图形的平移与旋转知识讲解.docx

合集下载

平移旋转图形知识点总结

平移旋转图形知识点总结

平移旋转图形知识点总结平移和旋转是几何学中两个重要的变换操作,它们可以改变图形的位置和方向,扩展了几何学的应用领域。

在本文中,我们将对平移和旋转的基本概念、性质和应用进行总结。

一、平移的基本概念平移是指图形在平面上沿着一定方向按照一定距离移动的变换操作。

在平移过程中,图形的大小和形状保持不变,只是位置发生改变。

平移可以用向量来描述,移动向量即为图形移动的方向和距离。

1. 平移的向量表示设图形A经过平移得到图形A',平移向量为向量→a,表示为A→A' = →a。

向量→a的方向和长度即为平移的方向和距离。

2. 平移的性质平移操作满足以下性质:(1)平移不改变图形的大小和形状;(2)平移不改变图形的面积和周长;(3)平移不改变图形的对称性。

3. 平移的表示方法平移可以通过向量、坐标和平移矩阵等多种方式来表示和描述。

在向量表示中,平移向量→a可以作为图形平移的唯一标识。

二、平移的应用平移在几何学和其他领域中有着广泛的应用,例如地图制作、计算机图形学和物理学等。

下面我们将介绍平移在几何学中的应用场景和相关问题。

1. 平移的作用(1)简化计算:通过平移操作,可以将图形移动到方便计算的位置,简化问题的解决过程;(2)构造对称图形:利用平移可以构造出一些对称图形,如平移正方形可以构造出菱形;(3)解决坐标运算:在坐标运算中,平移可以使坐标系原点发生偏移,方便计算。

2. 平移的问题在平移问题中,常见的问题包括:给定图形A和平移向量→a,求出图形A经过平移后的位置和形状;给定平移前后的图形A和A',求出平移向量→a。

解决这些问题需要灵活运用平移的基本性质和表示方法。

三、旋转的基本概念旋转是指图形围绕一点按照一定角度转动的变换操作。

在旋转过程中,图形的大小和形状保持不变,只是方向发生改变。

旋转可以用角度来描述,旋转角度即为图形旋转的方向和角度。

1. 旋转的角度表示设图形A经过旋转得到图形A',旋转角度为θ,表示为A→A' = θ。

图形的平移、旋转与轴对称单元知识点总结

图形的平移、旋转与轴对称单元知识点总结

二、图形的平移、旋转与轴对称1.图形的平移●平移的定义:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定距离的图形运动。

●平移两要素:平移的方向、平移的距离●平移前的图形:画虚线;箭头:表示平移的方向;平移后的图形:画实线。

●注意:平移几格不是原图形与平移后图形之间的格数,而是指图形的对应点之间的格数。

●关键点:一般是图形的各顶点或线段的交点。

●注意:平移前后,图形的大小、形状、方向都不变,只是位置变了。

●画平移后图形的方法:①找关键点②定平移方向、距离③找对应点④依次连线。

2.图形的旋转●旋转的定义:旋转是指在平面内,将某个图形绕一个定点沿某个方向旋转一个角度的图形运动。

这个定点称为旋转中心,旋转的角度称为旋转角度。

●旋转三要素①旋转中心:点/轴②旋转方向:顺时针方向/逆时针方向③旋转角度●怎样描述图形的旋转:将某图形绕某点沿某时针方向旋转某度到某位置。

●画旋转后图形的方法:①找旋转中心②找准关键线段③旋转关键线段④画出旋转后的图形●旋转中心:一般是两个图形的公共点●关键线段:过旋转中心的线段。

为了保证旋转角度,一般选与方格纸重合的线段作为关键线段。

●注意:旋转前后,图形的大小、形状都不发生改变,但位置和方向一般会发生变化。

3.轴对称图形●定义:轴对称图形沿一条直线对折后,两部分能完全重合,折痕所在的直线叫做它的对称轴(对称轴画虚线,画超出图形)。

●轴对称图形至少有一条对称轴。

●轴对称图形中每一组对称点到对称轴的距离相等。

●轴对称图形中对称点的连线与对称轴互相垂直。

●轴对称图形和对称轴的数量:①正方形(4条对称轴)②长方形(2条对称轴)③等腰三角形(1条对称轴)④等边三角形也叫正三角形(3条对称轴)⑤菱形(2条对称轴)⑥圆形(无数条对称轴)⑦等腰梯形(1条对称轴)⑧五角星(5条对称轴)⑨正五边形(5条对称轴)●生活中的轴对称图形或轴对称现象:京剧脸谱、剪纸、国徽、天坛、北京故宫、凯旋门、蝴蝶、空调、人的五官和身体等●画对称轴的方法:①找一组对应点②画对应点间线段的中垂线③画虚线●画轴对称图形另一半的方法:①找关键点②定对称点③依次连线(一般画虚线)4.设计图案●利用平移设计图案的方法:①选好基本图形②确定平移的方向③确定平移的距离④进行多次平移●利用旋转设计图案的方法:①选和基本图形②确定旋转方向和角度③确定旋转中心④依次画出每次旋转后的图形●利用轴对称设计图案的方法:①选好基本图形②确定对称轴③画出基本图形的另一半5.探索规律●观察图形变化时,先确定变化方式(平移、旋转或轴对称),再确定位置变化的规律。

图形的平移和旋转(经典)

图形的平移和旋转(经典)

DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。

说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。

2.平移的性质:①平移前后图形的大小、形状都不改变。

即:平移前后的图形全等形。

②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。

二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。

说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。

即:旋转前后的图形全等形。

②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。

【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。

例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。

例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。

例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。

图形的平移与旋转知识点汇总.doc

图形的平移与旋转知识点汇总.doc

第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。

注意:1. 平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2. 平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3. 平移前后两图形是全等的。

