母 ★★★☆☆☆ 高级理解108第九章 一元一次方程的应用 111第一关 和差倍分问题应用 ★★★★★☆ 高级运用1131‐1 会列和差倍分问题的等量关系 ★★★☆☆☆ 高级理解1141‐2 会解和差倍分应用题 ★★★★★☆ 高级运用115第二关 行程问题应用 ★★★★★☆ 高级运用1172‐1 会列行程问题的等量关系 ★★★☆☆☆ 高级理解1182‐2 会解行程相关应用题 ★★★★★☆ 高级运用119第三关工程问题应用★★★★★☆ 高级运用1213‐1 会列工程问题的等量关系 ★★★☆☆☆ 高级理解1223‐2 会解工程相关应用题 ★★★★★☆ 高级运用123YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0YES N0有理数与数轴 ★★★☆☆☆ level 31VISIBLE PROGRESS SYSTEM有理数与数轴本章进步目标★★★☆☆☆Level 3通过对本节课的学习,你能够:1. 对负数的认识和有理数的分类达到【初级理解】的级别;2. 对数轴的画法与表示有理数的方法达到【高级理解】的级别; 3.对认识相反数与多重符号化简达到【高级理解】的级别。
学而思初一数学秋季班第6讲.含参一元一次方程的解法.尖子班.教师版
解方程满分晋级阶梯漫画释义6含参一元一次 方程的解法方程4级 方程中的设元 方程3级含参一元一次方程的解法方程2级 二元一次方程组的 概念及基本解法题型切片(四个) 对应题目题型目标 复杂一元一次方程 例1;例2;练习1; 同解一元一次方程 例3;例8;练习2; 含参一元一次方程 例4;例5;练习3;练习4 绝对值方程例6;例7;练习5;练习6对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,如:解一元一次方程中()ax bx a b x +=+的应用.【引例】 解方程:111123452345x x x x +++=+++. 【解析】 法一:1111111123452345x ⎛⎫+++=+++ ⎪⎝⎭,所以1x =;法二:111102345x x x x ----+++=,1111()(1)02345x +++-=,所以1x =.【点评】 注意传递给学生两种解决此类问题的思路.【例1】 ⑴解方程:2152234x x +--=.(西城期末) ⑵解方程:1123(23)(32)11191313x x x -+-+=【解析】 ⑴ 去分母(方程两边同乘以12),得 4(21)3(52)24x x +--=.去括号,得 8415624x x +-+=. 移项,得 8152446x x -=--. 合并同类项,得 714x -=. 系数化为1,得 2x =-.∴ 原方程的解是 2x =-.⑵ 原方程可变为111(23)(23)(23)0111913x x x ---+-=,即111(23)0111319x ⎛⎫+--= ⎪⎝⎭, 又1110111319+-≠,所以230x -=,即32x =. 点评:若0ab =,则0a =或0b =.复杂一元一次方程思路导航题型切片【例2】 解方程:2009122320092010x xx+++=⨯⨯⨯【解析】 1112009122320092010x ⎛⎫+++= ⎪⨯⨯⨯⎝⎭,1120092010x ⎛⎫-= ⎪⎝⎭即200920092010x =, 故2010x =.若两个一元一次方程的解有等量关系,先分别求出这两个方程的解,再通过数量关系列等式. 两个解的数量关系有很多种,比如相等、互为相反数、多几倍等等.【引例】 当m =________时,方程5443x x +=-的解和方程2(1)2(2)x m m +-=-的解相同.(北京四中期中考试)【解析】 法一:方程5443x x +=-的解为7x =-,方程2(1)2(2)x m m +-=-的解为362m x -=.由题意解相同,所以3672m --=,解得83m =-. 法二:方程5443x x +=-的解为7x =-,把7x =-代入2(1)2(2)x m m +-=-中,求得83m =-.【点评】同解方程问题,先分别求出这两个方程的解,再让解相等,或求出一个方程的解,把解代入另一个方程.【例3】 ⑴已知:关于x 的方程42x k -=与()322x k +=的解相同,求k 的值及相同的解.