折弯系数完整版
折弯系数完整版
折弯系数完整版折弯系数中性层:在绘制钣金展开时,板料中有一层既不伸长又不缩短的一层称为中性层,随板厚的不同中性层的位置是不同的,折弯系数是用来表示这一层位置的参数系数:钢板的产地不同及不同的折弯机,系数有差异,要根据实际情况确定系数先说明一下:1.折弯系数的算法通常以90度折弯来计算的,具体数据取决于折弯机刀槽和所应用钣金材料2.折弯系数包括两个定义(折弯扣除ΔΚ、折弯系数ΔΤ)即两种算法,但无论用哪种算法最后展开值是一致的3.具体算法是:折弯扣除ΔΚ等于外档尺寸相加减去展开长度L;折弯系数ΔΤ等于展开长度L减去内档尺寸之和即设折弯形状为L形,两外档尺寸分别为A、B内档尺寸为a、b 展开长度为L料厚为T 则:ΔΚ=A+B-L;ΔΤ=L-(a+b) 推出ΔΚ=2T-ΔΤ4.本人上传一个折弯系数表供大家参考(实际是扣除表)具体值可参考实际更改,此格式不是太成熟,由于工作忙等抽空再做个更人性化的给大家,5.只要将表放到其他系统系数表文件夹里就可看到了,也可放一个固定位置浏览一下就行了6.再声明一下,具体的值要根据自己的折弯机和材料进行试验来确定的,不同厚度的材料扣除值是不同的,同厚度不同刀槽折的值也是不同的,不同材料的值也是不同的上模R角大小:未知V槽口尺寸:一般折弯用的V槽口尺寸为板厚的8倍计算折弯系数跟材质;折弯半径/板材厚度,V口宽度及上模半径有关4m以下算内层的长度,4m到10m之间算中间层的长度,再以上,应该是中间偏上,就有系数了。
两个办法:1、根据实际结果和计算值,得出这种材料的中间层位置系数。
2、根据截面密度计算理论值,再修正。
1折弯系数确定的重要性在钣金加工中, 对零件展开料计算时, 工艺人员是凭经验确定折弯系数(即消耗量) 的, 不同工艺人员编制的工艺文件, 其确定的折弯系数也不相同。
通过查阅大量的有关钣金加工手册, 也没有查到明确的公式来计算折弯系数, 只能查到不同折弯内圆弧的折弯系数, 而内圆弧与加工工艺方案有关, 使用不同的折弯下模槽宽, 内圆弧也不相同, 从而导致工艺文件上无法确定折弯系数的准确值。
折弯系数表
板厚折弯系数 板厚 折弯系数 折弯展开计算(折弯角度为90°): L=L1+L22δ+ZL:展开长度L1:边长1(见右图)L2:边长2(见右图)δ:板厚Z:折弯系数(见下表)铁板:1.0 1.2 1.5 1.8(热板)2.0 2.53.0 Z 无0.4 0.5 0.6 0.75 0.8 1 无刨槽折弯 (冷板) 22 2、5 * 3、25 4、2 5 刨槽折弯 (冷板) 11 1、5 * 2、0 2、5 3 无刨槽折弯(热板)* * 3 * * 5 不锈钢板:1.01.2 1.5 1.82.0 2.53.0 Z无 0.4 0.5 0.6 0.75 0.8 1 全国注册建筑师、建造师考试 备考资料 历年真题 考试心得 模拟试题Q/ZB J65—20101钣金展开计算方法2、1 板料在弯曲过程中外层受到拉应力,內层受到压应力,从拉到压之间有一既不受拉力又不受压力得过度层为中性层;中性层在弯曲过程中得长度与弯曲前一样,保持不变,所以中性层就是计算弯曲件展开长度得基准。
2、2 中性层得位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度得中心处;当弯曲半径较小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心得內侧移动。
中性层到板料內侧得距离用λ表示(见图一)。
3 折弯模具:我们使用得小松数控折弯机所配套得普通折弯模具V型槽宽度通常为适用该折弯模得板厚得5-6倍。
板厚与适用V型槽宽(见表1)。
表1 板厚与适用V型槽宽参数板厚(t) 1、0, 1、2,1、51、5,2、0 2、5,3、0 3、0,4、0,5、0适用V槽宽度81216254 展开计算方法: 4、1 90°折弯(一般折弯)Q/ZB J65—201024、1、1 (如图二),由于我们常用得折弯上模得尖角通常小于0、5,所以折弯内圆弧R可以视为定值,因此折弯拉伸系数得影响因素主要取决于折弯下模槽宽V与材料厚度t。