平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或) 且相等;对应线段(或)且相等,对应角。

二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。

这个定点称为,转动的角称为。

任意一对对应点与旋转中心的连线所成的角都是.注意:1. 旋转中心在旋转过程中保持不动;2. 图形的旋转是由,和所决定的;3. 作平移图与旋转图。

(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。

图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。

2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。

3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

这个点叫做对称中心。

中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。

4、成中心对称:把一个图形绕着某一点旋转180o,如果它能够和另一个图形重合,就称这两个图形成中心对称。

这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。

在成称的形称过 ,并且被对 称中心。

小学三年级的平移与旋转.doc

小学三年级的平移与旋转.doc

辅导讲义教学内容一、专题精讲平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移。

平移不改变图形的形状和大小。

把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

旋转也不改变图形的形状和大小。

在实际生活中,随处可见平移和旋转,蒋嘉怡同学你能举出一些例子吗?平移:旋转:我们来看下面的问题,连一连。

升旗时国旗的运动钟摆的运动在算盘上拨珠平移电梯的运动风扇叶片的运动火车在铁轨上飞驰光盘在电脑里的运动旋转汽车方向盘轮船在水里航行飞机螺旋桨例 1:观察并操作1、向()平移了()格。

2、把小船向上平移 5 格。

3、把三角形先向右平移 4 格,再向下平移 3 格。

例 2:填空1、长方形向()平移了()格。

2、六边形向()平移了()格。

3、五角星向()平移了()格。

例 3:操作1、把图中长方形向上平移 2 格;2、把图中三角形向右平移 3 格;3、把图中平行四边形向左平移 5 格。

二、专题过关检测题 1:填空(每空 4 分)1、水龙头的运动方式是(),汽车轮子的运动方式是(),微波炉内托盘的运动是()。

2、连线钟摆的运动自行车轮的运动在算盘上拨珠平移电梯的运动风扇叶片的运动火车在铁轨上飞驰光盘在电脑里的运动旋转汽车方向盘地球自转地球公转检测题 2:判断(每空 4 分)1、平移不改变图形的形状,但会改变图形的大小。

()2、图形经过旋转后,大小不会改变。

()检测题 3:操作(每小题10 分)1、(1)把小船向上平移三格。

(2)把小屋向左平移两格,再向下平移五格。

2、( 1)三角形向()平移了()格。

( 2)画出小鱼向右平移7 格后的图形。

三、学法提炼1、平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移。

平移不改变图形的形状和大小。

2、把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

三年级上册平移和旋转的知识点

三年级上册平移和旋转的知识点

三年级上册平移和旋转的知识点一、平移。

1. 平移的定义。

- 物体或图形在同一平面内沿直线运动,而本身没有发生方向上的改变,这种运动现象就是平移。

例如,在水平的传送带上,物体随着传送带直线移动;或者在电梯里,人随着电梯上下直线运动等都是平移现象。

2. 平移的特点。

- 平移后的图形与原图形的形状和大小完全相同。

例如,将一个正方形沿着水平方向平移一段距离后,得到的新正方形和原来的正方形边长一样,四个角也都是直角。

- 平移后的图形与原图形对应点之间的连线平行(或在同一条直线上)且相等。

比如一个三角形平移后,它原来的顶点和对应平移后的顶点连线是平行且相等的。

3. 平移的方向和距离。

- 方向:平移的方向可以是水平方向(向左或向右)、垂直方向(向上或向下)或者是斜着的方向。

例如,汽车在笔直的公路上向左行驶是水平方向的平移;火箭垂直升空是垂直方向的平移;而一个物体沿着与水平方向成45度角的方向移动就是斜方向的平移。

- 距离:平移的距离是指图形上每个点平移的长度。

可以通过数方格的方法来确定平移的距离,在方格纸上,一个方格的边长可以作为一个单位长度。

例如,一个图形从方格纸的左上角平移到右上角,经过了5个方格,那么平移的距离就是5个单位长度。

二、旋转。

1. 旋转的定义。

- 物体绕着一个点或一个轴做圆周运动的现象就是旋转。

像风车绕着中心轴转动、时钟的指针绕着中心点转动等都是旋转现象。

2. 旋转的特点。

- 旋转后的图形与原图形的形状和大小不变。

例如,一个圆形的表盘不管指针怎么旋转,表盘的形状和大小都不会改变。

- 图形的旋转是由旋转中心、旋转方向和旋转角度决定的。

3. 旋转中心、旋转方向和旋转角度。

- 旋转中心:是物体旋转时所绕着的那个点或轴。

例如,风车的旋转中心就是风车叶片中间固定的那个点;地球的自转是以地轴为旋转中心的。

- 旋转方向:分为顺时针方向和逆时针方向。

顺时针方向是指和时钟指针转动方向相同的方向,逆时针方向则是与时钟指针转动方向相反的方向。

知识卡片:图形的平移与旋转

知识卡片:图形的平移与旋转

1图形的平移
图形的平移与旋转
定义将一个图形沿某一个方向移动一定的距离,称为图形的平移.
相关概念
①对应边:AB 与DF ,AC 与DE ,BC 与EF ②对应角:∠A 与∠D ,∠B 与∠F ,∠C 与∠E
③平移距离:平移前后对应点(对应线段)平移的距离相等
平移前后,图形的大小、形状不发生变化.①平移前后的图形全等;
②平移前后对应边相等;
③平移前后对应角相等;
④平移前后的位置关系为平行或在同一条直线上.
性质
2图形的旋转
将一个图形按某个定点按某个方向旋转一定的角度,称为图形的旋转.
定义
三要素旋转中心
旋转方向(顺时针、逆时针)旋转角
定点:旋转中心旋转角度:旋转角
相关概念
①旋转前后的图形全等;
②旋转前后对应边相等,对应角相等;
③对应边的旋转角相等,对应点与旋转中心连线的长度相等.
性质
3中心对称
如果把一个图形绕着某个点旋转180°,能定义
够与另一个图形重合,那么就说这两个图形关于这个点对称或者中心对称.
性质①对称中心与两对称点三点共线;
②成中心对称的两个图形全等;
中心对称图形
定义
把一个图形绕着某个点旋转180°,如果
旋转后能与原来的图形重合,那么这个图形叫中心对称图形.
两者区别与联系
区别:中心对称指两个全等图形的相互位置关系,中心对称图形指一个图形本身成中心对称.
联系:如果将中心对称的两个图形看成—个整体,则它们是中心对称图形.
如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.。

