三角函数基础知识整理

合集下载

三角函数包含的知识点总结

三角函数包含的知识点总结

三角函数包含的知识点总结一、基本概念1. 三角函数的定义三角函数是由角的正弦、余弦、正切等与该角的变量之间的关系来定义的。

在以角为自变量的函数中,这些关系通常用三角函数名称来表示。

角度单位可以是度,也可以是弧度。

2. 正弦、余弦、正切、余切的定义正弦(sin)、余弦(cos)、正切(tan)、余切(cot)是最基本的四个三角函数,它们的定义如下:正弦:sinθ = 对边/斜边余弦:cosθ = 邻边/斜边正切:tanθ = 对边/邻边余切:cotθ = 邻边/对边3. 三角函数的周期性正弦、余弦、正切、余切都是周期函数,周期为2π或π,即f(x+2π) = f(x),或者f(x+π) = f(x)。

4. 三角函数的定义域和值域正弦、余弦、正切的定义域是全体实数;正弦、余弦的值域是[-1,1],而正切的值域是整个实数集。

二、性质与公式1. 倒数公式tanθ = 1/cotθ,cotθ = 1/tanθsinθ = 1/cscθ,cscθ = 1/sinθcosθ = 1/secθ,secθ = 1/cosθ2. 三角函数的和差化积公式sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB∓sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)3. 三角函数的倍角公式sin2A = 2sinAcosAcos2A = cos^2A−sin^2Atan2A = 2tanA/(1−tan^2A)4. 三角函数的半角公式sin((1/2)A) = ±√[(1−cosA)/2]cos((1/2)A) = ±√[(1+cosA)/2]tan((1/2)A) = ±√[(1−cosA)/(1+cosA)]5. 三角函数的辅助角公式sin(180°−A) = sinAcos(180°−A) = −cosAtan(180°−A) = −tanAcot(180°−A) = −cotA6. 三角函数的同角变换sin(π−A) = sinAcos(π−A) = −cosAtan(π−A) = −tanAcot(π−A) = −cotA7. 三角函数的万能公式sinA+sinB = 2sin(A+B/2)cos(A−B/2)sinA−sinB = 2cos(A+B/2)sin(A−B/2)8. 三角恒等式sin^2A+cos^2A = 1,cot^2A+1 = csc^2A,tan^2A+1 = sec^2A三、函数图像和性质1. 正弦函数的图像和性质正弦函数y=sin(x)的图像是在直角坐标系中绕原点作周期为2π的振动,函数的最大值为1,最小值为-1,且为奇函数。

三角函数的基本性质知识点总结

三角函数的基本性质知识点总结

三角函数的基本性质知识点总结一、正弦函数的性质1. 基本定义:在直角三角形中,正弦函数是指对于一个锐角A,其对边与斜边之比,即sin A = 对边/斜边。

2. 定义域和值域:正弦函数的定义域是实数集,值域是[-1, 1]。

3. 奇偶性:正弦函数是奇函数,即sin(-A) = -sinA,对称轴为原点。

4. 周期性:正弦函数的周期是360°或2π,即sin(A + 360°) = sinA。

5. 正弦函数的图像:根据正弦函数的性质,可以绘制出正弦函数的图像,在0°到360°的范围内,图像呈现周期性的波动。

二、余弦函数的性质1. 基本定义:在直角三角形中,余弦函数是指对于一个锐角A,其临边与斜边之比,即cos A = 临边/斜边。

2. 定义域和值域:余弦函数的定义域是实数集,值域是[-1, 1]。

3. 奇偶性:余弦函数是偶函数,即cos(-A) = cosA,对称轴为y轴。

4. 周期性:余弦函数的周期是360°或2π,即cos(A + 360°) = cosA。

5. 余弦函数的图像:根据余弦函数的性质,可以绘制出余弦函数的图像,在0°到360°的范围内,图像呈现周期性的波动,与正弦函数的图像相似但形状相对位移。

三、正切函数的性质1. 基本定义:在直角三角形中,正切函数是指对于一个锐角A,其对边与临边之比,即tan A = 对边/临边。

2. 定义域和值域:正切函数的定义域是除去所有使得临边等于零的实数,值域是全体实数集。

3. 奇偶性:正切函数是奇函数,即tan(-A) = -tanA,对称轴为原点。

4. 周期性:正切函数的周期是180°或π,即tan(A + 180°) = tanA。

5. 正切函数的图像:根据正切函数的性质,可以绘制出正切函数的图像,在0°到180°的范围内,图像呈现周期性的波动。

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。

2)终边与角α相同的角可写成α+k·360°(k∈Z)。

3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。

弧度与角度可以互相转换。

2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。

3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。

注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。

和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。

二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。

2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。

三角函数的知识点总结

三角函数的知识点总结

三角函数的知识点总结1. 三角函数的基本概念三角函数源于三角形的角度关系,最开始是根据角度的定义和圆的性质推导得到。

三角函数最常用的有正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

正弦函数是指直角三角形中对边和斜边的比值,余弦函数是指直角三角形中邻边和斜边的比值,正切函数是指对边和邻边的比值。

这些函数中的输入变量是角度,输出变量是一个无量纲的比值。

2. 三角函数的关系与性质(1)正弦函数与余弦函数的关系:在单位圆上,当一个角为Θ时,其余弦函数值等于该角的补角的正弦函数值,即cos(Θ)=sin(π/2-Θ)。

(2)正切函数与余切函数的关系:在单位圆上,对于角Θ,其正切函数值等于角Θ的补角的余切函数值的倒数,即tan(Θ)=1/cot(Θ)。

(3)函数性质:三角函数具有周期性,正弦函数和余弦函数的周期是2π,而正切函数的周期为π。

3. 三角函数的定义和图像(1)正弦函数的定义和图像:正弦函数sin(x)在整个实数集上都有定义,其图像为一条连续曲线,且在区间[-π, π]上是凹函数,区间[0, π]上是凸函数,在区间[-π/2, π/2]上是单调递增函数,在区间[π/2, 3π/2]上是单调递减函数。

(2)余弦函数的定义和图像:余弦函数cos(x)在整个实数集上都有定义,其图像也是一条连续曲线,且在区间[0, π]上是凹函数,在区间[-π, 0]上是凸函数,在区间[0, π/2]上是单调递减函数,在区间[π/2, 3π/2]上是单调递增函数。