常用材料折弯系数表
常用材料折弯系数表
T V 角度 0.6 0.8 V4 90 0.9 1.4
120
0.7
150
0.2
V6 90
1.5
120
0.7
150
0.2
V7 90
5.0
4.0
3.8
3.5
3.4
3.0
1.8
A
B
1.6
120
0.8
150
0.3
V8 90
1.6
30
0.3
45
0.6
60
1.0
120
0.8
150
0.3
V10 90
120
150
V12 90
30
45
60
120
150
V14 90
120 150
V16 90 120 150
V18 90 120 150
V20 90 120 150
V25 90 120 150
V32 90 120 150
2.4 3.2
7
V12
2.4 3.2
8.5
V14
3.2
10
V16
3.2 4.0 4.8
11
V18
4.8
13
V20
4.8
14
V25
4.8 5.4 6.0
17.5
V32
6.3 6.9
22.0
T
三、铜板
V 角度 0.6 0.8 1.0 1.2 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 最短尺寸 备注
折弯系数
需要知道铁板的材质,每种材质有不同的折弯系数。
如果要求不需要很精确地话
一般地:直角折弯取系数0.4-0.45;如一铁板2折边的长度为a, b(不包括折弯的变形区域),铁板厚为5MM,则展开后的长度=a+b+5*0.4=a+b+2
如果折弯是圆角折弯,如内R为R5,角度是90º,料厚5MM,则一般系数取0.3
展开长度=a+b+2π(5+5*0.3)/4=a+b+13π/4≈a+b+10.2
以上计算精度可保证在±0.5mm精度以内。
一般铁板0.5—4MM之内的都是A+B-1.6T。
(A,B代表的是折弯的长度,T
就是板厚)
例如用2.5mm的铁板折180mm*180mm的直角,那么你下的料长就是
180mm+180mm再减去2.5mm*1.6也就是4mm就好了,也就是356mm。
当然了我说的只是0.5——4mm之间的铁板,再厚的就不能用这公式了,
PROE就用这个公式来计算展开长度。
所以我们在开始一个钣金制作时要先
定义K值或Y值。
系统默认的Y值为0.5,K值就是0.318,相当于软钢和铜材。
如果用的是普通钢板,可以设
置K值为0.45,即Y值为0.707。
标准的钣金折弯系数表【免费下载】
以下为最全钣金折弯系数表,跟着小编一起来看看吧:材料料厚刀槽角度系数材料料厚刀槽角度系数钢板、耐指纹板、敷铝锌板18(30度)300钢板 2.5(实2.4)161053450.5120 2.1601135 1.375 1.41500.8790 1.81650.4105 1.23(实2.9)57度模60 2.91200.81350.575 3.81500.31890 5.21650.2105 3.6 1.28(30度)300.2120 2.4450.7135 1.660 1.1150175 1.71650.57902钢板4(实3.9)2590 6.7105 1.4105 4.81201120 3.31350.6135 2.21500.4150 1.31650.21650.6 1.5(实8(30300.5 4.5(实25907.31.4)度) 4.3)450.9105 5.260 1.4120 3.575 1.9135 2.41090 2.6150 1.4105 1.81650.7120 1.25(实4.8)409091350.8105 6.5 1500.5120 4.3 1650.2135 2.8钢板212(30度)300.6150 1.7 45 1.31650.8 60 1.96409010 75 2.51057.41290 3.51205 105 2.4135 3.3120 1.61502135 1.11650.91500.7磨花铝板1.2790 1.51650.3 1.5109022.5(实2.4)12(30度)30 1.2钢板、敷铝锌板双层1.51890内2.6外3.445 1.8双层22590内3.2外4.11折弯系数表适用相应的材质、料厚、角度,不符合表中的料厚、角度可用下表计算:相应角度的折弯系数=料厚*对应角度的倍数2.65-2.4例如:料厚3,材质普钢,弯曲角度95度,相应的折弯系数=3*1.6=4.82此折弯系数表要求对非直角尺寸标注及测量方式如下:扩展资料:钣金件的折弯工艺:钣金的折弯,是指改变板材或板件角度的加工。
