ZEMAX光学设计报告材料

合集下载

基于ZEMAX的工程光学课程设计

基于ZEMAX的工程光学课程设计

以下为本次课程设计作业报告的格式和范例,要求同学们结合自己所做工作进行改动,不得摘抄范例!在相机镜头作业完成后附录上入门教学中所有例子的report graphic 6 (见zemax>reports menu),在完成以上作业情况下,感兴趣的同学可做《光设ZEMAX_实验讲义》中的范例和本次课程设计中相机镜头的公差分析,可进一步实质性的学习光学设计,学习结果也可附录在报告后面。

《Zemax软件设计教程_1》和《光学设计实例-黄惠杰》,是上光和长光的培训课件,同学们可做进一步了解光学设计的理论知识和设计思路。

有什么问题,欢迎同学们提问!工程光学课程设计名称:工程光学课程设计院系:电子科学与应用物理学院班级:应用物理10- 学号:学生姓名:指导教师:2013 年 07 月日设计过程2.1初始结构的选择照相物镜属于大视场大孔径系统, 因此需要校正的像差也大大增加, 结构也比较复杂, 所以照相物镜设计的初始结构一般都不采用初级像差求解的方法来确定, 而是根据要求从手册、资料或专利文献中找出一个和设计要求比较接近的系统作为原始系统。

在选择初始结构时, 不必一定找到和要求相近的焦距, 一般在相对孔径和视场角达到要求时, 我们就可以将此初始结构进行整体缩放得到要求的焦距值。

原设计要求:1、焦距:f’=12mm;2、相对孔径D/f’不小于1/2.8;3、图像传感器为1/2.5英寸的CCD,成像面大小为4.29mm×5.76mm;4、后工作距>6mm5、在可见光波段设计(取d、F、C三种色光,d为主波长);6、成像质量,MTF 轴上>40% @100 lp/mm,轴外0.707 >35%@100 lp/mm。

7、最大畸变<1%照相物镜的视场角和有效焦距决定了摄入底片或图像传感器的空间范围, 镜头所成的半像高y 可用公式y = -f tanw计算, 其中f 为有效焦距, 2w 为视场角。

ZEMAX光学设计报告

ZEMAX光学设计报告

光学设计报ZEMA一、设计目通过对设计一个双胶合望远物镜,学zema软件的基本应用和操作二、设计要的双胶合望远物镜,且相对孔径1:1设计一个全视场角1.56°,焦距1000m=13.6m要求相高三、设计过1双胶合望远物镜系统初始结构的选1.选由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差位置色差。

又因为其相对孔径较小,所以选用双胶合即可满足设计要求。

本系统采用紧型双胶合透镜组,且孔径光阑与物镜框相重合1.确定基本像差参根据设计要求,假设像差的初级像差值为零,即球;正弦;位置色s由此可得基本像差参量。

那么按初级像差公式可F1.冕牌玻璃在前0.0.80.0.8火石玻璃在前0.008因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计1.选定玻璃组鉴玻璃的性价比较好,所以选作为其中一块玻璃。

查表发现0.000.030.008Z组合,此时对应最接近的组合。

此系统选Z组合的折射的折射0.038311.6721.516Z1.74.284070.06092.009402.4求形状系1.考虑到任何实际的透镜组总是有一定的厚度,因此需要把薄透镜组转换成后透镜组100m1/110m。

选用压圈方式根据设计要,则通光口3.m,由此可求得透镜组定透镜组,该方式所需余量由《光学仪器设计手册》查得103.m外径对于凸透镜而言;假分别为球面矢高为折射球面曲率半径为透镜外径如图所示,由上式可求。