(石景山期末)⑵若关于x 的方程5342x x =-和12524ax ax x -=+有相同的解,求a 的值. ⑶若()40k m x ++=和(2)10k m x --=是关于x 的同解方程,求2km-的值.【解析】 ⑴ 22643k k +-=,解得6k =,2x ∴= ⑵ 方程5342x x =-的解为8x =-,把8x =-代入12524a x ax x -=+中,求得12a =.⑶ 法一:方程()40k m x ++=的解为4x k m-=+,方程(2)10k m x --=的解为12x k m =-,所以412k m k m -=+-,所以3m k =,所以523k m -=-. 法二:方程(2)10k m x --=等号两边乘以4-得(48)40m k x -+=,故同解一元一次方程思路导航48k m m k +=-,523k m -=-.当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成ax b =的形式,方程ax b =的解根据a b ,的取值范围分类讨论.① 当0a ≠时,方程有唯一解bx a=.② 当0a =且0b =时,方程有无数个解,解是任意数. ③ 当0a =且0b ≠时,方程无解.【引例】 当a ,b 时,方程1ax x b +=-有唯一解;当a ,b 时,方程1ax x b +=-无解;当a ,b 时,方程1ax x b +=-有无穷多个解. 【解析】 1a b ≠,为任意数;11a b =≠-,;11a b ==-,. 【例4】 ⑴ 已知:关于x 的方程32ax x b +=-有无数多个解,试求2011()5aba b x x a b a b+-=-++ 的解.⑵ 若a 、b 为定值,关于x 的一元一次方程2236kx a x bk+--=,无论k 为何值时,它的解总是1x =,求23a b +的值.(北师大附中期中)【解析】 ⑴ 原方程整理为(2)3a x b -=--,因为当20a -=且30b --=该方程有无数多组解,所以23a b ==-,,故把23a b ==-,代入2011()5aba b x x a b a b+-=-++得610x x --=, 解得107x =-.⑵ 方程2236kx a x bk+--=可化为:(41)212k x a bk -++=,由该方程总有解1x =可知41212k a bk -++=,即(4)132b k a +=-,又k 为任意值,故401320b a +=⎧⎨-=⎩,231a b +=.【例5】 解关于x 的方程()()134m x n x m -=-【解析】 去分母,化简可得:(43)43m x mn m -=-当34m ≠时,方程的解为4343mn mx m -=-;当34m =,34n =时,解为任意值;思路导航含参一元一次方程当34m =,34n ≠时,方程无解.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解1.形如ax b c +=的方程,可分如下三种情况讨论: ⑴0c <,则方程无解;⑵0c =,则根据绝对值的定义可知,0ax b +=; ⑶0c >,则根据绝对值的定义可知,ax b c +=±. 2.形如ax b cx d +=+型的绝对值方程的解法:首先根据绝对值的定义得出,()ax b cx d +=±+,且0cx d +≥;分别解方程ax b cx d +=+和()ax b cx d +=-+,然后将得出的解代入0cx d +≥检验即可. 3.含多重绝对值符号的绝对值方程的解法:主要方法是根据定义,逐层去掉绝对值.【引例】 解绝对值方程:15x -=【解析】 15x -=可知,15x -=或15x -=-,故6x =或4x =-.【例6】 若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,下列选项正确的是( )A .m n k <<B .m n k ≤≤C .m n k >>D .m n k ≥≥【解析】 C .【例7】 解绝对值方程:⑴ 4812x +=⑵ 4329x x +=+⑶ 方程125x x -++=的解是 .(北京四中期中)【解析】 ⑴由4812x +=可知,4812x +=±,故1x =或5x =-.⑵方程4329x x +=+可化为,43(29)x x +=±+,且290x +≥,解方程4329x x +=+可得,3x =;解方程43(29)x x +=-+可得,2x =-,代入检验可知,3x =,2x =-均满足题意.