(3)正切函数的定义和图像:正切函数tan(x)在实数集上有定义,其图像是一条有无数间断点的曲线,且在每个周期的中点有一个无穷大的间断点。

4. 三角函数的导数(1)正弦函数和余弦函数的导数:正弦函数sin(x)的导数是cos(x),余弦函数cos(x)的导数是-sin(x)。

(2)正切函数的导数:正切函数tan(x)的导数是sec^2(x)。

5. 三角函数的应用三角函数在物理、工程、计算机科学等领域有着广泛的应用,例如在振动力学中,三角函数用于描述谐波振动的性质;在信号处理中,三角函数用于描述周期信号的特性;在工程中,正切函数用于计算斜面的坡度等。

三角函数知识点梳理

三角函数知识点梳理

三角函数知识点梳理关键信息项:1、三角函数的定义正弦函数余弦函数正切函数余切函数正割函数余割函数2、三角函数的基本关系式平方关系商数关系倒数关系3、三角函数的诱导公式正弦诱导公式余弦诱导公式4、三角函数的图像和性质正弦函数图像和性质余弦函数图像和性质正切函数图像和性质5、三角函数的周期性周期的定义常见三角函数的周期6、三角函数的最值和值域正弦函数的最值和值域余弦函数的最值和值域正切函数的最值和值域7、三角函数的和差公式正弦和差公式余弦和差公式正切和差公式8、三角函数的倍角公式余弦倍角公式正切倍角公式9、三角函数的半角公式正弦半角公式余弦半角公式正切半角公式11 三角函数的定义111 正弦函数:在直角三角形中,锐角的正弦等于其对边与斜边的比值。

