2019江苏省对口单招数学试卷与答案

合集下载

江苏省2019对口高考数学试卷.doc

江苏省2019对口高考数学试卷.doc

江苏省中 2019 年普通高校对口单招文化统考《数学》试卷一、单项选择题(本大题共 10 小题,每小题4 分,共 40 分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满.涂黑)1.已知集合 M={1,3,5} , N={2,3,4,5,},则 M ∩N 等于( )A.{3}B . {5}C . {3,5}D . {1,2,3,4,5} 2.若复数 z 满足 z · i=1+2i ,则 z 的虚部为()A .2B .1C . 3D . 63.已知数组 a=( 2, -1,0), b=(1,-1,6), 则 a ·b 等于()A .-2B . 1C . 3D . 64.二进制数() ?换算成十进制的结果是( )A .(138) 10B .( 147) 10C .( 150) 10D .( 162) 105.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为( )A .4πB . 4 2 πC . 5 πD . 36. ( x 2 +1 )6 展开式中的常数项等于( )2x315512A .B .C .D.83162327.若 sin(,则 cos2等于( ))2 7 5715 18A .25B .C .D .25252838.已知 (f x )是定义在() ( )£x ,2 则 f (- 7) 等于( )B . - 2C . 2D .19.已知双曲线的焦点在y 轴上,且两条渐近线方程为y = ?3x ,则该双曲线的离心率为( )2A .13B .135D .532C .3210.已知( m , n )是直线 x+2y-4=0 上的动点,则 3m + 9n 最小值是()A .9B .18C . 36D . 81二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11.题 11 图是一个程序框图,若输入m 的值是 21,则输出的m 值是_12.题 12 图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是_13. 已知 9a 3 ,则y cosax 的周期是_14. 已知点 M 是抛物线C:y2 2 px( p 0) 上一点,F为C的焦点,线段MF的中点坐标是(2,2),则 p=_2x , x015.已知函数 f ( x),令 g( x)=f(x)+x+a.若关于 x 的方程 g( x) =2 有两个实根,则log 2 x, x0实数 a 的取值范围是三、解答题(本大题共8 小题,共计90 分)16.(8 分)若关于x 的不等式x2-4ax+4a﹥ 0 在 R 上恒成立 .( 1)求实数 a 的取值范围;( 2)解关于x 的不等式log a23x 2log a 16 .17.( 10 分)已知f( x)是定义在R 上的奇函数,当x 0 时, f (x)log 2 ( x 2) ( a 1)x b ,且 f (2) 1 .令 a n f (n 3) (n N ) .(1)求 a, b 的值;(2)求a1a5a9的值 .18.( 12 分)已知曲线C:x2 +y2+mx+ny+1=0, 其中 m 是从集合M={-2,0} 中任取的一个数,n 是从集合N={-1,1,4} 中任取的一个数.( 1)求“曲线 C 表示圆”的概率;( 2)若 m=-2,n=4 ,在此曲线C上随机取一点Q( x, y),求“点 Q 位于第三象限”的概率 .19.( 12 分)设△ ABC 的内角 A,B,C 的对边为a,b,c,已知 2sinBcosC-sinC=2sinA.( 1)求角 B 的大小;( 2)若b 2 3, a c 4 ,求△ABC的面积.20.(10 分)通过市场调查知,某商品在过去90 天内的销售量和价格均为时间t (单位:天, t∈ N*)的函数,其中日销售量近似地满足q(t) 36 1 t (1 t 90) ,价格满足41 t 28, 1 t40P(t)4,求该商品的日销售额 f (t )的最大值与最小值 .1t 52, 41t90221.( 14 分)已知数列 {a n } 的前 n 项和 S n3 n 2 1n ,数列 {b n } 是各项均为正数的等比数列,且22a 1b 1 ,a 6 b 5 .( 1)求数列 {a n } 的通项公式;( 2)求数列 {b 2n } 的前 n 项和 Tn ;1 1 1 1( 3)求a 2 ?a 3...的值 .a 1 ? a 2 a 3 ?a 4a 33? a3422.( 10 分)某房产开发商年初计划开展住宅和商铺出租业务,每套住宅的平均面积为 80 平方米,每套商铺的平均面积为60 平方米,出租住宅每平方米的年利润是30 元,出租商铺每平方米的年利润是 50 元 .政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000 平方米 .若当年住宅和商铺的最大需求量分别为450 套和 600 套,且开发的住宅和商铺全部租空.问房产开发商出租住宅和商铺各多少套,可使年利润最大并求早最大年利润.23.( 14 分)已知圆 O :x 2+y 2=r 2(r>0 )与椭圆 C :x 2y 2 1(a b 0) 相交于点 M (0,1),n ( 0,y 2b 2-1),且椭圆的一条准线方程为x=-2.(1) 求 r 的值和椭圆 C 的方程;( 2)过点 M 的直线 l 另交圆 O 和椭圆 C 分别于 A,B 两点 .uuuv uuuv ①若 7MB 10MA, 求直线 l 的方程;②设直线 NA 的斜率为 k 121=2k 2.,直线 NB 的斜率为 k ,求证 :k。

2019江苏高职单招院校单独招生联合测试真题卷(数学)

2019江苏高职单招院校单独招生联合测试真题卷(数学)

2019江苏高职单招院校单独招生联合测试真题卷数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷包含选择题(第1题~第10题,共10题40分)、填空题(第11题~第15题,共5题20分)和解答题(第16题~第20题,共5题40分),满分100分。