⑶法一:1x -与2x +的零点分别是1x =和2x =-.由“零点分段法”,分情况讨论: 若2x <-,则原方程可化为(1)25x x ---+=(),解得32x =-<-,满足题意,故3x =-是原方程的解;若21x -≤≤,则原方程可化为(1)25x x --++=(),无解;若1x >,则原方程可化为(1)25x x -++=(),解得21x =>,满足题意,故2x =也思路导航绝对值方程是方程的解.综上:方程125x x -++=的解为3x =-或2x =. 法二:用绝对值的几何意义画数轴即可解决.【选讲题】【例8】 已知:333n x m n p ++-=与2321m x m np --+=-都是关于x 的一元一次方程,且它们的解互为相反数,求关于x 的方程115x p -+=的解.(人大附中期中练习)【解析】 由题意可知,312211n n m m +==-⎧⎧⇒⎨⎨-==⎩⎩,故题中的两个方程变为1x p +=和42x p -=,由上述两个方程的解互为相反数可知,114205p p p -++=⇒=-,故方程115x p -+=变为1111655x x --=⇒-=,从而可知,5x =-或7x =.训练1. 方程3x a b x b c x c a c a b ------++=中,若11100abc a b c≠++≠,则x = . 【解析】 .x a b c =++训练2. 解关于x 方程:4x a b c x b c d x a c d x a b dd a b c------------+++=【解析】 原方程可变()()()()0x a b c d x a b c d x a b c d x a b c d d a b c -+++-+++-+++-++++++=也就是1111[()]0x a b c d a b c d ⎛⎫+++-+++= ⎪⎝⎭当11110a b c d +++=时,原方程有无穷多个解; 当11110a b c d+++≠时,原方程的解为:x a b c d =+++.训练3. 已知关于x 的方程1(1)12x k -=-的解与351148x k x +--=的解相同,求k 的值.【解析】 由 1(1)12x k -=-得 122x k -=- 12x k -=- 12x k =-+ 由351148x k x +--=得()()23518x k x +--=62518x k x +-+= 72x k =-∵两个方程的解相同, ∴1272k k -+=- ∴2k =.训练4. ⑴ 方程158x x -++=的解是 .⑵ 解绝对值方程:35162x x ---= 【解析】 ⑴2x =或6x =-.⑵35162x x ---=或6-,即3572x x -=-或3552x x -=+ 当70x -≥时(即7x ≥),3502x ->,3572x x -=-化为3572x x -=-,解得9x =-.当50x +≥时(5x -≥),若还有3502x -≥(即53x ≥),3552x x -=+,解得15x =.当50x +≥时(5x -≥),若还有3502x -<(即5<3x ),3552x x -=--,解得1x =-.检验这三个解9x =-(舍去),故15x =,1x =-.复杂一元一次方程 巩固练习【练习1】 解方程:0.130.41200.20.5x x +--=【解析】 10x =-. (提示:含有小数的一元一次方程在求解过程中通常是先将小数化成整数)两个一元一次方程解的关系问题 巩固练习【练习2】 已知关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦与3151128x a x +--=有相同的解,求a 的值及方程的解.【解析】 把a 当常数,方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦的解为37x a =,方程3151128x a x +--=的解为27221a x -=, 故3272721a a -=,解得2711a =,所以8177x =.(同解方程问题)含字母系数的一元一次方程 巩固练习【练习3】 已知关于x 的方程2(1)(5)3a x a x b -=-+无解,那么a = ,b .【解析】 2253ax a x ax b -=-+,即(35)23a x a b -=+,故350a -=且230a b +≠,即53a =,复习巩固109b ≠-. 