图形的平移和旋转知识点

图形的平移和旋转知识点

图形的平移和旋转【图形的平移】(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.1, 【典型例题】例 1.如图,△ABC 绕 C 点旋转后,顶点 A 的对应点为点 D ,试确定顶点 B 对应点的位置,以及旋转后的三角形.分析:绕 C 点旋转,A 点的对应点是 D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角即∠BCB′=ACD, 又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定 B′的位置,如图所示.解:(1)连结 CD(2) 以 CB 为一边作∠BCE,使得∠BCE=∠ACD(3) 在射线 CE 上截取 CB′=CB则 B′即为所求的 B 的对应点.(4) 连结 DB′则△DB′C 就是△ABC 绕 C 点旋转后的图形.例 2.如图,四边形 ABCD 是边长为 1 的正方形,且 DE= 1 ,4△ABF 是△ADE 的旋转图形.(1) 旋转中心是哪一点?(2) 旋转了多少度?(3) AF 的长度是多少?(4) 如果连结 EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求 AE 的长度,由勾股定理很容易得到. △ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是 A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是 D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE= 1412 (1)2 4∴AE= = 4∵对应点到旋转中心的距离相等且 F 是 E 的对应点∴AF= 174(4)∵∠EAF=90°(与旋转角相等)且 AF=AE ∴△EAF 是等腰直角三角形.【图形的旋转】(1) 旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。

(完整版)图形的平移与旋转知识点

(完整版)图形的平移与旋转知识点

第三章图形的平移与旋转复习要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移是由移动的方向和距离决定的。

2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。

(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。

(3)平移后两图形的对应点所连的线段平行且相等。

专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。

(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。

(3)经过旋转,图形上的每一点都绕着旋转中心沿相同的方向转动了相同的角度。

(4)任意一对对应点与旋转中心的距离相等。

考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的关键点(线段两个端点,三角形三个顶点,n边形n 个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个关键点的对应点,所得的图形就是平移后的图形。

平移和旋转知识点总结

平移和旋转知识点总结

平移和旋转知识点总结一、平移的基本概念平移是指物体沿着某一方向按照一定距离进行移动的操作。

在平面上,平移是指将图形在水平方向和垂直方向上进行平移,将图形中的每一个点沿着相同的距离进行移动。

在三维空间中,平移是指将物体在三个坐标轴方向上进行移动,即沿着 x 轴、y 轴和 z 轴进行平移。

在进行平移变换时,可以使用矩阵的乘法来进行描述。

对于二维坐标系中的点 (x, y),如果要将其进行平移变换,可以使用以下的矩阵表示:```1 0 tx0 1 ty0 0 1```其中 tx 和 ty 分别表示在 x 方向和 y 方向上的平移距离。

对于三维空间中的点 (x, y, z),平移变换可以使用以下的矩阵表示:```1 0 0 tx0 1 0 ty0 0 1 tz0 0 0 1```其中 tx、ty 和 tz 分别表示在 x 轴、y 轴和 z 轴方向上的平移距离。

二、平移的性质1. 平移变换具有可加性,即两个或多个平移变换的效果可以合并为一个平移变换。

设 T1 和 T2 分别表示两个平移变换,对于任意的点 P,有 T2(T1(P)) = T3(P),其中 T3 为合并后的平移变换。

2. 平移变换的逆变换也是一个平移变换。

即如果对一个点进行一次平移变换 T,再对其进行逆变换 T^-1,则得到的结果还是一个平移变换,并且可以合并为一个恒等变换。

即 T^-1(T(P)) = P。

3. 平移变换不改变点之间的相互位置关系。

对于图形中的任意两点 A 和 B,它们之间的距离和方向在进行平移变换后不会发生改变,只是位置发生了移动。

三、平移的应用1. 平移变换在计算机图形学中有着广泛的应用。

在计算机图形学中,平移变换可以用来实现图形在屏幕上的移动、拖拽等操作。

在图形处理软件中,也可以使用平移变换来进行图形的平移操作。

2. 在工程和建筑设计中,平移变换可以用来描述物体在平面或空间中的移动和位置调整。

例如在建筑设计中,可以使用平移变换来进行建筑结构的调整和优化。

平移旋转的知识点总结

平移旋转的知识点总结

平移旋转的知识点总结平移的概念平移是指将图形沿着某个方向保持大小和形状不变地移动一定的距离。

在平移过程中,图形内部的每一个点都以相同的距离和方向移动,从而保持了图形的整体形状和大小不变。

平移的特点:1. 平移是一种刚性变换,即图形的大小和形状在平移过程中都不发生改变。

2. 平移可以沿着任意方向进行,只要给定了平移的距离和方向,就可以完成平移操作。

3. 平移可以作用在点、线、面甚至是三维空间中的物体上,因此具有广泛的应用范围。

平移的表示方法:在几何学中,平移可以用向量来表示。

如果我们将平移的距离和方向表示为一个向量t,那么对于平面上的任意一个点P(x, y),经过平移后的新坐标P'(x', y')可以表示为:P' = P + t这个公式表示了任意点P经过平移后的新位置P',其坐标是原始坐标P加上平移向量t。

