高三理科数学基础模拟试题(一)
高考理科数学模拟试题精编(一)
高考理科数学模拟试题精编(一)(考试用时:120分钟试卷满分:150分)注意事项:1.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
3.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集Q={x|2x2-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A.3B.4C.7D.82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则1z=()A.i B.-i C.2i D.-2i3.已知等差数列{a n}的公差为5,前n项和为S n,且a1,a2,a5成等比数列,则S6=()A.80 B.85 C.90 D.954.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是( )A.34B.23C.12D.135.已知以下三视图中有三个同时表示某一个三棱锥,则不是..该三棱锥的三视图的是( )6.已知p :a =±1,q :函数f (x )=ln(x +a 2+x 2)为奇函数,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.⎝⎛⎭⎪⎫1x 2+4x 2+43展开式的常数项为( )A .120B .160C .200D .2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为( )A .3.119B .3.126C .3.132D .3.1519.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f ⎝ ⎛⎭⎪⎫π6|对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z)B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z) 10.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,直线PF 与曲线C 相交于M ,N 两点,若PF→=3MF →,则|MN |=( ) A.212B.323C .10D .1111.等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.5612.已知函数f (x )=|2x -m |的图象与函数g (x ) 的图象关于y 轴对称,若函数f (x )与函数g (x )在区间[1,2]上同时单调递增或同时单调递减,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,2 B .[2,4] C.⎝ ⎛⎦⎥⎤-∞,12∪[4,+∞)D .[4,+∞)第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知|a |=2,|b |=1,(a -2b )·(2a +b )=9,则|a +b |=________. 14.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -3y +5≥02x +y -4≤0y +2≥0,则z =x +y的最小值为________.15.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过原点的直线l 与双曲线交于M ,N 两点,且MF →·NF →=0,△MNF 的面积为ab ,则该双曲线的离心率为________.16.我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系xOy 平面内,若函数f (x )=⎩⎨⎧1-x 2,x ∈[-1,0)cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的图象与x 轴围成一个封闭区域A ,将区域A 沿z 轴的正方向上移4个单位,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域A 相等,则此圆柱的体积为________.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.(本小题满分12分)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值.18.(本小题满分12分)如图,在底面为直角梯形的四棱锥P ABCD 中,AD ∥BC ,∠ABC =90°,AC 与BD 相交于点E ,PA ⊥平面ABCD ,PA =4,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面PAC ; (2)求二面角A PC D 的余弦值.19.(本小题满分12分)某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为13. (1)若出现故障的机器台数为X ,求X 的分布列;(2)该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值.20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=43,A ⎝ ⎛⎭⎪⎫3,-132是椭圆上一点. (1)求椭圆C 的标准方程和离心率e 的值;(2)若T 为椭圆C 上异于顶点的任一点,M ,N 分别为椭圆的右顶点和上顶点,直线TM 与y 轴交于点P ,直线TN 与x 轴交于点Q ,求证:|PN |·|QM |为定值.21.(本小题满分12分)已知函数f (x )=12x 2-a ln x (a ∈R).(1)若函数f (x )在x =2处的切线方程为y =x +b ,求a 和b 的值; (2)讨论方程f (x )=0的解的个数,并说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos αy =t sin α(t 为参数),直线l 与曲线C :⎩⎨⎧x =1cos θy =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|PA |·|PB |的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|x-3|+|x+m|(x∈R).(1)当m=1时,求不等式f(x)≥6的解集;(2)若不等式f(x)≤5的解集不是空集,求参数m的取值范围.高考理科数学模拟试题精编(一)班级:___________姓名:__________得分:___________请在答题区域内答题18.(本小题满分12分)19.(本小题满分12分)详 解 答 案高考理科数学模拟试题精编(一)1.解析:选D.∵Q ={x |0≤x ≤52,x ∈N}={0,1,2},∴满足条件的集合P 有23=8个.2.解析:选A.由题意,得m (m -1)=0且(m -1)≠0,得m =0,所以z =-i ,1z =1-i=i ,故选A.3.解析:选C.由题意,得(a 1+5)2=a 1(a 1+4×5),解得a 1=52,所以S 6=6×52+6×52×5=90,故选C.4.解析:选D.解法一:设“小明上学时到十字路口需要等待的时间不少于20秒”为事件A ,则P (A )=45+5-2040+5+45=13,选D.解法二:设“小明上学时到十字路口需要等待的时间不少于20秒”为事件A ,其对立事件为“小明上学时到十字路口需要等待的时间少于20秒”,则P (A )=1-40+2040+5+45=13,选D.5.解析:选D.由三视图知识可知,选项A ,B ,C 表示同一个三棱锥,选项D 不是该三棱锥的三视图.6.解析:选C.f (x )=ln(x +a 2+x 2)为奇函数⇔f (-x )+f (x )=0⇔ln(x +x 2+a 2)+ln(-x +x 2+a 2)=0⇔ln a 2=0⇔a =±1.7.解析:选B.