考生答题全部答在答题卡上,答在本试卷上无效。

本次考试时间为75分钟。

考试结束后,请将本试卷和答题卡一并放在桌面,等待监考员收回。

2.答题前,请您务必将自己的姓名、准考证号用书写黑色字迹的0.5毫米签字笔填写在本试卷及答题卡上。

3.请认真核对监考员在答题卡右上角所粘贴条形码上的姓名、准考证号是否与本人的相符合。

4.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案。

答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其他位置答题一律无效。

参考公式:椎体的体积公式1=3V Sh ,其中S 是椎体的底面积,h 是椎体的高.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合{}1,3A =,{}3log ,3B m =,若{}1,2,3A B =U ,则实数m = ( )A .2B .3C .6D .92.盒中装有大小、形状都相同的6个小球,分别标以号码1,2,3,4,5,6,从中随机取出一个小球,其号码为奇数的概率是 ( )A .12 B .13 C .14 D .163.已知函数()cos()(0)6f x x πωω=->的最小正周期为π,则ω的值为 ( )A .1B .2C .πD .2π4.如图,在ABC ∆中,AB a =u u u r r ,AC b =u u u r r .若点D 满足2BD DC =u u u r u u u r , 则AD =u u u r( )(第4题)A .2133a b +r rB .2133a b -r rC .1233a b +r rD .1233a b -r r5.如图是一个算法流程图,若输出x 的值为3,则输出s 的值为 ( )(第5题)A .2B .4C .8D .166.若变量x y ,满足22x y x x y ≤⎧⎪≤⎨⎪+≥⎩,则2z y x =-的最大值为 ( )A .-1B .0C .1D .2 7.在平面直角坐标系中,已知第一象限的点(),a b 在直线210x y +-=上,则12a b+的最小值为( ) A .11 B .9 C .8 D . 6 8.已知1(1)212f x x -=-,且()6f m =,则实数m 的值为 ( )A .12-B .14-C .1-D .34- 9.已知等差数列{}n a 的前n 项和为n S ,若151,15,a S ==则10S = ( ) A .55B .45C .35D .2510.已知圆C 与圆22(1)1x y ++=关于直线0x y +=对称,则圆C 的标准方程为 ( )A .22(11x y +-=) B .221x y += C .22(11x y -+=) D .22(11x y ++=)二、填空题(本大题共5小题,每小题4分,共20分) 11.若复数z 满足1i 42i z +=-() (i 为虚数单位),则z = .12.设平面向量(2),(1,2)a y b ==v v ,,若//a b v v ,则2a b +=vv .13.如图,已知三棱锥P ABC -中, PA ⊥底面,3ABC PA =,底面ABC 是边长为2的正三角形,三棱锥P ABC -的体积为 .(第13题)的频率为 . 分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70]频数54321215.已知函数[]()211,1,3f x x a x x =-++∈图象上任意两点连线都与x 轴不平行,则实数a 的取值范围是 .三、解答题(本大题共5小题,共40分.解答时应写出文字说明、证明过程或演算步骤)16.(本题满分6分) 已知5cos α=,(0,)2πα∈. (1)求sin α和sin()4πα+的值; (2) 求tan2α的值.17.(本题满分6分)如图,在三棱锥S ABC -中,点D ,E ,F 分别为棱AC , SA , SC 的中点. (1)求证://EF 平面ABC ;(2)若SA SC =,BA BC =,求证:AC ⊥SB .(第17题)18.(本题满分8分)已知椭圆C 的中心在原点,焦点在x 轴上,短轴长为2,且点3在椭圆C 上. (1)求椭圆C 的方程;(2)若点P 在第二象限,2160F PF ∠=︒,求三角形12PF F 的面积. 19.(本题满分10分)已知正项数列{}n a 的前n 项和为n S ,且n S 是1与n a 的等差中项. (1)求数列{}n a 的通项公式;(2)求数列12n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T . 20.(本题满分10分)已知函数x a x x x f ln 2)(2+-= )(R a ∈.(1)当1=a 时,求函数)(x f 在))1(,1(f 处的切线方程; (2)当0>a 时,求函数)(x f 的单调区间.2019江苏高职单招院校单独招生联合测试真题卷数学答案一、1.D 解析:由题意知,3log 2,9m m =∴=.故选D .2.A 解析:从6个球中随机取出一个小球共有6种方法,其中号码为偶数的为1,3,5,共三种,由古典概型的概率公式可得,其号码为偶数的概率是3162P ==.故选A . 3.B 解析:由2||T πω=得,22πωπ==.故选B. 4.C 解析:∵2BD DC =u u u r u u u r ,∴2()AD AB AC AD -=-u u u r u u u r u u u r u u u r ,∴322AD AB AC a b =+=+u u u r u u u r u u u r r r ,∴1233AD a b =+u u u r r r.故选C .5.C 解析:1,13,2,234,338,4s k s k s k s k ==≤→==≤→==≤→==,不满足43k =≤,输出s =8.故选C .6.A 解析:作出可行域如图所示,由2z y x =-,得2yx z =+,由图可知,当直线2y x z =+过可行域内的点(11)C ,时,直线在y 轴上的截距最大,即121z =-=-.故选A .7.B 解析:∵第一象限的点()a b ,在直线210x y +-=上,∴210a b +-=,即21a b +=,且00a b >,>,∴()12122222()25529b a b aa b a b a b a b a b+=++=++≥+⋅=.故选B . 8.D 解析:由题意可得,7173216112244x x m x -=⇒==-=-=-,.故选D .9.A 解析:设等差数列{}n a 的公差为d ,则51545+152S a d ⨯==,1010,1d d ∴==,则101109101045552S a d ⨯=+=+=.故选A. 10.C 解析:由题意,圆22(1)1x y ++=的圆心为(0,1)-,半径为1r =,圆心(0,1)-关于直线0x y +=的对称点为(1,0),则圆C 的圆心为(1,0),半径为1,圆C 的标准方程为22(11x y -+=).故选C.二、11解析:由题意得,42i (42i)(1i)13i 1i (1i)(1i)z ---===-++-,故z =12.解析:由题意得2210y ⨯-⨯=,解得4y =,则()24,8a b +=v v ,故2a b +==v v13解析:因为该三棱锥是一个底面是等边三角形的直棱锥,所以该三棱锥的体积为1112233322ABC V S PA ∆=⋅=⨯⨯⨯⨯=14.0.3 解析:在区间[30,60)的频数为3+2+1=6,所以频率为630.32010P ===. 15.已知函数()[]2()211,1,3f x x a x x =-++∈图象上任意两点连线都与x 轴不平行,则实数a 的取值范围是 .15.1522∞∞U (-,][,+) 解析:由题意知函数()f x 在[]1,3上是单调函数,所以对称轴2112a +≤或2132a +≥,解得12a ≤或52a ≥,即实数a 的取值范围是1522∞∞U (-,][,+). 三、16.解析:(1)cos 5α=Q ,(0,)2πα∈,sin 5α∴==.(2分)sin()sin cos cos sin (44425510πππαααα+=+=+=.(4分)(2)由(1)得,sin tan 2cos ααα==,则22tan 44tan21tan 143ααα===---.(6分) 17.证明:(1)∵EF 是SAC ∆的中位线, ∴EF ∥AC .又∵EF ⊄平面ABC ,AC ⊂平面ABC , ∴EF ∥平面ABC .(3分)(2)∵SA SC =, AD DC =,∴SD ⊥AC . ∵BA BC =, AD DC =,∴BD ⊥AC .又∵SD ⊂平面SBD ,BD ⊂平面SBD ,SD DB D =I , ∴AC ⊥平面SBD ,(5分) 又∵SB ⊂平面SBD , ∴AC ⊥SB .(6分)18.解析:(1) 因为C 的焦点在x 轴上且短轴为2,故可设椭圆C 的方程为1222=+y ax (1>a ),因为点在椭圆C 上,所以14312=+a, (2分) 解得42=a , 所以,椭圆C 的方程为1422=+y x .(4分) (2) 设12,PF x PF y ==,由椭圆的定义得,4x y +=,由余弦定理得,2222cos 60412x y xy c +-︒==,即2212x y xy +-=,则2[()2]12x y xy xy +--=,解得,43xy =,(6分)从而得12114sin 6022323PF F S xy ∆=︒=⨯⨯=1sin 602S xy =︒=33.(8分) 19.解析:(1)由等差中项可得1n a =+,即24(1)n n S a =+,当1n =时,11a =;当2n ≥时,2114(1)n n S a --=+,又24(1)n n S a =+,由1n n n a S S -=-得,2211444(1)(1)n n n n n a S S a a --=-=+-+,(2分)化简得,221142121n n n n n a a a a a --=++---,221121210n n n n a a a a ---+---=,221121)(21)0n n n n a a a a ---+-++=(,即2211)(1)0n n a a ---+=(,则11()(2)0n n n n a a a a --+--=,又10,2n n n a a a ->∴-=Q ,(4分)故{}n a 是以1为首项,2为公差的等差数列,即21na n =-.当1n =时,11a =满足上式.综上,数列{}n a 的通项公式是21n a n =-.(6分) (2)12211(21)(21)2121n n a a n n n n -==--+-+Q,(8分) 111111(1)()()1335212121n T n n n ∴=-+-++-=--++L .(10分) 20.解析:(1)当1=a 时,,122)('xx x f +-=则,1)1(',1)1(=-=f f所以切线方程为11-=+x y .即2-=x y .(3分))0(2222)('22>+-=+-=x xax x x a x x f )(,令0)('=x f ,0 222=+-a x x , ①当,084≤-=∆a 即21≥a 时,,0)('≥x f ,函数)(x f 在),(∞+0上单调递增;(5分) ②当,084>-=∆a 且0>a ,即210≤<a 时,由,0 222=+-a x x ,得22112,1ax -±=, 由,0)('>x f ,得22110a x --<<或2211ax -+>;(7分) 由,0)('<x f ,得x a<--22112211a -+<.(9分) 综上,当21≥a 时,)(x f 的单调递增区间是),(∞+0; 当210<<a 时,)(x f 的单调递增区间是)2211,0(a --,),2211(+∞-+a ; 单调递减区间是)2211,2211(aa -+--.(10分)2019江苏高职单招院校单独招生联合测试真题卷数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷包含选择题(第1题~第10题,共10题40分)、填空题(第11题~第15题,共5题20分)和解答题(第16题~第20题,共5题40分),满分100分。