旋转的概念旋转是指将图形围绕某个点或者某个轴旋转一定的角度。

在旋转过程中,图形内部的每一个点都以相同的角度绕旋转中心旋转,从而改变了图形的方向,但是保持了图形的大小和整体形状不变。

旋转的特点:1. 旋转同样是一种刚性变换,即图形的大小和形状在旋转过程中都不发生改变。

2. 旋转可以围绕点、线、面甚至是三维空间中的物体进行,因此具有广泛的应用范围。

3. 旋转角度可以是正数、负数、甚至是小数,可以顺时针或者逆时针进行旋转。

旋转的表示方法:在几何学中,旋转可以用矩阵来表示。

如果我们将旋转的角度表示为θ,旋转中心为C(x0, y0),那么对于平面上的任意一个点P(x, y),经过旋转后的新坐标P'(x', y')可以表示为:[x'] [cosθ -sinθ][x - x0] [x0 + (x - x0)cosθ - (y - y0)sinθ][y'] = [sinθ cosθ][y - y0] = [y0 + (x - x0)sinθ + (y - y0)cosθ]这个矩阵公式表示了任意点P(x, y)经过旋转后的新位置P'(x', y'),其中cosθ和sinθ是旋转角度θ的余弦和正弦值。

初二6图形平移与旋转.docx

初二6图形平移与旋转.docx

第三章图形的平移与旋转一、知识概要一、平移定义:在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。

性质:平移丽后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等, 对应角相等。

(平移的概念与性质)例、如图,由11个面积为6的等边三角形按下列方式排列,它们都冇一边在同一直线上,每个三角形底边的屮点恰为下一个三如形的一个顶点.(1)请说-•说该图案的形成过程;(2)由这11个三角形所盖住的平面区域的面积是.3、作图平移作图的依据是平移的性质:1、平移后的图形人小和形状完全相同,即对应线段平行且相等,对应角相等。

2、平移后对应点所连接的线段平行且相等。

一、根据“平移后对应点所连的线段平行且相等”作平移后图形。

1、已知原图位置和平移的方向及距离,作平移后图形。

例1:如图1,图形扇形OAB按箭头所示方向平移2cm,作出平移后的图形。

R图1【分析】:解:如图,分别过0、A、B点作与箭头所示方向相同的一组平行线段OP、AC、BD, H0P=AC=BD=2cm,连接0A、0B,作弧AB,就得到扇形OAB平移后的图形。

2、已知原图形位置和一对对应点,作平移图形。

例2:如图2,平移小旗,使小旗上的点P平移到点A,作出平移后的小旗。

【分析】:解:如图,连接PA,分别过Q、R、S作线段QB、RC、SD,使QB〃RC〃SD〃PA,且QB二RC=SD二PA=2cm,连接AB、AC、BC、CD,得到平移后的小旗。

二、根据“平移后对应线段平行且相等”作平移后图形。

1、已知原图形位置和平移后一边的位置(一对对应边),作平移图形。

例3:如图3, ZABC的边AB经过平移到了PD,作出/ABC平移后的图形。

【分析】:解法1:分别过点P、点D作AC、BC的平行线,两线相交与点E,则/PDE就是所求作的三和形。

解法2:2、已知原图形位置和一对对应点,作平移图形。

例4:如图3, ZABC的顶点A经过平移到了点P,作出/ABC平移后的图形。

图像的平移与旋转 知识点

图像的平移与旋转 知识点

第三章图像的平移与旋转第一节图形的平移1.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移。

2.一个图形经过平移后得到一个新的图形,这个图形能与原图形相互重合,只是位置发生了变化。

我们把能够相互重合的点称为对应点,能够相互重合的角称为对应角,能够相互重合的线段称为对应线段。

3.平移的条件:确定一个图形平移后的位置,除需要原来的位置外,还需要一一对应的点的位置或平移的方向和距离,平移的方向为原图上的点指向它的对应点的方向,这一对对应点连接的线段的长是平移的距离。

注:(1)图形的平移有两个基本的条件:方向(任意方向);距离(2)平移改变了图形的位置,但不改变图形的形状和大小。

4.平移的性质:(1)平移后的图形与原图形对应点所连线段平行或在一条直线上且相等;(2)平移后的图形与原图形对应线段平行(或在一条直线上)且相等;(3)平移后的图形与原图形对应角相等。

5.平移作图常见形式及作法:第二节图形的旋转1.旋转:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。

这个定点被称为旋转中心,转动的角称为旋转角。

旋转不改变图形的形状和大小。

注:旋转是在平面内,而不是在空间内;旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定可以通过旋转得到;旋转的角度一般小于360度。

2.旋转的三要素:图形的旋转由旋转中心、旋转的角度和旋转的方向所决定。

3.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。

4.简单的旋转作图:旋转、平移、轴对称的异同:(1)三者的相同点:都是在平面内的图形变换不涉及立体图形的变换;三中变换都是只改变图形的位置,不改变形状和大小,其对应边相等,对应角相等。

(2)不同点:旋转、平移及轴对称的运动方式不同,旋转的运动方式是将一个图形旋转一定角度;而平移的运动方式则是将一个图形沿一条直线对折;旋转、平移及轴对称的对应线段、对应角之间的关系不同。