将所求的的结果代入下式中可求得凸透镜最小2.62.1缘厚103.4.88.m11利用下式可求得凸透镜的最小中心厚m10.01.02.611.6对于凹透镜而言:先求,再代入下式中可求得凹透镜最小边缘厚1.0.02.6103.11.6m11利用下式可求得凹透镜的最小中心厚不变的条件下进行薄透镜变换成后透镜时,应保四、设计结果)1.1、入瞳直径的设定(图11.1图)2.12、视场角的设定(图2.1图)3.13、工作波长的设定(图3.1图)4.24.1、4、评价函数的选择(图4.1图4.2图)55.1、系统的透镜参数表(5.1图)6.1、优化工具窗口(图66.1图)7.17、系统的结构轮廓图(7.1图)8.1(图MTF、系统的8FFT8.1图)9.1(图PSF FFT、系统的9.9.1图)10.1图(图CURV/DIST10、系统的FIELD)10.1(图)11.1(图图DISTORION GRID、系统的11.11.1图)12.1(图12、系统的SPOT DIAGRAM图12.1图)13.1图(图COLOR TERALLA、系统的13.13.1图)14.1(图FAN14、系统的RAY图14.1图图FAN OPD、系统的15)15.1(图15.1图)16.1(图图、系统的WA VEFRRONT MAP1616.1图)17.1(图图energy encircled diffraction、系统的17.17.1图(数据如下)data system18、系统的DataSystem/PrescriptionFiles\ZEMAX\SAMPLES\LENS.ZMXC:\Program:File Title:2014OCT29Date:WEDTA:DA LENS GENERAL5Surfaces:1Stop:100Aperture=Pupil Entrance Diameter:SystemGB903-87中国Catalogs:SCHOTTGlass OffRay Aiming:0.00000E+000=Uniform,factorApodization:2.00000E+001(C):Temperature 1.00000E+000:TM)Pressure(A Off:Environment To Data Index Adjust pressure)andtemperaturesystematLengthFocalEffective:air(in999.6842space):LengthFocalEffective(in999.6842image989.2692LengthFocalBack:1013.029Track Total:9.996842SpaceImage:F/#9.996842:F/#Working Paraxial9.996906:F/#Working0.04995335:Image Space NA5e-009:Object Space NA50:Stop Radius13.61011:Image HeightParaxial 0:Paraxial Magnification100:Pupil DiameterEntrance0:Pupil Position Entrance100.4728Pupil Diameter:Exit-1004.411Pupil Position:Exitdegreesin AngleField Type:0.78Field:Maximum Radial祄0.5875618:Primary Wavelength MillimetersUnits:Lens0.9952938Magnification:Angular5Fields:degrees Angle inField Type:Weight#Y-V alueX-Value 1.00000010.0000000.000000 1.00000020.2340000.0000001.00000030.3900000.000000 1.0000000.00000040.551000 1.0000000.00000050.780000 FactorsVignettingAN#VCXVDXVVDYVCY0.0000000.0000000.00000010.0000000.0000000.0000000.00000020.0000000.0000000.0000000.0000000.0000000.0000000.00000030.0000000.0000000.00000040.0000000.0000000.0000000.0000000.0000000.00000050.0000000.0000003:Wavelengths祄Units:Weight#Value 1.00000010.486133 1.00000020.587562 1.0000000.6562733.。

zemax_课程设计报告书

zemax_课程设计报告书

目录第一章引言 (1)第二章镜头结构的设计指标 (2)2.1相关规格的确定 (2)2.2镜头总像素与COMS像素的匹配 (2)2.3透镜材料及结构的选择 (2)2.4材料的厚度 (3)2.5 设计指标 (3)第三章 zemax软件 (3)3.1 zemax软件简介 (3)3.1.1软件特色 (4)3.2zemax软件界面介绍 (4)3.2.1 Lens Data Editor(LDE) (4)3.2.2 Aperture(光圈) (5)3.2.3 Wavelength Data(波长设定) (5)3.3 zemax软件功能简介 (6)第四章 500万像素手机镜头设计 (6)4.1初始结构选择 (6)4.1.1 500万像素手机镜头4P专利结构简介 (7)4.2设计结果 (7)4.2.1光路图 (7)4.2.2详细参数 (8)第五章结果分析,误差调试 (9)5.1误差调试 (9)5.2优化后的分析 (10)5.2.1场曲和畸变 (10)5.2.2球差 (10)5.2.3.色差 (11)5.2.4 RMS Radius(均方根半径) (12)5.2.5 MTF(光学调制传递函数) (13)5.2.6 本设计达到指标 (14)第六章结论 (15)参考文献 (16)第一章引言从手机开始配备拍照功能以来,手机摄像头的像素以很快的速度上涨,从最初的10万像素到30万像素、100万像素、200万像素、300万像素、500万像素,再到现在的800万像素,1000万像素。

09年6月三星推出了全球首款1200万像素手机Pixonl2(M8910),采用1200万像素CMOS图像传感器及289mm广角镜头,提供了足以媲美数码相机的拍照等多项功能,可见手机大有将时尚卡片DC取而代之的劲头。

不过据调查,虽然像素一直在涨,但是500万以上像素手机由于价格比较高,市场占有率很低,现在200万像素和300万像素仍是摄像手机市场主流,而500万像素的市场增长速度已显著增加。

光学设计全程实验报告(3篇)

光学设计全程实验报告(3篇)

第1篇一、实验目的1. 了解光学设计的基本原理和过程;2. 掌握光学设计软件(如ZEMAX)的基本操作和应用;3. 通过实验,提高对光学系统性能的评估和优化能力;4. 深入理解光学系统中的各类元件及其作用;5. 培养团队协作和实验操作能力。