2019年江苏高职单招数学真题试卷

2019年江苏高职单招数学真题试卷

2019年江苏高职单招数学真题卷参考公式:锥体的体积公式V=h,其中S是锥体的底面积,h是锥体的高一、选择题(本大题共10小题,每小题4分共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,3},B={l,3},若AUB={1,2,3},则实数m=A.2B.3C. 6D.92.盒中装有大小、形状都相同的6个小球,分别标以号码1,2,3,4,5,6,从中随机取出一个小球,其号码为奇数的概率是A .BC D.3.已知函数f(x)=)(a>0)的最小正周期为,则的值为_____A.1 B .2 C .D (2)4。

如图,在△ABC中,=a,=b。

若点D满足=2,则= A.a+b B..a-b C. .a+b D. .a-b5。

如图是一个算法流程图,若输入x的值为3,则输出s的值为A.2B.4C.8D.166。

若变量x,y满足,则=y-2x的最大值为A.-1B. 0 C .1 D.27.在平面直角坐标系中,已知第一象限的点(a,b)在直线x+2y-1=0上,则+的最小值为_______A.11B.9C.8D.68.已知f(1-x)=2x-1,且f(m)=6则实数m的值为_______A. B. - C. -1 D. -9。

已知等差数列{an}的前n项和为Sn,若=1,=15,则=___ A.55 B.45 C.35 D.2510。

已知圆C与圆+=1关于直线x+y=0对称,则圆C的标准方程为A+=1 B.+=1C.+=1D.+=1二、填空题(本大题共5小题,每小题4分,共20分)11.若复数z满足z(1+i)=4-2i(i为虚数单位),则=______________12.设平面向量a=(2,y),b=(1,2),若a∥b,则=________________13.如图,已知三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,三棱锥P-ABC的体积为_______________14.容量为20的样本数据,分组后的频数如下表,则样本数据落在区间[30,60)的频率为____________分组[10,20][20,30)[30,40)[40,50)[50,60)[60,70]频数54321215。

2019年江苏高职单招数学真题试卷

2019年江苏高职单招数学真题试卷

2019年江苏高职单招数学真题试卷-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2019年江苏高职单招数学真题卷参考公式:锥体的体积公式V=h,其中S是锥体的底面积,h是锥体的高一、选择题(本大题共10小题,每小题4分共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,3},B={l,3},若AUB={1,2,3},则实数m=A.2B.3C. 6D.92.盒中装有大小、形状都相同的6个小球,分别标以号码1,2,3,4,5,6,从中随机取出一个小球,其号码为奇数的概率是A .BC D.3.已知函数f(x)=)(a>0)的最小正周期为,则的值为_____A.1 B .2 C .D (2)4。

如图,在△ABC中,=a,=b。

若点D满足=2,则= A. a+b B.. a-b C. . a+b D. . a-b5。

如图是一个算法流程图,若输入x的值为3,则输出s的值为A.2B.4C.8D.166。

若变量x,y满足,则=y-2x的最大值为A.-1B. 0 C .1 D.27.在平面直角坐标系中,已知第一象限的点(a,b)在直线x+2y-1=0上,则+的最小值为_______A.11B.9C.8D.68.已知f(1-x)=2x-1,且f(m)=6则实数m的值为_______A. B. - C. -1 D. -9。

已知等差数列{an}的前n项和为Sn,若=1,=15,则=___ A.55 B.45 C.35 D.2510。

已知圆C与圆+=1关于直线x+y=0对称,则圆C的标准方程为A+=1 B.+=1C.+=1D.+=1二、填空题(本大题共5小题,每小题4分,共20分)11.若复数z满足z(1+i)=4-2i(i为虚数单位),则=______________12.设平面向量a=(2,y),b=(1,2),若a∥b,则=________________13.如图,已知三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,三棱锥P-ABC的体积为_______________14.容量为20的样本数据,分组后的频数如下表,则样本数据落在区间[30,60)的频率为____________分组[10,20] [20,30)[30,40)[40,50)[50,60)[60,70]频数 5 4 3 2 1 215。

(完整)江苏省2019普通高考对口单招文化统考数学试卷(word版,图片答案)

(完整)江苏省2019普通高考对口单招文化统考数学试卷(word版,图片答案)

江苏省2019年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩N等于A.{3}B.{5}C.{3,5}D.{1,2,3,4,5}2. 若复数z满足z·i=1+2i,则z的虚部为A.2B.1C.-2D.-13. 已知数组a=(2,-1,0),b=(1,-1,6),则a·b等于A.-2B.1C.3D.64. 二进制数(10010011)2换算成十进制数的结果是A.(138)10B.(147)10C.(150)10D.(162)105. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为 A.π4B.π22C.π5D.π36. 6212⎪⎭⎫ ⎝⎛+x x 展开式中的常数项等于A.83 B.1615 C.25 D.3215 7. 若532πsin =⎪⎭⎫ ⎝⎛+α,则α2 cos 等于 A.257- B.257 C.2518 D.2518-8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤23时,f (x )=x ,则f (-7)等于A.-1B.2-C.2D.19. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 23±=,则该双曲线的离心率为 A.313 B.213 C.25 D.35 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m +9n 的最小值是 A.9B.18C.36D.81二、填空题(本大题共5小题,每小题4分,共20分)11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值是 .题11图12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是 .题12图13.已知9a=3,则αxy cos=的周期是 .14.已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,线段MF的中点坐标是(2,2),则p= .15.已知函数f (x)=⎪⎩⎪⎨⎧,2,log2xx,令g (x)=f (x)+x+a.若关于x的方程g (x)=2有两个实根,则实数a的取指范围是 .三、解答题(本大题共8小题,共90分)16.(8分)若关于x的不等式x2-4ax+4a>0在R上恒成立.(1)求实数a的取值范围;(2)解关于x的不等式16log2log23axa<-.x≤0x>017.(10分)已知f (x)是定义在R上的奇函数,当x≥0时,f (x)=log2(x+2)+(a-1)x+b,且f (2)=-1.令a n=f (n-3)(n∈N*).(1)求a,b的值;(2)求a1+a5+a9的值.18.(12分)已知曲线C:x2+y2+mx+ny+1=0,其中m是从集合M={-2,0}中任取的一个数,n是从集合N={-1,1,4}中任取的一个数.(1)求“曲线C表示圆”的概率;(2)若m=-2,n=4,在此曲线C上随机取一点Q(x,y),求“点Q位于第三象限”的概率.19.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sinC =2sin A .(1)求角B 的大小;(2)若b =23,a +c =4,求△ABC 的面积.20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:天,t ∈N *)的函数,其中日销售量近似地满足q (t )=36-41t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 28415221,求该商品的日销售额f (x )的最大值与最小值.1≤t ≤4041≤t ≤9021.(14分)已知数列{a n }的前n 项和n n S n 21232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式; (2)求数列{2n b }的前n 项和T n ;(3)求3433433221111·1a a a a a a a a ⋅++⋅+⋅+ 的值.22.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大?并求最大年利润.23.(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆C :()012222>>=+b a bya x 相交于点M(0,1),N (0,-1),且椭圆的一条准线方程为x =-2. (1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点. ①若MA MB 107 ,求直线l 的方程;②设直线NA 的斜率为k 1,直线NB 的斜率为k 2,求证:k 1=2k 2 .题23图2019年江苏省普通高校对口单独招生数学参考答案。