常用材料折弯系数表
8.5
0.5 0.6 0.7
1.0 1.3 1.5
1.7 2 2.4
1.4 1.7 2.0
0.5 0.6 0.7
4.3
10
2.1 0.7
4.5 5.0
11
2.2 0.8
4.6
13
2.3
0.8
4.8 5.1
6.6
14
2.3
3.3
0.8
1.1
5.7 6.4 7.0
17.5
2.8 3.1 3.4
1.0 1.0 1.2
另一参考
V12
V16
V25
V32
V60
2.0 铜板 3.8(R3)
3.0 铜板
5.3(R3)
4.0 铜板
6.4(R3)
5.0 铜板
7.9(R3) 8.1(R4)
6.0 铜板
9.1(R4)
8.0 铜板
12.5(R4)
10.0 铜板
16.2
15.0 铜板
22.4
Z 折 1 (直邊段差) 1. 樣品方式製作展開方法﹕
5.0
4.0
3.8
3.5
3.4
3.0
1.8
A
B
常用材料折弯系数表
T V 角度 0.6 0.8 V4 90 0.9 1.4
120
0.7
150
0.2
V6 90
1.5
120
0.7
150
0.2
V7 90
1.6
120
0.8
150
0.3
V8 90
1.6
30
0.3
45
0.6
60
1.0
折弯系数完整版
折弯系数中性层:在绘制钣金展开时,板料中有一层既不伸长又不缩短的一层称为中性层,随板厚的不同中性层的位置是不同的,折弯系数是用来表示这一层位置的参数系数:钢板的产地不同及不同的折弯机,系数有差异,要根据实际情况确定系数先说明一下:1.折弯系数的算法通常以90度折弯来计算的,具体数据取决于折弯机刀槽和所应用钣金材料2.折弯系数包括两个定义(折弯扣除ΔΚ、折弯系数ΔΤ)即两种算法,但无论用哪种算法最后展开值是一致的3.具体算法是:折弯扣除ΔΚ等于外档尺寸相加减去展开长度L;折弯系数ΔΤ等于展开长度L减去内档尺寸之和即设折弯形状为L形,两外档尺寸分别为A、B内档尺寸为a、b展开长度为L料厚为T 则:ΔΚ=A+B-L;ΔΤ=L-(a+b) 推出ΔΚ=2T-ΔΤ4.本人上传一个折弯系数表供大家参考(实际是扣除表)具体值可参考实际更改,此格式不是太成熟,由于工作忙等抽空再做个更人性化的给大家,5.只要将表放到其他系统系数表文件夹里就可看到了,也可放一个固定位置浏览一下就行了6.再声明一下,具体的值要根据自己的折弯机和材料进行试验来确定的,不同厚度的材料扣除值是不同的,同厚度不同刀槽折的值也是不同的,不同材料的值也是不同的上模R角大小:未知V槽口尺寸:一般折弯用的V槽口尺寸为板厚的8倍计算折弯系数跟材质;折弯半径/板材厚度,V口宽度及上模半径有关4m以下算内层的长度,4m到10m之间算中间层的长度,再以上,应该是中间偏上,就有系数了。
两个办法:1、根据实际结果和计算值,得出这种材料的中间层位置系数。
2、根据截面密度计算理论值,再修正。
1折弯系数确定的重要性在钣金加工中, 对零件展开料计算时, 工艺人员是凭经验确定折弯系数(即消耗量) 的, 不同工艺人员编制的工艺文件, 其确定的折弯系数也不相同。
通过查阅大量的有关钣金加工手册, 也没有查到明确的公式来计算折弯系数, 只能查到不同折弯内圆弧的折弯系数, 而内圆弧与加工工艺方案有关, 使用不同的折弯下模槽宽, 内圆弧也不相同, 从而导致工艺文件上无法确定折弯系数的准确值。
折弯系数表
5
内R5 6、0 内R3 4.8
4 足4.0 直角 6.8 内R5
5 足5.0 直角 8.5 内R5
1.2 足1.2 直角
2
内R5
0.3
足 直角 0.7
材料
铝板 铝板 铝板 铝板 铝板 铝板 铝板 铝板 铝板 铝板 铝板
