导数系列:一类以自然指数对数为背景的导数压轴题解法教师版
一类高考导数压轴题的统一解法
所以, ( , 时 , x< ( )0 H < 题设/ ≥ ∈ 0 ) g )g0= , ( I ) , I )
一相 矛 盾 .
二 e 二 (
.
当 ∈( , 2 ) 0 l 。 时 , < . n ( 0由于厂0 : 所 以 ) ( )0,
综 卜 述 , 足 条件 的n 取 值 范 刚 足 ( , ] 所 满 的 一 2.
_ )e一 I 厂 = e1 ( .
( ) 明 X 的导 1证 ) ( ≥2 ) ;
用大学知识 中的罗必塔 法则可以求 该点 的极 限值 ,这 ■题 的 答案都是小于等于号 , 说明这个极限值就 是临界值. 问题以 此类 大学数学 中的函数连续为背景 , 仔在着 一个 町去问断点 , 个点 这 就 是讨论的重点. 在高 中阶段 , 无法求 极限值 , 只能通过 分类 讨 论等办法 , 探求参 数的取值范 用.
一 眨 , 址一
过 双曲线 中a b Ce 、 、 、的独 关系分别求 ab 确定标准方程 ) 、( 第
点 , 问 断 点 的 两侧 , 在 该 数 是 调 数 , 且都 是 左 减 右 增 . 而 利
取得极小值 ,  ̄ ( ) 可X ux 求极 限 , 由罗必塔法 则得l ( = , 以 i x)0 所 mu k . ≤0还有其他的高考题具有同样的特点 吗? 案例2 ( 0 7 2 0 年高考 全 围卷 I理科 数 学第 2 题 ) 2 没函数
程必修5 北 师大版 )5 中曾 以例题 的形式 现过 ( 的是向量 ( t5 " 用
法) .
2这 是 本 卷 中运 算 量最 大 的 一 道 题 , 一 问 有 两 步 运 算 : . 第 通
有 帮助的 , 可以使教师到对 高考试题触类 旁趔 、 件一劳永逸 的事情.
(完整word版)高考压轴题:导数题型及解题方法
高考压轴题:导数题型及解题方法一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。
方法:)(0x f '为在0x x =处的切线的斜率。
题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。
方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。
将问题转化为关于m x ,0的方程有三个不同实数根问题。
(答案:m 的范围是()2,3--)练习 1. 已知曲线x x y 33-=(1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。
答案:(03=+y x 或027415=--y x )(2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。
2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1)题型3 求两个曲线)(x f y =、)(x g y =的公切线。
方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。
()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)
专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。
A050导数压轴大题归类 (学生版)
导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【技法指引】恒成立基本思维:①若k≥f(x)在[a,b]上恒成立,则k≥f(x)max;②若k≤f(x)在[a,b]上恒成立,则k≤f(x)min;③若k≥f(x)在[a,b]上有解,则k≥f(x)min;④若k≤f(x)在[a,b]上有解,则k≤f(x)max;【变式演练】1.已知函数f(x)=1+xe x,g(x)=1-ax2.(1)若函数f(x)和g(x)的图象在x=1处的切线平行,求a的值;(2)当x∈[0,1]时,不等式f(x)≤g(x)恒成立,求a的取值范围.题型二三角函数恒成立型求参【典例分析】1.已知函数f(x)=e x+cos x-2,f (x)为f(x)的导数.(1)当x≥0时,求f (x)的最小值;x+x cos x-ax2-2x≥0恒成立,求a的取值范围.(2)当x≥-π2时,xe【变式演练】1.已知函数f(x)=2x-sin x.(1)求f(x)的图象在点π2,fπ2处的切线方程;(2)对任意的x∈0,π2,f(x)≤ax,求实数a的取值范围.题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x,g x =ax2+1.(1)求函数f x 的最小值;(2)若不等式x+1恒成立,求m的取值范围;ln x-2x-1>m对任意的x∈1,+∞(3)若函数f x 的图象与g x 的图象有A x1,y1两个不同的交点,证明:x1x2>16.(参,B x2,y2考数据:ln2≈0.69,ln5≈1.61)【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;.(ii)证明:x22-x1<-a2+a+1a2题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x+axx,a∈R.(1)若a=0,求f x 的最大值;(2)若0<a<1,求证:f x 有且只有一个零点;(3)设0<m<n且m n=n m,求证:m+n>2e.【变式演练】1.已知函数f x =2ln x+x2+a-1x-a,(a∈R),当x≥1时,f(x)≥0恒成立.(1)求实数a的取值范围;(2)若正实数x1、x2(x1≠x2)满足f(x1)+f(x2)=0,证明:x1+x2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t =e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e -e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【变式演练】1.已知函数f x =e axx,g x =ln x+2x+1x,其中a∈R.(1)试讨论函数f x 的单调性;(2)若a=2,证明:xf(x)≥g(x).题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x+1x -1a∈R.(1)求函数f x 的单调区间;(2)当x∈0,1时,证明:x2+x-1x-1<e x ln x.【变式演练】1.已知函数f x =ae x-2-ln x+ln a.(1)若曲线y=f x 在点2,f2处的切线方程为y=32x-1,求a的值;(2)若a≥e,证明:f x ≥2.题型九放缩参数型消参证明不等式【典例分析】1.已知函数f x =12ax2+1-ax-ln x.(1)当a=-2时,求函数f x 的单调区间;(2)当a≥1时,证明:x>1时,当f x >1-ax+1x-1+12a恒成立.【变式演练】1.已知函数f x =ln ax-1+a ln x的图像在点1,f1处的切线方程为y=4x+b.(1)求a,b的值;(2)当k≥4时,证明:f x <k x-1对x∈1,+∞恒成立.题型十凸凹翻转型证明不等式【典例分析】1.已知函数f x =ax -ln x ,a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,e 时,求g x =e 2x -ln x 的最小值;(3)当x ∈0,e 时,证明:e 2x -ln x -ln x x>52.【变式演练】1.已知函数f (x )=ln x -x .(1)讨论函数g (x )=f (x )-a x(a ≠0,a ∈R )的单调性;(2)证明:f (x ) >ln x x +12.题型十一切线两边夹型证明不等式【典例分析】1.已知函数f(x)=6x-x6,x∈R.(1)求函数f(x)的极值;(2)设曲线y=f(x)与x轴正半轴的交点为P,求曲线在点P处的切线方程;(3)若方程f(x)=a(a为实数)有两个实数根x1,x2且x1<x2,求证:x2-x1≤615-a5.【变式演练】1.已知函数f(x)=x ln x-x.(1)设曲线y=f x 在x=e处的切线为y=g x ,求证:f(x)≥g x ;(2)若关于x的方程f(x)=a有两个实数根x1,x2,求证:x2-x1<2a+e+1 e .题型十二切线放缩型证明不等式【典例分析】1.已知函数f x =m x 22-k ln x +n e x +114e x +1-ax +a -1 ,其中e =2.718⋯是自然对数的底数,f x 是函数f x 的导数.(1)若m =1,n =0时 .(i )当k =1时,求曲线f x 在x =1处的切线方程.(ⅱ)当k >0时,判断函数f x 在区间1,e 零点的个数.(2)若m =0,n =1,当a =78时,求证:若x 1≠x 2,且x 1+x 2=-2,则f x 1 +f x 2 >2.【变式演练】1.已知函数f(x)=a(x-1)e x,a≠0.(1)讨论f(x)的单调性;(2)当a=1时,①求函数在x=1处的切线l,并证明0<x<1,函数f(x)图象恒在切线l上方;②若f(x)=m有两解x1,x2,且x1<x2,证明x2-x21<me-m.题型十三构造一元二次根与系数关系型证明不等式【典例分析】1.已知函数f x =x 2-x +k ln x ,k ∈R .(1)讨论函数f x 的单调性;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 -f x 2 <14-2k .【技法指引】利用一元二次型根与系数关系,可以构造:1.利用韦达定理代换:可以消去x1,x2留下参数2.一部分题依旧是极值点偏移【变式演练】1.已知函数f(x)=ln x+ax2-x.(1)若a=-1,求函数f(x)的极值;(2)设f′(x)为f(x)的导函数,若x1,x2是函数f′(x)的两个不相等的零点,求证:f(x1)+f(x2)<x1 +x2-5.题型十四【题型十四】两根差型证明不等式【典例分析】1.已知函数f x =e x-a ln aa>0,其中e=2.71828⋯是自然对数的底数.⋅x ln x(1)当a=e时,求函数f x 的导函数f x 的单调区间;(2)若函数f x 有两个不同极值点x1,x2且x1<x2;(i)求实数a的取值范围;(ii)证明:x2-x1≤e-a ln a.e-a ln a-4【变式演练】1.已知函数f x =ax2+1x.(1)当a=-4时,求f x 的极值点.(2)当a=2时,若f x 1≥ 3.,且x1x2<0,证明:x2-x1=f x2题型十五比值代换型证明不等式【典例分析】x(a为常数,a>0且a≠1).1.