二、实验器材1. 光学设计软件(ZEMAX);2. 相关光学元件(透镜、棱镜、光阑等);3. 光具座、读数显微镜等辅助仪器;4. 设计说明书和镜头文件。

三、实验内容1. 光学系统设计思路(1)系统结构框图:设计一个简单的光学系统,包括物镜、目镜、光阑等元件,使系统成正像。

(2)系统结构设计:根据系统结构框图,设计物镜、目镜、光阑等元件的几何参数,并确定系统的主要技术参数。

2. 镜头设计(1)物镜设计:根据设计要求,选择合适的物镜类型,确定物镜的焦距、孔径、放大率等参数。

(2)目镜设计:根据设计要求,选择合适的目镜类型,确定目镜的焦距、放大率等参数。

3. 系统优化(1)优化物镜和目镜的几何参数,提高成像质量。

(2)优化系统整体性能,如分辨率、对比度等。

4. 仿真分析(1)使用ZEMAX软件进行光学系统仿真,观察成像质量。

(2)分析仿真结果,对系统进行进一步优化。

5. 实验报告撰写(1)总结实验过程中遇到的问题及解决方法。

(2)对实验结果进行分析和讨论。

四、实验步骤1. 设计光学系统结构框图,确定系统的主要技术参数。

2. 在ZEMAX软件中建立光学系统模型,设置物镜、目镜、光阑等元件的几何参数。

3. 优化物镜和目镜的几何参数,提高成像质量。

4. 优化系统整体性能,如分辨率、对比度等。

5. 使用ZEMAX软件进行光学系统仿真,观察成像质量。

6. 分析仿真结果,对系统进行进一步优化。

7. 撰写实验报告,总结实验过程、结果及分析。

五、实验结果与分析1. 实验结果(1)物镜焦距:f1 = 100mm;(2)目镜焦距:f2 = 50mm;(3)放大率:M = 2;(4)分辨率:R = 0.1mm;(5)对比度:C = 0.8。

ZEMAX光学设计报告

ZEMAX光学设计报告

ZEMAX 光学设计报告一、设计目的通过对设计一个双胶合望远物镜,学会zemax 软件的基本应用和操作。

二、设计要求设计一个全视场角为1.56°,焦距为1000mm ,且相对孔径为1:10的双胶合望远物镜,要求相高为y`=13.6mm 。

三、设计过程1.双胶合望远物镜系统初始结构的选定1.1选型由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差和位置色差。

又因为其相对孔径较小,所以选用双胶合即可满足设计要求。

本系统采用紧贴型双胶合透镜组,且孔径光阑与物镜框相重合。

1.2确定基本像差参量根据设计要求,假设像差的初级像差值为零,即球差0'0=L δ;正弦差0'0s =K ;位置色差0'0=FC l δ。

那么按初级像差公式可得0===∑∑∑I I I I C S S ,由此可得基本像差参量为0===I ∞∞C W P 。

1.3求0P)(()⎪⎩⎪⎨⎧+-+-=∞∞∞∞火石玻璃在前时冕牌玻璃在前时2202.085.01.085.0W P W P P因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计算,即0085.00-=P 。

1.4选定玻璃组合鉴于9K 玻璃的性价比较好,所以选择9K 作为其中一块玻璃。

查表发现当000.0=I C ,与0085.00-=P 最接近的组合是9K 与2ZF 组合,此时对应的038.00=P 。

此系统选定9K 与2ZF 组合。

9K 的折射率5163.11=n ,2ZF 的折射率6725.12=n ,038319.00=P ,284074.40-=Q ,06099.00-=W ,009404.21=ϕ,44.2=A ,72.1=K 。

1.5求形状系数Q一般情况下,先利用下式求解出两个Q 的值:AP P Q Q 00-±=∞再与利用下式求的Q 值相比较,取其最相近的一个值:)(1200+-+=∞A P WQ Q因为 0P P ≈∞,所以可近似为284074.40-==Q Q ,06099.00-==∞W W 。

zemax课程设计实验报告

zemax课程设计实验报告

zemax课程设计实验报告一、教学目标本课程旨在通过学习Zemax课程设计实验报告,让学生掌握光学设计的基本原理和方法,培养学生运用Zemax软件进行光学系统设计和分析的能力。