即 sinA = a/c,其中 A 为锐角,a 为 A 的对边,c 为斜边。

112 余弦函数:锐角的余弦等于其邻边与斜边的比值。

即 cosA =b/c,其中 b 为 A 的邻边。

113 正切函数:锐角的正切等于其对边与邻边的比值。

即 tanA =a/b。

114 余切函数:锐角的余切等于其邻边与对边的比值。

即 cotA =b/a。

115 正割函数:斜边与邻边的比值。

即 secA = c/b。

116 余割函数:斜边与对边的比值。

即 cscA = c/a。

12 三角函数的基本关系式121 平方关系:sin²A + cos²A = 1,1 + tan²A = sec²A,1 + cot²A = csc²A。

122 商数关系:tanA = sinA / cosA,cotA = cosA / sinA。

123 倒数关系:sinA × cscA = 1,cosA × secA = 1,tanA × cotA =1。

13 三角函数的诱导公式131 正弦诱导公式:sin(2kπ + A) = sinA,sin(π + A) = sinA,sin(A) = sinA 等。

三角函数的基础知识

三角函数的基础知识

三角函数的基础知识1. 三角函数的概念三角函数是描述角度之间关系的一组函数,包括正弦、余弦、正切、余切等。

在数学和物理学中,三角函数是非常重要的基础概念,具有丰富的性质和广泛的应用。

1.1 正弦函数正弦函数是指在单位圆上,与横坐标的夹角对应的纵坐标值。

在直角三角形中,正弦函数可以表示为对边长度与斜边长度之比。

正弦函数的定义域是实数集合,值域是[-1, 1]。

图像为周期性曲线,在每个周期内递增或递减。

1.2 余弦函数余弦函数是指在单位圆上,与纵坐标的夹角对应的横坐标值。

在直角三角形中,余弦函数可以表示为邻边长度与斜边长度之比。

余弦函数的定义域也是实数集合,值域同样是[-1, 1]。

余弦函数图像也是周期性曲线,与正弦函数相位差为π/2。

1.3 正切函数和余切函数正切函数可以表示为正弦和余弦的比值,而余切函数则是余弦和正弦的比值。

它们在数学建模和物理问题中有广泛的应用,能够描述诸如振动、波动等现象。

2. 三角函数的性质2.1 周期性所有三角函数都具有周期性,即在一定范围内呈现重复的特点。

正弦、余弦、正切、余切等三角函数都是周期性函数,周期分别为2π、2π、π和π。

2.2 奇偶性正弦函数是奇函数,满足f(-x) = -f(x);余弦函数是偶函数,满足f(-x) = f(x);而正切和余切则不具备奇偶性。

2.3 单调性三角函数在其定义域内具有不同的单调性。

例如,正弦、余弦在每个周期内既递增又递减;而正切、余切则分别有其自身的单调性。

2.4 值域各种三角函数的值域均有限制范围,正弦、余弦的值域为[-1, 1];而正切和余切由于分母不为零也有其自身的取值范围。

3. 三角函数在解析几何中的应用3.1 直角三角形中的应用三角函数最早起源于解决直角三角形中各边长和夹角之间的关系。

通过正弦定理、余弦定理等公式可以计算出未知变量,并且利用三角函数可以求解各种几何问题。

3.2 曲线运动中的应用在曲线运动问题中,例如谐振动、周期运动等方面,三角函数能够精确描述物体随时间变化的位置关系。

(word完整版)三角函数最全知识点总结,推荐文档

(word完整版)三角函数最全知识点总结,推荐文档

三角函数、解三角形一、任意角和弧度制及任意角的三角函数1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按__逆时针__方向旋转形成的角.②负角:按__顺时针__方向旋转形成的角.③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}.(3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限.象限角轴线角2.弧度制(1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__.(2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__.(3)角度与弧度的换算:360°=__2π__rad,1°=__π180=(__180π__)≈57°18′.(4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__,面积S=__12|α|r2__=__12lr__.3.任意角的三角函数定义(1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sinα=__yr__,cosα=__xr__,tanα=__yx__.(2)三角函数在各象限的符号是:(3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线.4.终边相同的角的三角函数sin(α+k·2π)=__sinα__,cos(α+k·2π)=__cosα__,tan(α+k·2π)=__tanα__(其中k∈Z),即终边相同的角的同一三角函数的值相等.重要结论1.终边相同的角不一定相等,相等角的终边一定相同,在书写与角α终边相同的角时,单位必须一致.2.确定αk(k∈N*)的终边位置的方法(1)讨论法:①用终边相同角的形式表示出角α的范围.②写出αk的范围.③根据k的可能取值讨论确定αk的终边所在位置.(2)等分象限角的方法:已知角α是第m(m=1,2,3,4)象限角,求αk是第几象限角.①等分:将每个象限分成k等份.②标注:从x轴正半轴开始,按照逆时针方向顺次循环标上1,2,3,4,直至回到x轴正半轴.③选答:出现数字m的区域,即为αk所在的象限.如α2判断象限问题可采用等分象限法.二、同角三角函数的基本关系式与诱导公式1.同角三角函数的基本关系式(1)平方关系:__sin 2x +cos 2x =1__. (2)商数关系:__sin xcos x =tan x __.2.三角函数的诱导公式1.同角三角函数基本关系式的变形应用:如sin x =tan x ·cos x ,tan 2x +1=1cos 2x ,(sin x +cos x )2=1+2sin x cos x 等. 2.特殊角的三角函数值表“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.4.sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系为(sin x +cos x )2=1+2sin x cos x ,(sin x -cos x )2=1-2sin x cos x ,(sin x +cos x )2+(sin x -cos x )2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.三、两角和与差的三角函数 二倍角公式1.两角和与差的正弦、余弦和正切公式2.二倍角的正弦、余弦、正切公式 (1)sin2α=__2sin αcos α__;(2)cos2α=__cos 2α-sin 2α__=__2cos 2α__-1=1-__2sin 2α__; (3)tan2α=__2tan α1-tan 2α__(α≠k π2+π4且α≠k π+π2,k ∈Z ). 3.半角公式(不要求记忆) (1)sin α2=±1-cos α2; (2)cos α2=±1+cos α2;(3)tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.重要结论1.降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2. 2.升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α. 3.公式变形:tan α±tan β=tan(α±β)(1∓tan α·tan β). 1-tan α1+tan α=tan(π4-α);1+tan α1-tan α=tan(π4+α)cos α=sin2α2sin α,sin2α=2tan α1+tan 2α,cos2α=1-tan 2α1+tan 2α,1±sin2α=(sin α±cos x )2.4.辅助角(“二合一”)公式: a sin α+b cos α=a 2+b 2sin(α+φ), 其中cos φ=,sin φ= 5.三角形中的三角函数问题在三角形中,常用的角的变形结论有:A +B =π-C ;2A +2B +2C =2π;A2+B 2+C 2=π2.三角函数的结论有:sin(A +B )=sin C ,cos(A +B )=-cos C ,tan(A +B )=-tan C ,sin A +B 2=cos C 2,cos A +B 2=sin C 2.A >B ⇔sin A >sin B ⇔cos A <cos B .四、三角函数的图象与性质1.周期函数的定义及周期的概念(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做__周期函数__.非零常数T叫做这个函数的__周期__.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小__正周期__.(2)正弦函数、余弦函数都是周期函数,__2kπ(k∈Z,k≠0)__都是它们的周期,最小正周期是__2π__.2.正弦、余弦、正切函数的图象与性质π重要结论1.函数y =sin x ,x ∈[0,2π]的五点作图法的五个关键点是__(0,0)__、__(π2,1)__、__(π,0)__、__(3π2,-1)__、__(2π,0)__.函数y =cos x ,x ∈[0,2π]的五点作图法的五个关健点是__(0,1)__、__(π2,0)__、__(π,-1)__、__(3π2,0)__、__(2π,1)__.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为T =2π|ω|,函数y =tan(ωx +φ)的最小正周期为T =π|ω|.3.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.而正切曲线相邻两对称中心之间的距离是半周期.4.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.五、函数y =A sin(ωx +φ)的图象及应用1.五点法画函数y =A sin(ωx +φ)(A >0)的图象(1)列表:(2)描点:__(-φω,0)__,__(π2ω-φω,A )__,(πω-φω,0),(3π2ω-φω,-A )__,(2πω-φω,0)__.(3)连线:把这5个点用光滑曲线顺次连接,就得到y =A sin(ωx +φ)在区间长度为一个周期内的图象.(4)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象2.由函数y =sin x 的图象变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤3.函数y =A sin(ωx +φ)(A >0,ω>0,x ∈[0,+∞)的物理意义 (1)振幅为A . (2)周期T =__2πω__.(3)频率f =__1T __=__ω2π__. (4)相位是__ωx +φ__. (5)初相是φ.重要结论1.函数y =A sin(ωx +φ)的单调区间的“长度 ”为T2.2.“五点法”作图中的五个点:①y =A sin(ωx +φ),两个最值点,三个零点;②y =A cos(ωx +φ),两个零点,三个最值点.3.正弦曲线y =sin x 向左平移π2个单位即得余弦曲线y =cos x .六、正弦定理、余弦定理1.正弦定理和余弦定理 ①a =__2R sin A __,b =__2R sin B __,c =__2R sin C __;②sin A =__a 2R __,sin B =__b2R__,sin C=__c2R __;③ab c =__sin Asin B sin C __④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Aa <b sin A a =b sin A b sin A < a <b a ≥b a >b a ≤b (1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A .(3)S =12r (a +b +c )(r 为内切圆半径).重要结论在△ABC 中,常有以下结论 1.∠A +∠B +∠C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2. 5.tan A +tan B +tan C =tan A ·tan B ·tan C .6.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .7.三角形式的余弦定理sin 2A =sin 2B +sin 2C -2sin B sin C cos A ,sin 2B =sin 2A +sin 2C -2sin A sin C cos B ,sin 2C =sin 2A +sin 2B -2sin A sin B cos C .8.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3. 9.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等. (2)利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.(3)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.。