⎝ ⎛⎭⎪⎫1x 2+4x 2+43=⎝ ⎛⎭⎪⎫1x +2x 6,展开式的通项为T r +1=C r 6·⎝ ⎛⎭⎪⎫1x 6-r ·(2x )r =C r 62r x 2r -6,令2r -6=0,可得r =3,故展开式的常数项为C 3623=160.8.解析:选B.在空间直角坐标系O xyz 中,不等式组⎩⎪⎨⎪⎧0<x <10<y <10<z <1表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组⎩⎪⎨⎪⎧0<x <10<y <10<z <1x 2+y 2+z 2<1表示的区域是棱长为1的正方体区域内的18球形区域,相应区域的体积为18×43π×13=π6,因此π6≈5211 000,即π≈3.126,选B.9.解析:选 C.因为f (x )≤|f ⎝ ⎛⎭⎪⎫π6|对x ∈R 恒成立,即⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6=|sin ⎝ ⎛⎭⎪⎫π3+φ|=1,所以φ=k π+π6(k ∈Z).因为f ⎝ ⎛⎭⎪⎫π2>f (π),所以sin(π+φ)>sin(2π+φ)∴-sin φ>sin φ,即sin φ<0,所以φ=-56π+2k π(k∈Z),所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -56π,所以由三角函数的单调性知2x -5π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z),得x ∈⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z),故选C.10.解析:选B.设M (x M ,y M ),∵PF→=3MF →,∴2-(-2)=3(2-x M ),则2-x M 4=13,∴x M =23,代入抛物线C :y 2=8x ,可得y M =±433,不妨设M ⎝ ⎛⎭⎪⎫23,433,则直线MF 的方程为y =-3(x -2),代入抛物线C :y 2=8x ,可得3x 2-20x +12=0,∴N 的横坐标为6,∴|MN |=23+2+6+2=323.11.解析:选C.依题意得,S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=1-⎝ ⎛⎭⎪⎫-12n .当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而减小,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56、-712,其最大值与最小值之和为56-712=312=14,选C. 12.解析:选A.由题易知当m ≤0时不符合题意,当m >0时,g (x )=|2-x -m |,即g (x )=|⎝ ⎛⎭⎪⎫12x -m |.当f (x )与g (x )在区间[1,2]上同时单调递增时,f (x )=|2x -m |与g (x )=|⎝ ⎛⎭⎪⎫12x -m |的图象如图1或图2所示,易知⎩⎪⎨⎪⎧log 2m ≤1,-log 2m ≤1,解得12≤m ≤2;当f (x )在[1,2]上单调递减时,f (x )=|2x -m |与g (x )=|⎝ ⎛⎭⎪⎫12x -m |的图象如图3所示,由图象知此时g (x )在[1,2]上不可能单调递减.综上所述,12≤m ≤2,即实数m 的取值范围为⎣⎢⎡⎦⎥⎤12,2.13.解析:由|a |=2,|b |=1可得a 2=4,b 2=1,由(a -2b )·(2a +b )=9可得2a 2-3a ·b -2b 2=9,即2×4-3a ·b -2×1=9,得a·b =-1,故|a +b |=a 2+2a ·b +b 2=4-2+1= 3.答案:314.解析:依题意,在坐标平面内画出不等式组表示的平面区域(如图中阴影部分)及直线x +y =0,平移该直线,当平移到经过该平面区域内的点A (-11,-2)时,相应直线在y 轴上的截距达到最小,此时z =x +y 取得最小值,最小值为z min =-11-2=-13.答案:-1315.解析:因为MF→·NF →=0,所以MF →⊥NF →.设双曲线的左焦点为F ′,则由双曲线的对称性知四边形F ′MFN 为矩形,则有|MF |=|NF ′|,|MN |=2c .不妨设点N 在双曲线右支上,由双曲线的定义知,|NF ′|-|NF |=2a ,所以|MF |-|NF |=2a .因为S △MNF =12|MF |·|NF |=ab ,所以|MF ||NF |=2ab .在Rt △MNF 中,|MF |2+|NF |2=|MN |2,即(|MF |-|NF |)2+2|MF ||NF |=|MN |2,所以(2a )2+2·2ab =(2c )2,把c 2=a 2+b 2代入,并整理,得b a =1,所以e =ca =1+⎝ ⎛⎭⎪⎫b a 2= 2.答案:216.解析:区域A 的面积为S =π4+∫π20cos x d x =π4+1,所得图一中的几何体的体积为V =4⎝⎛⎭⎪⎫π4+1=π+4,即圆柱的体积为V 柱=π+4.答案:π+417.解:(1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab ,∵△ABC 的面积等于3,∴12ab sin C =3,∴ab =4,(4分)联立⎩⎪⎨⎪⎧a 2+b 2-ab =4ab =4,解得a =2,b =2.(6分)(2)∵sin C +sin (B -A)=2sin 2A ,∴sin (B +A)+sin (B -A)=4sin A cos A ,∴sin B cos A =2sin A cos A ,(8分) ①当cos A =0时,A =π2;(9分)②当cos A ≠0时,sin B =2sin A ,由正弦定理b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4b =2a,解得a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.(12分)18.解:(1)∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PA. 又tan ∠ABD =AD AB =33,tan ∠BAC =BCAB = 3.(2分)∴∠ABD =30°,∠BAC =60°,(4分) ∴∠AEB =90°,即BD ⊥AC.又PA ∩AC =A ,∴BD ⊥平面PAC.(6分) (2)建立如图所示的空间直角坐标系Axyz , 则A(0,0,0),B(23,0,0),C(23,6,0),D(0,2,0),P(0,0,4),CD →=(-23,-4,0),PD →=(0,2,-4),BD →=(-23,2,0),设平面PCD 的法向量为n =(x ,y,1),则CD→·n =0,PD →·n =0, ∴⎩⎪⎨⎪⎧-23x -4y =02y -4=0,解得⎩⎨⎧x =-433y =2,∴n =⎝ ⎛⎭⎪⎫-433,2,1.(8分)由(1)知平面PAC 的一个法向量为m =BD →=(-23,2,0),(10分)∴cos 〈m ,n 〉=m·n|m |·|n |=8+4933×4=39331,由题意可知二面角A PC D 为锐二面角, ∴二面角A PC D 的余弦值为39331.(12分)19.解:(1)一台机器运行是否出现故障可看作一次实验,在一次试验中,机器出现故障设为A ,则事件A 的概率为13,该厂有4台机器就相当于4次独立重复试验,因出现故障的机器台数为X ,故X ~B ⎝ ⎛⎭⎪⎫4,13,P (X =0)=C 04⎝ ⎛⎭⎪⎫234=1681,P (X =1)=C 14·13·⎝ ⎛⎭⎪⎫233=3281,P (X =2)=C 24·⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=2481,P (X =3)=C 34·⎝ ⎛⎭⎪⎫133·23=881,P (X =4)=C 44⎝ ⎛⎭⎪⎫134=181.