江苏省扬州市2019届高三中等职业学校对口单招二模数学试卷含答案

江苏省扬州市2019届高三中等职业学校对口单招二模数学试卷含答案

全市中等职业学校对口单招 高三年级第二轮复习调研测试数学试卷注意事项:1.本试卷分选择题、填空题、解答题三部分.试卷满分150分.考试时间120分钟.2.答题前,考生务必将自己的姓名、学校、考试号用0.5mm 黑色签字笔填写在答题卡规定区域. 3.选择题作答:用2B 铅笔把答题卡上相应题号中正确答案的标号涂黑.4.非选择题作答:用0.5mm 黑色签字笔直接答在相应题号的答题区域内,否则无效.一、选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,请在答题卡上将所选的字母标号涂黑)1.已知集合A={}0322≥--x x x ,B=⎭⎬⎫⎩⎨⎧≤212|xx 错误!未找到引用源。

则A B =( ▲ ) A .{}1-≤x x B .{}13-≤≥x x x 或 C .{}3-≤x x D .{}1-≥x x 2. 复数z 满足i i i z (5)2)((=--为虚数单位),则=z ( ▲ ) A .i 22-- B .i 22+- C .i 22-D .i 22+3. 若点P )4,3(-是角α终边上一点,则)sin()cos(ααπ-+-的值为( ▲ ) A.51 B.51- C.57- D.574. 从0,1,2,3,4,5六个数字中任取4个数字组成四位数,其中偶数的个数是 ( ▲ ) A .144 B .156 C .216 D .1765. 若函数])2,0[(3sin)(παα∈+=x x f 是R 上的偶函数,则=α( ▲ ) A .2πB . 23πC . 32πD .35π6.一个圆经过椭圆141622=+y x 的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为( ▲ ) A. 425)23(22=+-y x B. 49)23(22=++y xC. 425)23(22=++y x 错误!未找到引用源。

D. 49)23(22=+-y x 错误!未找到引用源。

江苏省对口高考数学试卷

江苏省对口高考数学试卷

江苏省2019年普通高校对口单招文化统考数 学 试卷一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩ N 等于A.{3}B.{5}C.{3,5}D.{1,2,3,4,5}2. 若复数z 满足z ·i =1+2i ,则z 的虚部为A.2B.1C.-2D.-13. 已知数组a =(2,-1,0),b =(1,-1,6),则a ·b 等于A.-2B.1C.3D.64. 二进制数(10010011)2换算成十进制数的结果是A.(138)10B.(147)10C.(150)10D.(162)105. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为A.π4B.π22C.π5D.π3 6. 6212⎪⎭⎫ ⎝⎛+x x 展开式中的常数项等于 A.83 B.1615 C.25 D.3215 7. 若532πsin =⎪⎭⎫⎝⎛+α,则α2 cos 等于 A.257- B.257 C.2518 D.2518-8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤23时,f (x )=x ,则f (-7)等于 A.-1 B.2- C.2 D.1 9. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 23±=,则该双曲线的离心率为 A.313 B.213 C.25 D.35 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m +9n 的最小值是A.9B.18C.36D.81二、填空题(本大题共5小题,每小题4分,共20分)11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值是 .题11图12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是 .题12图13.已知9a =3,则αx y cos =的周期是 .14.已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,线段MF 的中点坐标是(2,2),则p = .15.已知函数f (x )=⎪⎩⎪⎨⎧,2,log 2x x, 令g (x )=f (x )+x +a .若关于x 的方程g (x )=2有两个实根,则实数a 的取指范围是 .三、解答题(本大题共8小题,共90分)16.(8分)若关于x 的不等式x 2-4ax +4a >0在R 上恒成立.(1)求实数a 的取值范围;(2)解关于x 的不等式16log 2log 23a x a <-.17.(10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)+(a -1)x +b ,且f (2)=-1.令a n =f (n -3)(n ∈N *).(1)求a ,b 的值;(2)求a 1+a 5+a 9的值.18.(12分)已知曲线C :x 2+y 2+mx +ny +1=0,其中m 是从集合M ={-2,0}中任取的一个数,n 是从集合N ={-1,1,4}中任取的一个数.(1)求“曲线C 表示圆”的概率;(2)若m =-2,n =4,在此曲线C 上随机取一点Q (x ,y ),求“点Q 位于第三象限”的概率.x ≤0 x >019.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sin C =2sin A .(1)求角B 的大小;(2)若b =23,a +c =4,求△ABC 的面积.20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:天,t ∈N *)的函数,其中日销售量近似地满足q (t )=36-41t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 28415221 ,求该商品的日销售额f (x )的最大值与最小值.21.(14分)已知数列{a n }的前n 项和n n S n 21232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式;(2)求数列{2n b }的前n 项和T n ;(3)求3433433221111·1a a a a a a a a ⋅++⋅+⋅+Λ的值.1≤t ≤40 41≤t ≤9022.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大?并求最大年利润.23.(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆C :)0>>(12222b a b y a x =+相交于点M (0,1),N (0,-1),且椭圆的一条准线方程为x =-2.(1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点. ①若MA MB 107=,求直线l 的方程;②设直线NA 的斜率为k 1,直线NB 的斜率为k 2,求证:k 1=2k 2 .题23图。

2019年苏南五市职业学校对口单招第二次调研性统测 数学试卷(含答案)

2019年苏南五市职业学校对口单招第二次调研性统测 数学试卷(含答案)