已知函数f x =x log a x-2+1ln a(1)求函数f x 的单调区间;(2)当a=e时,若g x =f x -12mx2+3x有两个极值点x1,x2,证明:ln x1+ln x2>0.【变式演练】1.已知函数f(x)=x2-1-a ln x恰有两个零点x1,x2x1>x2.(1)求实数a的取值范围;(2)证明:3x1+x2>6a.题型十六幂指对与三角函数型证明不等式【典例分析】1.已知函数f x =e x-ax-cos x,g x =f x -x,a∈R.(1)若f x 在0,+∞上单调递增,求a的最大值;(2)当a取(1)中所求的最大值时,讨论g x 在R上的零点个数,并证明g x >-2.【变式演练】1.已知函数f x =2sin x-x cos x-ax a∈R.(1)若曲线y=f x 在点0,f0处的切线与直线y=x+2平行.(i)求a的值;(ii)证明:函数f x 在区间0,π内有唯一极值点;(2)当a≤1时,证明:对任意x∈0,π,f x >0.题型十七不等式证明综合型【典例分析】1.已知函数f x =ae x-ln x+b,a,b∈R.(1)当a≥e,b=1时,证明f x >2;(2)当b=0时,令g x =f x -1①若g x 有两个零点,求a的取值范围;②已知1.098<ln3<1.099,e0.048<1.050,e-0.045<0.956,证明:1.14<lnπ<1.15.【变式演练】1.设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S 相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.(1)已知函数f(x)=x-2sin x.求证:y=x+2为曲线f(x)的“上夹线”;(2)观察下图:根据上图,试推测曲线S:y=mx-n sin x(n>0)的“上夹线”的方程,并给出证明.题型二好题演练好题演练1.(2023·江苏南通·高三校联考阶段练习)已知函数f(x)=e ax-1x-ln x x.(1)若a=0,关于x的不等式f(x)<m恰有两个整数解,求m的取值范围;(2)若f(x)的最小值为1,求a.2.(天一大联考皖豫名校联盟2023届高三第三次考试数学试题)已知函数f(x)=x(ln x-a)在区间x2-m,a,m∈R.[1,e]上的最小值为-1,函数g(x)=m2(1)求a的值;(2)设函数F(x)=f(x)-g(x),x 1,x2是F(x)的两个不同的极值点,且x1<x2,证明:2ln x1+3ln x2>5.3.(2023春·安徽马鞍山·高二马鞍山二中校考期中)已知函数f x =x3+ax+b,且满足f x 的导数y=f x 的最小值为-34.(1)求a值;(2)若函数y=f x 在区间-1,2上的最大值与最小值的和为7,求b值.4.(2023·吉林通化·梅河口市第五中学校考模拟预测)已知函数f x =ax l-ln x和g x =b ln x x有相同的最大值,并且ab=e.(1)求a,b;(2)证明:存在直线y=k,其与两条曲线y=f x 和y=g x 共有三个不同的交点,且从左到右的三个交点的横坐标成等比数列.5.(2023春·四川广安·高二广安二中校考期中)已知m>0,e是自然对数的底数,函数f x =e x+m -m ln mx-m.-4x+2-f x 的极值;(1)若m=2,求函数F x =e x+x22(2)是否存在实数m,∀x>1,都有f x ≥0?若存在,求m的取值范围;若不存在,请说明理由.6.(2023·广西南宁·统考二模)已知函数f x =e x-ax2+2ax-1,其中a为常数,e为自然对数底数,e=2.71828⋯,若函数f x 有两个极值点x1,x2.(1)求实数a的取值范围;(2)证明:x1-1+x2-1>2.7.(2023·山西·统考二模)已知函数f(x)=(mx-1)e x+n m,n∈R在点(1,f(1))处的切线方程为y=ex+2-e,g x =e xx+1(1)求f(x)的值域;(2)若f(a)=f(b)=g(c)=g(d),且a<b,c<d,证明:①c+d>0;②b+c>0.8.(2023春·湖南·高三校联考阶段练习)已知函数f x =e x-ln x-a-1 (1)若1,e+1为曲线y=f x 上一点,求曲线y=f x 在该点处的切线方程;(2)若a>0,证明:f x ≥1-aln a.9.(2023春·湖北武汉·高二华中师大一附中校考期中)已知f x =x ln x-12ax2有两个极值点x1,x2且x1>x2.(1)若f x 的极大值大于e22,求a的范围;(2)若x1>2x2,证明:x1+x2>3aln2.。
《导数大题压轴题难点突破》(PDF)
《难点突破》压轴题----函数与导数常考题型一、要点归纳1.曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+.2.若可导函数()y f x =在x x =处取得极值,则0()0f x '=.反之,不成立.3.对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。
4.函数()f x 在区间I 上递增(减)的充要条件是:x I ∀∈,()f x '0≥(0)≤恒成立(()f x '不恒为0).5.函数()f x (非常量函数)在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程()0f x '=在区间I 上有实根且为非二重根。
(若()f x '为二次函数且I=R ,则有0∆>).6.()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或()f x '0≤在I 上恒成立.7.若x I ∀Î,()f x 0>恒成立,则min ()f x 0>;若x I ∀∈,()f x 0<恒成立,则max ()f x 0<.8.若0x I ∃∈,使得0()f x 0>,则max ()f x 0>;若0x I∃∈,使得0()f x 0<,则min ()f x 0<.9.设()f x 与()g x 的定义域的交集为D ,若x ∀∈D ()()f x g x >恒成立,则有[]min ()()0f x g x ->.10.若对11x I ∀∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x >,则min min ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x <,则max max ()()f x g x <.11.已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B ,若对11x I ∀∈,22x I ∃∈,使得1()f x =2()g x 成立,则A B ⊆.12.若三次函数f(x)有两个极值点,当且仅当方程()0f x '=一定有两个不等实根12x x 、,若三次函数f(x)没有极值点,则方程()0f x '=有两个相等的实根或没实根..13.证题中常用的不等式:①1xe x≥+②1xex-≥-③xeex ≥④316xex >⑤ln +1(1)x x x ≤>-()⑥ln 1(1)12x x x x -<>+⑦22ln 11(0)22x x x x <->⑧111ln ()1(1)2x x x x x x x-≤≤-≤-≥⑨ln 11(0)x x x x≤->二、常考题型:题型一:恒成立求参数的最值或取值范围问题1.1()010.1xax f x e x x y x-==+-=+已知函数在处的切线方程为(Ⅰ)求a 的值;(Ⅱ)()1,f x <若求x 的取值范围.2.已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-.3.已知函数ln(1)()(0)x f x x x+=>(Ⅰ)判断函数()f x 的单调性;(Ⅱ)是否存在实数a 使得关于x 的不等式ln(1)x ax +<在(0,)+∞上恒成立?若存在,求出a 的取值范围,若不存在,试说明理由.4.已知函数1ln ()xf x x+=.(Ⅰ)设a >0,若函数)(x f 在区间1(,2a a +上存在极值,求实数a 的取值范围;(Ⅱ)如果当x ≥1时,不等式2()1k kf x x -≥+恒成立,求实数k 的取值范围.5.已知函数2()23.xf x e x x =+-(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)如果当1x ≥时,不等式25()(3)12f x x a x ≥+-+恒成立,试求实数a 的取值范围.6.设()ln af x x x x=+,32()3g x x x =--.(Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若存在12,[0,2]x x ∈,使12()()g x g x M-≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.7.设函数(),x f x xe =2().g x ax x =+(Ⅰ)若()f x 与()g x 具有完全相同的单调区间,求a 的值;(Ⅱ)若当0x ≥时恒有()(),f x g x ≥求a 的取值范围.8.已知函数()xf x e =,()1g x x =+(Ⅰ)判断函数()()f x g x -零点的个数,并说明理由;(Ⅱ)当0x ≥时,()11axf x x≥++恒成立,求实数a 的取值范围.9.已知函数32()31()f x ax x a x R =++∈,.(Ⅰ)当0a <时,求函数f(x)的极值.(Ⅱ)设函数'1()()(21)13h x f x a x =+-+,(1,](1)x b b ∈->-,如果存在(,1],a ∈-∞-,对任意(1,]x b ∈-都有()0h x ≥成立,试求b 的最大值.10.设函数2()ln ,,f x a x bx a b R =-∈(Ⅰ)若函数()f x 在1x =处与直线12y =-相切,①求实数,a b 的值;②求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦的最大值;(Ⅱ)当0b =时,若不等式()f x m x ≥+对所有的(230,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,求实数m 的取值范围.11.已知函数211()ln()22f x ax x ax =++-(a 为常数,0a >).(Ⅰ)若12x =是函数()f x 的一个极值点,求a 的值;(Ⅱ)求证:当02a <≤时,()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上是增函数;(Ⅲ)若对任意..的a ∈(1,2),总存在..01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(1)f x m a >-成立,求实数m 的取范围.12.