即X 的分布列为:(4分)(5分)(2)设该厂有n 名工人,则“每台机器在任何时刻同时出现故障能及时进行维修”为x ≤n ,即x =0,x =1,…,x =n ,这n +1个互斥事件的和事件,则(6分)∵7281≤90%≤8081, ∴至少要3名工人,才能保证每台机器在任何时刻同时出现故障能及时进行维修的概率不少于90%.(8分)(3)设该厂获利为Y 万元,则Y 的所有可能取值为:18,13,8 P (Y =18)=P (X =0)+P (X =1)+P (X =2)=7281,P (Y =13)=P (X =3)=881,P (Y =8)=P (X =4)=181,(10分)即Y 的分布列为:(11分) 则E (Y )=18×7281+13×881+8×181=1 40881, 故该厂获利的均值为1 40881.(12分) 20.解:(1)解法一:∵|F 1F 2|=43,∴c =23,F 1(-23,0), F 2(23,0).(1分)由椭圆的定义可得2a =(3+23)2+⎝ ⎛⎭⎪⎫-1322+(3-23)2+⎝⎛⎭⎪⎫-1322=1214+254=112+52=8, 解得a =4,∴e =234=32,b 2=16-12=4,(3分) ∴椭圆C 的标准方程为x 216+y 24=1.(5分) 解法二:∵|F 1F 2|=43,∴c =23,椭圆C 的左焦点为F 1(-23,0),故a 2-b 2=12,(2分) 又点A (3,-132)在椭圆x 2a 2+y 2b 2=1上,则3b 2+12+134b 2=1,化简得4b 4+23b 2-156=0,得b 2=4,故a 2=16,∴e =234=32,椭圆C 的标准方程为x 216+y 24=1.(5分) (2)由(1)知M (4,0),N (0,2),设椭圆上任一点T (x 0,y 0)(x 0≠±4且x 0≠0),则x 2016+y 204=1.直线TM :y =y 0x 0-4(x -4),令x =0,得y P =-4y 0x 0-4,(7分)∴|PN |=⎪⎪⎪⎪⎪⎪2+4y 0x 0-4.(8分) 直线TN :y =y 0-2x 0x +2,令y =0,得x Q =-2x 0y 0-2,∴|QM |=⎪⎪⎪⎪⎪⎪4+2x 0y 0-2.(10分)|PN |·|QM |=⎪⎪⎪⎪⎪⎪2+4y 0x 0-4·⎪⎪⎪⎪⎪⎪4+2x 0y 0-2 =⎪⎪⎪⎪⎪⎪2x 0+4y 0-8x 0-4·⎪⎪⎪⎪⎪⎪2x 0+4y 0-8y 0-2 =4⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-8x 0-16y 0+16x 0y 0-2x 0-4y 0+8,由x 2016+y 204=1可得x 20+4y 20=16,代入上式得|PN |·|QM |=16,故|PN |·|QM |为定值.(12分)21.解:(1)因为f ′(x )=x -ax (x >0),又f (x )在x =2处的切线方程为y =x +b ,所以f (2)=2-a ln 2=2+b ,f ′(2)=2-a2=1,解得a=2,b =-2ln 2.(2分)(2)当a =0时,f (x )在定义域(0,+∞)内恒大于0,此时方程无解.(4分)当a <0时,f ′(x )=x -ax >0在区间(0,+∞)内恒成立,所以f (x )在定义域内为增函数.因为f (1)=12>0,f ⎝ ⎛⎭⎪⎫e 1a =12e 2a -1<0,所以方程有唯一解.(6分)当a >0时,f ′(x )=x 2-ax .当x ∈(0,a )时,f ′(x )<0,f (x )在区间(0,a )内为减函数,当x ∈(a ,+∞)时,f ′(x )>0,f (x )在区间(a ,+∞)内为增函数,所以当x =a 时,取得最小值f (a )=12a (1-ln a ).(8分)当a ∈(0,e)时,f (a )=12a (1-ln a )>0,方程无解;(9分) 当a =e 时,f (a )=12a (1-ln a )=0,方程有唯一解;(10分) 当a ∈(e ,+∞)时,f (a )=12a (1-ln a )<0,因为f (1)=12>0,且a >1,所以方程f (x )=0在区间(0,a )内有唯一解,当x >1时,设g (x )=x -ln x ,g ′(x )=1-1x >0,所以g (x )在区间(1,+∞)内为增函数,又g (1)=1,所以x -ln x >0,即ln x <x ,故f (x )=12x 2-a ln x >12x 2-ax .因为2a >a >1,所以f (2a )>12(2a )2-2a 2=0. 所以方程f (x )=0在区间(a ,+∞)内有唯一解,所以方程f (x )=0在区间(0,+∞)内有两解,综上所述,当a ∈[0,e)时,方程无解,当a <0或a =e 时,方程有唯一解,当a >e 时,方程有两解.(12分)22.解:(1)由曲线C :⎩⎨⎧ x =1cos θy =tan θ(θ为参数),可得曲线C 的普通方程是x 2-y 2=1.(2分) 当α=π3时,直线l 的参数方程为⎩⎨⎧ x =3+12t y =32t (t 为参数),代入曲线C 的普通方程,得t 2-6t -16=0,(3分)得t 1+t 2=6,所以线段AB 的中点对应的t =t 1+t 22=3,故线段AB 的中点的直角坐标为⎝ ⎛⎭⎪⎫92,332.(5分)(2)将直线l 的参数方程代入曲线C 的普通方程,化简得 (cos 2α-sin 2α)t 2+6cos αt +8=0,(7分)则|PA |·|PB |=|t 1t 2|=⎪⎪⎪⎪⎪⎪8cos 2α-sin 2α=⎪⎪⎪⎪⎪⎪8(1+tan 2α)1-tan 2α,(9分)由已知得tan α=2,故|PA |·|PB |=403.(10分)23.解:(1)当m =1时,f (x )≥6等价于⎩⎪⎨⎪⎧x ≤-1-(x +1)-(x -3)≥6,或⎩⎪⎨⎪⎧ -1<x <3(x +1)-(x -3)≥6,或⎩⎪⎨⎪⎧ x ≥3(x +1)+(x -3)≥6,(3分)解得x ≤-2或x ≥4,所以不等式f (x )≥6的解集为{x |x ≤-2或x ≥4}.(5分)(2)解法一:化简f (x )得,当-m ≤3时,f (x )=⎩⎪⎨⎪⎧ -2x +3-m ,x ≤-mm +3,-m <x <32x +m -3,x ≥3,(6分)当-m >3时,f (x )=⎩⎪⎨⎪⎧-2x +3-m ,x ≤3-3-m ,3<x <-m ,2x +m -3,x ≥-m (7分)根据题意得:⎩⎪⎨⎪⎧ -m ≤3m +3≤5,即-3≤m ≤2,(8分)或⎩⎪⎨⎪⎧ -m >3-m -3≤5,即-8≤m <-3,(9分)∴参数m的取值范围为{m|-8≤m≤2}.(10分)解法二:∵|x-3|+|x+m|≥|(x-3)-(x+m)|=|m+3|,∴f(x)min =|3+m|,(7分)∴|m+3|≤5,(8分)∴-8≤m≤2,∴参数m的取值范围为{m|-8≤m≤2}.(10分)。
2023届四川省南充市高三下学期高考考前数学(理)模拟训练(一)【含答案】
2023届四川省南充市高三下学期高考考前数学(理)模拟训练(一)一、单选题1.若集合,则( ){}10,lg 01x A x B x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣A B = A .B .C .D .[)1,1-(]0,1[)0,1()0,1【答案】D【分析】先化简集合A ,B ,再利用交集运算求解.【详解】解:由题意得,{11},{01}A xx B x x =-≤<=<≤∣∣,()0,1A B ∴= 故选:D.2.( )sin2023cos17cos2023sin17+=A .B .C .D 1212-【答案】C【分析】根据诱导公式和正弦和角公式求解即可.【详解】解:因为3605182334020=⨯++所以,,()()4s 1in 8202n 3s 3605043sin 18s i 03i 4n 3=⨯++=+=-()()4c 1os 8202s 3c 3605043cos 18c o 03o 4s 3=⨯++=+=-所以,sin2023cos17cos2023sin17+.sin43cos17cos43sin17sin60=--=-= 故选:C.3.校园环境对学生的成长是重要的,好的校园环境离不开学校的后勤部门.