2019年苏南五市职业学校对口单招第二次调研性统测数学 试卷本试卷分第Ⅰ卷(客观题)和第Ⅱ卷(主观题)两部分. 第Ⅰ卷1页至2页,第Ⅱ卷3页至5页.两卷满分150分.考试时间120分钟 .注意事项:1. 答卷前,考生务必按规定要求填涂答题卡上的姓名、考试证号、考试科目等项目.2. 用2B 铅笔把答题卡上相应题号中正确答案的标号涂黑.用黑色水笔在答题卡规定的答题区域书写答案.答案不涂写在答题卡上无效.第Ⅰ卷(共40分)一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上相应题号中正确答案的字母标号涂黑) 1. 已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合AB 的子集个数为( )A. 8B. 4C. 3D. 22. 1=m 是复数22(1)(2)m m m i -++-()m R ∈为实数的 ( ) A .充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件3. 已知直线1l 过点(2,)A m -和点(,4)B m ,直线2l :210x y +-=,直线3l :10x ny ++=,若1212,l l l l ⊥,则实数m n +的值为 ( )A .8B .0C .2-D .10-4. 已知函数()f x 的定义域为(1,2)-,则函数(2)f x +的定义域为 ( ) A .()1,4B .()4,0-C .()0,3D .()3,0-5. 将一个半径为10的半圆卷成圆锥,则该圆锥的体积为 ( )A .5πB .53πC .1253πD .12533π 6. 某工程的工作明细表如表1,若要求工期为12天,则下列说法错误的是 ( ) A .将工作A 缩短为2天 B .将工作G 缩短为1天 C .将工作C 和E 同时缩短为1天 D .将工作C 和D 同时缩短1天 7. 某程序框图如题7图所示,若输出的57S =,则判断框内为 ( ) A .4k > B .5k >C .6k >D. 7k >8. 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数 ( ) A .在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 B. 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 C. 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D. 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增 9. 用数字0,1,2,3,4可以组成没有重复数字,并且比2000大的四位偶数共有 ( ) A .78个B. 54个C. 42个D. 36个10. 已知函数()g x 满足(2)(2)g x g x -=+,函数()(2)f x g x =+且在区间[)0,+∞上单调递增,若实数a 满足122()()2(1)log log f a f a f +≤,则实数a 的取值范围为( )A .[]1,2 B. 10,2⎛⎤ ⎥⎝⎦ C. 1,22⎡⎤⎢⎥⎣⎦D. (]0,2 工作代码紧前工作 工期/天 A无 4 B 无3 C A2 D ,B C 4 E ,B C2 F D1 G,E F3表1 (题7图)第II 卷(共110分)二、填空题(本大题共5小题,每小题4分,共20分) 11.十进制数10(100)转换成二进制数为 .12.某人去超市购买了三种物品,表示三种物品件数的数组是a (3,2,5)=,表示三种物品单价的数组是b (12,8,13)=,则该人需付的费用为 . 13.已知24cos 25α=,则sin(2)2πα+= . 14.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于,A B 两点, O 为坐标原点. 若双曲线的离心率为2, AOB ∆则p = .15.已知函数221,0()2,0xx f x x x x ⎧->⎪=⎨--≤⎪⎩,若方程()10f x m --=有三个不同的实数根,则实数m 的取值范围为 .三、解答题(本大题共8小题,共90分)16.(本题满分8分)已知全集U R =,不等式24120.30.3x x --<的解集为P ,不等式02≥+-b ax x 的解集为P C U ,求a b +的值.17.(本题满分10分)已知函数()(1)(0x x f x a k a a -=-->且1)a ≠是定义在R 上的奇函 数,且是单调减函数. (1)求实数k 的值;(2)若不等式2()(4)0f x tx f x ++-<恒成立,求实数t 的取值范围.18.(本题满分12分)已知在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且向量(sin ,sin ),(cos ,cos ),sin 2m A B n B A m n C ==⋅=.(1)求角C 的大小;(2)若sin sin 2sin A B C +=,且()18CA AB AC ⋅-=,求边c 的长和ABC ∆的面积.19.(本题满分10分)某厂家拟在2019年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)m 万件与年促销费用0x x ≥()万元满足31km x =-+(k 为常数), 如果不搞促销活动,则该产品的年销售量是1万件. 已知2019年生产该产品的固定投 入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定 为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括 促销费用). (1)求实数k 的值;(2)将2019年该产品的利润y (万元)表示为年促销费用x (万元)的函数; (3)该厂家2019年的促销费用投入多少万元时,厂家的利润最大?20.(本题满分12分)从某校高三年级800名男生中随机抽取50名学生测量其身高,据 测量被测学生的身高全部在155cm 到195cm 之间.将测量结果按如下方式分成八组:第一组[)155,160,第二组[)160,165,……,第八组[]190,195,如题20图是按上述分组得到的频率分布直方图的一部分.已知:第一组与第八组的人数相同,第六组、第七组和第八组的人数依次成等差数列.(1)估计这所学校高三年级全体男生身高在180cm 以上(含180cm )的人数; (2)分别求出第六组、第七组的频率;(3)若从身高属于第六组和第八组的男生中随机抽取两名男生,记他们的身高分别为,,x y 求满足5x y -≤的事件的概率.21.(本题满分14分)已知数列{}n a 的前n 项和为2n n n S =+.数列{}n b 满足123(21)n n b b n b a +++-=.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}1nn b a +的前n 项和. (题20图)22.(本题满分10分)要将两种大小不同的钢板截成,,A B C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如表2所示.每张钢板的面积,第一种为21m ,第二种为22m .今需要,,A B C 三种规格的成品各12,15,27块,问各截这两种钢板多少张,可得所需三种规格成品,且使所用钢板面积最小? 表223.(本题满分14分)如题23图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,椭圆1C 的长轴是圆22cos :2sin x C y θθ=⎧⎨=⎩(θ为参数)的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于,A B 两点,2l 交椭圆1C 于另一点D . (1)求椭圆1C 的方程;(2)求DAB ∆面积取最大值时直线1l 的方程.(题23图)2019年苏南五市职业学校对口单招第二次调研性统测数学试卷 答案及评分参考一、单项选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共5小题,每小题4分,共20分) 11.2(1100100) 12. 117 13.725- 14. 2 15.()1,0-三、解答题(本大题共8小题,共90分) 16.(本题满分8分)解:(1)由题意得 2412x x ->-2230x x ∴--<, 13x -<<∴ 解集(1,3)P =- ……………4分∴ U C P = (,1][3,)-∞-⋃+∞ ……………5分20x ax b ∴-+=的两根分别为1-和3122,a x x ∴+==123,b x x ⋅==- ……………7分1a b ∴+=- ……………8分17.(本题满分10分)解:(1)由题意得(0)0f =,1(1)0,2k k ∴--== ……………3分(2)2()(4)0f x tx f x ++-<恒成立2()(4)f x tx f x ∴+<--恒成立2()(4)f x tx f x ∴+<-恒成立……………5分()f x 是定义在R 上的单调减函数24x tx x ∴+>-恒成立 ……………6分 2(1)40x t x ∴+-+>恒成立0∴∆<,2(1)160t ∴--<……………8分解得35t -<<, t ∴的取值范围为()3,5- ……………10分 18.(本题满分12分) 解:(1)sin 2m n C ⋅=sin cos sin cos sin 2A B B A C ∴⋅+⋅=sin()sin 2A B C += ……………2分 sin()sin 2C C π-=sin 2sin cos C C C =⋅1cos 2C =C 是ABC ∆的内角3C π∴=……………4分(2)sin sin 2sin A B C +=2a b c ∴+= ……………5分()18CA AB AC ⋅-=18CA CB ∴⋅=cos 18CA CB C ∴⋅⋅=cos 18b a C ∴⋅⋅= 18,362abab ∴== ……………7分11sin 3622ABC S ab C ∆∴==⨯= ……………9分 2222cos c a b ab C =+-⋅ 2()22cos a b ab ab C =+--⋅21(2)2362362c =-⨯-⨯⨯236,6c c ∴== ……………12分19.(本题满分10分) 解:(1)由题意可知,当0x =时,1m =,∴13k =-即2=k , ……………3分(2)231m x =-+,每件产品的销售价格为8161.5mm +⨯元 ∴816[1.5](816)my m m x m+=⨯-++24848(3)1m x x x =+-=+--+1628(0)1x x x =--≥+……………6分 (3) 16[(1)]291y x x =-++++∵0x ≥时,16(1)81x x ∴++≥=+. ∴82921y ≤-+= ……………8分当且仅当1611x x =++,即3x =时,max 21y =.答:该厂家2019年的促销费用投入3万元时,厂家的利润最大. ……………10分20. (本题满分12分) 解:(1)由题意得,后三组的频率为1(0.0080.0160.040.040.06)510.820.18-++++⨯=-= ………2分∴这所学校高三年级全体男生身高在180cm 以上(含180cm )的人数为8000.18144⨯=………4分 (2)由频率分布直方图得第八组的频率为0.00850.04⨯=,人数为0.04502⨯= 又后三组的人数为0.18509⨯=,设第六组的人数为m ,则第七组的人数为927m m --=-,第六组、第七组和第八组的人数依次成等差数列22(7),4m m m ∴+=-= ………6分∴第六组的人数为4,第七组的人数为3∴第六组的频率为0.08,第七组的频率为0.06 ………8分(3)5x y -≤,即两人在同一组, 第六组4人,第八组2人224226715C C P C +∴== ………12分 21.(本题满分14分) 解:(1)2n n n S =+1n ∴=时,112a S == ………1分2n ≥时,1n n n a S S -=-22()[(1)(1)]2n n n n n =+--+-= ………3分12a =满足上式,2n na =∴………4分123(21)n n b b n b a +++-= 123(21)2n b b n b n ∴+++-=,①故当2n ≥时,1213(23)2(1)n b b n b n -+++-=-② ………6分①-②得 (21)2n n b -=,2(2)21n b n n ∴=≥- ………7分 又112b a ==,∴{}n b 的通项公式为221n b n =- ………8分(2)记{}1nn b a +的前n 项和为n T 由(1)知2111(21)(21)2121n n b a n n n n ==-+-+-+ ………10分则11111111335572121n T n n =-+-+-++--+1212121nn n =-=++ ………14分22. (本题满分10分)解:设需截第一种钢板x 张,第二种钢板y 张,所用钢板总面积为2zm . ………1分 则目标函数为min 2z x y =+ ………2分 又约束条件为 作出可行域(如图)12215327,0x y x y x y x y +≥⎧⎪+≥⎪⎨+≥⎪⎪≥⎩,x y N ∈ ………6分 9129152(,)32715222x x y A x y y ⎧=⎪+=⎧⎪⇒⇒⎨⎨+=⎩⎪=⎪⎩由于点A 不是可行域内的整数点,因此将直线20x y +=平移至过点(4,8)和(6,7)时,能使z 最小,且最小值为:42862720+⨯=+⨯=. ………9分 答:截第一种钢板4张,第二张钢板8张或者第一种钢板6张,第二张钢板7张时,可得所需三种规格成品,且使所用钢板面积最小 ………10分23.(本题满分14分)解:(1)由题意得1b =,且24,2a a =∴=,∴椭圆的方程是2214x y += ………4分 (2)设直线1:110l y kx kx y =-∴--=,12l l ⊥,∴21:10l y x x ky k k=--∴++=, 又圆22cos :2sin x C y θθ=⎧⎨=⎩(θ为参数) 224y x ∴+=《数学》试卷 第11页(共11页) ∴圆心(0,0)到直线1l的距离为d = ∴直线1l 被圆2C所截的弦AB ===………7分 由222211(4)8014y x k k x kx x y ⎧=--⎪⎪∴++=⎨⎪+=⎪⎩, 264k ∆= ………9分||DP ∴==, ………11分11||||22DAB S AB DP ∆∴====2323213==≤=++ ………12分2522k k =∴=∴=±时等号成立, ………13分 由图知0k >,此时直线1:1l y x =- ………14分。