厚度 平常叫法 折弯角 折弯系数
0.4 不足0.5 直角 0.6 0.45 足0.5 直角 0.7 0.7 不足0.8 直角 1.1 0.75 足0.8 直角 1.2 0.88 不足1.0 直角 1.4 0.95 足1.0 直角 1.5 1.05 不足1.2 直角 1.7 1.15 足1.2 直角 1.8 1.35 不足1.5 直角 2.1 1.45 足1.5 直角 2.3 1.75 不足2.0 直角 2.8
足1.0 足1.2 足1.5 足2.0 足2.5 足3.0 足4.0 足5.0 足6.0
直角 直角 直角 直角 直角 直角 直角 直角 直角 直角 直角 直角 直角
0.9
1.5
1.8 内R3 2.9
2
内R3
3
2.5 内R3 3.5
3.5
4
5
7
8.5
10 内R20 15
内R5 4(电解板1.7) 内R5 4.2
材料
铜板 铜板 铜板 铜板 铜板 铜板 铜板 铜板 铜板
厚度 平常叫法 折弯角 折弯系数 折弯角 折弯系数 折弯角 折弯系数
0.5 足0.5 直角 0.85 内R5
1 足1.0 直角 1.7 内R5
1.5 足1.5 直角 2.5 内R5
2 足2.0 直角 3.4 内R5 4.7 内R3 3.8
3
足3.0 直角
折弯系数表及铆柱标准表[1]
折弯系数表及铆柱标准表一.冷轧钢板90度角折弯展开系数:0.8mm---(-1.5mm)V6 1.0mm---(-1.8mm)V6 1.2mm---(-2.05mm)V81.5mm---(-2.6mm)V10 1.8mm---(-3.1mm)V12 2.0mm---(-3.4mm)V122.5mm---(-4.1mm)V143.0mm---(-4.8mm) V16 4.0mm---(-6.25mm)V18二.铝板90度角折弯展开系数:0.5mm---(-1.0mm)V5 1.0mm---(-1.7mm)V6 1.2mm---(-1.9mm)V81.5mm---(-2.3mm)V10 2.0mm---(-3.1mm)V12 2.5mm---(-3.8mm)V143.0mm---(-4.4mm)V16 4.0mm---(-6.1mm)V185.0mm---(-7.5mm)V20三.铜板90度角折弯展开系数:2.0mm---(-3.2mm)V12 3.0mm---(-4.8mm)V16 4.0mm---(-6.5mm)V18注: 加S为不锈钢材料.注: 加S为不锈钢; FH为圆头; NFH为六角头; L为螺钉总长度.六. 压铆螺母柱及其底孔:注:SO , SOS为通孔不通牙,SOO, SOOS为通孔通牙; 加B为不通孔;加S为不锈钢材料;H为螺柱高度.七. 压铆螺母及其底孔注: CLS为不锈钢材料; S为普通冷轧钢; A为螺母适用板厚代号.注: 加S为不锈钢材料; 加A为螺母适用板厚代号.螺柱类: SO表示钢, SOS表示不锈钢, SOA表示铝材.螺母类:S表示碳钢, CLS表示不锈钢, CLA表示铝材.浮动螺母类:AS表示碳钢, AC表示不锈钢.LAS表示碳钢, LAC表示不锈钢.螺钉类: FH表示钢, FHS表示不锈钢, FHA表示铝材.1. 3.5M3与M3的区别:都是M3的芽,但3.5M3的壁厚比M3大,即底孔不一样.螺柱6440与440的区别: 即6440的壁厚比440大.6440的底孔为&5.4而440的底孔为&4.24. 铝材上铆螺母容易松动,在工程图面上应特别说明(如用扭力器测试).5. 螺母压入材料太浅或材料太薄均会导致松动.7.托盘类的常用五金零件)的底孔弹簧螺钉: 型号:47-99-528-10 底孔为&6.50mm型号:47-99-640-10 底孔为&6.50mm型号:47-99-527-50 底孔为&5.40mm把手转轴: 型号:700-02691-01 底孔为&4.40mm (8/19/2000经模具课测试在工件的底孔上不用冲沙拉孔) 静电导轨: 型号:700-02776-01 半剪凸点直径为&2.30mm, 高为0.8mm静电导轨有方向性应特别注意五金零件类的底孔尽可能用模具或NCT加工.LASER加工的底孔留有微小的结点.。