【练习4】 如果关于x 的方程2(3)15(23)326kx x +++=有无数个解,求k 值. 【解析】 原方程整理得(410)0k x -=,由方程有无数个解得4100k -=,52k =.绝对值方程 巩固练习【练习5】 解方程:3548x -+=【解析】 3548x -+=或8-(舍),即354x -=,所以354x -=或4-,即39x =或31x =,故3x =或13x =.【练习6】 方程147x x -++=的解是 .2x =或5x =-.每个人的成功都有秘诀,那你知道爱因斯坦的成功公式是什么?数学史第十三种品格:公平不要羡慕别人的生活,别人不见得比你活得好,世间是公平的,每个人都有自己的欢乐和痛苦。
学而思初一数学秋季班第2章+绝对值+第1关 尖子
第二章绝对值本章进步目标★★★★☆☆Level 4通过对本节课的学习,你能够:1.对绝对值的基本性质达到【初级运用】级别;2.对绝对值的代数意义达到【初级运用】级别;3.对绝对值的几何意义达到【初级运用】级别。
VISIBLE PROGRESS SYSTEM进步可视化教学体系15VISIBLE PROGRESS SYSTEM16 VISIBLE PROGRESS SYSTEM第一关绝对值的基本性质★★★★☆☆Level 4本关进步目标★★★★☆☆你能够理解绝对值的非负性,会利用非负性解决问题。
17VISIBLE PROGRESS SYSTEM18 VISIBLE PROGRESS SYSTEM学习重点:学会运用绝对值的非负性. 1.若23(2)0x y -++=,则x y =________________. 2.若35a b ==,,且a b a b +=--,求22a b ab +-的值. 3.已知2+55a b b b ++=+(),210a b --=,求ab 的值. 4.如果有理数a 、b 满足22(1)0ab b -+-=,试求: 1111+(1)(1)(2)(2)(2016)(2016)ab a b a b a b +++++++++的值. 绝对值的非负性【初级应用】理解非负性的相关概念会识别非负性使用的条件关卡1-1绝对值的非负性 过关指南 Tips 笔记 ★★★★☆☆ 初级应用例题A19VISIBLE PROGRESS SYSTEM若有理数,x y 满足22(1)0x y ++-=,则2x +y =_______________.若12a b ==,,且a b b a -=-,求22a b ab ++的值.若a ,b 同时满足:①()2211a b b b -+-=-,②60a -=,求a b +的值.如果有理数a 、b 满足23(1)0a b -+-=,试求: 1111+(1)(1)(2)(2)(20)(20)ab a b a b a b +++++++++的值.过关练习错题记录Exercise 3 错题记录Exercise 1 错题记录Exercise 4 错题记录Exercise 2。
尖子生培优教材数学七年级上第二讲 数轴与绝对值讲义及答案精编版
第二讲 数轴与绝对值知识导引1、基本概念:(1)数轴:规定了原点、单位长度和正方向的直线叫做数轴.(2)相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数.(3)倒数:若两个有理数的乘积为1,就称这两个有理数互为倒数.零没有倒数.(4)绝对值:把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值. 绝对值的基本性质:⎩⎨⎧<-≥=)0()0(a a a a a 2、有理数的大小比较:(1)分类比较:两个正数,绝对值大的数较大;负数<零<正数;两个负数,绝对值大的数反而小.(2)利用数轴比较:在数轴上表示的两个数,右边的数总比左边的数大.3、温馨点拨:(1)数轴的作用在于建立了数与数轴上的点之间的一种对应关系,即数与形的一种转换关系.任意一个有理数总可以用数轴上的一个点表示出来,但要注意的是数轴上的一个点对应着一个数,但这个数不一定是有理数.(2)绝对值的重要性质: ①非负性:0≥a ;②若0=+b a (通常称为“0+0=0”型),则a =b =0.(3)有理数a 与-a 叫做互为相反数.零的相反数仍是零.若a ,b 互为相反数,则a +b =0.因为互为相反数的两个数在数轴上表示的两个点与原点之间的距离相等,所以互为相反数的两个数的绝对值相等.