已知函数()()()3212f x x a x a a x=+--+()a ∈R ,()'f x 为()f x 的导数.(Ⅰ)当3a =-时,证明()y f x =在区间()1,1-上不是单调....函数;(Ⅱ)设()19163g x x =-,是否存在实数a ,对于任意的[]11,1x ∈-,存在[]20,2x ∈,使得()()1122f x ax g x '+=成立?若存在,求出a 的取值范围;若不存在,说明理由.13.已知函数2()ln (1).xf x a x x a a =+->(Ⅰ)求()f x 的单调增区间;(Ⅱ)若存在[]12,1,1,x x ∈-使得12()()1(f x f x e e a -≥-是自然数),求实数的取值.范围14.设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围.15.已知函数R a x x axx x f ∈-+-+=,1)1ln()(.(Ⅰ)当0>a 时,求函数)(x f 的单调区间;(Ⅱ)若存在0>x ,使)(11)(Z a x xx x f ∈+-<++成立,求a 的最小值.16.设函数()1.xf x e -=-(Ⅰ)证明:当1,();1x x f x x >-≥+时(Ⅱ)当0,()1xx f x ax ≥≤+时恒成立,求a 的取值范围.17.已知函数2()(1)(1).x f x x e x x =-->(Ⅰ)试判断方程()0f x =根的个数.(Ⅱ)()(1,),k k f x k ≤+∞若为整数,且不等式在上恒成立求的最大值.18.设函数()2xf x e ax =--(Ⅰ)求()f x 的单调区间(Ⅱ)若1,a k =为整数,且当0x >时,'()()10,x k f x x -++>求k 的最大值.题型二:导数与函数的切线问题19.已知函数312()ln ,()23f x x x g x ax x e=⋅=--.(Ⅰ)求()f x 的单调增区间和最小值;(Ⅱ)若函数()y f x =与函数()y g x =在交点处存在公共切线,求实数a 的值;(Ⅲ)若2(0,]x e ∈时,函数()y f x =的图象恰好位于两条平行直线1:l y kx =;2:l y kx m =+之间,当1l 与2l 间的距离最小时,求实数m 的值.20.已知函数()ln().f x x a ax =-+(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)若(,1),a ∈-∞-函数'()()g x a f x =的图象上存在12,P P 两点,其横坐标满足1216x x -<<<,且()g x 的图象在此两点处的切线互相垂直,求a 的取值范围.21.已知在函数321253y x x x =--+的曲线上存在唯一点P 00(,)x y ,过点P 作曲线的切线l 与曲线有且只有一个公共点P,则切线l 的斜率k =______________.22.已知函数2(),.xf x e ax ex a R =+-∈(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求函数()f x 的单调区间;(Ⅱ)试确定a 的取值范围,使得曲线()y f x =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P .题型三:导数与函数的零点及零点关系问题23.已知函数3()sin (),[0]22f x ax x a R π=-∈且在,上的最大值.π-3为2(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()f x 在(0,)π内的零点个数,并加以证明.24.已知函数()xf x x ae=-()a R Î有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围;(Ⅱ)证明21x x 随着a 的减小而增大;(Ⅲ)证明12x x +随着a 的减小而增大.25.已知函数()2ln ()2a f x x x x x a a R =--+Î,在其定义域内有两个不同的极值点.(Ⅰ)求a 的取值范围;(Ⅱ)记两个极值点为12,x x ,且12x x <,已知0λ>,若不等式112e x x ll+<×恒成立,求λ的取值范围.26.已知函数()(0)axf x x e a =->.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 有两个零点12,x x ,且12x x <,试证明12x ae x <.27.已知函数()f x =1x x e-(x ∈R)(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)已知函数()y g x =对任意x 满足()(4)g x f x =-,证明:当x >2时,()f x >()g x ;(Ⅲ)如果1x ≠2x ,且1()f x =2()f x ,证明:12x x +>4.28.已知函数2)1(2)(-+-=x a e x x f x)(有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是的两个零点,证明:x 1+x 2<2.29.已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=-+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;32.已知()()ln ().f x x x mx m R =-∈(Ⅰ)当1m =时,()f x 的图象在()1,1-处的切线l 恰与函数(01)xy a a a =>≠且的图象相切,求实数a 的值.(Ⅱ)若函数21()ln 212F x x x mx =+-+的两个极值点为1212,,x x x x <且,求证:21()1()f x f x <-<.33.设函数'()ln(1),()(),0,f x x g x xf x x =+=≥其中'()f x 是()f x 的导函数.(Ⅰ)令11()(),()(()),,n n g x g x g x g g x n N ++==∈求()n g x 的表达式;(Ⅱ)若()()f x ag x ≥恒成立,求实数a 的取值范围;(Ⅲ)设n N +∈,比较(1)(2)()g g g n ++⋅⋅⋅+与()n f n -的大小,并加以证明.34.已知函数f(x)=e x-kx,x∈R.(Ⅰ)若k=e ,试确定函数f(x)的单调区间;(Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k 的取值范围;(Ⅲ)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>()122nn e++(n∈N *).《难点突破》(答案)压轴题----函数与导数常考题型二、常考题型:题型一:恒成立求参数的最值或取值范围问题2.解:(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+,由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
导数压轴题全解
导数压轴题全解一、导数的定义导数是描述函数变化率的概念,它表示函数在某一点处的变化速率。
具体地说,对于函数f(x),如果它在x=a处的导数存在,那么它的导数就是:f'(a) = lim (x→a) [f(x) - f(a)] / (x - a)其中,lim表示极限,x→a表示x趋近于a时的极限,f(x) - f(a)表示函数在x 处和a处的差值,x - a表示自变量的变化量。
二、导数的计算1. 常数函数的导数对于常数函数f(x) = c,它在任何一点处的导数都是0,即f'(x) = 0。
2. 幂函数的导数对于幂函数f(x) = x^n,它在任何一点处的导数都是f'(x) = nx^(n-1)。
3. 指数函数的导数对于指数函数f(x) = a^x,它在任何一点处的导数都是f'(x) = a^x * ln(a)。
4. 对数函数的导数对于对数函数f(x) = log_a(x),它在任何一点处的导数都是f'(x) = 1 / (x * ln(a))。
5. 三角函数的导数对于正弦函数f(x) = sin(x),它在任何一点处的导数都是f'(x) = cos(x)。
对于余弦函数f(x) = cos(x),它在任何一点处的导数都是f'(x) = -sin(x)。
对于正切函数f(x) = tan(x),它在任何一点处的导数都是f'(x) = sec^2(x)。
6. 反三角函数的导数对于反正弦函数f(x) = arcsin(x),它在任何一点处的导数都是f'(x) = 1 / sqrt(1-x^2)。
对于反余弦函数f(x) = arccos(x),它在任何一点处的导数都是f'(x) = -1 / sqrt(1-x^2)。
对于反正切函数f(x) = arctan(x),它在任何一点处的导数都是f'(x) = 1 / (1+x^2)。
2020高考数学-导数压轴题型归类总结(解析版)
导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .所以当33=x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。
导数压轴题十种构造方法大全以及解题方法导引
导数压轴题十种构造方法大全以及解题方法导引方法一:等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例1已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x )=e ax -1-ax ,其中常数e =2.71828.(1)求f (x )的最小值;(2)当a ≥1时,求证:对任意x >0,都有xf (x )≥2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x )≥2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x +-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x )≥2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
导数压轴大题归类 (解析版)
导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。
【教师备课必备】导数题的解题技巧doc高中数学