1.掌握光学基本概念和原理,如透镜、镜片、光路等。

2.熟悉Zemax软件的操作界面和功能。

3.了解光学系统设计的基本步骤和方法。

4.能运用Zemax软件进行简单光学系统的设计和分析。

5.能根据设计要求,优化光学系统性能。

6.能撰写简单的Zemax课程设计实验报告。

情感态度价值观目标:1.培养学生对光学学科的兴趣和好奇心。

2.培养学生团队合作精神和自主学习能力。

3.培养学生关注实际问题,运用所学知识解决实际问题的意识。

二、教学内容本课程的教学内容主要包括光学基本概念、Zemax软件操作、光学系统设计方法和实验报告撰写。

1.光学基本概念:包括透镜、镜片、光路等基本知识。

2.Zemax软件操作:学习Zemax软件的操作界面、功能和基本操作。

3.光学系统设计方法:学习光学系统设计的基本步骤和方法,如系统需求分析、光学元件选型、光学设计等。

4.实验报告撰写:学习如何撰写Zemax课程设计实验报告,包括实验目的、原理、过程、结果和结论等。

三、教学方法本课程采用讲授法、讨论法、案例分析法和实验法等多种教学方法,以激发学生的学习兴趣和主动性。

1.讲授法:用于讲解光学基本概念、原理和Zemax软件操作方法。

2.讨论法:用于探讨光学系统设计方法和实验报告撰写技巧。

3.案例分析法:分析实际案例,让学生了解光学系统设计的应用和实际意义。

4.实验法:让学生动手实践,培养实际操作能力和解决实际问题的能力。

四、教学资源本课程所需教学资源包括教材、参考书、多媒体资料和实验设备。

1.教材:选用《Zemax课程设计实验报告》教材,用于指导学生学习光学基本概念和Zemax软件操作。

2.参考书:提供相关光学设计和Zemax软件使用的参考书籍,丰富学生的知识储备。

光学设计ZEMAX_实验讲义

光学设计ZEMAX_实验讲义
(5)Paraxial Working F/#(近轴工作F数)
定义式为:
(1.5)
式中 为系统像方折射率,θ为高斯边缘像方光线孔径角。在计算θ过程中,认为系统无像差,按照理想系统的边缘光线追迹方法。在Aper Value中输入F数,注意前面的Image Space F/#区别。
(6)Object Cone Angle(物方锥角)
ZEMAX中有6种不同的编辑器(Editors):即镜头数据编辑器(Lens Data Editor),评价函数编辑器(Merit Function Editor)、多重组态编辑器(Multi-configuration Editor)、公差数据编辑器(Tolerance Data Editor)、用于补充光学面的附加数据编辑器(Extra Data Editor)、以及非序列元件编辑器(Non-sequential Components Editor)。
相对孔径的定义在Aperture中设置。最常用的选项解释如下:
A.Aperture
Aperture Type用于定义相对孔径,即轴上物点的光束大小。定义的种类有:
(1)Entrance Pupil Diameter(入瞳直径)
当物体位于无限远时,可以用它来定义相对孔径,此时的Aper Value中输入具体的入瞳直径数值,选择Lens Units为Millimeter(毫米)。
表1.1例题的初始结构参数
1.4.3
1.General输入相对孔径
General功能可以由“System”→“General…”选择,还可以通过桌面上“Gen”快捷键来打开,General对话框如图1.2所示。
图1.2 General对话框
由图1.2可以看出,General对话框中具有Environment,Polarization,Misc.,Non-Sequential,Aperture,Title/Notes,Glass Catalogs,Ray Aiming等项。

光学设计实验报告范文(3篇)

光学设计实验报告范文(3篇)

第1篇一、实验目的1. 理解光学系统设计的基本原理和方法。

2. 掌握光学设计软件的使用,如ZEMAX。

3. 学会光学系统参数的优化方法。

4. 通过实验,加深对光学系统设计理论和实践的理解。

二、实验器材1. ZEMAX软件2. 相关实验指导书3. 物镜镜头文件4. 目镜镜头文件5. 光学系统镜头文件三、实验原理光学系统设计是光学领域的一个重要分支,主要研究如何根据实际需求设计出满足特定要求的成像系统。

在实验中,我们将使用ZEMAX软件进行光学系统设计,包括物镜、目镜和光学系统的设计。

四、实验步骤1. 设计物镜(1)打开ZEMAX软件,创建一个新的光学设计项目。

(2)选择物镜类型,如球面镜、抛物面镜等。

(3)设置物镜的几何参数,如半径、厚度等。

(4)优化物镜参数,以满足成像要求。

2. 设计目镜(1)在ZEMAX软件中,创建一个新的光学设计项目。

(2)选择目镜类型,如球面镜、复合透镜等。

(3)设置目镜的几何参数,如半径、厚度等。

(4)优化目镜参数,以满足成像要求。

3. 设计光学系统(1)将物镜和目镜的镜头文件导入ZEMAX软件。

(2)设置光学系统的其他参数,如视场大小、放大率等。

(3)优化光学系统参数,以满足成像要求。

五、实验结果与分析1. 物镜设计结果通过优化,物镜的焦距为100mm,半视场角为10°,成像质量达到衍射极限。

2. 目镜设计结果通过优化,目镜的焦距为50mm,半视场角为10°,成像质量达到衍射极限。

3. 光学系统设计结果通过优化,光学系统的焦距为150mm,半视场角为20°,成像质量达到衍射极限。

六、实验总结1. 通过本次实验,我们掌握了光学系统设计的基本原理和方法。

2. 学会了使用ZEMAX软件进行光学系统设计。

3. 加深了对光学系统设计理论和实践的理解。

4. 提高了我们的动手能力和团队协作能力。

5. 为今后从事光学系统设计工作打下了基础。

注:本实验报告仅为示例,具体实验内容和结果可能因实际情况而有所不同。

(完整版)光学设计zemax

(完整版)光学设计zemax
➢ Tighten 2x 将现有各项Operands 的Min 及Max 值缩 小一倍
➢ Sort by Surface 将现有各项Operands 以 Surface number 排序(递增)
➢ Sort by Type 将现有各项Operands 以其类型排序 (递增)
➢ Save 将现有的Tolerance Data 存入一个文件
差) ➢TSTX,TSTY(光学零件表面允许倾斜偏心公
差)
2014.9
光学系统设计
公差操作数(续)
➢TIRR(球差的一半与象散的一半表示的表 面不规则度,单位是光圈单位)
➢TIND(d光折射率允许偏差) ➢TABB(阿贝常数允许偏差)
2014.9
光学系统设计
➢上述设定完成之后,即可进行公差分析 ➢Tools---Tolerancing
2014.9
光学系统设计
➢每个镜片加工公司都有自己的样板库,如 “changchun.tpd”是长春理工某附属工厂 (可见光镜片)、“beijing.tpd”是北京蓝斯 泰克光电(红外镜片)的样板库等。
➢将这些tpd文件拷入“C:\ZEMAX\Testplat”目 录即可进行相应的比对
2014.9
2014.9
光学系统设计
2014.9
光学系统设计
➢Fast Tolerance Mode:
• 此项仅对近轴后焦偏差视为补偿器 (Compensator) 时有效。即在 Tolerances Data Editor 中存在一行有关后焦的补 偿器设定。在Default Tolerance 中选中 Use Focus Comp 就可以生成此补偿器的设定。 此模式比一般模式(没有选中此项)的运算模 式快50 倍。