图形的平移;图形的旋转

图形的平移;图形的旋转

04
平移与旋转的数学表达
平移的数学表达
水平平移
01
图形在水平方向上移动一定的距离,可以用向量表示平移的距
离和方向。
垂直平移
02
图形在垂直方向上移动一定的距离,同样可以用向量表示平移
的距离和方向。
斜向平移
03
图形在任意方向上移动一定的距离,可以用向量表示平移的距
离和方向。
旋转的数学表达
顺时针旋转
平移的实例
直线平移
将一条直线沿垂直或水平方向移 动一定的距离,得到新的直线。
三角形平移
将一个三角形沿某一方向移动一 定的距离,得到新的三角形。
多边形平移
将一个多边形沿某一方向移动一 定的距离,得到新的多边形。
02
图形旋转
旋转的定义
旋转
图形绕某一定点旋转一定的角度。
旋转中心
图形旋转时所围绕的点。
图形以某点为中心顺时针旋转一定的角度,可以用旋转矩阵或极 坐标表示旋转的角度和方向。
逆时针旋转
图形以某点为中心逆时针旋转一定的角度,同样可以用旋转矩阵 或极坐标表示旋转的角度和方向。
任意角度旋转
图形可以以任意角度旋转,旋转的角度和方向可以用旋转矩阵或 极坐标表示。
平移与旋转的组合表达
先平移后旋转
先对图形进行平移操作,再以某点为中心进行旋转操作。
先旋转后平移
先对图形进行旋转操作,再对旋转后的图形进行平移操作。
同时进行平移和旋转
同时对图形进行平移和旋转操作,需要同时考虑平移和旋 转的向量或矩阵表示。
05
平移与旋转的物理意义
平移与位置变化
平移是指图形在平面内沿某一 方向直线移动一定的距离,而 其形状和大小保持不变。

第三章平移与旋转知识归纳

第三章平移与旋转知识归纳

第三章:平移与旋转知识归纳 一、两个概念
1、 平移:平面内,将一个图形沿某个方向移动一段距离 ,这种图形运动叫做平移。

2、 旋转:平面内,将一个图形绕一个定点沿某个方向转动一个角度。

这种图形运动叫做旋转。

其中定点叫旋转中心,转动的角度叫旋转角。

二、两种规律
1、 平移的规律
经过平移,对应点的连线平等且相等;对应边平行且相等;对应角相等。

2、 旋转的规律
经过旋转,对应点与旋转中心的连线相等;图形上每一个点都转动了相同的角度;旋转角相等。

三、两种作图
1、 平移作图 (先点后线)
基本步骤:(1)先移动对应点 (2)再连接对应线段
2、 旋转作图 (先线后转)
基本步骤:(1)先连接对应点与旋转中心 (2)再转动对应线段 (3)最后连接对应边画完图形 四、几点拓展
1、 旋转中心的确定
(1) 旋转中心在图形上的
旋转前后都没有移动的点即为旋转中心
3、
五、1、 2、
(1)已知:E是正方形ABCD的边长AD上一点,BF平分∠EBC,交CD于F,求证BE=AE+CF。

.
(2)已知:在△ABC中,AB=AC,延长AB到D,使
CD=2CE。

(3)中
(4)
B
E
2。

平移旋转对称的知识点归纳

平移旋转对称的知识点归纳

平移旋转对称的知识点归纳一、平移平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动。

1. 平移的性质平移后图形的形状和大小不变,只是位置发生了变化。

例如,一个正方形平移后还是正方形,边长和角度都不会改变。

对应点所连的线段平行且相等。

比如,一个三角形平移后,原来三角形的顶点和它平移后对应顶点所连的线段是平行且相等的。

2. 平移的应用在建筑设计中,经常会用到平移。

比如平移窗户的位置,来调整房间的采光和通风。

在图案设计中,通过平移可以创造出很多美丽的图案。

像一些地砖的图案,就是通过平移一个基本图形得到的。

二、旋转旋转是指在平面内,一个图形绕着一个定点旋转一定的角度得到另一个图形的变化。

1. 旋转的性质旋转前后图形的形状和大小不变。

例如,一个圆形旋转后还是圆形,半径不会改变。

对应点到旋转中心的距离相等。

比如,一个正多边形旋转后,它的各个顶点到旋转中心的距离都相等。

对应点与旋转中心所连线段的夹角等于旋转角。

2. 旋转的应用在机械制造中,一些零件的设计会用到旋转。

比如齿轮的设计,就是通过旋转来实现动力的传递。

在艺术创作中,旋转可以创造出独特的视觉效果。

像一些舞蹈动作,就有旋转的元素。

三、对称对称分为轴对称和中心对称。

1. 轴对称定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

性质:对称轴是对应点连线的垂直平分线。

例如,等腰三角形的对称轴是底边上的高所在的直线,它垂直平分底边。

轴对称图形的对应线段相等,对应角相等。

应用:在服装设计中,经常会用到轴对称。

很多衣服的图案是轴对称的,这样看起来更加美观。

2. 中心对称定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

性质:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

中心对称图形的对应线段相等,对应角相等。

平移旋转知识点总结

平移旋转知识点总结

平移旋转知识点总结一、平移的基本概念1、平移的定义平移是指图形沿着一条直线方向移动,移动的距离和方向保持一致。

在平移过程中,图形的大小和形状都不发生变化,只是位置发生了改变。

可以将平移看作是图形的每个点都按照同一个方向和距离进行移动,从而得到了一个新的位置。

2、平移的表示平移可以用向量来表示,假设有一个向量V(u,v),其中u和v表示平移的水平和垂直方向上的距离。

对于一个点P(x,y),通过向量表示的平移操作可以表示为P'=(x+u, y+v)。

这表示点P经过向量V的平移操作后得到了新的点P'(x+u, y+v)。

3、平移的性质平移具有以下几个重要的性质:(1)平移是保形变换,即平移前后的图形形状相同;(2)平移不改变图形的大小;(3)平移不改变图形的角度;(4)平移保持了图形内的任意两点间的距离关系。