三角函数知识点归纳总结

三角函数知识点归纳总结

三角函数是高中数学中的重要内容,涉及到三角函数的定义、性质、图像、公式等方面的知识。

下面是对三角函数知识点的归纳总结:一、三角函数的定义1. 正弦函数(sin):在直角三角形中,对边与斜边的比值。

2. 余弦函数(cos):在直角三角形中,邻边与斜边的比值。

3. 正切函数(tan):在直角三角形中,对边与邻边的比值。

4. 余切函数(cot):在直角三角形中,邻边与对边的比值。

5. 正割函数(sec):在直角三角形中,斜边与邻边的比值。

6. 余割函数(csc):在直角三角形中,斜边与对边的比值。

二、三角函数的性质1. 奇偶性:sin和cos函数是奇函数,tan和cot函数是偶函数。

2. 周期性:sin和cos函数的周期为2π,tan和cot函数的周期为π。

3. 值域:sin和cos函数的值域为[-1, 1],tan和cot函数的值域为实数集。

4. 单调性:sin和cos函数在每个周期内单调递增或递减,tan和cot函数在每个周期内单调递增。

5. 对称性:sin和cos函数关于原点对称,tan和cot函数关于坐标轴对称。

三、三角函数的图像1. 正弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

2. 余弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

3. 正切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

4. 余切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

5. 正割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

6. 余割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

四、三角函数的基本公式1. 和差公式:sin(a+b) = sina * cosb + cosa * sinb;cos(a+b) = cosa * cosb - sina * sinb;tan(a+b) = (tana + tanb) / (1 - tana * tanb);cot(a+b) = (1 / tana + 1 / tanb) / (1 / tana * 1 / tanb - 1);sec(a+b) = secab / (cosa * cosb - sina * sinb);csc(a+b) = cscab / (cosa * cosb + sina * sinb)。

三角函数的知识点总结

三角函数的知识点总结

三角函数的知识点总结
一、基础概念
定义:在直角三角形中,锐角A的对边a、邻边b和斜边c的比值分别称为角A的正弦、余弦和正切,记作sinA,cosA和tanA。

即sinA=a/c,cosA=b/c,tanA=a/b。

第二象限角:对于第二象限的角,正弦值为正,余弦值为负,正切值为负。

第三、四象限角:对于第三象限的角,正弦值为负,余弦值为负,正切值为正;对于第四象限的角,正弦值为负,余弦值为正,正切值为负。

二、三角函数的性质
奇偶性:正弦和正切函数是奇函数,余弦函数是偶函数。

周期性:正弦、余弦和正切函数都具有周期性,其最小正周期分别为2π、2π和π。

有界性:正弦和余弦函数的值域为[-1, 1],正切函数的值域为全体实数。

三、诱导公式
诱导公式用于将角转换到基本区间(0, 2π)或(0, π)内,以便利用基本角的三角函数值求解。

四、三角函数的和差公式、倍角公式、半角公式等
这些公式用于化简和计算复杂的三角函数表达式。

五、反三角函数
反三角函数是三角函数的逆运算,包括反正弦、反余弦和反正切等。

六、三角函数的图像和性质
理解并掌握正弦、余弦和正切函数的图像,包括其周期性、振幅、相位等信息,对于理解和应用三角函数至关重要。

七、三角恒等式和三角不等式
三角恒等式和三角不等式是三角函数中重要的性质,常用于证明和计算。

八、三角函数的应用
三角函数在物理、工程、计算机科学等领域有着广泛的应用,如波动、交流电、信号处理等。

以上是对三角函数知识点的简要总结,具体学习和掌握还需要结合具体的教材和练习题进行深入学习和实践。

三角函数相关知识点

三角函数相关知识点

三角函数相关知识点三角函数知识点学习资料一、基本概念1. 角的概念推广正角、负角和零角:按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角,不作任何旋转形成的角为零角。

象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说这个角是第几象限角。

终边在坐标轴上的角不属于任何象限。

终边相同的角:所有与角α终边相同的角(连同α在内),可构成一个集合S ={β|β=α + k·360^∘,k∈ Z}。

2. 弧度制定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。

弧度与角度的换算:180^∘=π rad,所以1^∘=(π)/(180) rad,1 rad = ((180)/(π))^∘。

弧长公式:l =|α|r(其中l为弧长,α为圆心角弧度数,r为半径)。

扇形面积公式:S=(1)/(2)lr=(1)/(2)|α|r^2。

二、三角函数定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα=y,cosα = x,tanα=(y)/(x)(x≠0)。

对于角α终边上任意一点P(x,y)(r=√(x^2)+y^{2}),则sinα=(y)/(r),cosα=(x)/(r),tanα=(y)/(x)(x≠0)。

2. 三角函数值在各象限的符号正弦函数y = sin x:一、二象限为正,三、四象限为负。

余弦函数y=cos x:一、四象限为正,二、三象限为负。

正切函数y = tan x:一、三象限为正,二、四象限为负。

三、同角三角函数的基本关系1. 平方关系sin^2α+cos^2α = 1。

2. 商数关系tanα=(sinα)/(cosα)(cosα≠0)。

四、诱导公式1. α + 2kπ(k∈ Z)与α的三角函数关系sin(α + 2kπ)=sinα,cos(α+2kπ)=cosα,tan(α + 2kπ)=tanα。

sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα。

三角函数知识点总结

三角函数知识点总结

三角函数一、基础知识定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。

若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。

角的大小是任意的。

定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。

360度=2π弧度。

若圆心角的弧长为L ,则其弧度数的绝对值|α|=rL ,其中r 是圆的半径。

定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正弦函数s in α=r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=yx,定理1 同角三角函数的基本关系式, 倒数关系:tan α=αcot 1,商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α.定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α; (Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α;(Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α; ( Ⅳ)s in ⎪⎭⎫⎝⎛-απ2=co s α, co s ⎪⎭⎫⎝⎛-απ2=s in α(奇变偶不变,符号看象限)。

定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。

三角函数知识点归纳

三角函数知识点归纳

三角函数知识点归纳 一、任意角与弧度制 1.任意角 (I)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. J 按旋转方向不同分为正角、负角、零角. (2)分类[按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角a 终边相同的角,连同角a 在内,可构成一个集合S={缈=a+ 2kιt, Λ∈Z!.(3)象限角与轴线角 今1(第一象限角)卜| 第二致限角阳2A"专VaV2痴 2⅛π<α<2⅛π+-g-,⅛∈z} +π,⅛∈ZT 第三敛限角)卜性"τrVaV2"+等"刃 第四象限角]{α∣2⅛π+^<α<2⅛π+2π,⅛∈z}2.弧度制的定义和公式 角a 的弧度数公式 IaI=%/表示弧长)角度与弧度的换算 ①1。