盐城市2019年职业学校对口单招高三年级第二次调研考试 数学 试卷(含答案)

盐城市2019年职业学校对口单招高三年级第二次调研考试 数学 试卷(含答案)

盐城市2019年职业学校对口单招高三年级第二次调研考试数 学 试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(填充题.解答题).两卷满分150分,考试时间120分钟.第Ⅰ卷(共40分)注意事项:将第Ⅰ卷每小题的答案序号写在答题纸上一、选择题:(本大题共10小题,每小题4分,共40分,每小题列出的四个选项中,只有一项是符合要求的)1. 设{}{}{} 9,1,5,9,,12,4-2=⋂--=-=B A a a B a a A ,则a =( )A .3B .10C . -3D .10和3± 2. 某项工程的流程图如下(单位:天)则此工程的关键路径是( )A .A →F →B →E →G B .A →L →C →F →B →E →G C .A →F →M →D →E →G D .A →L →C →F →M →D →E →G 3. a 为正实数,i为虚数单位,,则a=( ) A .2 B . C . D .14. 一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的表面积为( )A .144πcm 2B .364πcm 2C .288πcm 2D .576πcm 25. 下图程序框图中是计算12+14+16+…+140的值的流程图,其中判断框内应填入的条件是( ) A .9>iB .10>iC .19>iD .20>i6. 已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f(b )≤-f (a )+f (b ) B .f(a)+f(b)≤f(-a)+f(-b) C .f (a )+f (b )≥-f (a)+f(b) D .f(a)+f(b)≥f(-a)+f(-b)2a ii+=327. 已知向量))sin(),2(cos(θπθπ--=→a ,向量)1,3(-=→b ,则→→-b a 2的最大值、最小值分别是( )A .24,0B .4,22C .16,0D .4,08. 从2,4,5,6中任取3个数字,从1,3任取1个数字,组成无重复且能被5整除的四位数的个数为( )A .36B .48C .72D .1929. 设双曲线22221x y a b-=(0,0)a b >>的实轴长、虚轴长、焦距成等差数列,那么这个双曲线的离心率e 等于( ) A .43 B .53C .2D . 3 10. 已知b >0,直线b 2x +y +1=0与a x -(b 2+4)y +2=0互相垂直,则ab 的最小值为( ) A .1B .2C .22 D .4第Ⅱ卷(共110分)二、填空题:(本大题共5小题,每小题4分,共20分,把答案填在题中的横线上) 11. 化简逻辑式:A(A +A)+B+B = .12. 某商场小家电组2014年12月购进一批货物,商品验收单如下表:则这一批货物的利润率为 . 13. 已知函数f (x )=-x 2+ax -b .若a 、b 都是从区间[0,4]任取的一个数,则f (1)>0成立的概率是________.14. 已知f (x )=⎩⎪⎨⎪⎧sinπx (x <0)f (x -1)-1 (x >0),则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. 15. 若直线y =x +b 与曲线x =1-y 2恰有一个公共点,则b 取值范围是__________.三、解答题:(本大题共8题,共90分) 16.(本题满分8分)已知函数]1)1[(log )(2+--=a x a x f 的定义域为),1(+∞.(1)求a 的取值范围;(2)解不等式:x xx a a 382-->.17.(本题满分10分)若函数1)(5+=-x ax g 0(>a ,且)1≠a 的图象恒经过定点M ,x x f m log )(=0(>m ,且)1≠m ,且)1(-x f 的图象也经过点M .(1)求m 的值;(2)求)2(...)4()2(n f f f +++的值.18.(本题满分12分)已知函数)3sin()(ϕπ+=x H x f ,x R ∈,H>0,02πϕ<<.()y f x =的部分图像如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,H).(1)求()f x 的最小正周期及ϕ的值;(2)若点R 的坐标为(1,0),23PRQ π∠=,求H 的值;(3)在(2)条件下,若a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,2)3(HA f =π,且32=a ,△ABC 的面积为3,求b ,c 的值.19.(本题满分12分)某培训班共有n 名学生,现将一次某学科考试成绩(单位:分)绘制成频率分布直方图,如图所示.其中落在[80,90)内的频数为36. (1)请根据图中所给数据,求出a 及n 的值;(2)从如图5组中按分层抽样的方法选取40名学生的成绩作为一个样本,求在第一组、第五组(从左到右)中分别抽取了几名学生的成绩?(3)在(2)抽取的样本中的第一与第五组中,随机抽取两名学生的成绩,求所取两名学生的平均分不低于70分的概率.20. (本题满分14分)已知各项都为正数的等比数列{}n a 满足312a 是13a 与22a 的等差中项,且.(1)求数列{}n a 的通项公式;(2)设,且n S 为数列{}n b 的前n 项和,求数列的前n 项和n T .123a a a =3log n n b a =12{}nnS S +21. (本题满分10分)我国发射的天宫一号飞行器需要建造隔热层.已知天宫一号建造的隔热层必须使用20年,每厘米厚的隔热层建造成本是6万元,天宫一号每年的能源消耗费用C(万元)与隔热层厚度x(厘米)满足关系式:,若无隔热层,则每年能源消耗费用为8万元.设f(x)为隔热层建造费用与使用20年的能源消耗费用之和.(1)求C(x)和f(x)的表达式;(2)当隔热层修建多少厘米厚时,总费用f(x)最小,并求出最小值.22.(本题满分10分)某人上午7时,乘摩托艇以匀速v n mi l e/h(4≤v≤20)从A港出发到距50 n mi l e的B港去,然后乘汽车以匀速w km/h(30≤w≤100)自B港向距300 km的C市驶去应该在同一天下午4至9点到达C市设乘汽车、摩托艇去所需要的时间分别是x h、y h(1)作图表示满足上述条件的x、y范围;(2)如果已知所需的经费p=100+3×(5-x)+2×(8-y)(元),那么v、w分别是多少时走得最经济?此时需花费多少元?(第23题) 23.(本题满分14分)在平面直角坐标系xOy 中,椭圆22221(0)y x a b a b+=>>,右顶点为A ,直线BC 过原点O ,且点B 在x 轴上方,直线AB 与AC 分别交直线l :1x a =+于点E 、F . (1)若点B,求△ABC 的面积;(2)若点B 为动点,设直线AB 与AC 的斜率分别为1k 、2k . ①试探究:12k k ⋅是否为定值?若为定值,请求出;若不为定值,请说明理由;②求△AEF 的面积的最小值.数学答案一、单项选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共5小题,每小题4分,共20分)11. 1 12. 33.1% 13. 14. -15.三、解答题(本大题共8小题,共90分)16.解:(1)由题意可得:又定义域为(2)由(1)得:即.17.解:(1)令,,由图象过点(5,2)得,图象过点(4,2),,;(2)由(1)得18.解:(1)由题意得:将P(1,H)代入,得,解得,又,;(2)设点Q在x轴上的垂足点为S,在,;(3)由题意得:,即,又,由得:①又,则②由①,②得:b=c=2.19.解:(1)由题意得:由得:n=120;(2)抽取比例为,则:第一组抽取人数为人,第二组抽取人数为人,第三组抽取人数为人,第四组抽取人数为人,第五组抽取人数为人,(3)基本事件总数为记事件A=“平均分低于70分”,有,则平均分不低于70分的概率为.20.解:(1)由题意得:,即,,解得,由得:,解得:;(2)由(1)得:,则,为等差数列,其首项为1,公差为1,,令21.解:(1)当x=0时,,;;(2)当且仅当时等号成立即当隔热层修建5厘米时,总费用最小,为70万元.22.解:(1)由题意得:,,即x,y满足的条件为;(2)由题意得:,即由图可知,当时,最大,即最小此时时,即当时,走得最经济,此时花费93元.23.解:(1)由题意得:,解得,此时椭圆方程为,;(2)①设,则,,由得:,椭圆方程为,即,,为定值,为②设AB方程为,AC方程为由得:,同理当且仅当时等号成立,.。