【教师备课必备】导数题的解题技巧doc 高中数学【命题趋向】导数命题趋势:导数应用:导数-函数单调性-函数极值-函数最值-导数的实际应用. 【考点透视】1.了解导数概念的某些实际背景〔如瞬时速度、加速度、光滑曲线切线的斜率等〕;把握函数在一点处的导数的定义和导数的几何意义;明白得导函数的概念.2.熟记差不多导数公式;把握两个函数和、差、积、商的求导法那么.了解复合函数的求导法那么,会求某些简单函数的导数.3.明白得可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件〔导数在极值点两侧异号〕;会求一些实际咨询题〔一样指单峰函数〕的最大值和最小值. 【例题解析】考点1 导数的概念对概念的要求:了解导数概念的实际背景,把握导数在一点处的定义和导数的几何意义,明白得导函数的概念.例1.〔2006年辽宁卷〕与方程221(0)x x y e e x =-+≥的曲线关于直线y x =对称的曲线的方程为A.ln(1)y x =+B.ln(1)y x =-C. ln(1)y x =-+D. ln(1)y x =--[考查目的]此题考查了方程和函数的关系以及反函数的求解.同时还考查了转化能力 [解答过程]2221(0)(1)x x x y e e x e y =-+≥⇒-=,0,1x x e ≥∴≥, 即:1ln(1)x e y x y =+⇒=+,因此1()ln(1)f x x -=+.应选A.例2. ( 2006年湖南卷〕设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,假设M P,那么实数a 的取值范畴是 ( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)[考查目的]此题要紧考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1.1x a x a a x x -<∴<<<<-当a>1时当a<1时()()()//2211,0.11111.x x a x a x a a y y x x x x a ------⎛⎫=∴===> ⎪--⎝⎭--∴> 综上可得M P 时, 1.a ∴> 考点2 曲线的切线〔1〕关于曲线在某一点的切线求曲线y=f(x)在某一点P 〔x,y 〕的切线,即求出函数y=f(x)在P 点的导数确实是曲线在该点的切线的斜率.〔2〕关于两曲线的公切线假设一直线同时与两曲线相切,那么称该直线为两曲线的公切线. 典型例题例3.〔2004年重庆卷〕曲线y =31x 3+34,那么过点P 〔2,4〕的切线方程是_____________.思路启发:求导来求得切线斜率.解答过程:y ′=x 2,当x =2时,y ′=4.∴切线的斜率为4. ∴切线的方程为y -4=4〔x -2〕,即y =4x -4. 答案:4x -y -4=0.例4.〔2006年安徽卷〕假设曲线4y x =的一条切线l 与直线480x y +-=垂直,那么l 的方程为〔 〕A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=[考查目的]此题要紧考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,因此4y x =在(1,1)处导数为4,此点的切线为430x y --=. 应选A.例5. ( 2006年重庆卷)过坐标原点且与x 2+y 2 -4x +2y +25=0相切的直线的方程为 ( )A.y =-3x 或y =31x B. y =-3x 或y =-31x C.y =-3x 或y =-31x D. y =3x 或y =31x[考查目的]此题要紧考查函数的导数和圆的方程、直线方程等基础知识的应用能力. [解答过程]解法1:设切线的方程为,0.y kx kx y =∴-= 又()()()22521,2,1.2x y -++=∴-圆心为213830., 3.3k k k k =+-=∴==- ,3.3y x y x ∴==-或应选A.解法2:由解法1知切点坐标为1331(,),,,2222⎛⎫- ⎪⎝⎭由 ()()//22////113231(,)(,)22225(2)1,22(2)210,2.113,.313,.3x xx x x x x y x y y x y y k y k y y x y x -⎛⎫⎡⎤-++= ⎪⎣⎦⎝⎭∴-++=-∴=-+∴==-==∴=-=应选A.例6.两抛物线a x y C x x y C +-=+=2221:,2:, a 取何值时1C ,2C 有且只有一条公切线,求出现在公切线的方程.思路启发:先对a x y C x x y C +-=+=2221:,2:求导数.解答过程:函数x x y 22+=的导数为22'+=x y ,曲线1C 在点P(12112,x x x +)处的切线方程为))(2(2)2(11121x x x x x y -+=+-,即 211)1(2x x x y -+= ①曲线1C 在点Q ),(222a x x +-的切线方程是)(2)(222x x x a x y --=+--即a x x x y ++-=2222 ②假设直线l 是过点P 点和Q 点的公切线,那么①式和②式差不多上l 的方程,故得1,1222121+=--=+x x x x ,消去2x 得方程,0122121=+++a x x假设△=0)1(244=+⨯-a ,即21-=a 时,解得211-=x ,现在点P 、Q 重合.∴当时21-=a ,1C 和2C 有且只有一条公切线,由①式得公切线方程为14y x =- .考点3 导数的应用中学时期所涉及的初等函数在其定义域内差不多上可导函数,导数是研究函数性质的重要而有力的工具,专门是关于函数的单调性,以〝导数〞为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情形等咨询题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下咨询题:1.. 求函数的解析式;2. 求函数的值域;3.解决单调性咨询题;4.求函数的极值〔最值〕;5.构造函数证明不等式. 典型例题例7.〔2006年天津卷〕函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如下图,那么函数)(x f 在开区间),(b a 内有极小值点〔 〕A .1个B .2个C .3个D . 4个[考查目的]此题要紧考查函数的导数和函数图象性质等基础知识的应用能力. [解答过程]由图象可见,在区间(,0)a 内的图象上有一个极小值点.应选A.例8. 设y f x =()为三次函数,且图象关于原点对称,当x =12时,f x ()的极小值为-1,求出函数f x ()的解析式.思路启发:先设f x ax bx cx d a ()()=+++≠320,再利用图象关于原点对称确定系数. 解答过程:设f x ax bx cx d a ()()=+++≠320,因为其图象关于原点对称,即f x ()-= -f x (),得 ax bx cx d ax bx cx d b d f x ax cx 3232300+++=-+-∴===+,,,即()由f x ax c '()=+32, 依题意,f a c '()12340=+=,f a c()121821=+=-, 解之,得a c ==-43,.故所求函数的解析式为f x x x ()=-433.例9.函数y x x =+-+243的值域是_____________.思路启发:求函数的值域,是中学数学中的难点,一样能够通过图象观看或利用不等式性质求解,也能够利用函数的单调性求出最大、最小值。
导数及其应用(压轴题) Word版含解析
2.4导数及其应用(压轴题)命题角度1利用导数研究函数的单调性高考真题体验·对方向1.(2016北京·18)设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.2.(2016四川·21)设函数f(x)=ax2-a-ln x,其中a∈R.(1)讨论f(x)的单调性;(2)确定a的所有可能取值,使得f(x)>-e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).新题演练提能·刷高分1.(2018北京海淀模拟)已知函数f(x)=x3+x2+ax+1.(1)若曲线y=f(x)在点(0,1)处切线的斜率为-3,求函数f(x)的单调区间;(2)若函数f(x)在区间[-2,a]上单调递增,求a的取值范围.2.(2018江西师大附中模拟)已知函数f(x)=(2-m)ln x++2mx.(1)当f'(1)=0时,求实数m的值及曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.3.(2018山东烟台期末)已知函数f(x)=ln x+-x+1-a(a∈R).(1)求函数f(x)的单调区间;(2)若存在x>1,使f(x)+x<成立,求整数a的最小值.4.(2018重庆二诊)已知函数f(x)=-1e x+(x>0,a∈R).(1)若f(x)在(0,+∞)上单调递减,求a的取值范围;(2)当a∈(-3,-e)时,判断关于x的方程f(x)=2的解的个数.命题角度2函数的单调性与极值、最值的综合应用高考真题体验·对方向1.(2018全国Ⅰ·21)已知函数f(x)=-x+a ln x.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a-2.2.(2017北京·19)已知函数f(x)=e x cos x-x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间上的最大值和最小值.3.(2017全国Ⅱ·21)已知函数f(x)=ax2-ax-x ln x,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.4.(2017山东·20)已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e≈2.718 28…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程.(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.5.(2016全国Ⅱ·21)(1)讨论函数f(x)=e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(2)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.新题演练提能·刷高分1.(2018湖北重点高中协作体联考)已知函数f(x)=.(1)求函数f(x)的极值点;(2)设g(x)=xf(x)-ax2+(a>0),若g(x)的最大值大于-1,求a的取值范围.2.(2018河南中原名校质量考评)已知函数f(x)=e x-x2+ax.(1)当a>-1时,试判断函数f(x)的单调性;(2)若a<1-e,求证:函数f(x)在[1,+∞)上的最小值小于.3.