折弯系数
一、铁板90度折弯,正常折弯上模R0.5,下模V=5T,折弯系数为0.4T,V槽选用V=5T+R(R>0.5)
展开尺寸=L1+L2-2T+系数
上模R0.5
上模R1.5
上模R3.0
材料厚度
下模V 系数I 下模V 系数I 下模V 系数I 下模V 系数I 下模V 系数I 下模V
0.5
V3 0.20
五、铝板60度折弯(使用插深下模)
展开尺寸=L1+L2+系数
上模R0.5
上模R1.5
上模R3.0
材料厚度
下模V 系数I 下模V 系数I 下模V 系数I 下模V 系数I 下模V 系数I 下模V
0.5
V5 -0.20
V8 -0.30
V12 -0.30
0.8
V5 -0.80
V8 -0.40
V12 -0.20
V12 -0.40
1.0
V5 -0.90
V8 -0.80
V12 -0.50
1.2(1.13) V5 -1.55
V8 -0.90
V12 -0.80
1.5
V8 -1.30
V8 -1.30
V12 -1.00
2.0 V12 -1.80
V12 -1.80
V12 -1.80
2.3 V12 -2.00
V12 -2.00
0.8
V5 -0.60
V8 0.60
V12 1.30
1.0
V5 -0.50
V8 0.10
V12 1.20
1.2
V5 -0.40
V8 -0.30
V12 0.80
1.5
V8 -0.90
钣金折弯系数表和计算公式
钣金折弯系数表
钣金折弯系数
折弯跟展平时,材料一侧会被拉长,一侧被压缩,受到的因素影响有:材料类型、材料厚度、材料及加工的状况及折弯的角度;PROE在进行钣金的折弯和展平时,会自动计算材料被拉伸或压缩的长度;计算公式如下:
L=π×R+K系数×T×θ/90
L: 钣金展开长度Developed length
R: 折弯处的内侧半径Inner radius
T: 材料厚度
θ: 折弯角度
Y系数: 由折弯中线Neurtal bend line的位置决定的一个,其默认值为所谓的“折弯中线”;可在config中设定其默认值initial_bend_factor
在钣金设计实际中,常用的钣金展平计算公式是以K系数为主要依据的,范围是0~1,表示材料在折弯时被拉伸的抵抗程度;与Y系数的关系如下
Y系数=π/2×k系数。
折弯系数表
板厚 折弯系数板厚 折弯系数折弯展开计算(折弯角度为90°): L=L1+L2-2δ+ZL:展开长度L1:边长1(见右图)L2:边长2(见右图)δ:板厚Z :折弯系数(见下表)铁板:1.0 1.2 1.5 1.8(热板) 2.0 2.5 3.0 Z无 0.4 0.5 0.6 0.75 0.8 1 无刨槽折弯(冷板)2 2 * 5 刨槽折弯(冷板)1 1 * 3 无刨槽折弯(热板) * * 3 * * 5 不锈钢板:1.01.2 1.5 1.8 2.0 2.5 3.0 Z无 0.4 0.50.6 0.75 0.8 1Q/ZB J65—20101钣金展开计算方法1 范围公司折弯次数小于8次的常规钣金件适用本方法,精密钣金件、折弯次数较多或折弯内圆弧半径R有特殊要求的钣金件需进行试折弯。
2 展开计算原理:板料在弯曲过程中外层受到拉应力,內层受到压应力,从拉到压之间有一既不受拉力又不受压力的过度层为中性层;中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准。
中性层的位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处;当弯曲半径较小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的內侧移动。
中性层到板料內侧的距离用λ表示(见图一)。
3 折弯模具:我们使用的小松数控折弯机所配套的普通折弯模具V型槽宽度通常为适用该折弯模的板厚的5-6倍。
板厚与适用V型槽宽(见表1)。