=念 rad ;② 1 rad=, 弧长公式 l=∖a ∖r 扇形面积公式S=»=如/ (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 3.任意角的三角函数 一、定义:设α是一个任意角,它的终边与单位圆交于点P(x, y),那么Sina=y, cos α=x, tan α=^(x≠()).二、常用结论汇总——规律多一点(1)一个口诀:三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广:设点P(x, y)是角Q终边上任意一点且不与原点重合,r=∣OP∣,则• V X V,1八、sin a= , COSa=-, tanα=-(Xw0).r rχ∖ ,三、特殊角的三角函数:3.1 象限角及终边相同的角例1、若角。

是第二象限角,则辞()A.第一象限角B.第二象限角C.第一或第三象限角D.第二或第四象限角∩例2、一的终边在第三象限,则。

的终边可能在() 2A.第一、三象限B.第二、四象限C.第一、二象限或y轴非负半轴D.第三、四象限或y轴非正半轴3.2 三角函数的定义例1、已知角α的终边经过点P(一χ, — 6),且COSa=—/,则1;+%½= _________________ .1J SlIl (A IdIl (A例2、已知角α的终边经过点(3, -4),则Sin a+»^=.3.3 、三角函数符号的判定例1、已知Sina < 0旦cosa > 0,则a的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限3.4 扇形面积问题1.已知一个扇形的弧长和半径都等于2,则这个扇形的面积为().A. 2B. 3C. 4D. 6二、同角三角函数的基本关系与诱导公式1 .同角三角函数的基本关系(1)平方关系:siMα+cos2α=l; (2)商数关系:tan α=黑吃.同角三角函数的基本关系式的几种变形(l)sin2α= 1 — cos2α=(l + cos «)(1 —cos a); cos2a= 1 - sin2a=(l ÷sin a)(l — sin a); (sin a±cos a)2 =l±2sin acos a.(2)sin a=tan acos a(a≠5+E, &WZ).2 .诱导公式“奇变偶不变,符号看象限”公式一:sin(a+2⅛π)=sin a, cos(a÷2hc)=cos a»la∏(6Z + <λkτf)= t∏∏OC其中公式二:sin(π+ct)= ~sin a> cos(π+cc)=~cos ct> Ian(Tr+a)=Ian a.公式三:sin(π~a)=sin a,cos(π-a) = — cos ct, ta∏(^-6Z)= —ta∏ OC ∙公式四:sin(-ct)=—sin a, cost—«)=cos a,t<l∏) = -13∏ CX .公式五:Sine-a) =cos a, COSe—a) =Sina 公式六:SinC+a)=cos a,CoSC+«) = -sin a.诱导公式可概括为〃∙]±a的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指方的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把a看成锐角时,根据在哪个象限判断厚三曲函数值的符号,最后作为结果符号.8.方法与要点一个口诀I、诱导公式的记忆。

(完整版)三角函数知识点归纳

(完整版)三角函数知识点归纳

三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。

三角函数最全知识点总结

三角函数最全知识点总结

三角函数最全知识点总结三角函数是高中数学中的重要内容,主要包括正弦函数、余弦函数、正切函数等。

下面将对这些三角函数的定义、性质以及常用的解题方法进行总结。

一、正弦函数(sin):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的纵坐标y即为θ的正弦值,记作sinθ。

正弦函数的定义域为实数集,值域为[-1,1]。

2. 周期性:sin(θ+2π)=sinθ,sin(θ+π)=-sinθ。

其中π为圆周率。

3. 奇偶性:sin(-θ)=-sinθ,即正弦函数关于原点对称。

4. 正负性:当θ为锐角时,sinθ>0;当θ为钝角时,sinθ<0。

5. 值域变化:当θ从0增加到π/2时,sinθ从0增加到1,然后再从1减小到0。

二、余弦函数(cos):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的横坐标x即为θ的余弦值,记作cosθ。