(2018安徽合肥第二次质检)已知函数f(x)=(x-1)e x-ax2(e是自然对数的底数).(1)判断函数f(x)极值点的个数,并说明理由;(2)若∀x∈R,f(x)+e x≥x3+x,求a的取值范围.4.(2018山东青岛一模)已知函数f(x)=a e2x-a e x-x e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立.(1)求实数a的值;(2)证明:f(x)存在唯一极大值点x0,且≤f(x0)<.命题角度3利用导数研究函数的零点或方程的根高考真题体验·对方向1.(2018全国Ⅱ·21)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.2.(2017全国Ⅱ·21)已知函数f(x)=a e2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.3.(2015全国Ⅰ·21)已知函数f(x)=x3+ax+,g(x)=-ln x.(1)当a为何值时,x轴为曲线y=f(x)的切线;(2)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.新题演练提能·刷高分1.(2018湖北黄冈等八市联考)已知函数f(x)=e x,g(x)=.(1)设函数F(x)=f(x)+g(x),试讨论函数F(x)零点的个数;(2)若a=-2,x>0,求证:f(x)·g(x)>.2.(2018广东深圳第二次调研)设函数f(x)=e x-1-a ln x,其中e为自然对数的底数.(1)若a=1,求f(x)的单调区间;(2)若0≤a≤e,求证:f(x)无零点.3.(2018山东济南一模)已知函数f(x)=a ln x-x2+(2a-1)x(a∈R)有两个不同的零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2>2a.命题角度4导数与不等式高考真题体验·对方向1.(2018全国Ⅲ·21)已知函数f(x)=(2+x+ax2)ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.2.(2016全国Ⅲ·21)设函数f(x)=αcos 2x+(α-1)·(cos x+1),其中α>0,记|f(x)|的最大值为A.(1)求f'(x);(2)求A;(3)证明:|f'(x)|≤2A.新题演练提能·刷高分1.(2018河北唐山二模)设f(x)=,g(x)=a x+x a.(1)证明:f(x)在(0,1)上单调递减;(2)若0<a<x<1,证明:g(x)>1.2.(2018河南郑州第二次质量检测)已知函数f(x)=e x-x2.(1)求曲线f(x)在x=1处的切线方程;(2)求证:当x>0时,≥ln x+1.3.(2018山西太原二模)已知函数f(x)=m ln x-e-x(m≠0).(1)若函数f(x)是单调函数,求实数m的取值范围;(2)证明:对于任意的正实数a,b,当a>b时,都有e1-a-e1-b>1-.4.(2018河北石家庄一模)已知函数f(x)=(x+b)(e x-a)(b>0)在(-1,f(-1))处的切线方程为(e-1)x+e y+e-1=0.(1)求a,b;(2)若方程f(x)=m有两个实数根x1,x2,且x1<x2,证明:x2-x1≤1+.命题角度5恒成立与存在性问题高考真题体验·对方向(2017全国Ⅲ·21)已知函数f(x)=x-1-a ln x.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,1+1+…1+<m,求m的最小值.新题演练提能·刷高分1.(2018江西南昌一模)已知函数f(x)=ln(ax)+bx在点(1,f(1))处的切线方程是y=0.(1)求函数f(x)的极值;(2)当≥f(x)+x(m<0)恒成立时,求实数m的取值范围(e为自然对数的底数).2.(2018河北唐山一模)已知函数f(x)=e x-1,g(x)=ln x+a.(1)设F(x)=xf(x),求F(x)的最小值;(2)证明:当a<1时,总存在两条直线与曲线y=f(x)与y=g(x)都相切.3.(2018河北衡水中学模拟)已知函数f(x)=.(1)确定函数f(x)在定义域上的单调性;若f(x)≤k e x在(1,+∞)上恒成立,求实数k的取值范围.4.(2018山东潍坊一模)函数f(x)=e x sin x,g(x)=(x+1)cos x-e x.(1)求f(x)的单调区间;(2)对∀x1∈0,,∃x2∈0,,使f(x1)+g(x2)≥m成立,求实数m的取值范围;(3)设h(x)=·f(x)-n·sin 2x在0,上有唯一零点,求正实数n的取值范围.。
导数常见题型与解题方法总结(教师版)
导数题型解题方法总结1、分离变量 -----用分离变量时要特别注意是否需分类讨论( >0,=0,<0)2、变更主元 ----- 已知谁的范围就把谁作为主元3、根分布4、判别式法 -----结合图像分析5、二次函数区间最值求法 ----- (1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在一、基础题型:函数的单调区间、极值、最值;不等式恒成立此类问题提倡按以下三个步骤进行解决:第一步:令 f ' (x) = 0 得到两个根; 第二步:画两图或列表;第三步:由图表可知;第三种:变更主元(即关于某字母的一次函数) ----- (已知谁的范围就把谁作为主元) 。
例 1:设函数 y = f(x) 在区间 D 上的导数为 f,(x), f,(x) 在区间 D 上的导数为 g(x) ,若在区间 D 上, g(x) < 0 恒 成 立, 则 称 函 数 y = f(x) 在 区 间 D 上 为 “ 凸 函 数 ”, 已 知 实 数 m 是 常 数,x 4 mx 3 3x 212 6 2(1)若 y = f(x) 在区间[0,3] 上为“凸函数”,求 m 的取值范围;(2)若对满足 m 共 2 的任何一个实数m , 函数 f(x) 在区间( a, b ) 上都为“凸函数”, 求b 一 a 的最大.解:由函数 f(x) =x 412 一 mx 36一 3x 22 得 f,(x) = x 33 一 mx 22一 3x :g(x) = x 2 一 mx 一 3(1) y = f(x) 在区间[0,3] 上为“凸函数”,则 :g(x) = x 2 一 mx 一 3 < 0 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于g (x)< 0值 f(x) = 一 一max(g(0) < 0 (_3 < 0〈lg(3) < 0 亭〈l 9 _ 3m _ 3 <0 亭 m > 2解法二: 分离变量法:∵ 当 x = 0 时, :g(x) = x 2 _ mx _ 3 = _3 < 0 恒成立, 当 0 < x 三 3 时, g(x) = x 2 _ mx _ 3 < 0 恒成立等价于 m > x 2 _ 3 = x _ 3的最大值( 0 < x 三 3 )恒成立,x x而 h(x) = x _x( 0 < x 三 3 )是增函数,则 h max (x) = h(3) = 2:m > 2(2)∵当m 三 2 时 f(x) 在区间( a, b ) 上都为“凸函数”则等价于当 m 三 2 时 g(x) = x 2 _ mx _ 3 < 0 恒成立 变更主元法再等价于 F(m) = mx _ x 2 + 3 > 0 在 m 三 2 恒成立 (视为关于 m 的一次函数最值问题)亭〈 亭〈亭 _ 1< x < 1:b _ a = 2-2 2例 2:设函数 f(x) = _ 1x 3 + 2ax 2 _ 3a 2 x + b(0 < a < 1, b =R)3(Ⅰ)求函数 f (x)的单调区间和极值;(Ⅱ)若对任意的 x = [a + 1, a + 2], 不等式f,(x)三 a 恒成立,求 a 的取值范围. 解: (Ⅰ) f,(x) = _x 2 + 4ax _ 3a 2 = _ (x _ 3a )(x _ a )0 < a < 13aaf,(x)3a3a令 f ,(x) > 0, 得 f(x) 的单调递增区间为(a,3a)令 f ,(x) < 0, 得 f(x) 的单调递减区间为(- w , a)和(3a , + w )∴当x=a 时, f(x) 极小值= _ 4a 3+ b; 当 x=3a 时, f(x) 极大值=b.(Ⅱ)由| f ,(x) |≤a,得:对任意的 x = [a + 1, a + 2], _a 共 x 2 _ 4ax + 3a 2 共 a 恒成立①则 等 价 于 g(x) 这 个 二 次 函 数〈(g max (x) 共 ag(x) = x 2 _ 4ax +3a 2 的 对 称 轴 x = 2a0 < a < 1, a +1 > a + a = 2a (放缩法)即定义域在对称轴的右边, g(x) 这个二次函数的最值问题:单调增函数的最值问题。
高中数学压轴题导数部分高考预测试卷3
高中数学压轴题导数部分高考预测试卷3教师详解版一、选择题(共8小题;共40分)1. 下列结论中错误的是 A. log2xʹ=1x ln2B. 12xʹ=−12xln2C. ln xʹ=x−1D. log13x ʹ=log3ex2. 曲线y=x3+x−2的一条切线平行于直线y=4x−1,则切点P0的坐标为 A. 0,−2或1,0B. 1,0或−1,−4C. −1,−4或0,−2D. 1,0或2,83. 已知函数f x=3x+4x−8的零点在区间k,k+1k∈Z上,则函数g x=x−k e x的极大值为A. −3B. 0C. −1D. 14. 函数y=tan x的导数是 A. cos2x−cos xB. 1cos2x C. cos2x+cos x D. −1cos2x5. 函数f x=x2⋅e x+1,x∈−2,1的最大值为 A. 4e−1B. 1C. e2D. 3e26. 定义在R上的奇函数y=f x满足f3=0,且不等式f x>−xfʹx在0,+∞上恒成立,则函数g x=xf x+lg∣x+1∣的零点的个数为 A. 4B. 3C. 2D. 17. 函数y=sin4x4+cos4x4的导数是 A. −14sin x B. −14cos x C. −12sin x D. −12cos x8. 已知函数f x=x ln1+x+x2,x≥0−x ln1−x+x2,x<0,若f−a+f a≤2f1,则实数a的取值范围是A. −∞,−1∪1,+∞B. −1,0C. 0,1D. −1,1二、填空题(共6小题;共30分)9. 若对任意x>0,xx+3x+1≤a恒成立,则a的取值范围是.10. 已知函数f x的定义域为−1,5,部分对应值如下表,f x的导函数y=fʹx的图象如下图所示.x−10245f x12 1.521有下列关于函数f x的命题:①函数f x的值域为1,2;②函数f x在0,2上是减函数;③如果当x∈−1,t时,f x的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f x−a最多有4个零点.