表1 板厚与适用V型槽宽参数板厚(t),,,,,,适用V槽宽度81216254 展开计算方法: 90°折弯(一般折弯)Q/ZB J65—20102(如图二),由于我们常用的折弯上模的尖角通常小于,所以折弯内圆弧R可以视为定值,因此折弯拉伸系数的影响因素主要取决于折弯下模槽宽V和材料厚度t。
展开长度的计算公式为(1):L=L1 +L2- 2t +系数a ; (1)折弯系数a的计算公式为(2):a = +-……………………………………………………………(2)其中:V—下模槽宽;t—材料厚度为方便计算将展开长度的计算公式简化为(3):L=L1+L2-系数C ……………………………………………………………………(3)注:简化系数C = (2t - 系数a)见表2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
折弯系数
中性层:在绘制钣金展开时,板料中有一层既不伸长又不缩短的一层称为中性层,随板厚的不同中性层的位置是不同的,折弯系数是用来表示这一层位置的参数
系数:钢板的产地不同及不同的折弯机,系数有差异,要根据实际情况确定系数
先说明一下:
1.折弯系数的算法通常以90度折弯来计算的,具体数据取决于折弯机刀槽和所应用钣金材料
2.折弯系数包括两个定义(折弯扣除ΔΚ、折弯系数ΔΤ)即两种算法,但无论用哪种算法最后展开值是一致的
3.具体算法是:折弯扣除ΔΚ等于外档尺寸相加减去展开长度L;折弯系数ΔΤ等于展开长度L减去内档尺寸之和
即设折弯形状为L形,两外档尺寸分别为A、B内档尺寸为a、b展开长度为L料厚为T 则:
ΔΚ=A+B-L;ΔΤ=L-(a+b) 推出ΔΚ=2T-ΔΤ
4.本人上传一个折弯系数表供大家参考(实际是扣除表)具体值可参考实际更改,此格式不是太成熟,由于工作忙等抽空再做个更人性化的给大家,
5.只要将表放到其他系统系数表文件夹里就可看到了,也可放一个固定位置浏览一下就行了
6.再声明一下,具体的值要根据自己的折弯机和材料进行试验来确定的,不同厚度的材料扣除值是不同的,同厚度不同刀槽折的值也是不同的,不同材料的值也是不同的
上模R角大小:未知
V槽口尺寸:一般折弯用的V槽口尺寸为板厚的 8倍计算
折弯系数跟材质;折弯半径/板材厚度,V口宽度及上模半径有关
4m以下算内层的长度,4m到10m之间算中间层的长度,再以上,应该是中间偏上,就有系数了。
两个办法:
1、根据实际结果和计算值,得出这种材料的中间层位置系数。
2、根据截面密度计算理论值,再修正。
1折弯系数确定的重要性
在钣金加工中, 对零件展开料计算时, 工艺人员是凭经验确定折弯系数(即消耗量) 的, 不同工艺人员编制的工艺文件, 其确定的折弯系数也不相同。
通过查阅大量的有关钣金加工手册, 也没有查到明确的公式来计算折弯系数, 只能查到不同折弯内圆弧的折弯系数, 而内圆弧与加工工艺方案有关, 使用不同的折弯下模槽宽, 内圆弧也不相同, 从而导致工艺文件上无法确定折弯系数的准确值。
这不仅影响工艺文件的标准化、合理化, 而且给车间生产带来困难, 并导致产品质量的不稳定。
随着科学技术的不断进步, 计算机应用逐步向C IM S 系统发展。
必须首先解决计算机自动计算展开料, 也就是必须首先解决折弯系数的自动确定, 才能谈论计算机辅助编制工艺,
包括工艺文件的自动编制、展开料的自动计算, 材料消耗定额的自动计算等等。
北京地区正在推行C IM S 系统的一些厂家, 其软件也没有解决这一问题: 而作为数控机床的生产厂家, 折弯系数的确定是专利产品, 对使用机床的用户是保密的。
因此必须自行解决折弯系数确定的计算方法。
2展开料的理论计算
钣金折弯加工时, 其内侧产生压缩, 外侧产生拉伸, 内侧的压缩由内往外逐渐缩小, 外侧的拉伸也由外往里逐渐缩小, 在接近板厚的中心处, 压缩与拉伸接近于零, 板厚中间的这个面叫中性层。
下面以中性层为基准对展开料进行理论计算。
2. 1折弯内圆弧半径R ≥5t ( t 为材料厚度)
当折弯内圆弧半径大于或等于材料厚度尺寸的5 倍时, 材料折弯处无厚度变化, 即折弯后中性层在材料厚度的中心线上, 如图1- a。
b为中性层到板材内壁的距离,a为折弯角度T为板厚,K为一个折弯因子。