【参考文档】zemax实验报告-精选word文档 (12页)

【参考文档】zemax实验报告-精选word文档 (12页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==zemax实验报告篇一:ZEMAX 实验报告基于基本透镜组的照相物镜设计Zemax设计报告徐昕 10272055设计目的通过对设计一个以基本透镜组为基础的照相物镜,学会Zemax软件的基本应用及操作。

设计要求设计一个照相物镜,系统焦距f’=9mm,相对孔径1:4设计过程1.系统建模1.1选取初始结构从《光学设计手册》(李士贤,郑乐年编,北京理工大学出版社,1990)中选取了一个1.2系统特性参数输入在General系统通用数据对话框中设置孔径和玻璃库,如图1-1,图1-2。

打开视场设定对话框设置5个视场,如图1-3。

打开波长设定对话框点击“Select>>F,d,C(visible)”自动加入三个波长,如图1-4。

表1-1图 1- 1图 1- 2图1- 3图1- 41.3初始结构输入对照表1-1,在Lens Data Editor中输入初始结构,如图1-5。

利用Zemax中的“solve”功能,求解透镜组最后一面的厚度。

选取需要设计的单元格,在“Solve”中选取“Thickness”,弹出“Thickness Solve on surface 7”求解对话框。

在对话框“Solve type”中选择“Marginal ray height”,将“Height”值输入为“0”,表示将像面设置在边缘光线聚焦的像方焦平面上,如图1-6,图1-7。

图 1-5图1-6图 1-71.4调整系统焦距打开“System Data”系统数据报告窗口,查看系统现有焦距,为65.65414mm,如图1-8,与设计要求不符,需要通过缩放功能进行调整。

选择“Tools>>Scale Lens”,缩放因子为9/65.65414=0.137082,在Scale By Factor缩放因子后填入0.137082,如图1-9。

光信息光学设计报告

光信息光学设计报告

光学系统设计实验报告设计题目: 显微镜系统专业班级:光信息学生姓名:学号:指导老师:一实验目的1. 了解光学系统设计的基本步骤,学会基本外形尺寸的计算。

2. 熟悉ZEMAX软件的操作,了解操作要领,学会应用基本的相差评价函数并进行优化。

二、实验器材ZEMAX软件、相关实验指导书三、设计要求1)设计说明书和镜头文件。

镜头文件包括物镜镜头文件、目镜镜头文件和光学系统镜头文件。

2)部分技术参数选择:①目镜放大率11;②物镜放大率9;③沿光轴,目镜最后一面到物面沿光轴的几何距离230毫米;④其它参数自定;3)其他要求①视场大小自定,尽可能大些,一般达到商用仪器的一半。

②可以不加棱镜。

如加棱镜,折转角大小自定。

棱镜可以按照等效玻璃板处理。

可以对物镜和目镜进行整体优化或独立优化。

四、具体设计1.系统结构设计思路1) 系统结构框图物体经物镜所成的放大的实像与分划板重合,两者一同经目镜成一放大的虚像。

棱镜的型式为斯米特屋脊棱镜,使系统成正像。

2) 等效光路原理图3)外形尺寸计算目镜的放大率:;物镜的放大率:;目镜的焦距:取分辨率:3.光学部件的结构形式按照实验步骤,先计算好外形尺寸。

然后根据数据要求选取目镜与物镜。

先做物镜。

因为这个镜片比较少。

按物镜放大率选好物镜后,将参数输入。

简单优化,得到比较接近自己要求的物镜。

然后做目镜,同样的做法,这个按照焦距选目镜,将参数输入。

将曲率半径设为可变量,调入默认的优化函数进行优化。

1)显微镜物镜的光学性能参数主要性能参数是:数值孔径,垂轴放大率,视场。

(图3 显微物镜)可选取低倍物镜 (3-6倍),如上图所示2)显微镜目镜的光学性能参数像方视场角 , 焦距, 出瞳距,工作距离(图4 显微目镜)选取对称式目镜,如上图所示.4.光学系统的拼接和优化1)物镜设计及优化①在物镜库中选取符合9倍放大率,焦距适合的镜头,输入参数,经过优化后物镜成品参数图如图所示(显微物镜参数)(显微物镜光路图)物镜参数②设置评价函数为默认类型,并限制PMAG放大率为为9,进行优化,可见物镜成像会聚效果比较好,满足设计要求。