二、旋转的基本概念1、旋转的定义旋转是指图形以一个固定的点为中心,按照一定的角度转动。

在旋转过程中,图形的大小和形状都不发生变化,只是方向发生了改变。

可以将旋转看作是图形的每个点都按照同一个中心和角度进行转动,从而得到了一个新的方向。

2、旋转的表示旋转可以用矩阵来表示,假设有一个点P(x,y),以原点为中心,顺时针旋转角度为θ的旋转操作可以表示为P'=(x*cosθ-y*sinθ, x*sinθ+y*cosθ)。

这表示点P经过矩阵表示的旋转操作后得到了新的点P'(x',y')。

3、旋转的性质旋转具有以下几个重要的性质:(1)旋转是保形变换,旋转前后的图形形状相同;(2)旋转不改变图形的大小;(3)旋转保持了图形内的任意两点间的距禿;(4)旋转不改变图形的中心;(5)对任意两个点A和B,它们的连线在旋转前后的夹角不变。

三、平移和旋转的混合变换在实际问题中,往往需要对图形进行平移和旋转的组合变换。

对于平移和旋转的组合变换,其实际操作可以分为两步:首先进行平移,然后进行旋转。

(完整版)图形的平移与旋转--知识讲解

(完整版)图形的平移与旋转--知识讲解

图形的平移与旋转--知识讲解【学习目标】1、理解平移的概念,掌握图形的平移所具有的对应点的连线的特征,理解平移前后对应边角的关系,能按要求作出简单的平面图形平移后的图形;2、掌握旋转的概念,探索它的基本性质,能够按要求作出简单平面图形旋转后的图形;3、掌握旋转对称图形、中心对称图形和中心对称的概念,理解他们的区别和联系,并会判别给出的图形是旋转对称图形还是中心对称图形;4、会画出给定条件的旋转对称图形或中心对称图形以及会画已知图形关于已知点成中心对称的图形.【要点梳理】要点一、平移的概念与性质平移的概念将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移.如图:平移三角形ABC 就可以得到三角形A′B′,C′点A和点A′,点B 和B′,点C 和点C′是对应点,线段AB和AB′,BC 和B′C,′AC 和A′C是′对应线段,∠A与∠A′,∠B与∠B′∠C与∠C是对应角.平移的性质图形平移后,对应点之间的距离、对应线段的长度、对应角的大小相等.图形平移后,图形的大小、形状都不变.要点诠释:1、平移后各对应点之间的距离叫做图形平移的距离.2、平移的两个要素:平移的方向和平移的距离.要点二、旋转的概念与性质旋转的概念在平面内,将一个图形上的所有点绕一个定点按照某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心(如点O),转动的角度叫做旋转角(如∠AO A′).如图:三角形A′B′是C′三角形ABC 绕点O 旋转所得,则点A和点A′,点B 和B′,点C 和点C′是对应点,线段AB和AB′,BC 和B′C,′AC 和A′C是′对应线段,∠AOA ′,∠BOB′,∠COC′是旋转角.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.旋转的性质(1) 对应点到旋转中心的距离相等( OA= OA′);(2) 对应线段的长度相等(AB=AB′);(3) 对应点与旋转中心所连线段的夹角等于旋转角(∠AOA′);要点诠释:1、图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.2、旋转前后图形的大小和形状没有改变.要点三、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1) 连接图形中的每一个关键点与旋转中心;(2) 把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角)(3) 在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4) 连接所得到的各对应点.要点四、旋转对称图形与中心对称图形旋转对称图形把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做点叫做旋转对称中心,旋转的角度叫做旋转角.(旋转角0°< <360°).中心对称图形:如果把一个图形绕着一个定点旋转180°后,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心.要点诠释:中心对称图形是特殊的旋转对称图形,特殊在旋转角是180°,也就是说当旋转角是180°时的旋转对称图形就是中心对称图形.要点五、中心对称中心对称:把一个图形绕着某一个点旋转180°后,和另一个图形重合,那么叫做这两个图形关于这个点对称也叫做这两个图形中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.要点诠释:1、中心对称是旋转角为180°的旋转对称;2、寻找对称中心,只需分别联结两对对应点,所得两条直线的交点就是对称中心;3、对称点所连线段经过对称中心,而且被对称中心平分.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又是关于中心对称.类型一、平移的概念与性质【答案与解析】将图形中五边形的各关键点先向右平移4 格,再向上平移3 格,然后顺次连接各关键点,即可得到平移后的五边形,然后以A 为圆心,单位1 为半径作圆弧即可.旋转对称图形,这个定4 格,再向上平移3 格,画出平移后的图形..如图,将方格上的图形向右平移【总结升华】 画平移图形的关键是找到图形中的各个关键点按要求平移,然后把平移后的各点连结起 来即可. 【变式】下面所说的 “平移 ”,是指只沿方格的格线(即上下或左右)运动,将图中的任一条线段平移1 格称为 “1步”.要通过平移,使图中的 3 条线段首尾相接组成一个三角形,最少需要移动( ) A .7步 B .8步 C .9步D .10 步答案】 A解析】 其中移动方案为: AB 向下移动 2格, EF 向右 1格再向上 2格,CD 向左 2格,共应 7格.AOBC 绕点 O 旋转得到四边形 DOEF . 在这个旋转过程中: 1)旋转中心是谁 ?2)旋转方向如何 ?3)经过旋转 ,点 A 、B 的对应点分别是谁? 4)图中哪个角是旋转角?5)四边形 AOBC 与四边形 DOEF 的形状、大小有何关系? 6)AO 与 DO 的长度有什么关系? BO 与 EO 呢? 7)∠ AOD 与∠BOE 的大小有什么关系?