学校为了评估后勤部门的工作,采用随机抽样的方法调查100名学生对校园环境的认可程度(100分制),评价标准如下:中位数m85m ≥8085m ≤<7080m ≤<70m <评价优秀良好合格不合格2023年的一次调查所得的分数频率分布直方图如图所示,则这次调查后勤部门的评价是( )A .优秀B .良好C .合格D .不合格【答案】B【分析】根据频率分布直方图求解中位数即可得答案.【详解】解:由频率分布直方图可知,前3组的频率分别为,第4组的频率为0.1,0.1,0.20.4所以,中位数,即满足,对应的评价是良好.0.1801082.50.4m =+⨯=m 8085m ≤<故选:B.4.双曲线 )2222:1(0,0)x y C a b a b -=>>A .B .2y x =±y =C .D .y x =12y x=±【答案】B【分析】根据.==ce a b a =【详解】由题意知,双曲线2222:1(0,0)x y C a b a b -=>>可得,解得,==ce a 22221()3a b b a a +=+=b a =所以双曲线的渐近线方程为.C by x a =±=故选:B.5.在平面直角坐标系中,为坐标原点,已知,,则( )O ()3,4A --()5,12B -cos OAB ∠=A .B .CD .33653365-【答案】D【分析】利用计算即得结果.cos AO ABOAB AO AB⋅∠=【详解】由题设,(3,4),(8,8)AO AB ==-所以cos AO AB OAB |AO ||AB |⋅∠== 故选:D6.一个四棱台的三视图如图所示,其中正视图和侧视图均为上底长为4,下底长为2,腰长为的等腰梯形,则该四棱台的体积为()A .BC .28D .283【答案】A4,下底长为2的正四棱台求解.因为上底长为4,下底长为2,所以该棱台的高为,1h=棱台的体积,∴(128416133V =⨯+⨯=故选:.A 7.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是( )A .B .C .D .()sin x x xf -=()sin cos f x x x x=-()221f x x x =-()3sin f x x x =+【答案】B【分析】利用导数研究各函数的单调性,结合奇偶性判断函数图象,即可得答案.【详解】A :,即在定义域上递增,不符合;()1cos 0f x x '=-≥()f x B :,()cos (cos sin )sin f x x x x x x x '=--=在上,在上,在上,(2π,π)--()0f x '<(π,π)-()0f x '>(π,2π)()0f x '<所以在、上递减,上递增,符合;()f x (2π,π)--(π,2π)(π,π)-C :由且定义域为,为偶函数,222211()()()()f x x x f x x x -=--=-=-{|0}x x ≠所以题图不可能在y 轴两侧,研究上性质:,故递增,不符合;(0,)+∞32()20f x x x +'=>()f x D :由且定义域为R ,为奇函数,33()sin()()sin ()f x x x x x f x -=-+-=--=-研究上性质:,故在递增,(0,)+∞2()cos 30f x x x =+>'()f x (0,)+∞所以在R 上递增,不符合;()f x 故选:B8.将一个顶角为120°的等腰三角形(含边界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重复这一操作.如果这个操作过程无限继续下去…,最后挖剩下的就是一条“雪花”状的Koch 曲线,如图所示已知最初等腰三角形的面积为1,则经过4次操作之后所得图形的面积是( )A .B .C .D .168120818271027【答案】A【分析】根据题意可知,每一次操作之后面积是上一次面积的,按照等比数列即可求得结果.23【详解】根据题意可知,每次挖去的三角形面积是被挖三角形面积的,13所以每一次操作之后所得图形的面积是上一次三角形面积的,23由此可得,第次操作之后所得图形的面积是,n 213nn S ⎛⎫=⨯ ⎪⎝⎭即经过4次操作之后所得图形的面积是.442161381S ⎛⎫=⨯=⎪⎝⎭故选:A9.将3个1和3个0随机排成一行,则3个0都不相邻的概率是( )A .B .C .D .1202151512【答案】C【分析】先求出总数,再由插空法,得到满足题意的情况,由古典概型的公式即可得出答案.【详解】先考虑总的情况,6个位置选3个放1,有种,36C 再考虑3个0都不相邻的情况,将3个0插入3个1形成的4个空中,有种,34C 可得.3436C 1C 5P ==故选:C .10.定义在上的函数满足,且为奇函数,则( )R ()f x ()()2=f x f x -()21f x +-()20231k f k ==∑A .B .C .2022D .20232023-2022-【答案】D【分析】利用抽象函数的轴对称与中心对称性的性质,得出函数的对称轴和中心对称点及周()f x 期,利用相关性质得出具体函数值,即可得出结果.【详解】∵,∴关于对称,()()2=f x f x -()f x 1x =∵为奇函数,∴由平移可得关于对称,且,()21f x +-()f x ()2,1()21f =,即(2)1(2)1f x f x ∴+-=--++(2)(2)2f x f x ++-=()()2=f x f x -(2)()2f x f x ∴++=(4)(2)2f x f x ∴+++=上两式比较可得()(4)f x f x =+∴函数是以4为周期的周期函数.,,()f x ()()()13222f f f +==()()421f f ==∴, ∴.()()()()12344f f f f +++=()()2023120244420234k f k f ==⨯-=∑故选:D.11.如图,在梯形ABCD 中,,,,将△ACD 沿AC 边折起,AB CD ∥4AB =2BC CD DA ===使得点D 翻折到点P ,若三棱锥P -ABC 的外接球表面积为,则( )20πPB=A .8B .4C .D .2【答案】C【分析】先找出两个三角形外接圆的圆心及外接球的球心,通过证明,可得12OO O M=12O M OO =四边形为平行四边形,进而证得BC ⊥面APC ,通过勾股定理可求得PB 的值.12OO MO【详解】如图所示,由题意知,,60ABC ︒∠=所以,AC =AC BC ⊥所以AB 的中点即为△ABC 外接圆的圆心,记为,2O 又因为,2PA PC ==所以,,120APC ︒∠=1PM =所以在中,取AC 的中点M ,连接PM ,则△APC 的外心必在PM 的延长线上,记为,APC △1O所以在中,因为,,所以为等边三角形,APC △160APO ︒∠=11O P O A =1APO △所以,12O P =(或由正弦定理得:)11242sin AC O P O P APC ===⇒=∠所以,11O M =在中,,,,ACB △2122O B AB ==2112O M BC ==2//O M BC 设外接球半径为R ,则,解得:,24π20πR =25R =设O 为三棱锥P -ABC 的外接球球心,则面ABC ,面APC .2OO ⊥1OO ⊥所以在中,,2Rt OO B △21OO =又因为在,,1Rt OO P△11OO ===所以,,121OO O M ==121O M OO ==所以四边形为平行四边形,12OO MO 所以,12//OO O M 又因为,2//O M BC 所以,1OO //BC又因为面APC ,1OO ⊥所以BC ⊥面APC ,所以,BC PC ⊥所以,即:22222228PB PC CB =+=+=PB =故选:C.12.设函数,其中,是自然对数的底数(…),则( )()e ln x f x ax x=-R a ∈e e 2.71828≈A .当时,B .当时,1a =()e f x x≥3e 4a =()0f x >C .当时,D .