K=b/T,K就是中性层折弯系数。
材料在折弯时,产生变形,外层的材料拉伸,内层材料压缩,中性层长度不变。
硬度大的材料拉伸变形小,中性层就靠外,硬度小的材料拉伸变形大,中性层就靠内。
普通材料中性层就趋中。
图中,左边的为铜材和软钢,中间的是普通钢板,右边的是硬钢和不锈钢。
材料的展开长度就是中性层的弧长。
它和几个参数有关,折弯半径,折弯角度,板厚及中性层系数。
如图,展开长度为: DL=Pi*(R+K*T)*a/180
PROE还用Y因子来计算展开长度,Y=Pi/2*K
公式变为: DL=(Pi/2*R+Y*T)*a/90
如果没有专门的折弯表,PROE就用这个公式来计算展开长度。
所以我们在开始一个钣金制作时要先
定义K值或Y值。
系统默认的Y值为0.5,K值就是0.318,相当于软钢和铜材。
如果用的是普通钢板,可以设
置K值为0.45,即Y值为0.707。
“展开尺寸按中心层计算,展开长度与折边上模R角有关,检查实际折边后的零件尺寸,是有规律的,再修改下展开下料尺寸,以后就按这经验展开就可以了。
”中性层是准确的,但不同的做法OR模具的槽宽不一样R就不一样,中性层没法算,一般就是不同的板厚在同一槽宽试折,同一板厚不同槽宽再试折,就得同一个经验数据,不过不同一批的材料往往有差别
大家研究问题这个态度永远都得不到真正的答案,想想他们回答的都是什么,怎么能叫人家明白,既然是交流就该把方法和问题都解决掉,不能说半句,这是很不负责的,
我所知道的,100的材料,或者其他尺寸的,
机床折一道弯,两个外尺寸相加,减掉两倍材料厚度,和100比较,大了还是小了,这就是变化的量,反过来去求,不就知道折完弯系数了,当然复杂的问题要更复杂的去探讨,系数和放的量不是一个概念,要说清楚
我提供一套折弯系数,需要在折弯边的内尺寸加上折弯系数K,得到展开尺寸。
SPCC(均指折弯90度):
t=1以下, K=0
t=1.0 K=0.2
t=1.2 K=0.3
t=1.5 K=0.5
t=2.0 K=0.6
t=2.5 K=0.8
t=3.0 K=1.0
以上只是一些经验值,实际的折弯展开尺寸还需要根据材料、厚度、角度还有折弯模具等的不同而需要调整,不过那样就复杂了,所以一般计算时,可以仅使用以上系数就可以了。
涉及的因数有材料、折弯角度、上模R角、下模槽宽、机床压力等问题,所以只有细心总结,无论什么系数、公式都是针对以上条件进行
外侧尺寸相加减去1.7*板厚值 L=A+B-1.7T
二个外包尺寸相加,减2个折弯R然后加上壁厚的三分之一所得到的尺寸即为下料展开长度,可以试一试我们一般都是这么算的,还算准确
折弯扣除是算展开的,折弯系数也是算展开的,
展开尺寸等于外尺寸和,减去折弯扣除
也等于内尺寸和加上,料厚与折弯系数的乘积
也等于外尺寸和,减去2倍料厚,再加上料厚与折弯系数的乘积
以上为直角折弯
外加外尺寸减去2个板厚再加2个板厚的十分之一我们折弯用8倍的模具 1.2板厚以下之减板厚不加算出来很精确的
b为中性层到板材内壁的距离,a为折弯角度T为板厚,K为一个折弯因子。
K=b/T,K就是中性层折弯系数。
材料在折弯时,产生变形,外层的材料拉伸,内层材料压缩,中性层长度不变。
硬度大的材料拉伸变形小,中性层就靠外,硬度小的材料拉伸变形大,中性层就靠内。
普通材料中性层就趋中。
图中,左边的为铜材和软钢,中间的是普通钢板,右边的是硬钢和不锈钢。
材料的展开长度就是中性层的弧长。
它和几个参数有关,折弯半径,折弯角度,板厚及中性层系数。
如图,展开长度为: DL=Pi*(R+K*T)*a/180
PROE还用Y因子来计算展开长度,Y=Pi/2*K
公式变为: DL=(Pi/2*R+Y*T)*a/90
如果没有专门的折弯表,PROE就用这个公式来计算展开长度。
所以我们在开始一个钣金制作时要先
定义K值或Y值。
系统默认的Y值为0.5,K值就是0.318,相当于软钢和铜材。
如果用的是普通钢板,可以设
置K值为0.45,即Y值为0.707。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。