(4)求一个数的绝对值时要想到是求出这个数在数轴上表示的点到原点的距离.在熟练掌握这个思路的基础上就能较好地理解求有理数的绝对值的法则.典例精析例1:回答下列问题:(1)写出在数轴上与表示413-的点距离2个单位长度的数. (2)求+8,32-,0这三个数的绝对值. (3)绝对值相等的两个有理数是否一定相等?有没有绝对值最小的有理数?有没有绝对值最大的有理数?例1—1:下列各式中,p 和q 互为相反数的是( )A 、pq =1B 、pq =-1C 、p +q =0D 、p -q =0例2:有理数a 、b 、c 的大小关系如图所示,则下列式子中一定成立的是( )A 、0>++c b aB 、c b a <+C 、c a c a +=-D 、a c c b ->-例3:若a >b ,则b a b a -=-;若a <b ,则a b b a b a -=--=-)(.根据以上规律,你能求出1996119971415131412131121-+⋯+-+-+-+-的值吗?例3—1:在数轴上表示a ,0,1,b 四个数的点如图所示.如果点O 为AB 的中点,那么1++++a ba b a = .例3—2:已知a 在数轴上的位置如图所示,化简11-+a a 的值是 .例4:比较下列各组数的大小.(1)-(-5)与5-- (2)-(+3)与0(3)54-与43-- (4)π-与14.3--例5:电子跳蚤在数轴上的某点0K ,第一步从0K 向左跳一个单位长度到1K ,第二步由1K 向右跳两个单位长度到2K ,第三步由2K 向左跳三个单位长度到3K ,第四步由3K 向右跳四个单位长度到4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰好为19.94.试求电子跳蚤的初始位置0K 点所表示的数.例6:阅读下面的材料:点A ,B 在数轴上分别表示实数a 、b ,A ,B 两点之间的距离表示为AB .当A ,B 两点中有一点在原点时,不妨设点A 在原点,如图1,OB AB ==b a b -=;当A ,B 两点都不在原点时,若点A ,B 都在原点的右边,如图2,OB AB =-OA =b a a b a b -=-=-,若点A ,B 都在原点的左边,如图3,OB AB =-OA =b a a b a b -=---=-)(,若点A ,B 在原点的两边,如图4,OB AB =+OA =b a b a a b -=-+=+)(.综上,数轴上A ,B 两点之间的距离b a -=AB .回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果2AB =那么x 为 .(3)当代数式21-++x x 取最小值时,相应的x 的取值范围是 .探究活动例:在数轴上把坐标为1,2,……,2006的点称为标点.一只青蛙从点1出发,经过2006次跳动,历经所有标点,且回到出发点.那么,该青蛙所跳过的全部路径的最大长度是多少?说明理由.学力训练A 组 务实基础1、下列语句:①数轴上的点只能表示整数;②数轴是一条线段;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.其中正确的有( )A 、1个B 、2个C 、3个D 、4个2、在数轴上,原点及原点右边的点表示的数是( )A 、正数B 、整数C 、非负数D 、非正数3、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数互为相反数4、2.3-=-a ,则a 是( )A 、3.2B 、-3.2C 、±3.2D 、以上都不对5、若20132012-=a ,20142013-=b ,则a b (填“>”,“<”或“=”). 6、在数-0.34,)21(--,0.3,-35%,0.33·4·,41-中,最大的数是 ,最小的数是 .7、填空题:(1)-1的绝对值是 ;(2)0.6的绝对值是 ;(3)2--= ;(4) 的相反数的绝对值是216;(5)若2-=-a ,则a = . 8、8-的相反数是 ;8+的相反数是 ;8.2-的绝对值是 ;-(+5)的绝对值是 ;-365的绝对值的相反数是 .9、小惠和小红在学校操场的旗杆前玩“石头、剪子、布”的游戏,规则如下:在每一个回合中,若某一方赢了,对方,便可向右走2米,而输的一方则向右走-3米,平局的话就原地不动,最先向右走18米的便是胜方.假设游戏开始时,两人均在旗杆处.