当时,1a =-()e f x x≥3e 4a =-()0f x >【答案】B【分析】令,结合,判断AC ;将不等式转化为()e ln e x ax x xg x =--()10g =()1g a'=-()0f x >,,再构造函数求解最值即可判断B ;借助特殊值判断D.324e ln e x x x x ⋅>()1,x ∈+∞10e f ⎛⎫< ⎪⎝⎭【详解】解:令,则,且,,()e ln e x ax x xg x =--()e ln ex a x a g x '=---()10g =()1g a'=-当,,∴存在一个较小的正数使得都有,1a =()110g '=-<ε()1,1x ε∀∈+()0g x <当时,,∴存在一个较小的正数使得都有,1a =-()110g '=>ε()1,1x ε∀∈-()0g x <故A ,C 都不正确,对于选项B ,当,则显然成立,当时,即证明,(]0,1x ∈()1,x ∈+∞3e e ln 04xx x ->也即证明,,324e ln e x x x x ⋅>()1,x ∈+∞令,则,12e ()x h x x =()312e()xx h x x -'=所以,时,,单调递增,时,,单调递减,()2,x ∈+∞1()0h x '>1()h x ()0,2x ∈1()0h x '<1()h x 所以,的最小值为,12e ()x h x x =()21e 24h =令,则,()2ln xh x x =()221ln x h x x -'=所以,时,,单调递减,时,,单调递增,()e,x ∈+∞2()0h x '<()2h x ()0,e x ∈2()0h x '>()2h x 所以,的最大值为,()2ln xh x x =()21e e h =所以,,()()()()21122323334e 444e 1ln 2e e e e e 4e x xh x h h h x x x ⋅=≥=⋅==≥=因为不同时取等,所以,,即选项B 正确,324e ln e x x x x ⋅>对于选项D ,当时,(成立),即1e x =11132243e e 2e 11e e e e ln e e 0e 16e 4e e 4416+⋅=-<-<⇔<⇔<,所以选项D 不正确.10e f ⎛⎫< ⎪⎝⎭故选:B .【点睛】关键点点睛:本题解题的关键在于根据不同选项,构造不同的函数,利用函数值的大小,特殊值等,实现大小比较.二、填空题13.设是虚数单位,复数的模长为__________.i 2i1i +【分析】先根据复数的除法化简,然后由模长公式可得.【详解】解:()()()2i 1i 2i 1i,1i 1i 1i -==+∴++-=.14.某班有48名学生,一次考试的数学成绩X (单位:分)服从正态分布,且成绩在()280,N σ上的学生人数为16,则成绩在90分以上的学生人数为____________.[]80,90【答案】8【分析】根据正态分布的对称性即可求解.【详解】由X (单位:分)服从正态分布,知正态密度曲线的对称轴为,成绩在()280,N σ80x=上的学生人数为16,[]80,90由对称性知成绩在80分上的学生人数为24人,所以90分以上的学生人数为.24168-=故答案为:815.如图,在中,.延长到点,使得,则ABCπ3AC ACB ∠==BA Dπ2,6AD CDA ∠==的面积为__________.ABC 【分析】根据正弦定理和面积公式求解即可.【详解】解:因为在中,,,ADC △π3AC ACB ∠==π2,6AD CDA ∠==所以,由正弦定理得,sin sin AD AC ACD CDA ∠∠=sin ACD ∠=π4ACD ∠=所以,,5ππ,124CAB ABC ∠∠==在中,由正弦定理可得ABC sin sin AB ACACB CBA ∠∠=AB =因为ππππππsin sin sin cos cos sin 464646CAB ⎛⎫∠=+=+=⎪⎝⎭所以,1sin 2ABC S AB AC CAB ∠=⨯⨯⨯=16.《九章算术》中记载了我国古代数学家祖暅在计算球的体积时使用的一个原理:“幂势既同,则积不容异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积恒相等,则它们的体积相等.已知双曲线的右焦点到渐近线的距离记为,双曲线()2222:10,0x y C a b a b -=>>d 的两条渐近线与直线,以及双曲线的右支围成的图形(如图中阴影部分所示)绕C 1y =1y =-C(其中),则双曲线的离心率为______.yπ222c a b =+C 【分析】先利用条件求出,直线与渐近线及双曲线的交点,从而求出截面积,再利题设所给d 1y =信息建立等量关系,从而求出结果.【详解】由题意知渐近线方程为,右焦点为,所以,by xa =±(),0F c 22bc d b a b ==+由,得,1y b y x a =⎧⎪⎨=⎪⎩a xb =由,得()2222110y x y x a b =⎧⎪⎨-=>⎪⎩x ==所以截面面积为,()2222221ππa b a a b b ⎛⎫+ ⎪-= ⎪⎝⎭由题知,阴影部分绕y 轴转一周所得几何体的体积等于底面积与截面面积相等,高为2的圆柱的体积,∴,22πππV a ===2bc =所以,即,()4222226a b c c a c ==-44226a c a c =-∴,解得,所以42e e 60--=2e 3=e =三、解答题17.据世界田联官方网站消息,原定于2023年5月日在中国广州举办的世界田联接力赛延期1314、至2025年4月至5月举行.据了解,甲、乙、丙三支队伍将会参加2025年4月至5月在广州举行的米接力的角逐.接力赛分为预赛、半决赛和决赛,只有预赛、半决赛都获胜才能进入决赛.已知4400⨯甲队在预赛和半决赛中获胜的概率分别为和;乙队在预赛和半决赛中获胜的概率分别为和;23343445丙队在预赛和半决赛中获胜的概率分别为和.2356(1)甲、乙、丙三队中,谁进入决赛的可能性最大;(2)设甲、乙、丙三队中进入决赛的队伍数为,求的分布列.ξξ【答案】(1)乙进入决赛的可能性最大(2)答案见解析【分析】(1)根据相互独立事件同时发生的概率公式计算得解;(2)根据(1)及相互独立事件同时发生的概率公式计算,列出分布列.【详解】(1)甲队进入决赛的概率为,231342⨯=乙队进入决赛的概率为,343455⨯=丙队进入决赛的概率为,255369⨯=显然乙队进入决赛的概率最大,所以乙进入决赛的可能性最大.(2)由(1)可知:甲、乙、丙三队进入决赛的概率分别为,135,,259的可能取值为,ξ0,1,2,3,()1354011125945P ξ⎛⎫⎛⎫⎛⎫==---=⎪⎪⎪⎝⎭⎝⎭⎝⎭,()135********2(1(1)(1)25952995290P ξ==-⨯⨯+-⨯⨯+-⨯⨯=,()135132596P ξ==⨯⨯=,()()()()43711110231459063P P P P ξξξξ==-=-=-==---=所以的分布列为:ξξ0123P4451337901618.已知分别为三个内角的对边,且.,,a b c ABC ,,A B C ()sin 2sin A B C-=(1)证明:;2222a b c =+(2)若,,,求AM 的长度.2π3A =3a =3BC BM =【答案】(1)证明见解析(2)1AM =【分析】(1)先利用三角形的内角和定理结合两角和差的正弦公式化简,再利用正弦定理和余弦定理化角为边,整理即可得证;(2)在中,由(1)结合余弦定理求出,再在中,利用余弦定理即可得解.ABC ,b c ABM 【详解】(1)由,()()sin 2sin 2sin A B C A B -==+得,sin cos cos sin 2sin cos 2cos sin A B A B A B A B -=+则,sin cos 3cos sin 0A B A B +=由正弦定理和余弦定理得,2222223022a c b b c a a b ac bc +-+-⋅+⋅=化简得;2222a b c =+(2)在中,,ABC 2229a b c bc =++=又因为,所以,所以2222a b c =+222229b c b c bc +=++=b c ==所以,π6B C ==由,得,3BC BM = 13a BM ==在中,,ABM 2222cos 313133a a AM c c B ⎛⎫=+-⨯⋅=+-= ⎪⎝⎭19.如图,正三棱柱的体积为P 是面内不同于顶点的一点,111ABC A B C -AB =111A B C 且.PAB PAC ∠=∠(1)求证:;⊥AP BC (2)经过BC 且与AP 垂直的平面交AP 于点E ,当三棱锥E -ABC 的体积最大时,求二面角平面角的余弦值.1P BC B --【答案】(1)证明见解析.