(完整版)光学设计zemax

(完整版)光学设计zemax

2014.9
光学系统设计
➢再点Opt,优化结果如下
2014.9
光学系统设计
样板比对
➢为了降低加工成本,需与镜片加工厂家的 样板进行比对
➢样板比对:将设计中各面的曲率半径与厂 家的样板库进行比对,尽量选择样板库中 已有的尺寸
2014.9
光学系统设计
2014.9
光学系统设计
➢以applied样板库为例,比对样板后获得如下 结果
2014.9
光学系统设计
➢压圈法
球面或曲面
2014.9
光学系统设计
➢补充:压圈与径向的几种接触方式 相切法:
2014.9
光学系统设计
相切法:
2014.9
光学系统设计
球面包络法:
2014.9
光学系统设计
➢弹性元件法:弹性元件固定法是利用琴钢 丝制成的弹性卡圈将透镜或其他光学元件 固定在镜框内的一种方法。一般只用于同 轴度及牢固性要求低的透镜。通常用来固 定保护玻璃、滤光镜等不重要的光学零件。
2014.9
光学系统设计
➢Merit项:
2014.9
前12 项为具体的像质评 质函数,包括点大小、 Merit Function 值、几何 MTF、Diffraction MTF值。 其中对于没有趋近衍射极 限的系统应首选前三项, 即RMS Spot Size。而对 于趋近于衍射极限的系统 则最好选择MTF。
2014.9
光学系统设计
➢Default merit function作如下修改 ➢添加EFFL操作数,target 21.46,weight 1
Why?
2014.9
光学系统设计
Why 尺寸考虑
2014.9

基于zemax的实验报告

基于zemax的实验报告

设计一个8倍开普勒望远镜,目镜焦距f 目' = 25mm ,出瞳直径D' = 4mm ,出瞳距l z ' >22mm ,目镜视场角2ω' = 25︒;1. 计算对于望远镜,其物镜与目镜焦距、物镜视场角与目镜视场角的关系式如下:tan tan =-f f ωω⎧⎪⎨⎪⎩Γ='Γ''物目目物由此知道需要设计的物镜的视场角为2=3.2=200f ω⎧⎪⎨⎪⎩'' 物物2.物镜的设计我们可以直接采用在设计1中设计的双胶合物镜双胶合物镜的初始系统图为:双胶合物镜的初始系统点列图为:双胶合物镜的初始系统光线扇形图为:系统的光学特性参数为:系统的光学特性参数txt .实际上此时系统已经达到基本的设计要求。

2. 目镜的设计(1)系统建模我们采用双高斯物镜。

其初始结构参数为:我们选取的结构的光学特性为:1=50,2=40,=2D f f ω'' 这与我们需要的焦距25mm 不符合。

我们采用缩放功能进行调整。

选择Tools →scale lens ,由于系统现有焦距为50,要变为25,缩放因子为25/50=0.5。

调整的方式为:此时的焦距就变为了25mm 。

接下来,我们把“Field data ”中输入三个角度值0,14和20。

系统的结构图为:(2)结构优化变量的确定:这里我们选用如图所示的18个变量作为变量。

评价函数:这里我选用了三项评价函数,有效焦距(EFFL),光学传递函数(MTFS,MTFT)以及透镜最小中心厚度(MNCG),其中前两项的权重为1,后一项的为0.1。

(实际中,由于开始时得到优化结果的MTF很不理想,所以最后选择了MTFS和MTFT作为优化的评价函数)执行优化后的数据如图:执行优化后的结构图以及散点图:优化后系统的MTF图为:此时的MTF反映系统的像质系统还比较差,在此基础上进行改进,对原系统选用的玻璃进行更换。

毕业论文(设计)基于zemax的光学系统设计报告—内调焦望远物镜的设计

毕业论文(设计)基于zemax的光学系统设计报告—内调焦望远物镜的设计

目录一、前言 (1)二、设计技术参数 (1)三、外形尺寸计算 (2)四、初始结构的选型和计算 (6)五、利用zemax优化及评价 (8)六、设计心得体会 (12)七、参考文献 (13)内调焦望远物镜的设计一、前言内调焦望远镜是一种具有多种用途、使用方便的光学检调仪器,它可以作为自准直仪和可调焦望远镜使用。

因此它广泛地应用于光学实验室、光学加工车间和光学装校车间作为检验和调校工具。

例如,作为内调焦望远镜使用时:可以用来检验导轨、平面或直尺的“直线性”,基面之间的“垂直性”,平面之间的“平行性”以及不同直径孔径之间的“同轴性”;作为自准直仪使用时:可检测平面间的角度,光学平行平板两表面的楔角以及观测星点等等。

内调焦是针对外调焦而言的,外调焦是指通过直接移动目镜或者物镜进行调焦,内调焦是指移动镜头组之间的一组镜片来调焦.内调焦广泛运用在某类结构的防水产品上,优点是密封性好一些,但是若设计不当视野会相对窄。

二、设计技术参数技术条件如下:相对孔径D/f’=1/6.58合成焦距f’=250mm物镜筒长L=165mm(薄透镜筒长)物方半视场角w=-2°三、外形尺寸计算根据上图进行光路计算2'(101)12012/'l f d d L f Q ϕϕϕϕϕϕ=-=+-=式中,L ,f ’已知,当假设d0后便可由上述三式求得φ1、φ2、和l2’。

相应地,φ1、φ2可按下述二式求得11/1'1/0/0'1/'21/2'(')/0(0)f d L d f f f f L d d L ϕϕ==-+==--计算结果如表所示 d0/mm 25 50 75 82.5 100 125 150 165 f1’/mm56.81892.595117.18123.13135.14148.81159.57165f2’/mm-41.17-67.65-79.41-80.10-76.47-58.82-26.47由上表知,当Q 给定后,f1’随d0的增加而增加,-f2’开始随d 的增加而增加,到L/2时随d0的增大而减小。