答案与解析】1)旋转中心是点 O ;(2)旋转方向是逆时针方向; ( 3)点 A 的对应点是点 D,点 B的对应点是点类型二:旋转的概念与性质2.如图,把四边形E;(4) ∠ AOD 和∠BOE;(5) 四边 形 AOBC 与 四边形 DOEF 形状 一致,大 小相等 ;( 6) AO=DO,BO=EO;(7) ∠AOD= ∠ BOE .【总结升华】 通过具体实例认识旋转,了解旋转的概念和性质. 举一反三【变式】 如图所示: O 为正三角形 ABC 的中心.你能用旋转的方法将 △ABC 分成面积相等的三部 分吗?如果能,设计出分割方案,并画出示意图.答案】 下面给出几种解法:解法一:连接 OA 、OB 、 OC 即可.如图甲所示;解法二:在 AB 边上任取一点 D ,将 D 分别绕点 O 旋转 120°和 240°得到 D 1、D 2,连接 OD 、 OD 1、OD 2 即得,如图乙所示.解法三:在解法二中,用相同的曲线连结OD 、OD 1、 OD 2 即得如图丙所示类型三、旋转的作图个单位,得到 ,再把 绕点 顺时针旋转 ,得到 ,请你画出 和 (不要求写画法)如图,在 正方形网格中,每个小正方形的边长均为1 个单位.将 向下平移 4总结升华】 注意平移和旋转中关键点移动规律的不同. 举一反三 变式】如图,画出 ABC 绕点 O 逆时针旋转 100 所得到的图形.(∠AOA ′=∠BOB ′=∠COC ′ =100 °)类型四、旋转对称图形与中心对称图形图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形若一个图形绕着一个定点旋转一个角α( 0°< α≤ 18)0°后能够与原来的图形重合,那么这个120°(如图),能够与原来的等边三角答案】不一定是中心对称图形.下面四个图形中,旋转对称图形个数有(A .1B .2C.3 D .4答案与解析】图1 绕中心旋转60°后能够与原来的图形重合,所以这个图形是旋转对称图形;图2中,无论怎么样旋转都无法重合,除非旋转360度,但超出条件范围,故图2 不是旋转对称图形;图 3 绕中心旋转 120°后能够与原来的图形重合,所以这个图形是旋转对称图形; 图 4 绕中心旋转 72°后能够与原来的图形重合,所以这个图形是旋转对称图形.总结升华】 根据旋转对称图形的定义:若一个图形绕着一个定点旋转一个角 够与原来的图形重合,那么这个图形叫做旋转对称图形.【答案与解析】这些图形中:图形 1,图形 3,图形 4,图形 5,图形 8 为中心对称图形,其对称中心为图形中的点O .【总结升华】 识别中心对称图形,就看这个图形绕着一个定点旋转 180°后,能否与初始图形重合,而对称中心往往是图形本身的内部的一点.变式】 如图,将图 (1)中的正方形图案绕中心旋转180°后,得到的图案是 ( )【答案】 C .【解析】 抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否与自身重合.【总结升华】 在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所 选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律, 而不必强求分析的一致性. 类型五、 中心对称6.画出四边形 ABCD 关于点 O 的中心对称图形.α( 0°< α≤ 180)°后能列图形是中心对称图形吗?如果是中心对称图形,在图中用点O 标出对称中心.总结升华】作中心对称图形关键是找到各点关于对称中心的对应点.变式】(1)如图(1)选择点O 为对称中心,画出线段AB 关于点O 的对称线段A′B.′(2)如图(2)选择△ABC 内一点P为对称中心,画出△ABC 关于点P的对称△A′B′.C′答案】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的平移与旋转 --知识讲解【学习目标】1、理解平移的概念,掌握图形的平移所具有的对应点的连线的特征,理解平移前后对应边角的关系,能按要求作出简单的平面图形平移后的图形;2、掌握旋转的概念,探索它的基本性质,能够按要求作出简单平面图形旋转后的图形;3、掌握旋转对称图形、中心对称图形和中心对称的概念,理解他们的区别和联系,并会判别给出的图形是旋转对称图形还是中心对称图形;4、会画出给定条件的旋转对称图形或中心对称图形以及会画已知图形关于已知点成中心对称的图形.【要点梳理】要点一、平移的概念与性质平移的概念将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移.如图:平移三角形ABC就可以得到三角形A′B′,C点′A和点A′,点 B 和 B′,点 C 和点 C′是对应点,线段AB和AB′, BC 和 B′C,′AC 和 A′C是′对应线段,∠ A与∠ A′,∠B与∠B′∠C与∠C′是对应角.平移的性质A'图形平移后,对应点之间的距离、对应线段的长度、对应角的大小相等.图形平移后,图形的大小、形状都不变.要点诠释:AB'C' B C1、平移后各对应点之间的距离叫做图形平移的距离.2、平移的两个要素:平移的方向和平移的距离.要点二、旋转的概念与性质旋转的概念在平面内,将一个图形上的所有点绕一个定点按照某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心(如点O),转动的角度叫做旋转角(如∠AO A′).B′如图:三角形A′B′是C三′角形ABC绕点 O 旋转所得,则点A和C′点 A′,点 B 和 B′,点 C 和点 C′是对应点,线段AB和AB′,BC 和 B′C,′AC 和 A′是C′对应线段,∠AO A′,∠BOB′,∠COC′是旋转角.O?C A′A B要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.旋转的性质(1) 对应点到旋转中心的距离相等(OA= OA′);(2) 对应线段的长度相等(AB=AB′);(3) 对应点与旋转中心所连线段的夹角等于旋转角(∠ AOA′);要点诠释:1、图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.2、旋转前后图形的大小和形状没有改变.要点三、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点四、旋转对称图形与中心对称图形旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.