【分析】(1)由线面垂直的判定定理即可证明;(2)由分析知,三棱锥E -ABC 的体积最大,等价于点E 到面ABC 的距离最大,由分析知,∠PFD为二面角的平面角,以F 为原点建立空间直角坐标系,分别求出平面和,代入1P BC B --FP FD即可得出答案.【详解】(1)设线段BC 的中点为F ,则,AF BC ⊥∵,,AP 为公共边,AB AC =PAB PAC ∠=∠∴,PAB PAC △△≌∴,PB PC =∴,又,面APF ,PF BC ⊥AF PF F = ,AF PF ⊂∴BC ⊥面APF ,面APFAP ⊂(2)设线段的中点为D ,由题意,点P 在线段上,11B C 1A D由,111ABC A B C V -=AB =12AA =∴三棱锥E -ABC 的体积最大,等价于点E 到面ABC 的距离最大,∵AP ⊥面BCE ,面BCE ,∴,EF ⊂AP EF ⊥∴点E 在以AF 为直径的圆上,如图,易知,3AF =从而,45EAF EFA ∠=∠=︒由(1)知PF ⊥BC ,DF ⊥BC ,平面,DF 平面,PF ⊂PBC ⊂1BCB 平面平面,PBC1BCB BC =∴∠PFD 为二面角的平面角,1P BC B --如图,以F 为原点建立空间直角坐标系,则,,,,()0,0,0F 330,,22E ⎛⎫⎪⎝⎭()B ()0,1,2P ,()0,0,2D于是,,从而,()0,1,2FP =()0,0,2FD =cos ,FP FD <>==∴二面角.1P BC B --20.已知,两点分别在x 轴和y 轴上运动,且,若动点G 满足()0,0M x ()00,N y 1MN =,动点G 的轨迹为E .2OG OM ON =+(1)求E 的方程;(2)已知不垂直于x 轴的直线l 与轨迹E 交于不同的A 、B 两点,总满足,Q ⎫⎪⎪⎭AQO BQO ∠=∠证明:直线l 过定点.【答案】(1);2214x y +=(2)证明见解析.【分析】(1)根据平面向量的坐标运算可得,结合和两点坐标求距离公式可得002xx y y ==、1MN =,将代入计算即可;22001x y +=002x x y y ==、(2)设直线l 的方程为:、,联立椭圆方程并消去y ,根据韦达定理表y kx m =+()()1122A x y B x y ,、,示出,利用两点求斜率公式求出,结合题意可得,列出关于k 和m1212+、x x x x AQ BQk k 、AQ BQk k =-的方程,化简计算即可.【详解】(1)因为,即,2OG OM ON =+0000(,)2(,0)(0,)(2,)x y x y x y =+=所以,则,002x x y y ==,002xx y y ==又,得,即,1MN =22001x y +=22()12x y +=所以动点G 的轨迹方程E 为:;2214x y +=(2)由题意知,设直线l 的方程为:,,y kx m =+()()1122A x y B x y ,,,则,1122y kx m y kx m=+=+,,消去y ,得,2214x y y kx m ⎧+=⎪⎨⎪=+⎩222(41)8440k x kmx m +++-=由,得,22226416(41)(1)0k m k m ∆=-+->2241m k <+,21212228444141km m x x x x k k --+==++,直线的斜率为,直线的斜率为,AQAQ k =BQ BQ k =又,所以AQO BQO ∠=AQk =BQk-=整理,得,1212120y x x y y y +=12122()()0kx x m x x ++=,2222228(1)80414141km km k mk k k --+=+++由,化简得,2410k +≠m =所以,(y kx k x ==故直线过定点.21.已知函数为的导函数.1()ln (0,0),()f x kx a x x a f x x ->'=-+>()f x (1)当时,求函数的极值;1,2a k ==()f x (2)已知,若存在,使得成立,求证:()1212,(0,)x x x x ∈+∞≠k ∈R ()()12f x f x =.()()120f x f x ''+>【答案】(1)极大值为,无极小值.3-(2)证明见解析【分析】(1),求导,利用函数的单调性及极值的定义求解;1()2ln f x x xx =--+(2)不妨设,因为,所以,结合12x x >()()12f x f x =121212ln 1x x a kx x x x +=-,得()()1222121211112f x f x a k x x x x ⎛⎫''+=+++- ⎪⎝⎭,设, 构造函数()()()2121211222121221212ln x x x x x f x f x ax xx x x x x -⎛⎫''+=+-- ⎪-⎝⎭12(1,)x t x =∈+∞,结合函数的单调性,可证得结论.1()2ln (1)t t t t tϕ=-->【详解】(1)当时,此时,1,2a k ==1()2ln f x x xx =--+则,2211(21)(1)()2x x f x x x x +-'=-+=-当时,,则在单调递增;01x <<()0f x '>()f x (0,1)当时,,则在单调递减;1x >()0f x '<()f x (1,)+∞所以的极大值为,无极小值.()f x (1)3f =-(2)不妨设,因为,12x x >()()12f x f x =则,11221211ln ln kx a x kx a x x x --+=--+即,所以,()12112122ln x x x a k x x x x x -+=-121212ln1x x a k x x x x +=-由,则,21()a f x k x x '=+-()()1222121211112f x f x a k x x x x ⎛⎫''+=+++- ⎪⎝⎭,()()12122212121212ln111112x x f x f x a ax x x x x x x x ⎛⎫ ⎪⎛⎫ ⎪''+=+++-+ ⎪- ⎪⎝⎭ ⎪⎝⎭即,()()12122212121212ln 112112x x f x f x a x x x x x x x x ⎛⎫ ⎪ ⎪''+=+-++-- ⎪ ⎪⎝⎭所以()()()222121211222121212212ln x x x x x f x f x a x x x x x x x -⎛⎫-''+=+-⎪-⎝⎭即,()()()2121211222121221212ln x x x x x f x f x ax x x x x x x -⎛⎫''+=+-- ⎪-⎝⎭设, 构造函数,12(1,)x t x =∈+∞1()2ln (1)t t t t t ϕ=-->则,2221221()10t t t t t t ϕ-+'=+-=>所以在上为增函数,()t ϕ(1,)+∞所以,()(1)0t ϕϕ>=因为,()21222121210,0,0x x a x x x x ->>>-所以.()()120f x f x ''+>【点睛】方法点睛:利用导数证明不等式常见解题策略:(1)构造差函数,根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为利用条件将问题逐步转化,或利用放缩、等量代换将多元函数转化为一元函数,再通过导数研究函数的性质进行证明.22.“太极图”是关于太极思想的图示,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.在平面直角坐标系中,“太极图”是一个圆心为坐标原点,半径为的圆,其中黑、白区域xOy 4分界线,为两个圆心在轴上的半圆,在太极图内,以坐标原点为极点,轴非负半1C 2C y (2,2)P -x轴为极轴建立极坐标系.