其中正确命题的序号是 .11. f x=x3−3x2+2在区间上−1,1上的最大值是 .12. 已知f x=13x3+12b−1x2+cx(b,c为常数),若f x在x=1和x=3处取得极值,则b=,c=.13. 函数f x=log22−x的导数为.14. 已知函数f x是定义在R上的奇函数,其导函数为fʹx,且x<0时,2f x+xfʹx<0恒成立,则f1,2014f 2014,2015f 的大小关系为.三、解答题(共6小题;共80分)15. 设a≥0,f x=x−1−ln2x+2a ln x x>0.(1)令F x=xfʹx,讨论F x在区间0,+∞内的单调性并求极值;(2)求证:当x>1时,恒有x>ln2x−2a ln x+1.16. 已知函数f x=x3−32ax2+b a,b为实数,且a>1在区间−1,1上的最大值为1,最小值为−2.(1)求函数f x的解析式;(2)若函数g x=f x−mx在区间−2,2上为减函数,求实数m的取值范围.17. 已知f x=13x3−4x+4,(1)求函数f x的单调增区间;(2)求函数f x在x∈0,4的最小值.18. 设函数f x=x2−x ln x+2,(1)求f x的单调区间;(2)若存在区间a,b⊆12,+∞ ,使f x在a,b上的值域是k a+2,k b+2,求k的取值范围.19. 已知函数f x=ln x−a x−1x+1.(1)若函数f x在0,+∞上为单调增函数,求a的取值范围;(2)若斜率为k的直线与y=ln x的图象交于A,B两点,点M x0,y0为线段AB的中点,求证:kx0>1.20. 已知函数f x=x−1x−ln x.(1)求f x的单调区间;(2)求函数f x在1e,e上的最大值和最小值(其中e是自然对数的底数);(3)求证:ln e 2x ≤1+xx.答案第一部分1. D2. B3. C4. B5. C【解析】fʹx=x e x+1x+2,令fʹx=0得x=−2或x=0;当fʹx>0时,x<−2或x>0;当fʹx<0时,−2<x<0;当x=−2时,f−2=4e;当x=0时,f0=0;当x=1时,f1=e2,所以函数的最大值为e2.6. B7. A8. D 【解析】函数f x=x ln1+x+x2,x≥0−x ln1−x+x2,x<0,将x换为−x,函数值不变,即有f x图象关于y轴对称,即f x为偶函数,有f−x=f x,当x≥0时,f x=x ln1+x+x2的导数为fʹx=ln1+x+x1+x+2x≥0,则f x在0,+∞递增,f−a+f a≤2f1,即为2f a≤2f1,可得f∣a∣≤f1,可得∣a∣≤1,解得−1≤a≤1.第二部分9. 15,+∞【解析】若对任意x>0,xx2+3x+1≤a恒成立,只需求得y=xx+3x+1的最大值即可.因为x>0,所以y=xx2+3x+1=1x+1x+3≤2 x⋅1x+3=15当且仅当x=1时取等号,所以a的取值范围是15,+∞ .10. ①②④【解析】由导函数图象可知,当−1<x<0或2<x<4时,fʹx>0,函数单调递增,当0<x<2或4<x<5时,fʹx<0,函数单调递减,②正确.当x=0和x=4,时,函数取得极大值,为f0=2,f4=2,当x=2时,函数取得极小值,为f2=1.5,又f−1=f5=1,所以函数的最大值为2,最小值为1,值域为1,2,①正确. 因为当x=0和x=4时,函数取得极大值,为f0=2,f4=2,所以要使当x∈−1,t时,函数f x的最大值是2,由前面分析得,t的最大值为5,所以③不正确. 因为极小值为f2=1.5,极大值为f0=f4=2,所以当1<a<2时,y=f x−a最多有4个零点,所以④正确.所以真命题的序号为①②④.11. 212. −3,3【解析】fʹx=x2+b−1x+c,再由f x在x=1处和x=3处取得极值,可得,1和3是方程x2+b−1x+c=0的两个根,所以1+3=−b+1,1×3=c,解得b=−3,c=3.13. −12−x ln214. f1<2014f <2015f第三部分15. (1)因为fʹx=1−0−2ln xx +2ax,所以F x=xfʹx=x−2ln x+2a x>0,得Fʹx=1−2x =x−2xx>0,令Fʹx=0,得x=2.当x∈0,2时,Fʹx<0,即F x在区间0,2为单调递减,当x∈2,+∞时,Fʹx>0,即F x在区间2,+∞为单调递增,因此在x=2处取得极小值F2=2−2ln2+2a.(2)由a≥0知,F x的极小值F2=2−2ln2+2a>0,于是对一切x∈0,+∞,恒有F x=xfʹx>0.从而当x>0时,恒有fʹx>0,f x在0,+∞内单调增加,又f1=1−1−ln21+2a ln1=0,所以当x>1时,f x>f1=0,故当x>1时,恒有x>ln2x−2a ln x+1.16. (1)因为f x=x3−32ax2+b,所以fʹx=3x2−3ax.令fʹx=0,得x1=0,x2=a.因为a>1,所以当x∈−1,0时,fʹx≥0,f x为增函数,当x∈0,1时,fʹx≤0,f x为减函数,所以f x max=f0=b=1.因为f−1=−32a,f1=2−32a,所以f−1<f1,所以f x min=f−1=−32a=−2,a=43.所以f x=x3−2x2+1.(2)由(1)知g x=x3−2x2−mx+1,则gʹx=3x2−4x−m.由g x在−2,2上为减函数,知gʹx≤0在−2,2上恒成立.所以gʹ−2≤0,gʹ2≤0,即20−m≤0,4−m≤0,所以m≥20.所以实数m的取值范围是20,+∞.17. (1)因为f x=13x3−4x+4,所以fʹx=x2−4,由fʹx=x2−4≥0,得x≥2或x≤−2,所以函数f x的单调增区间为−∞,−2,2,+∞.(2)由fʹx=x2−4=0,得x1=−2,x2=2,因为x∈0,4,所以f x在0,2上单调递减,在2,4上单调递增,所以函数f x在x∈0,4的最小值为f2=−43.18. (1)令g x=fʹx=2x−ln x−1x>0,则gʹx=2−1x =2x−1xx>0.令gʹx=0,得x=12,当0<x<12时,gʹx<0,g x为减函数;当x≥12时,gʹx≥0,g x为增函数;所以g x在0,12上单调递减,在12,+∞ 上单调递增,则g x的最小值为g12=ln2>0,所以fʹx=g x≥g12>0,所以f x的单调递增区间是0,+∞,无单调减区间.(2)由(Ⅰ)得f x在区间a,b⊆12,+∞ 上递增,因为f x在a,b上的值域是k a+2,k b+2,所以f a=k a+2,f b=k b+2,12≤a<b,则f x=k x+2在12,+∞ 上至少有两个不同的正根,k=f xx+2,令F x=f xx+2=x2−x ln x+2x+2x≥12,求导得,Fʹx=x 2+3x−2ln x−4x+22x≥12,令G x=x2+3x−2ln x−4 x≥12,则Gʹx=2x+3−2x =2x−1x+2x≥0,所以G x在12,+∞ 上递增,G12<0,G1=0,当x∈12,1时,G x<0,所以Fʹx<0,当x∈1,+∞时,G x>0,所以Fʹx>0,所以F x在12,1上递减,在1,+∞上递增,所以F1<k≤F12,所以k∈1,9+2ln210.19. (1)f x=ln x−a x−1x+1x>0,定义域为0,+∞,fʹx=1x −a x+1−a x−1x+1=x2+2−2a x+1x x+1.因为函数f x在0,+∞上为单调增函数,所以fʹx≥0在0,+∞上恒成立,即x2+2−2a x+1≥0在0,+∞上恒成立,即a ≤12 x +1x+1在 0,+∞ 上恒成立,令g x =12 x +1x +1,x ∈ 0,+∞ ,则a ≤g x min , gʹ x =12 1−1x= x +1 x−12x ,令gʹ x >0,得x >1, 令gʹ x <0,得0<x <1,所以g x 在 0,1 上单调递减,在 1,+∞ 上单调递增, 所以g x min =g 1 =2, 所以a ≤2.(2)设点A m ,ln m ,B n ,ln n ,不妨设m >n >0,则mn >1. 要证kx 0>1,即m +n 2⋅ln m−ln n m−n>1,即证m−n m +n<ln m−ln n2.只需证m n −1m +1<lnmn2, 即证lnm n>2 m n −1m +1. 只需证ln m n−2 m n −1m +1>0. 设 x =ln x −2 x−1 x +1.由(Ⅰ)令a =2知 x 在 1,+∞ 上是单调增函数, 又m n>1,所以 mn > 1 =0. 即lnm n−2 m n −1m n+1>0, 即m−n m +n <ln m−ln n2.所以不等式kx 0>1成立. 20. (1)f x =x−1x −ln x =1−1x −ln x ,f x 的定义域为 0,+∞ .因为fʹ x =1x2−1x =1−x x 2,所以fʹ x >0⇒0<x <1,fʹ x <0⇒x >1,所以f x =1−1x−ln x 在 0,1 上单调递增,在 1,+∞ 上单调递减.(2)由(1)得f x 在 1e ,1 上单调递增,在 1,e 上单调递减, 所以f x 在 1e,e 上的最大值为f 1 =1−11−ln1=0.又f 1e =1−e −ln 1e =2−e ,f e =1−1e −lne =−1e ,且f 1e <f e . 所以f x 在 1e ,e 上的最大值为f 1e =2−e . 所以f x 在 1e ,e 上的最大值为0,最小值为2−e .(3)要证ln e2x ≤1+xx,即证2−ln x≤1+1x,即证1−1x−ln x≤0.由(1)可知,f x=1−1x−ln x在0,1上单调递增,在1,+∞上单调递减,所以f x在0,+∞上的最大值为f1=1−1−ln1=0,即f x≤0,所以1−1x−ln x≤0恒成立.原不等式得证.。
专题11 导数中的极值偏移问题(全题型压轴题)(教师版)-2024年高考数学压轴专题复习
当1
x 1
x 2
时,不等式
x1
x2
2 显然成立;
当 0 x1 1, x2 2 时,不等式 x1 x2 2 显然成立;
当 0 x1 1, 0 x2 2 时,由(1)知 f (x) 在( 0, 1) 内单调递减,因为存在 x1 x2 ,使得 f x1 f x2 ,所以
1 x2 2 , 要证 x1 x2 2 ,只要证 x1 2 x2 , 因为1 x2 2 ,所以 0 2 x2 1,又 f (x) 在( 0, 1) 内单调递减,
所以 f x 有一个零点,故 B 错误;
对于 C,因为 f x 在 0, 单调递增,所以 x 0 时, f x f 0 1 ,
所以 k 1,故 C 错误;
对于 D,因为 f x 在 , 2 单调递减, 2, 在单调递增,
且 f x 唯一零点为 1,当 x 时, f x 0 且 f x 0 ,
3.(2023
春·河南周口·高二校联考阶段练习)已知函数
f
x
x2 ax ex
,
aR
(1)若 a 2 ,求 f x 的单调区间;
(2)若
a
1,
x1,
x2
是方程
f
x
lnx 1 ex
的两个实数根,证明:
x1
x2
2
.