余弦函数的定义域为实数集,值域为[-1,1]。

2. 周期性:cos(θ+2π)=cosθ,cos(θ+π)=-cosθ。

3. 奇偶性:cos(-θ)=cosθ,即余弦函数关于y轴对称。

4. 正负性:当θ为锐角时,cosθ>0;当θ为钝角时,cosθ<0。

5. 值域变化:当θ从0增加到π/2时,cosθ从1减小到0。

三、正切函数(tan):1. 定义:正切值tanθ等于θ的正弦值除以θ的余弦值,即tanθ=sinθ/cosθ。

正切函数的定义域为实数集,值域为实数集。

2. 周期性:tan(θ+π)=tanθ。

3. 奇偶性:tan(-θ)=-tanθ,即正切函数关于原点对称。

4. 正负性:当θ为锐角时,tanθ>0;当θ为钝角时,tanθ<0。

四、反三角函数:1. 反正弦函数:定义域为[-1,1],值域为[-π/2,π/2]。

记作arcsin x或sin⁻¹x。

2. 反余弦函数:定义域为[-1,1],值域为[0,π]。

三角函数知识点归纳总结

三角函数知识点归纳总结

三角函数知识点归纳总结三角函数是高中数学中重要的概念之一,涵盖了正弦函数、余弦函数和正切函数等常用函数。

在此将对三角函数的知识点进行归纳总结,包括定义、性质和应用等方面。

1. 正弦函数(sine function):正弦函数是一个周期函数,用sin表示。

在单位圆上,正弦函数的值等于半径落在单位圆上的点的y坐标。

- 定义:sinθ = y / r,其中θ表示角度,y表示对边的长度,r表示斜边的长度。

- 基本性质:周期为2π,函数值介于-1和1之间,奇函数(满足f(-θ) = -f(θ))。

- 特殊性质:正弦函数在[0, π/2]区间上是递增的,在[π/2, π]区间上是递减的,在[π, 2π]区间上是递增的。

- 应用:电磁波、震动、信号处理等领域。

2. 余弦函数(cosine function):余弦函数是一个周期函数,用cos表示。

在单位圆上,余弦函数的值等于半径落在单位圆上的点的x坐标。

- 定义:cosθ = x / r,其中θ表示角度,x表示邻边的长度,r表示斜边的长度。

- 基本性质:周期为2π,函数值介于-1和1之间,偶函数(满足f(-θ) = f(θ))。

- 特殊性质:余弦函数在[0, π/2]区间上是递减的,在[π/2, π]区间上是递增的,在[π, 2π]区间上是递减的。

- 应用:振动、周期性现象、热传导等领域。

3. 正切函数(tangent function):正切函数是一个周期函数,用tan表示。

正切函数的值等于正弦函数值与余弦函数值的比值。

- 定义:tanθ = y / x,其中θ表示角度,y表示对边的长度,x表示邻边的长度。

- 基本性质:周期为π,正切函数在部分区间上为单调递增或递减函数。

- 特殊性质:正切函数的定义域为除x = (2k+1)π/2(k为整数)之外的实数集,值域为负无穷到正无穷。

- 应用:电路分析、光学、几何等领域。

4. 弧度制度转换关系:角的度量单位有角度和弧度两种。

(完整版)三角函数基础知识

(完整版)三角函数基础知识

三角函数基础知识(精华)1、任意角(终边相同的角、轴线角、象限角)①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Zk k ∈+⨯=,360|αββ②象限角:第一象限的角表示为{α|k ⋅360︒<α<k ⋅360︒+90︒,(k ∈Z )};第二象限的角表示为{α|k ⋅360︒+90︒<α<k ⋅360︒+180︒,(k ∈Z )}; 第三象限的角表示为{α|k ⋅360︒+180︒<α<k ⋅360︒+270︒,(k ∈Z )}; 第四象限的角表示为{α|k ⋅360︒+270︒<α<k ⋅360︒+360︒,(k ∈Z )};或{α|k ⋅360︒-90︒<α<k ⋅360︒,(k ∈Z )} ③轴线角:终边在x 轴正半轴上的角的集合:{α|α=k ⋅360︒, k ∈Z};终边在x 轴负半轴上的角的集合:{α|α=k ⋅360︒+180︒,k ∈Z}; 终边在x 轴上的角的集合:{α|α=k ⋅180︒,k ∈Z};终边在y 轴正半轴上的角的集合:{α|α=k ⋅360︒+90︒,k ∈Z}; 终边在y 轴负半轴上的角的集合:{α|α=k ⋅360︒+270︒,k ∈Z}; 终边在y 轴上的角的集合:{α|α=k ⋅180︒+90︒,k ∈Z}; 终边在坐标轴上的角的集合:{α|α=k ⋅90︒,k ∈Z}2、弧度制①长度等于半径长的弧所对的圆心角称为1弧度的角rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制②性质:⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad )⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 ⑶角α的弧度数的绝对值 rl=α(l 为弧长,r 为半径) ⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0);用角度制和弧度制来度量任一非零角,单位不同,量数也不同③角度制与弧度制的换算:∵ 360︒=2π rad ∴180︒=π rad∴ 1︒=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad3、扇形相关公式①弧长公式:α⋅=r l②周长公式:2c r l =+ ③扇形面积公式 21122S lR R α== 其中α是圆心角,l 是扇形弧长,R 是圆的半径4、三角函数定义:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与 原点的距离为r ,则:sin y r α=正弦:; cos x rα=余弦:;tan y x α=正切:; cot x yα=余切:; 5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割30 60 90 120 135 150 1800 3 5 237、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1cos sin 22=+αα 8、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限”公式组一 公式组二 公式组三 公示四sin(2)sin cos(2)cos tan(2)tan k x x k x x k x xπππ+=+=+= sin()sin cos()cos tan()tan x x x x x x-=--=-=-sin()cos 2cos()sin 2tan()cot 2x xx xx xπππ+=+=-+=-sin()cos 2cos()sin 2tan()cot 2x xx xx xπππ-=-=-=公式组四 公式组五 公式组六sin()sin cos()cos tan()tan x x x x x xπππ+=-+=-+= sin(2)sin cos(2)cos tan(2)tan x x x x x xπππ-=--=-=- sin()sin cos()cos tan()tan x x x x x xπππ-=-=--=-9、三角恒等变换公式βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sin αα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 升幂公式: 221+cos 22cos 1cos 22sin a a a a⎧=⎪⎨-=⎪⎩ 221sin 2(sin cos )1sin 2(sin cos )a a a a a a ⎧+=+⎪⎨-=-⎪⎩ 降幂公式:221cos 2cos 21cos 2sin 2a a a a +⎧=⎪⎪⎨-⎪=⎪⎩辅助角公式:sin 2sin()3cos 2sin()61:1sin cos )4a a a a a a a a a πππ⎧=±⎪±=±⎪±=±⎪⎩型: 10、正弦、余弦、正切、余切函数的图象的性质:αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反。

三角函数总结大全

三角函数总结大全

三角函数总结大全三角函数是数学中的重要概念,是描述三角形边长和角度之间的关系的函数。

三角函数的研究和应用广泛,涵盖了数学、物理、工程等多个领域。

在学习和应用三角函数的过程中,我们需要掌握基本的三角函数定义、性质、公式以及它们在常见角度上的取值等知识。

下面我们将对三角函数进行全面总结。

一、基本概念1. 弧度:弧度是用来度量角度大小的单位。

一个弧度定义为半径长度等于弧长的角度,记作rad。

2.角度:角度是用来度量角度大小的单位。

一个角度定义为弧长等于半径长度的1/360,记作°。

3.角的三要素:角的三要素包括顶点、始边和终边。

顶点为角的端点,始边是从顶点开始的射线,终边是与始边相交形成的角。

4.正弦函数:正弦函数是一个周期函数,表示一个角的正弦值与其对应的三角形一条锐角边所在直线段的比值。

正弦函数的定义域是实数集,值域是[-1,1]。

5.余弦函数:余弦函数是一个周期函数,表示一个角的余弦值与其对应的三角形一条锐角边所在直线段的比值。

余弦函数的定义域是实数集,值域是[-1,1]。

6.正切函数:正切函数是一个周期函数,表示一个角的正切值与其对应的三角形两条锐角边所在直线段的比值。

正切函数的定义域是实数集,值域是全体实数。

7.余切函数:余切函数是一个周期函数,表示一个角的余切值与其对应的三角形两条锐角边所在直线段的比值。

余切函数的定义域是实数集,值域是全体实数。

二、三角函数的关系1.基本关系:正弦函数、余弦函数、正切函数和余切函数之间存在一定的关系。

- 正弦函数和余弦函数的关系:sin(x) = cos(π/2 - x),cos(x) = sin(π/2 - x)- 正切函数和余切函数的关系:tan(x) = 1/cot(x),cot(x) =1/tan(x)2.诱导公式:通过利用三角函数的基本关系,可以得到一系列的诱导公式。