盐城市2019年普通高校对口单招高三年级第一次调研考试数学试卷含问题详解

盐城市2019年普通高校对口单招高三年级第一次调研考试数学试卷含问题详解
20.(本题满分14分)设数列 的前 项和为 ,且满足 .
(1)求数列 的通项公式;
(2)若数列 满足 ,且 ,求数列 的通项公式;
(3)设 ,求数列 的前n项的和 .
21.(本题满分10分)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.
题号
1
2
3
4
5
6
7
8
9
10
答案
第Ⅱ卷(共110分)
二、填空题:(本大题共5小题,每小题4分,共20分,把答案填在题中的横线上)
11.题11图是一个程序框图,若输入x的值为8,则输出的k的值为.
12.某工程的工作明细表如下:
工作代码
紧前工作
工期/天
A

2
B
A
3
C
B
2
D
B
1
E
C,D
1
F
E
2
则总工期为_____________天.
(1)求确定k的值;
(2)将2013年该产品的利润y万元表示为技术改革费用m万元的函数(利润=销售金额﹣生产成本﹣技术改革费用);
(3)该企业2013年的技术改革费用投入多少万元时,厂家的利润最大?并求出最大利润.
23.(本题满分14分)已知椭圆的中心在原点,一个焦点为F1(0,-2 ),离心率e满足: 成等比数列.
16.(本题满分8分)若复数 在复平面对应的点在第一象限.(1)数a的取值围;(2)解不等式: .
17.(本题满分10分)已知函数 为奇函数,且当 时, .
(1)求m的值;(2)求当 时 的解析式;(3)求 的值.

2019江苏省对口高考数学试卷(20200401004110)

2019江苏省对口高考数学试卷(20200401004110)

江苏省2019年普通高校对口单招文化统考数学试卷注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含选择题(第1题~第10题,共10题)、非选择题(第11题~第23题,共13题)。

本卷满分为150分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与您本人是否相符。

4.作答选择题(第1题~第10题),必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选择其它答案。

作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B铅笔绘、写清楚。

一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1.已知集合M={1,3,5},N={2,3,4,5},则M∩N等于A.{3}B.{5}C.{3,5}D.{1,2,3,4,5}2.若复数z满足z·i=1+2i,则z的虚部为A.2B.1C.-2D.-13.已知数组a=(2,-1,0),b=(1,-1,6),则a·b等于A.-2B.1C.3D.64.二进制数(10010011) 2换算成十进制数的结果是A.(138)10B.(147)10C.(150)10D.(162)105.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为A.4πB.22πC.5πD.3π6.61x展开式中的常数项等于22xA.38B.1516C.52D.15327.若π3 sin,则cos2等于25A.725B.725C.1825D.18256.已知f则f(-7)等于 3 2时,f(x)=x , A.-1B.2C.2D.13 7.已知双 2,则该双A.13 3 B. 13 2 C.52D.5 3m n的最小值是10.已知(m,n)是直线x+2y-4=0上的动点,则3+9 A.9B.18C.36D.81二、填空题(本大题共5小题,每小题4分,共20分)8.题11图是一个程序框m 的值是21,的m 值是.题11图9.题12图是某项工程的网络),则完成该工程的最短总数是.题12图10.已知9 a=3,则ycos αx 的周期是.11.已知点M 是抛物线C :y2=2p x (则p=.x 2 , x ≤0 ,令g(x)=f(x)+x+a.若关于x 的方程g(x)=2有两个实根, 8.已知函数f(x)=log 2x,x >0 则实数a 的取指范围是.三、解答题(本8小90分)9.(8分)若关于x 的不等式x2-4ax+4a >0在R 上恒成立.(1)求实数a 的取值范围; 3x2 (2)解关于x 的不等式log2log16 a <. a 10.(10分)已知f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=log 2(x+2)+(a-1)x+b ,且f(2)=-1.令an=f(n-3)(n ∈N*). (1)求a ,b 的值; (2)求a 1+a 5+a 9的值.11.(12分)已知曲线C :x2+y 2+mx+ny+1=0,其中m 是从集合M={-2,0}中任取的一个数,n 是从集合N={-1,1,4}中任取的一个数.(1)求C ”的概率; (2)若m =-2,n =4,12.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sinBcosC-sinC=2sinA.(1)求角B 的大小;(2)若b=23,a+c=4,求△ABC 的面积. 13.(10分)通过市场调查知,某的90天内的销售量和价格间t (单位:天,t ∈N*)的 1 4t (1≤t ≤90),价格满足P(t)=1 4t28, 1≤t ≤40,求该商品的日f(x)的最大值与最小值.1 2t52, 41≤t ≤90 321 21(.14分)已知数列{an}的前n 项和S n nn22 且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式;数列{bn}是各项均为正数的等比数列, (2)求数列{ 2b}的前n 项和T n ; n(3)求1 a ·a 12 a 2 1 a3 a 3 1 a4 a 331 a 34的值.14.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大?并求最大年利润.22xy23(.14分)已知圆O:xab相交于点M(0,1),2+y2=r2(r>0)与椭圆C:(1>>0)22abN(0,-1),且椭圆的一条准线方程为x=-2.(1)求r的值和椭圆C的方程;(2)过点M的直线l另交圆O和椭圆C分别于A,B两点.①若7MB10MA,求直线l的方程;②设直线NA的斜率为k1,直线NB的斜率为k2,求证:k1=2k2.题23图。