【答案】(1)单调递增区间为 2 2, 2 2 ,单调递减区间为 , 2 2 , 2 2,
不妨设 0 x1 1 x2 ,∵ 0 x1 1,∴ 2 x1 1,
设 G x g x g 2 x ,则 G x lnx x2 x 1 ln 2 x 2 x2 2 x 1 lnx ln 2 x 2x 2 ,
G
x
高考导数压轴题终极解答
⑶若对于任意的 a [1,2] ,不等式 f x ≤ m 在[1 ,1] 上恒成立,求 m 的取值范围.
2
20.(最值与图象特征应用)
设 a R ,函数 f (x) ex (ax2 a 1)(e 为自然对数的底数).判断 f (x) 的单调性; 2
⑴求 f (x) 在区间t,t 1 上的最大值 h(t);
⑵是否存在实数 m, 使得 y f (x) 的图像与 y g(x) 的图像有且只有三个不同的交点?若 存在,求出 m 的取值范围;若不存在,说明理由。
26.(交点个数与根的分布)已知函数 f (x) ln(2 3x) 3 x2. 2
f (x) 的单调区间;
(3)在(2)的条件下,设 a 0 ,函数 g(x) (a2 14)ex4 .若存在 1, 2 [0,4] 使得 | f (1 ) f (2 ) | 1 成立, a 的取值范围.
13.设函数 f (x) ln x ax 1 a 1. x
(Ⅰ)当 a 1时,过原点的直线与函数 f (x) 的图象相切于点 P,求点 P 的坐标;
(Ⅲ)若 f (x) 在[0, ) 上的最大值是 0 ,求 a 的取值范围.
5.已知函数 f (x) =ln(1+ x )- x + x x2 ( k ≥0). 2
(Ⅰ)当 k =2时,求曲线 y = f (x) 在点(1, f (1))处的切线方程; (Ⅱ)求 f (x) 的单调区间.
6.(单调性)已知函数 f (x) ln x ax 1 a 1(a R) 当 a 1时, x
3
3.已知函数 f (x) 1 x2 2ax, g(x) 3a2 ln x b. 2
高中数学导数压轴30题
高中数学导数压轴30题(解答题)解答题(共30小题),且XiVx2,1.设函数f (x) =x2+aln (14-x)有两个极值点X]、x2(I )求a的取值范围,并讨论f(X)的单调性;(II)证明:f(X2)>1二24考点:利用导数研究函数的极值;利用导数研究函数的单调性;不等式的证明。
专题:计算题;证明题;压轴题。
分析:(1)先确定函数的定义域然后求导数r (x),令g (x) =2x2+2x+a,由题意知X]、X2是方程g (x) =0的两个均大于-1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式f' (x) >。
和?(X)<0,求出单调区间;(2) X2是方程g (x) =0的根,将a用X2表示,消去a得到关于X2的函数,研究函数的单调性求出函数的最大值,即可证得不等式。
2解答:解:(I)F (x)二2肝胃二2x +2x3缶>7 1+x 1+x令g (x) =2x2+2x+a,其对称轴为肝-工. 2由题意知X1、X2是方程g(X)=0的两个均大于-1的不相等的实根,其充耍条件为得 lg ( -1) =a>0 2(1)当 XC ( - 1, XI)时,f (x) >0,「. f (x)在(-1, X1)内为增函数;(2)当 XC (X1,X2)时,f (x) <0, f (x)在(X1,X2)内为减函数;(3)当 xe(X2,+°°)时,f (x) >0, /. f (x)在(X2,+°°)内为增函数;(II)由(I) g (0) =a>0, -l<X2<0,a=- (2X22+2X2)2f(X2)=X22+aln (1+X2)=X22 - (2X22+2X2)In (1+x?)设h (x) = x2 - (2X2+2X) In (1+x) (x> -,贝ijh' (x) =2x - 2 (2x+l) In (1+x) - 2x= - 2 (2x+l) In (1+x)(1)当xE (-L 0)时,h' (x) >0, /. h (x)在[-工,0)单调递增;2 2(2)当 xC (0, +8)时,h, (x) <0, h (x)在(0, +8)单调递减.「•当正0)时,h 3 >h (-A) 2二:1n2 乙乙"故f (叼)=h(X2)点评:本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于基础题。
导数真题压轴题解析及答案
导数真题压轴题解析及答案在高中数学学习中,导数是一个非常重要的概念,它不仅被广泛应用于数学领域,还与自然科学和工程技术密切相关。
因此,在备考高考数学时,导数相关的题目往往成为考生们最为关注和重视的一部分。
下面将针对一道导数题进行详细解析,并给出答案和思路。
假设已知函数f(x) 对全部实数 x 都可导,且满足当x ≤ 0 时f(x) = -x^2 + 3x + a,x > 0 时f(x) = x^2 - x + b,其中a,b 为常数。
题目1:已知曲线 y = f(x) 在点 (1, 2) 处的切线方程为 y - 2 = 7(x - 1),求常数 a,b 的值。
解析:首先我们来看函数 f(x) 的定义域分为两部分,x ≤ 0 和 x > 0,对于x ≤ 0 的情况,函数表达式为 f(x) = -x^2 + 3x + a,对其求导得到 f'(x) = -2x + 3。
同样对于 x > 0,函数表达式为f(x) = x^2 - x + b,对其求导得到 f'(x) = 2x - 1。
由题目给出的切线方程 y - 2 = 7(x - 1),我们可以将切线方程转化为导数 f'(1) 的值等于 7,即:f'(1) = 7-2 × 1 + 3 = 7-2 + 3 = 71 = 7由上述计算可知求得的 f'(1) = 7 不成立,说明原切线方程与函数 f(x) 在点 (1, 2) 的导数不符合。
因此,我们需要重新计算切线方程。
通过 f(x) 的定义可以得到:当x ≤ 0 时,f(1) = -1^2 + 3 × 1 + a = 2 - 1 + a = a + 1当 x > 0 时,f(1) = 1^2 - 1 + b = 1 - 1 + b = b所以,根据给定的切线方程 y - 2 = 7(x - 1),我们有:a + 1 = 7 × (1 - 1) = 0b = 7 × 1 - 2 = 7 - 2 = 5因此,常数 a 的值为 -1,常数 b 的值为 5。
导数系列:一类以自然指数对数为背景的导数压轴题解法教师版
自然指数和对数为背景的压轴题解法注:本文以目前数学成绩在一本线上下的学子的数学水准,进行展开讲解。
根据“遗传学规律”明年全国乙卷再次考到的可能性极大,打出来给学生将保准学生横扫此类压轴题!源于课本:1-1课本99页B组1题或课本2-2第32页B组1题的习题:利用函数的单调性,证明下列不等式,并通过函数图像直观验证:e x 1 x ;【探究拓展】探究1:证明不等式e x 1 x*变式1:设f (X) e x x a,其中a R,若对于任意x R, f (x) 0恒成立,则参数a 的取值范围是 a 1变式2:设f (x) e x ax 1,其中a R,若对于任意x R,f(x) 0恒成立,则参数a的取值范围是 a 1变式3:设f (x) ae x x 1,其中a R,若对于任意x R,f(x) 0恒成立,则参数a的取值范围是 a 1点评:太巧了:增之一分则太肥,减之一分则太瘦……探究2:不等式e x 1 x*有哪些等价变形并在坐标系中画图?变形1: e x 1 x变形2:x e1xx 11变形3:ln(1 x) x(x 1) 变形4: In x x 1(x 0) *变形5: In1xx 1(x 0)变形6: ln x 11(xx0)归一:我们只要通过画图并记住e x 1 x*, 1 nx x 1(x 0) *即可,考试出现了其它变形换元转化为这2个不等式即可。
探究3:观察:“插中”不等式(当然是我编的名字)变形4:In x x 1(x 0) *变形6: In x — 1(x 0)*x两式相加除以2,试比较:左边Inx还是右边—(x —)的大小并证明:2 x结论:“插中”不等式*:若0 x 1,则Inx —x -.;若x 1,则In x - x -;2 x 2 x请在坐标系中画出图像:这个图像很漂亮,容易记住。
点评:数学很美,插中不等式很明显是加强,更加精准了,在高考中经常考到,往后看…总结:e x 1 x*, In x x 1(x 0) * “插中”不等式*,以上三式都是将自然指数和对数放缩为我们更加熟悉的一次函数或者反比例函数进行放缩处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数系列:一类以自然指数对数为背景的导数压轴题解法教师版————————————————————————————————作者:————————————————————————————————日期:ﻩ一类以自然指数和对数为背景的压轴题解法注: 本文以目前数学成绩在一本线上下的学子的数学水准,进行展开讲解。