(旋转角0°<<360°).中心对称图形:如果把一个图形绕着一个定点旋转180°后,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心.要点诠释:中心对称图形是特殊的旋转对称图形,特殊在旋转角是180°,也就是说当旋转角是180°时的旋转对称图形就是中心对称图形.要点五、中心对称中心对称:把一个图形绕着某一个点旋转 180°后,和另一个图形重合,那么叫做这两个图形关于这个点对称也叫做这两个图形中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.AC′要点诠释:B1、中心对称是旋转角为 180°的旋转对称;O B′2、寻找对称中心,只需分别联结两对对应点,所得两条直线CA′的交点就是对称中心;3、对称点所连线段经过对称中心,而且被对称中心平分.中心对称与中心对称图形的区别与联系:中心对称中心对称图形① 指两个全等图形之间的相① 指一个图形本身成中心对区称.互位置关系.别② 对称中心是图形自身或内部② 对称中心不定.的点.如果将中心对称的两个图形看如果把中心对称图形对称的部联成一个整体(一个图形),那么分看成是两个图形,那么它们又系这个图形就是中心对称图形.是关于中心对称.【典型例题】类型一、平移的概念与性质1.如图,将方格上的图形向右平移4 格,再向上平移 3 格,画出平移后的图形.【答案与解析】将图形中五边形的各关键点先向右平移 4 格,再向上平移 3 格,然后顺次连接各关键点,即可得到平移后的五边形,然后以 A 为圆心,单位 1 为半径作圆弧即可.【总结升华】画平移图形的关键是找到图形中的各个关键点按要求平移,然后把平移后的各点连结起来即可.【变式】下面所说的“平移”,是指只沿方格的格线(即上下或左右)运动,将图中的任一条线段平移1 格称为“1步”.要通过平移,使图中的 3 条线段首尾相接组成一个三角形,最少需要移动()A. 7 步B. 8 步C.9 步D.10步【答案】A【解析】其中移动方案为:AB 向下移动 2 格, EF向右 1 格再向上 2 格, CD向左 2 格,共应 7 格.类型二:旋转的概念与性质2.如图,把四边形AOBC绕点O旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是谁(2)旋转方向如何(3)经过旋转 ,点 A、 B 的对应点分别是谁(4)图中哪个角是旋转角(5)四边形 AOBC与四边形 DOEF的形状、大小有何关系( 6) AO 与 DO 的长度有什么关系BO 与 EO呢( 7)∠ AOD 与∠ BOE的大小有什么关系【答案与解析】( 1)旋转中心是点O;( 2)旋转方向是逆时针方向;(3)点A的对应点是点D,点 B 的对应点是点E;(4)∠ AOD 和∠ BOE;(5) 四边形AOBC 与四边形DOEF 形状一致,大小相等;( 6 )AO=DO,BO=EO;(7)∠ AOD=∠ BOE.【总结升华】通过具体实例认识旋转,了解旋转的概念和性质.举一反三【变式】如图所示: O 为正三角形ABC 的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗如果能,设计出分割方案,并画出示意图.【答案】下面给出几种解法:解法一:连接 OA、 OB、 OC即可.如图甲所示;解法二:在 AB 边上任取一点D,将 D 分别绕点 O 旋转 120°和 240°得到 D1、D2,连接 OD、OD1、OD 即得,如图乙所示.2解法三:在解法二中,用相同的曲线连结OD、 OD12、 OD即得如图丙所示类型三、旋转的作图3.如图,在正方形网格中,每个小正方形的边长均为 1 个单位.将向下平移4个单位,得到,再把绕点顺时针旋转,得到,请你画出和(不要求写画法).【答案与解析】【总结升华】注意平移和旋转中关键点移动规律的不同.举一反三【变式】如图,画出ABC 绕点 O 逆时针旋转 100所得到的图形.【答案】(∠ AOA′=∠BOB′=∠ COC′ =100 °)类型四、旋转对称图形与中心对称图形4.若一个图形绕着一个定点旋转一个角α(0°<α≤ 180)°后能够与原来的图形重合,那么这个图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转120°(如图),能够与原来的等边三角形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,旋转对称图形个数有()A.1B.2C.3D.4【答案与解析】图 1 绕中心旋转60°后能够与原来的图形重合,所以这个图形是旋转对称图形;图 2 中,无论怎么样旋转都无法重合,除非旋转360 度,但超出条件范围,故图2不是旋转对称图形;图3 绕中心旋转 120°后能够与原来的图形重合,所以这个图形是旋转对称图形;图4 绕中心旋转 72°后能够与原来的图形重合,所以这个图形是旋转对称图形.【总结升华】根据旋转对称图形的定义:若一个图形绕着一个定点旋转一个角α(0°<α≤ 180)°后能够与原来的图形重合,那么这个图形叫做旋转对称图形.5.下列图形是中心对称图形吗如果是中心对称图形,在图中用点O 标出对称中心.【答案与解析】这些图形中:图形 1,图形 3,图形 4,图形 5,图形 8 为中心对称图形,其对称中心为图形中的点O.【总结升华】识别中心对称图形,就看这个图形绕着一个定点旋转180°后,能否与初始图形重合,而对称中心往往是图形本身的内部的一点.【变式】如图,将图(1)180°()中的正方形图案绕中心旋转后,得到的图案是【答案】 C.【解析】抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否与自身重合.【总结升华】在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律,而不必强求分析的一致性.类型五、中心对称6.画出四边形ABCD关于点 O 的中心对称图形.【答案与解析】【总结升华】作中心对称图形关键是找到各点关于对称中心的对应点.【变式】( 1)如图(1)选择点O 为对称中心,画出线段AB 关于点O 的对称线段A′B.′( 2)如图(2)选择△ ABC内一点P 为对称中心,画出△ ABC关于点P 的对称△ A′B′.C′【答案】。

相关文档
最新文档