盐城市2019年职业学校对口单招高三年级第三次调研考试 数学试卷(含答案)

盐城市2019年职业学校对口单招高三年级第三次调研考试 数学试卷(含答案)

盐城市2019年职业学校对口单招高三年级第三次调研考试数 学 试 卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(填充题.解答题).两卷满分150分,考试时间120分钟.第Ⅰ卷(共40分)注意事项:将第Ⅰ卷每小题的答案序号写在答题纸上一、选择题:(本大题共10小题,每小题4分,共40分,每小题列出的四个选项中,只有一项是符合要求的)1. 已知集合M={1,2},N={2lgx ,4},若M ∩N={2},则实数x 的值为( ) A.1 B .4 C .10 D .lg42. 复数Z 1=3+4i ,Z 2=a+i ,且Z 1·2Z 是实数,则实数a=( ) A .34 B .43 C .-43 D .-343. 已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则22bc ac >,给出下列四个复合命题:①p 且q ,②p 或q ,③p ⌝,④q ⌝,其中真命题的个数为( ) A .1 B .2 C .3 D .44. 已知某项工程的网络图如下(单位:天),若要求工期缩短2天,则下列方案可行的是( )A .B 、D 各缩短1天 B .E 、F 各缩短1天C .E 、G 各缩短1天D .A 、D 各缩短1天 5. 已知51)4cos(2=-θπ,则)2sin(θπ-=( ) A .2524 B .2524- C .2512 D . 2512- 6.如果一个圆锥的侧面展开图是半圆,那么其母线与底面所成角的大小是( ) A .030 B .045 C .060 D .0757.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既要有男生又要有女生,则不同的选法有 ( ) A .140 B .120 C .35 D . 348.若定义在R 上奇函数f (x )=3sin x +c 的值域是[a ,b ],则a +b -c 等于( ) A .3B .-3C .0D .无法计算9. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个顶点与抛物线y 2=20x 的焦点重合,该双曲线的离心率为52,则该双曲线的渐近线斜率为( ) A .±2B .±43C .±12D .±3410. 已知函数⎪⎩⎪⎨⎧>+-≤<=)10(,621)100(,lg )(x x x x x f ,若c b a <<,且)()()(c f b f a f ==, 则实数abc 的取值范围是( )A .)10,1(B .)6,5(C .)12,10(D .)24,20( 第Ⅰ卷的答题纸题号 1 2 3 4 5 6 7 8 9 10 答案第Ⅱ卷(共110分)二、填空题:(本大题共5小题,每小题4分,共20分,把答案填在题中的横线上)11.运行如图所示的程序框图,输出K 的值为 .12. 某顾客在超市购买了以下商品:①日清牛肉面24袋,单价1.80元/袋,打八折;②康师傅冰红茶6盒,单价1.70元/盒,打八折;③山林紫菜汤5袋,单价3.40元/袋,不打折;④双汇火腿肠3袋,单价11.20元/袋,打九折.则该顾客需支付的金额是 元.13. 已知4,,,121--a a 成等差数列;4,,,.1321--b b b 成等比数列,则=-221b a a . 14. 定义在上的偶函数满足对于恒成立,且,则 .15. 过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为 .R ()f x (2)()1f x f x +⋅=x R ∈()0f x >(119)f =三、解答题:(本大题共8题,共90分)16.(本题满分8分)已知)1|,2(|-=a ,)1,1(-=,且0<•. (1)求a 的取值范围;(2)解不等式:)3(log )(log 2+≤-x x x a a .17.(本题满分10分)已知函数b a x f x +=)(的图象经过点(0,1)和(1,2) . (1)求函数)(x f 的解析式;(2)若不等式0)()(2>--m x f x f 在R 上恒成立,求实数m 的取值范围.18.(本题满分12分)盒内有大小相同的3个小球,上面分别标有数字1,2,4;现从盒中摸出一个球,得到球上的数字作为点P 的横坐标,然后将球放回;再从盒中摸出一个球,得到球上的数字作为点P 的纵坐标。

江苏高职单招数学真题试卷.doc

江苏高职单招数学真题试卷.doc

2019 年江苏高职单招数学真题卷参考公式:锥体的体积公式V= h,其中 S 是锥体的底面积,h 是锥体的高一、选择题 (本大题共 10 小题,每小题 4 分共 40 分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合 A={1,3} ,B={l,3},若 AUB={1,2,3} ,则实数 m=A.2B.3C. 6D.92.盒中装有大小、形状都相同的 6 个小球,分别标以号码1,2,3,4,5,6,从中随机取出一个小球,其号码为奇数的概率是A.B C D.3.已知函数 f(x)=)(a>0) 的最小正周期为,则的值为_____A.1 B .2 C .D⋯24。

如图,在△ ABC 中,=a ,=b 。

若点 D 满足=2,则= A. a+ b B.. a- b C. . a+ b D. . a- b5。

如图是一个算法流程图,若输入x 的值为 3,则输出s 的值为A.2B.4C.8D.166。

若变量x, y 满足,则=y-2x 的最大值为A.-1B. 0 C .1 D.27.在平面直角坐标系中,已知第一象限的点(a,b)在直线 x+2y-1=0上,则+ 的最小值为_______A.11B.9C.8D.68.已知f(1-x)=2x-1 ,且f(m)=6则实数m的值为_______A. B. - C. -1 D. -9。

已知等差数列{an}的前 n 项和为 Sn,若=1 ,=15 ,则=___ A.55 B.45 C.35 D.2510。

已知圆 C 与圆+=1 关于直线x+y=0 对称,则圆 C 的标准方程为A +=1 B. +=1C. + =1D. + =1二、填空题 (本大题共 5 小题,每小题 4 分,共 20 分)11.若复数 z 满足 z(1+i)=4-2i(i为虚数单位),则=______________12.设平面向量a=(2 ,y),b=(1,2) ,若 a∥b,则=________________13.如图,已知三棱锥 P-ABC 中, PA⊥底面 ABC,PA=3 ,底面 ABC 是边长为 2 的正三角形,三棱锥 P-ABC 的体积为 _______________14.容量为 20 的样本数据,分组后的频数如下表,则样本数据落在区间[30,60) 的频率为 ____________分组[10,20] [20,30 )[30,40 )[40,50 )[50,60 ) [60,70]频数 5 4 3 2 1 215。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档