(1)若小惠在前四个回合中都输了,则她会站在什么位置?(2)若小红在前三个回合中赢了两次输了一次,则她会站在什么位置?(3)假设经过五个回合后,小红仍然站在旗杆处,且没有猜平局(即五个回合中没有出现平局的情况).问:小惠此时会站在什么位置?10、已知3=a ,5=b ,a 与b 异号,求b a -的值.B 组 瞄准中考1、(义乌中考)-3的绝对值是( )A 、3B 、-3C 、31- D 、312、(哈尔滨中考)若x 的相反数是3,5=y ,则x +y 的值为() A 、8 B 、2 C 、8或-2 D 、-8或23、(毕节中考)若0)2(32=++-n m ,则n m 2+的值为( )A、-4B、-1C、0D、44、(安徽中考)下面两个多位数1248624…,6248624…,都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第二位;若积为两位数,则将其个位数字写在第2位,对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的,当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A、495B、497C、501D、5035、(潼南中考)如图,数轴上A,B两点分别对应实数a、b,则a、b的大小关系为.6、(益阳中考)数轴上的点A到原点的距离是6,则点A表示的数为.7、(咸宁中考)出租车司机李师傅从上午8:00~9:15在厦大至会展中心的环岛路上运营,共连续运载十批乘客.若规定向东为正,向西为负,李师傅运载十批乘客的里程如下(单位:千米):+8,-6,+3,-7,+8,+4,-9,-4,+3,+3.(1)将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的位置怎样?距离多少千米?(2)上午8:00~9:15,李师傅开车的平均速度是多少?(3)若出租车收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则李师傅在上午8:00~9:15一共有多少收入?8、(宁夏中考)一条东西走向的公路上,一辆汽车第一次从A地出发向西行驶了5千米到达B地;第二次从B地出发向东行驶12千米到达C地;第三次从C地出发向西行驶4千米到达D地.(1)记向东为正,向西为负,把该车各次行驶的情况在数轴上表示出来.(2)A地与C地的距离和A地与D地的距离分别是多少千米?(3)根据在数轴上表示的行程图,说出D地在B地的什么位置?(4)这辆汽车的总行程是多少?9、(昆明中考)如1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层,将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=2)1(nn.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是多少?(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,…,求图4中所有圆圈中各数的绝对值之和.C 组 冲击金牌1、已知:x <0<z ,xy >0,且x z y >>,那么y x z y z x --+++的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号2、若a 、b 为有理数,那么下列判断:(1)若b a =,则一定有a =b ;(2)b a >,则一定有a >b ;(3)若b a >,则一定有b a >;(4)若b a =,则一定有22)(b a -=.正确的是( )A 、1个B 、2个C 、3个D 、4个3、设a 、b 、c 分别是一个三位数的百位、十位和个位上的数字,并且a ≤b ≤c ,则a c c b b a -+-+-可能取得的最大值是 .4、设a 、b 、c 为整数,且1=-+-a c b a ,求c b b a a c -+-+-的值.5、已知022=-+-a ab ,求)2006)(2006(1)2)(2(1)1)(1(11+++⋯+++++++b a b a b a ab 的值.第二讲 数轴与绝对值参考答案典例精析1、(1)在表示413-的点的左侧距离2个长度单位的点为4152413-=--;在表示413-的点的右侧距离2个长度单位的点为4112413-=+-,所以所求的数有415-和411-两个.