- 和差角公式:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b),cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b)- 二倍角公式:sin(2a) = 2sin(a)cos(a),cos(2a) = cos^2(a) - sin^2(a)- 三倍角公式:sin(3a) = 3sin(a) - 4sin^3(a),cos(3a) =4cos^3(a) - 3cos(a)- 半角公式:sin(a/2) = ±√((1 - cos(a))/2),cos(a/2) =±√((1 + cos(a))/2)三、常见角度上的三角函数值1.0度和180度的三角函数值:- sin(0°) = 0,sin(180°) = 0- cos(0°) = 1,cos(180°) = -1- tan(0°) = 0,tan(180°) = 02.30度和150度的三角函数值:- sin(30°) = 1/2,sin(150°) = 1/2- cos(30°) = √3/2,cos(150°) = -√3/2 - tan(30°) = √3/3,tan(150°) = -√3/34.60度和120度的三角函数值:- sin(60°) = √3/2,sin(120°) = √3/2- cos(60°) = 1/2,cos(120°) = -1/2- tan(60°) = √3,tan(120°) = -√35.90度的三角函数值:- sin(90°) = 1- cos(90°) = 0- tan(90°) = 无穷大四、三角函数的应用1.几何应用:三角函数在几何中的应用非常广泛,可以用来计算三角形的边长、角度、面积等。

三角函数的性质知识点总结

三角函数的性质知识点总结

三角函数的性质知识点总结三角函数是数学中一个重要的概念,它在数学、物理、工程等多个领域都有着广泛的应用。

下面我们来详细总结一下三角函数的性质知识点。

一、正弦函数(sin)1、定义域正弦函数的定义域是全体实数,即(∞,+∞)。

2、值域值域为-1, 1 。

也就是说,sin x 的取值始终在-1 到 1 之间。

3、周期性正弦函数是周期函数,其最小正周期为2π。

这意味着 sin(x +2π) = sin x 对于任意实数 x 都成立。

4、奇偶性正弦函数是奇函数,即 sin(x) = sin x 。

5、单调性在区间π/2 +2kπ, π/2 +2kπ (k∈Z)上单调递增;在区间π/2 +2kπ, 3π/2 +2kπ (k∈Z)上单调递减。

对称轴为 x =kπ +π/2 (k∈Z)。

7、对称中心对称中心为(kπ, 0) (k∈Z)。

二、余弦函数(cos)1、定义域余弦函数的定义域也是全体实数,即(∞,+∞)。

2、值域值域同样为-1, 1 。

3、周期性最小正周期为2π,即 cos(x +2π) = cos x 对任意实数 x 成立。

4、奇偶性余弦函数是偶函数,即 cos(x) = cos x 。

5、单调性在区间2kπ π, 2kπ (k∈Z)上单调递增;在区间2kπ, 2kπ +π (k∈Z)上单调递减。

6、对称轴对称轴为 x =kπ (k∈Z)。

对称中心为(kπ +π/2, 0) (k∈Z)。

三、正切函数(tan)1、定义域定义域为{ x |x ≠ kπ +π/2, k∈Z }。

2、值域值域为全体实数,即(∞,+∞)。

3、周期性最小正周期为π,即 tan(x +π) = tan x ,但要注意定义域的限制。

4、奇偶性正切函数是奇函数,即 tan(x) = tan x 。

5、单调性在区间(π/2 +kπ, π/2 +kπ )(k∈Z)上单调递增。

四、余切函数(cot)1、定义域定义域为{ x |x ≠ kπ, k∈Z }。

三角函数的基本概念知识点总结

三角函数的基本概念知识点总结

三角函数的基本概念知识点总结三角函数是数学中非常重要的一个分支,在几何、物理、工程等众多领域都有广泛的应用。

下面就来为大家详细总结一下三角函数的基本概念知识点。

一、角的概念角可以看作是由一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

按旋转方向的不同,角可以分为正角、负角和零角。

正角是按逆时针方向旋转形成的角;负角是按顺时针方向旋转形成的角;如果一条射线没有作任何旋转,就形成了零角。

角的度量单位有度和弧度。

度的定义是将圆周 360 等分,每一份所对的圆心角的大小为 1 度,记作 1°。

弧度的定义是把长度等于半径长的弧所对的圆心角叫做1 弧度的角,用符号 rad 表示。

弧长公式:l =|α|r (其中 l 是弧长,α 是圆心角的弧度数,r 是半径)扇形面积公式:S = 1/2 lr 或 S = 1/2 |α|r²二、任意角的三角函数在平面直角坐标系中,设角α的终边上任意一点 P 的坐标为(x, y),它到原点的距离为 r(r =√(x²+ y²) 且 r > 0),则角α的正弦、余弦、正切分别定义为:正弦(sinα)= y/r余弦(cosα)= x/r正切(tanα)= y/x (x ≠ 0)三角函数在各象限的符号:正弦函数在一、二象限为正,三、四象限为负;余弦函数在一、四象限为正,二、三象限为负;正切函数在一、三象限为正,二、四象限为负。

三、同角三角函数的基本关系平方关系:sin²α +cos²α = 1商数关系:tanα =sinα /cosα (cosα ≠ 0)这两个关系式在解决三角函数的求值、化简和证明中经常用到。