(1)求点的一个极坐标和分界线的极坐标方程;P 1C (2)过原点的直线与分界线,分别交于,两点,求面积的最大值.l 1C 2C M N PMN 【答案】(1),:3π4P ⎛⎫ ⎪⎝⎭1C 24sin 0ρρθ-=(2)4【分析】(1)由直角坐标和极坐标的互化公式转化即可;(2)由图形对称性知,,在极坐标系中,求,并求其最大值即可.2PMN POM S S = POM S 【详解】(1)设点的一个极坐标为,,,P (),P P P ρθ0P ρ>[)0,2πP θ∈则,P ρ===2tan 12P P P y x θ===--∵点在第三象限,∴,∴点的一个极坐标为.P 3π4P θ=P 3π4P ⎛⎫ ⎪⎝⎭∵“太极图”是一个圆心为坐标原点,半径为的圆,4∴分界线的圆心直角坐标为,半径为,1C ()10,2C 2r =∴的直角坐标方程为(),即(),1C ()2224x y +-=0x ≥2240x y y +-=0x ≥将,,代入上式,得,,cos x ρθ=sin y ρθ=222x y ρ+=24sin 0ρρθ-=π0,2θ⎡⎤∈⎢⎥⎣⎦化简,得分界线的极坐标方程为,.1C 4sin ρθ=π0,2θ⎡⎤∈⎢⎥⎣⎦(2)∵在上,∴设点的极坐标为,则,,M 1C M (),M M M ρθ4sin MM ρθ=π0,2M θ⎡⎤∈⎢⎥⎣⎦∴的面积POM ()11sin sin 22POM P M P M S OP OM POM ρρθθ=⋅⋅∠=⋅⋅- 13π4sin sin 24M M θθ⎛⎫=⋅- ⎪⎝⎭24sin cos 4sin M M Mθθθ=+()2sin 221cos 2M M θθ=+-2sin 22cos 22M M θθ=-+π224M θ⎛⎫=-+ ⎪⎝⎭∵,∴,π0,2M θ⎡⎤∈⎢⎥⎣⎦ππ3π2,444M θ⎡⎤-∈-⎢⎥⎣⎦∴当,即时,的面积的最大值为.ππ242M θ-=3π8M θ=POM ()max 2POM S = ∵直线过原点分别与,交于点,,∴由图形的对称性易知,,l 1C 2C M N OM ON =∴面积,PMN 2PMN POM S S =∴面积的最大值为.PMN ()()max max 24PMN POM S S == 23.已知,且,证明:0,0,1a b c >>>222422a b c c ++-=(1);24a b c ++≤(2)若,则.2a b =1131b c +≥-【答案】(1)证明见解析(2)证明见解析【分析】(1)由柯西不等式即可证明;(2)由均值的不等式可得,由(1)可得()()11112141911a b c b c b c b c ⎛⎫⎛⎫⎡⎤+++-=++-≥ ⎪ ⎪⎣⎦--⎝⎭⎝⎭,即可证明.11213a b c ≥++-1131b c +≥-【详解】(1)由,得,222422a b c c ++-=2224(1)3a b c ++-=由柯西不等式有,()2222222(2)(1)111(21)a b c a b c ⎡⎤++-++≥++-⎣⎦,当且仅当时等号成立,213a b c ∴++-≤211a b c ==-=,当且仅当时等号成立;24a b c ∴++≤11,,22a b c ===(2)由可得2a b =,()()1111412141559111b c a b c b c b c b c c b -⎛⎫⎛⎫⎡⎤+++-=++-=++≥+= ⎪ ⎪⎣⎦---⎝⎭⎝⎭当且仅当时取等,12c b -=由(1)可得,当且仅当时等号成立,11213a b c ≥++-11,,22a b c ===从而,当且仅当时等号成立.11193121b c a b c +≥⋅≥-++-11,,22a b c ===。
2023高考数学模拟卷(一)(含答案解析)
9.已知抛物线 的焦点为 ,准线为 , 是 上一点,直线 与抛物线交于 两点,若 ,则
A B.8C.16D.
10.已知函数 的图象过点 ,且在 上单调,同时 的图象向左平移 个单位之后与原来的图象重合,当 ,且 时, ,则
A. B.-1C.1D.
11.下图是某四棱锥的三视图,网格纸上小正方形的边长为1,则该四棱锥的外接球的表面积为
20.已知椭圆 的一个焦点为 ,离心率为 .不过原点的直线 与椭圆 相交于 两点,设直线 ,直线 ,直线 的斜率分别为 ,且 成等比数列.
(1)求 的值;
(2)若点 在椭圆 上,满足 直线 是否存在?若存在,求出直线 的方程;若不存在,请说明理由.
21.已程 的两个实数根为 ,求证: ;
设M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN,
由抛物线的定义可知|MF|=dM=x1+1,|NF|=dN=x2+1,于是|MN|=|MF|+|NF|=x1+x2+2.
∵ ,
∴ ,即 ,∴ .
∴ ,∴直线AB的斜率为 ,
∵F(1,0),∴直线PF的方程为y= (x﹣1),
将y= (x﹣1),代入方程y2=4x,得3(x﹣1)2=4x,化简得3x2﹣10x+3=0,
A. B. C. D.
6.已知 展开式中 的系数为0,则正实数
A.1B. C. D.2
7.已知数列 的前 项和 ,若 ,则
A. B.
C. D.
8.如图是正四面体的平面展开图, 分别是 的中点,在这个正四面体中:① 与 平行;② 与 为异面直线;③ 与 成60°角;④ 与 垂直.以上四个命题中,正确命题的个数是()
高考数学(理科)模拟试题含答案(一)精编版
高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
高三理科数学摸底测试卷
一、选择题(每题5分,共50分)1. 下列各数中,有最小正整数解的是()A. x + 2 = 3x - 4B. 2x - 1 = 3(x + 1)C. 3x - 2 = 2(x + 3)D. 4x + 1 = 3(x + 2)2. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 5,f(3) = 10,则a 的值为()A. 1B. 2C. 3D. 43. 下列不等式中,正确的是()A. 2x > x + 1B. x - 1 > 2x - 3C. 3x < 2x + 1D. x + 2 > x + 44. 已知等差数列{an}的首项为a1,公差为d,若a1 + a2 + a3 = 6,a4 + a5 + a6 = 18,则a1的值为()A. 1B. 2C. 3D. 45. 在△ABC中,∠A = 60°,AB = AC,则sinB的值为()B. √3/2C. 1D. √36. 已知函数y = x^2 - 4x + 4,则函数的对称轴方程为()A. x = 2B. y = 2C. x = 1D. y = 17. 下列命题中,正确的是()A. 对于任意实数x,都有x^2 ≥ 0B. 对于任意实数x,都有x^3 ≥ 0C. 对于任意实数x,都有x^4 ≥ 0D. 对于任意实数x,都有x^5 ≥ 08. 已知等比数列{bn}的首项为b1,公比为q,若b1 + b2 + b3 = 27,b4 + b5 + b6 = 243,则q的值为()A. 3B. 6C. 9D. 129. 在△ABC中,∠A = 45°,∠B = 90°,∠C = 45°,若AB = 2,则BC的长度为()A. √2B. 2D. 410. 已知函数y = log2(x + 1),则函数的值域为()A. (-∞, 0]B. [0, +∞)C. (-∞, +∞)D. (-1, +∞)二、填空题(每题5分,共50分)11. 已知函数f(x) = x^2 - 2x + 1,则f(x)的顶点坐标为______。
最新高三数学理科第一次模拟试卷(附答案)