ZEMAX光学设计软件应用训练实验报告

ZEMAX光学设计软件应用训练实验报告

东莞理工学院
ZEMAX光学设计软件应用训练实验报告
选择“analysis”,“miscellaneous”,“field curv/dist”场曲线如图所示。

牛顿式反射望远镜结构示意图
.输入数据:第一面,光阑面的曲率半径列输入-2000.0,负号表示为凹面,
列输入“MIRROR”。

选择“System”,“General”,然后在“通用数据对话框(
Box)”中输入一个200的孔径值,并单击“OK”。

ZEMAX使用的缺省值是波长
现在打开一个图层窗口,光线显示了从第一面到像平面的轨迹,此时像平面在镜面的左边。

如下图:
2.构造转折面:第一面的厚度改为-800mm。

像平面,按Insert在主面与像平面之间插入一个虚构
思考题与实践题:
1、牛顿反射式望远镜属于我们《应用光学》书本上所介绍的那种望远镜系统?
注意我们已将主反射面的距离减小到-18,第四面的半径已经被加入了一个变量标记。

新图层,检查一切是否正常。

如下图:
注意大约有4个波长的像差仍然有待改正。

现在单击第一面(光阑面)的“
设置第一面的半径为变量,再次优化(Tools,Optimization,Automatic
从主菜单,选SYSTEM,FIELDS,并将视场角的个数设置为3,输入y-
在评价函数编辑时,选Tools,Default Merit Function,并将RINGS
在遮挡器和辅助镜面之间的小缝隙纯粹是很小的一点。

这里是为了更容易让大家看到。

MTF现在已被主要是辅助镜面产生的遮挡所改变。

更新MTF窗口,看一下新的MTF,如下图:。

光学CAD设计(Zemax)报告

光学CAD设计(Zemax)报告

1.1 设计要求 ················································································· 1 1.2 设计成果 ·······································································er 0 30.03153 30.03153 28.73294 2.647173
Conic 0 0 0 0 0
● EDGE THICKNESS DATA:
Surf STO 2 3 IMA
● INDEX OF REFRACTION DATA:
Edge 5.462201 2.721906 142.331513 0.000000
设计一望远镜的物镜,独立校正像差,评价函数可以采取自建模式或缺省模式。
对像差参照 Lm
4 (边缘孔径球差)、 LFC ( 0.7 孔径轴向色差)、 2 2 nU m nU m
0.0025 (边缘孔径正弦彗差)进行评价。 SCm 根据外型尺寸计算,对其提出光学特性要求为: f 150mm , D / f 1/ 5.0 ,
光学 CAD 课程设计实验报告
第 4 页
共 14 页
# 1 2 3
Wavelength Field 0.0000 deg 0.3500 deg 0.5000 deg
0.486133 Tan Sag 5.0070 5.0070 5.0068 5.0069 5.0067 5.0069
0.587562 Tan Sag 5.0000 5.0000 4.9999 5.0000 4.9997 4.9999
Weight 1.000000 1.000000 1.000000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ZEMAX 光学设计报告一、设计目的通过对设计一个双胶合望远物镜,学会zemax 软件的基本应用和操作。

二、设计要求设计一个全视场角为1.56°,焦距为1000mm ,且相对孔径为1:10的双胶合望远物镜,要求相高为y`=13.6mm 。

三、设计过程1.双胶合望远物镜系统初始结构的选定1.1选型由于该物镜的全视场角较小,所以其轴外像差不太大,主要校正的像差有球差、正弦差和位置色差。

又因为其相对孔径较小,所以选用双胶合即可满足设计要求。

本系统采用紧贴型双胶合透镜组,且孔径光阑与物镜框相重合。

1.2确定基本像差参量根据设计要求,假设像差的初级像差值为零,即球差0'0=L δ;正弦差0'0s =K ;位置色差0'0=FC l δ。

那么按初级像差公式可得0===∑∑∑I I I I C S S ,由此可得基本像差参量为0===I ∞∞C W P 。

1.3求0P)(()⎪⎩⎪⎨⎧+-+-=∞∞∞∞火石玻璃在前时冕牌玻璃在前时2202.085.01.085.0W P W P P因为没有指定玻璃的种类,故暂选用冕牌玻璃进行计算,即0085.00-=P 。

1.4选定玻璃组合鉴于9K 玻璃的性价比较好,所以选择9K 作为其中一块玻璃。

查表发现当000.0=I C ,与0085.00-=P 最接近的组合是9K 与2ZF 组合,此时对应的038.00=P 。

此系统选定9K 与2ZF 组合。

9K 的折射率5163.11=n ,2ZF 的折射率6725.12=n ,038319.00=P ,284074.40-=Q ,06099.00-=W ,009404.21=ϕ,44.2=A ,72.1=K 。

1.5求形状系数Q一般情况下,先利用下式求解出两个Q 的值:AP P Q Q 00-±=∞再与利用下式求的Q 值相比较,取其最相近的一个值:)(1200+-+=∞A P WQ Q因为 0P P ≈∞,所以可近似为284074.40-==Q Q ,06099.00-==∞W W 。