根据“遗传学规律”明年全国乙卷再次考到的可能性极大,打出来给学生将保准学生横扫此类压轴题!源于课本:1-1课本99页B 组1题或课本2-2第32页B 组1题的习题:利用函数的单调性,证明下列不等式,并通过函数图像直观验证:x e x +≥1; 【探究拓展】探究1:证明不等式x e x +≥1*变式1:设a x e x f x --=)(,其中,R a ∈若对于任意R x ∈,0)(>x f 恒成立,则参数a 的取值范围是_________ 1<a变式2:设1)(--=ax e x f x ,其中R a ∈,若对于任意R x ∈,0)(≥x f 恒成立,则参数a 的取值范围是_________ 1=a变式3:设1)(--=x ae x f x ,其中R a ∈,若对于任意R x ∈,0)(≥x f 恒成立,则参数a 的取值范围是_________ 1=a点评:太巧了:增之一分则太肥,减之一分则太瘦...... 探究2:不等式x e x +≥1*有哪些等价变形并在坐标系中画图? 变形1:x e x -≥-1 变形2:()111x e x x -≤>-+ 变形3:)1()1ln(->≤+x x x 变形4:)0(1ln >-≤x x x *变形5:)0(11ln>+-≥x x x变形6:)0(11ln >+-≥x xx归一:我们只要通过画图并记住x e x +≥1*,)0(1ln >-≤x x x *即可,考试出现了其它变形换元转化为这2个不等式即可。
探究3:观察:“插中”不等式(当然是我编的名字) 变形4:)0(1ln >-≤x x x *变形6:)0(11ln >+-≥x xx *两式相加除以2,的大小并证明:还是右边试比较:左边)1(21ln xx x -结论:“插中”不等式*:若01x <≤,则11ln .2x x x ⎛⎫≥- ⎪⎝⎭ ;若1,x ≥则11ln ;2x x x ⎛⎫≤- ⎪⎝⎭请在坐标系中画出图像:这个图像很漂亮,容易记住。
点评:数学很美,插中不等式很明显是加强,更加精准了,在高考中经常考到,往后看... 总结:①x e x +≥1*,②)0(1ln >-≤x x x *③“插中”不等式*,以上三式都是将自然指数和对数放缩为我们更加熟悉的一次函数或者反比例函数进行放缩处理。
题型一:化归为指数型x e x +≥1放缩例1(2010年全国)设函数()21xf x e x ax =---。
(1)若0a =,求()f x 的单调区间;(2)若0x ≥时()0f x ≥,求a 的取值范围。
(提示:1x e x ≥+)解:(1)0a =时,()1xf x e x =--,'()1xf x e =-.当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加(2)'()12xf x e ax =--由(I )知1x e x ≥+,当且仅当0x =时等号成立.故'()2(12)f x x ax a x ≥-=-,从而当120a -≥,即12a ≤时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥.ﻩ由1(0)x e x x >+≠可得1(0)xe x x ->-≠.从而当12a >时, ﻩﻩ'()12(1)(1)(2)x xx x x f x e a ee e e a --<-+-=--,故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <. 综合得a 的取值范围为1(,]2-∞.练习1:(2012年全国)已知函数()()()121'102x f x f e f x x -=-+,(1)求()f x 的解析式及单调区间;(2)若()21,2f x x ax b ≥++求()1a b +的最大值。
(很简单,省略)练习2:(2013年全国)已知函数()()ln .xf x e x m =-+当2m ≤时,证明()0.f x >(很简单,省略)练习3:(2016年广一模)已知函数()()()3,ln 12x mf x ex g x x +=-=++。
1)若曲线()y f x =在点()()0,0f 处的切线斜率为1,求实数m 的值。
2)当1m ≥时,证明:()()3f xg x x>-。
(2016年广二模也有用到)练习4:已知函数()1(0,)x f x e ax a e =-->为自然对数的底数. ⑴求函数()f x 的最小值;⑶在⑵的条件下,证明:121()()()()(*)1nnn n n n en nnn n e -++⋅⋅⋅++<∈-N 其中. 解:(1)由题意0,()x a f x e a '>=-,由()0x f x e a '=-=得ln x a =. 当(,ln )x a ∈-∞时, ()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>. ∴()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. 即()f x 在ln x a =处取得极小值,且为最小值, 其最小值为ln (ln )ln 1ln 1.a f a e a a a a a =--=--(2)()0f x ≥对任意的x ∈R 恒成立,即在x ∈R 上,min ()0f x ≥.ﻩ由(1),设()ln 1.g a a a a =--,所以()0g a ≥. ﻩ由()1ln 1ln 0g a a a '=--=-=得1a =. ∴()g a 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减, ∴()g a 在1a =处取得极大值(1)0g =.因此()0g a ≥的解为1a =,∴1a =.(3)由(2)知,因为1a =,所以对任意实数x 均有1x e x --≥0,即1x x e +≤.令k x n =- (*,0,1,2,3,1)n k n ∈=-N …,,则01kn k e n- <-≤.∴(1)()k nn k n k e e n - --=≤.∴(1)(2)21121()()()()1n n n n n n n n e e e e nn n n -------+++++++++≤……1111111n e e e e e ----=<=---.练习5:已知函数()f x =axe x =-,其中a ≠0. (1)若对一切x ∈R,()f x ≥1恒成立,求a的取值集合.(2)在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB的斜率为K,问:是否存在x0∈(x 1,x 2),使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由. 【答案】(1)若0a <,则对一切0x >,()f x 1axe x =-<,这与题设矛盾,又0a ≠, 故0a >.而()1,axf x ae '=-令11()0,ln .f x x a a'==得 当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a >时,()0,()f x f x '>单调递增,故当11ln x a a=时,()f x 取最小值11111(ln )ln .f a a a a a=-于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立. 综上所述,a 的取值集合为{}1.(2)由题意知,21212121()() 1.ax ax f x f x e e k x x x x --==---令2121()(),ax ax axe e xf x k ae x x ϕ-'=-=--则121()12121()()1,ax a x x e x e a x x x x ϕ-⎡⎤=----⎣⎦- 212()21221()()1.ax a x x e x e a x x x x ϕ-⎡⎤=---⎣⎦- 令()1t F t e t =--,则()1tF t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增. 故当0t =,()(0)0,F t F >=即10.te t --> 从而21()21()10a x x ea x x ---->,12()12()10,a x x ea x x ---->又1210,ax e x x >-2210,ax e x x >-因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在012(,)x x x ∈使0()0,x ϕ=2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-.故当且仅当212211(ln ,)()ax ax e e x x a a x x -∈-时, 0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --.【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出()f x 取最小值11111(ln )ln .f a a a a a=-对一切x ∈R ,f(x) ≥1恒成立转化为min ()1f x ≥,从而得出a的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.练习4:(2012年山东)已知函数()ln xx kf x e+=,曲线()y f x =在点()()1,1f 处的切线与x轴平行。