(2)88=+,3232=-,00=. (3)绝对值相等的两个有理数不一定相等;有绝对值最小的有理数,这个数是零;没有绝对值最大的有理数.1—1、C 2、C 3、19971996 3—1、-a 3—2、1 4、(1)>;(2)<; (3)<;(4)<; 5、设点0K 所表示的数为x ,则点1K ,2K ,… ,100K 所表示的数分别为x -1,x -1+2,x -1+2-3,…,x -1+2-3+4-…-99+100,由题意得,x -1+2-3+4-…-99+100=19.94,解得x =-30.06,即电子跳蚤的初始位置0K 点所表示的数是-30.06. 6、(1)3 3 4 (2)1+x 1或-3 (3)-1≤x ≤2 探究活动解:设青蛙跳过的点为1a ,2a ,3a ,…,2006a ,跳过的路径和为S ,12006200620053221a a a a a a a a S -+-+⋯+-+-=1a 到2006a 在上式中均出现两次(因为每个数在绝对值符号里作为被减数和减数各一次,共出现两次),取+,-的各2006个(把每一项展开时,大的取+,小的取-,所以整个式子在展开计算时,取+,-的各有2006个).故S≤2×(1004+1005+…+2006)-2×(1+2+…+1003)(要使加的数尽量大,减的数尽量小,所以加的是2006到1004,减的是1到1003,这样跳过的路径才是最大的).所以S =2×21003,这就是青蛙跳过的最大路径,即青蛙跳过的最大路径为2012018. 学力训练A 组1、A2、C3、D4、C5、>6、)21(-- -35%7、(1)1;(2)0.6;(3)-2;(4)216±;(5)±2 8、-8 -8 2.8 5 -365 9、(1)小惠站在旗杆左侧12米处.(2)小红站在旗杆右侧1米处.(3)设小红胜x 场,则输(5-x )场.依题意,2x -3×(5-x )=0.解得x =3,则小惠胜2场,输3场.所以小惠此时站在旗杆左侧5米处. 10、b a -的值为8.B 组1、A2、D3、B4、A5、a <b6、6或-67、(1)由题意得:向东为“+”,向西为“-”,则将最后一批乘客送到目的地时,李师傅距离第一批乘客出发地的距离为:(+8)+(-6)+(+3)+(-7)+(+8)+(+4)+(-9)+(-4)+(+3)+(+3)=3(千米).所以将最后一批乘客送到目的地时,李师傅在距离第一批乘客乘客出发地的东方,距离是3千米.(2)上午8:00~9:15,李师傅开车的距离是:553349487368=++++-+-+++++-+++-++(千米),上午8:00~9:15李师傅开车的时间是:1小时15分钟=1.25小时,所以上午8:00~9:15李师傅开车的平均速度是:55÷1.25=44(千米/小时).(3)一共有十批乘客,则起步费为:8×10=80(元).超过3千米的收费总额为[(8-3)+(6-3)+(3-3)+(7-3)+(8-3)+(4-3)+(9-3)+(4-3)+(3-3)+(3-3)]×2=50(元).李师傅在上午8:00~9:15的收入为:80+50=130(元). 8、(1)略;(2)分别为7千米和3千米.(3)D 地在B 地的东面8千米处.(4)21千米. 9、(1)图3中前11层共有圆圈数为2)111(11+⨯=66,所以第12层最左边这个圆圈中的数是67.(2)图4中所有圆圈共有1+2+3+…+12=782)112(12=+⨯(个)数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=+-+-2223…++++-+2101…=+54(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.C 组1、C2、A3、164、因a 、b 、c 为整数,且1=-+-a c b a ,故b a -与a c -一个为0,一个为1.从而1)()(=-+-=-c a a b c b ,所以原式=1+1+0=2.5、由022=-+-a ab 得ab -2=0,a -2=0,故a =2,b =1.所以)2006)(2006(1)2)(2(1)1)(1(11+++⋯+++++++b a b a b a ab =231121⨯+⨯...+200720081⨯=+-+-3121211 (2008)20072008112008120071=-=-+.。