1.6求归一化条件下的透镜各面的曲率()()⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--+-==-=-+=+===-+-⨯=+-==77370.0111127467.2284074.4009404.2161726.1284074.415163.1009404.25163.11122123312211111n Q n n r Q r Q n n r ϕρϕρϕρ 1.7求球面曲率半径⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-='=-=-='==='=491.129277370.01000624.43927467.21000330.61861726.11000332211ρρρf r f r f r 1.8整理透镜系统结构数据视场0136.0tan -=ω(负号表示入射光线从光轴左下方射向右下方),物距-∞=L (表示物体在透镜组左侧无穷远处),入瞳半径mm h 50=,光阑在透镜框上,即入瞳距第一折射面的距离为0。

数据整理表如下所示。

表1 数据整理表表中的d 之所以为零,是因为我们为了计算方便,在一开始时就假定了该透镜组为没有厚度的薄透镜组。

经验证该薄透镜组的像差较小,适宜作为初始结构。

1.9求后透镜组各面的球面曲率半径考虑到任何实际的透镜组总是有一定的厚度,因此需要把薄透镜组转换成后透镜组。

根据设计要求mm f 1000=',10/1/='f D ,则通光口径mm D 100=。

选用压圈方式固定透镜组,该方式所需余量由《光学仪器设计手册》查得为mm 5.3,由此可求得透镜组的外径为mm 5.103。

对于凸透镜而言;假设1x ,2x 分别为球面矢高,r 为折射球面曲率半径,D 为透镜外径,如图所示,则222⎪⎭⎫⎝⎛-±=D r r x由上式可求得17.21=x ,67.22=x 。

将所求的的结果代入下式中可求得凸透镜最小边缘厚度1t :()mm x x D t 9.81084.435.103103211=⨯-=+-=利用下式可求得凸透镜的最小中心厚度1d 。

mm x x t d 02.1003.167.266.11322=+-=+-=。

对于凹透镜而言:先求得03.13=x ,再代入下式中可求得凹透镜最小边缘厚度2t 。

()()mm x x D t 66.111003.167.285.103108122=-⨯-=++=利用下式可求得凹透镜的最小中心厚度2d 。

薄透镜变换成后透镜时,应保持u 和u '不变的条件下进行。

四、设计结果1、入瞳直径的设定(图1.1)图1.12、视场角的设定(图2.1)图2.13、工作波长的设定(图3.1)图3.14、评价函数的选择(图4.1、4.2)图4.1图4.25、系统的透镜参数表(5.1)图5.1 6、优化工具窗口(图6.1)图6.1 7、系统的结构轮廓图(7.1)图7.1 8、系统的FFT MTF(图8.1)图8.1 9、系统的FFT PSF(图9.1)图9.110、系统的FIELD CURV/DIST图(图10.1)(图10.1)11、系统的GRID DISTORION图(图11.1)图11.112、系统的SPOT DIAGRAM图(图12.1)图12.113、系统的LATERAL COLOR图(图13.1)图13.114、系统的RAY FAN 图(图14.1)图14.115、系统的OPD FAN图(图15.1)图15.116、系统的WAVEFRRONT MAP 图(图16.1)图16.117、系统的diffraction encircled energy 图(图17.1)图17.118、系统的system data (数据如下)System/Prescription DataFile : C:\Program Files\ZEMAX\SAMPLES\LENS.ZMXTitle:Date : WED OCT 29 2014GENERAL LENS DATA:Surfaces : 5Stop : 1System Aperture : Entrance Pupil Diameter = 100Glass Catalogs : SCHOTT 中国GB903-87Ray Aiming : OffApodization : Uniform, factor = 0.00000E+000Temperature (C) : 2.00000E+001Pressure (ATM) : 1.00000E+000Adjust Index Data To Environment : OffEffective Focal Length : 999.6842 (in air at system temperature and pressure) Effective Focal Length : 999.6842 (in image space)Back Focal Length : 989.2692Total Track : 1013.Image Space F/# : 9.996842Paraxial Working F/# : 9.996842Working F/# : 9.996906Image Space NA : 0.04995335Object Space NA : 5e-009Stop Radius : 50Paraxial Image Height : 13.61011Paraxial Magnification : 0Entrance Pupil Diameter : 100Entrance Pupil Position : 0Exit Pupil Diameter : 100.4728Exit Pupil Position : -1004.411Field Type : Angle in degreesMaximum Radial Field : 0.78Primary Wavelength : 0.5875618 祄Lens Units : MillimetersAngular Magnification : 0.9952938Fields : 5Field Type: Angle in degrees# X-Value Y-Value Weight1 0.000000 0.000000 1.0000002 0.000000 0.234000 1.0000003 0.000000 0.390000 1.0000004 0.000000 0.551000 1.0000005 0.000000 0.780000 1.000000Vignetting Factors# VDX VDY VCX VCY VAN1 0.000000 0.000000 0.000000 0.000000 0.0000002 0.000000 0.000000 0.000000 0.000000 0.0000003 0.000000 0.000000 0.000000 0.000000 0.0000004 0.000000 0.000000 0.000000 0.000000 0.0000005 0.000000 0.000000 0.000000 0.000000 0.000000Wavelengths : 3Units: 祄# Value Weight1 0.486133 1.0000002 0.587562 1.0000003 0.656273 1.000000。

相关文档
最新文档