四、诱导公式诱导公式可以将任意角的三角函数转化为锐角三角函数。

例如:sin( α) =sinα ,cos( α) =cosα ,sin(π α) =sinα ,cos(π α) =cosα 等等。

诱导公式的作用在于可以简化三角函数的运算和求解。

三角函数基础知识点

三角函数基础知识点

三角函数基础知识点三角函数是数学中的重要概念,是研究三角形及其相关性质的有力工具。

下面将整理三角函数的基础知识点。

一、三角函数的定义1. 正弦函数:定义为对于任意实数x,都有sin(x) = y,其中y为以x为角度的单位圆上的点的纵坐标。

2. 余弦函数:定义为对于任意实数x,都有cos(x) = y,其中y为以x为角度的单位圆上的点的横坐标。

3. 正切函数:定义为tan(x) = sin(x) / cos(x)。

4. 余切函数:定义为cot(x) = 1 / tan(x) = cos(x) / sin(x)。

5.值域:正弦函数和余弦函数的值域为[-1,1];正切函数和余切函数的值域为整个实数集。

二、三角函数的性质1.周期性:正弦函数和余弦函数的周期都是2π;正切函数和余切函数的周期都是π。

2. 对称性:正弦函数是奇函数,即sin(-x) = -sin(x);余弦函数是偶函数,即cos(-x) = cos(x);正切函数是奇函数,即tan(-x) = -tan(x);余切函数是奇函数,即cot(-x) = -cot(x)。

3.正交性:正弦函数和余弦函数在同一角度的情况下,它们的积分等于0。

4.互补性:正弦函数和余弦函数在同一角度的情况下,它们的平方和等于15.三角恒等式:(1) 正弦函数和余弦函数的平方和等于1,即sin^2(x) + cos^2(x)= 1(2) 正切函数和余切函数的平方差等于1,即tan^2(x) - cot^2(x)= 1(3) 正切函数可以用正弦函数和余弦函数表示,即tan(x) = sin(x) / cos(x)。

(4) 余切函数可以用正弦函数和余弦函数表示,即cot(x) = cos(x) / sin(x)。

6.三角函数的图像性质:正弦函数和余弦函数的图像是连续的周期函数;正切函数和余切函数的图像有无数个奇点。

三、三角函数的应用1.几何应用:三角函数可以用于求解三角形的各种性质,例如计算边长、角度、面积等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数基础知识整理
一、三角函数的基本概念 1.终边相同的角的表示方法:
终边在x 轴上;终边在y 轴上;终边在直线y x =上;终边在第一象限等 2.理解弧度的意义,并能正确进行弧度和角度的换算;
⑴角度制与弧度制的互化:π弧度ο180=,180

=ο弧度,1弧度ο)180
(
π
='1857ο≈
⑵弧长公式:R l α=;扇形面积公式:Rl S 2
1
=。

3.任意角的三角函数的定义(三个三角函数)、三角函数的符号规律、特殊角的三角函数值、
⑴三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:
,cos ,sin r x r y ==
ααx
y =αtan ⑵三角函数符号规律:一全正,二正弦,三两切,四余弦;
4.同角三角函数的关系式(三个:平方关系、商数关系、倒数关系)、 同角三角函数的基本关系:x x
x
x x tan cos sin ;
1cos sin 22==+ α
αcot 1
tan =
5.诱导公式(奇变偶不变,符号看象限...........
πα-、πα+、α-、2πα-、2()k k Z πα+∈、
2
π
α-、
απ
+2



2
α
、α2所在的象限的讨论: ⑵sin cos αα+和sin cos αα-的符号规律:
二、两角和与差的三角函数 1.和(差)角公式
①;sin cos cos sin )sin(βαβαβα±=± ②;sin sin cos cos )cos(βαβαβαμ=± ③β
αβ
αβαtan tan 1tan tan )tan(μ±=
±
2.二倍角公式
①αααcos sin 22sin =;
②ααααα2222sin 211cos 2sin cos 2cos -=-=-=; ③α
α
α2tan 1tan 22tan -=
41
2
3
432
1
⑴升(降)幂公式:21cos 2sin 2αα-=
、21cos 2cos 2αα+=、1
sin cos sin 22
ααα=;
⑵辅助角公式:sin cos )a b αααϕ+=+(ϕ由,a b 具体的值确定); ⑶正切公式的变形:tan tan tan()(1tan tan )αβαβαβ+=+-⋅. 4.有用的解题思路
⑴“变角找思路,范围保运算”;
⑵“降幂——辅助角公式——正弦型函数”; ⑶巧用sin cos αα±与sin cos αα⋅的关系; ⑷巧用三角函数线——数形结合.
三、三角函数的图象与性质
1.列表综合三个三角函数sin y x =,cos y x =,tan y x =的图象与性质,并挖掘:
⑴最值的情况;
⑵了解周期函数和最小正周期的意义.会求sin()y A x ωϕ=+的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,了解加了绝对值后的周期...........情况..

⑶会从图象归纳对称轴和对称中心;
sin y x =的对称轴是2
x k π
π=+
()k Z ∈,对称中心是(,0)k π()k Z ∈;
cos y x =的对称轴是x k π=()k Z ∈,对称中心是(,0)2
k π
π+()k Z ∈
tan y x =的对称中心是(,0)()2
k k Z π
∈ ⑷写单调区间注意0ω>.
2.了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数sin()y A x ωϕ=+的简图,并能由图象写出解析式. ⑴“五点法”作图的列表方式;
⑵求解析式sin()y A x ωϕ=+时处相ϕ的确定方法:代(最高、低)点法、 3.正弦型函数sin()y A x ωϕ=+的图象变换
四、解三角形 Ⅰ.正、余弦定理 ⑴正弦定理
R C
c
B b A a 2sin sin sin ===(R 2是AB
C ∆外接圆直径) 注:①C B A c b a sin :sin :sin ::=; ②C R c B R b A R a sin 2,sin 2,sin 2===; ③
C
B A c
b a C
c B b A a sin sin sin sin sin sin ++++=
==。

⑵余弦定理:A bc c b a cos 22
2
2
-+=等三个;注:bc
a c
b A 2cos 2
22-+=等三
个。

Ⅱ。

几个公式:
⑴三角形面积公式:C ab ah S ABC sin 2
1
21==∆; ⑵外接圆直径2R=
;sin sin sin C
c B b A a == ⑶在使用正弦定理时判断一解或二解的方法:
∆ABC 中,sin sin A B A B >⇔>
Ⅲ.已知A b a ,,时三角形解的个数的判定:
A
其中h=bsinA,⑴A 为锐角时:①a<h 时,无解; ②a=h 时,一解(直角);③h<a<b 时,两解(一锐角,一钝角);④a ≥ b 时,一解(一锐角)。

⑵A 为直角或钝角时:①a ≤ b 时,无解;②a>b 时,一解(锐角)。

相关文档
最新文档