最新高三数学理科第一次模拟试卷(附答案)一、单选题1.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A.B.C.D.2.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“⊥”是“⊥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.一个空间几何体的正视图、侧视图为两个边长是1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的表面积等于()A.B.C.D.64.设,,,则()A.B.C.D.二、填空题5.角终边上有点,且,则____________6.已知在等腰直角中,,若,则等于________.7.已知的反函数为,当时,函数的最大值为,最小值为,则__________.8.函数有四个零点,则的取值范围为_______.9.已知,则________10.记等差数列的前项和为,若,,则____.11.计算是否正确?______________.12.已知复数,其中是虚数单位,则_______.13.从0,1,2,3,4,5这六个数字中任取两个奇数和两个不为0的偶数,组成没有重复数字的四位数的个数为__________.14.等腰直角三角形直角边长为2,以斜边所在直线为轴旋转,其余各边旋转一周形成几何体,则该几何体的体积为_______.15.已知集合则___________.16.设抛物线为,过点(1,0)的直线与抛物线交于、两点,则.三、解答题17.某市为创建全国卫生城市,引入某公司的智能垃圾处理设备.已知每台设备每月固定维护成本万元,每处理一万吨垃圾需增加万元维护费用,每月处理垃圾带来的总收益万元与每月垃圾处理量(万吨)满足关系:(注:总收益=总成本+利润)(1)写出每台设备每月处理垃圾获得的利润关于每月垃圾处理量的函数关系;(2)该市计划引入台这种设备,当每台每月垃圾处理量为何值时,所获利润最大?并求出最大利润.18.求满足下列条件的椭圆或双曲线的标准方程:(1)椭圆的焦点在y轴上,焦距为4,且经过点A(3,2);(2)双曲线的焦点在x轴上,右焦点为F,过F作重直于x轴的直线交双曲线于A,B两点,且|AB|=3,离心率为.19.如图,已知梯形中,,,,,,在平面内,过作,以为轴将梯形旋转一周,求所得旋转体的表面积及体积.20.在数列中,.(1)证明:数列是等差数列.(2)设,是否存在最小正整数k,使对任意,恒成立?若存在,求出k的值;若不存在,说明理由.21.已知= (cos x,sin x),= (-cos x,cos x),函数f (x)=.(⊥)求函数f (x)的最小正周期;(⊥)当x⊥时,求f(x)的值域.。
高考理科数学模拟试卷(含答案)
高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。
注意事项:1.答题前,请务必填写自己的姓名和考籍号。
2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。
3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,请只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。
2023-2024学年四川省成都市高三高考冲刺卷(一)数学(理)模拟试题(含解析)
2023-2024学年四川省成都市高三高考冲刺卷(一)数学(理)模拟试题一、单选题1.已知集合2{|60},{|4}A x x x B y y x =+-≥=≤≤,则集合()A B =R ð()A .(,0)[2,)-∞⋃+∞B .(,0)(2,)-∞+∞C .(,3][2,)-∞-+∞UD .(,3](2,)-∞-+∞ 【正确答案】A【分析】根据题意,将集合,A B 分别化简,然后结合集合的运算,即可得到结果.【详解】因为{2{|60}2A x x x x x =+-≥=≥或}3x ≤-,且{}{|4}02B y y x y x ==≤≤=≤≤,则()(),02,B =-∞+∞R ð,所以(,0)[2(),)A B -∞⋃+=∞R ð.故选:A2.走路是最简单优良的锻炼方式,它可以增强心肺功能,血管弹性,肌肉力量等,甲、乙两人利用手机记录了去年下半年每个月的走路里程(单位:公里),现将两人的数据绘制成如图所示的折线图,则下列结论中正确的是()A .甲走路里程的极差等于10B .乙走路里程的中位数是26C .甲下半年每月走路里程的平均数小于乙下半年每月走路里程的平均数D .甲下半年每月走路里程的标准差小于乙下半年每月走路里程的标准差【正确答案】C【分析】根据折线图,得到甲、乙下半年的走路历程数据,根据极差、中位数、平均数以及标准差与数据稳定性之间的关系求解.【详解】对于A 选项,712-月甲走路的里程为:31、25、21、24、20、30,甲走路里程的极差为312011-=公里,A 错;对于B 选项,712-月乙走路的里程为:29、28、26、28、25、26,由小到大排列分别为:25、26、26、28、28、29,所以,乙走路里程的中位数是2628272+=,B 对;对于C 选项,甲下半年每月走路里程的平均数31252124203015166+++++=,乙下半年每月走路里程的平均数为2928262825261622766+++++==,所以,甲下半年每月走路里程的平均数小于乙下半年每月走路里程的平均数,C 对;对于D 选项,由图可知,甲下半年走路里程数据波动性大于乙下半年走路里程数据,所以甲下半年每月走路里程的标准差大于乙下半年每月走路里程的标准差,D 错.故选:C.3.已知平面向量||2a = ,||1b = ,,a b 的夹角为60 ,)a tb t +=∈R ,则实数t ()A .1-B .1C .12D .1±【正确答案】A【分析】对a tb +=两边平方,再由数量积公式计算可得答案.【详解】因为a tb += ,所以22223a a b t t b +⋅⋅+= ,即2422cos603t t +⨯⨯+= ,解得1t =-.故选:A.4.若直线y ax =是曲线2ln 1y x =+的一条切线,则实数=a A .12e -B .122e -C .12e D .122e 【正确答案】B【分析】设出切点坐标,求出函数的导数,利用导数的几何意义求出切线方程,进行比较建立方程关系进行求解即可.【详解】数的定义域为(0,+∞),设切点为(m ,2lnm+1),则函数的导数2f x x'=(),则切线斜率2k m =,则对应的切线方程为22122y lnm x m x m m-+=-=-()(),即221y x lnm m=+-,2y ax a m=∴= ,且210lnm -=,即12lnm =,则12m e =,则121222a ee-=,故选B .本题主要考查函数的导数的几何意义的应用,求函数的导数,建立方程关系是解决本题的关键.5.函数1e ()sin 1e xxf x x -=⋅+的部分图象大致形状是()A .B .C.D.【正确答案】C【分析】先判断函数的奇偶性,结合对称性以01x <<时的函数值的正负判断可得答案.【详解】由1e ()sin 1e xxf x x -=⋅+,x ∈R ,定义域关于原点对称,得()()()()1e e 11e sin sin sin 1e e 11ex x xx x x f x x x x f x ------=⋅-=⋅-=⋅=+++,则函数()f x 是偶函数,图象关于y 轴对称,排除BD ;当01x <<时,1e 0x-<,1e 0x+>,sin 0x >,所以()1e sin 01e xxf x x -=⋅<+,排除A.故选:C.6.已知正方体1111ABCD A B C D -(如图1),点P 在棱1DD 上(包括端点).则三棱锥1B ABP -的侧视图不可能...是()A .B .C .D .【正确答案】D【分析】根据题意结合三视图逐项分析判断.【详解】对于选项A :当点P 于点D 重合,则1B ABP -的侧视图如选项A 所示,故A 正确;对于选项B :当点P 于点1D 重合,则1B ABP -的侧视图如选项B 所示,故B 正确;对于选项C :当点P 为线段1DD 的中点,则1B ABP -的侧视图如选项C 所示,故C 正确;对于选项D :因为点P 在棱1DD 上运动,则侧视图中右边的一条边与底边垂直,且右边的一条边的边长与正方体的棱长相等,所以1B ABP -的侧视图如不可能如选项D 所示,故D 错误;故选:D.7.已知抛物线24y x =的焦点和椭圆的一个焦点重合,且抛物线的准线截椭圆的弦长为3,则椭圆的标准方程为()A .22132x y +=B .22143x y +=C .22154x y +=D .22165x y +=【正确答案】B【分析】根据椭圆的焦点以及31,2⎛⎫-± ⎪⎝⎭在椭圆上,即可求解,,a b c 的值.【详解】抛物线24y x =的焦点为()1,0,准线为=1x -,设椭圆的方程为()222210x y a b a b +=>>,椭圆中,1c =,当=1x -时,32y =,故229141,a b+=又222a b c =+,所以2,a b ==,故椭圆方程为22143x y +=,故选:B8.已知()()sin f x x ωϕ=+(0,ωϕ>为常数),若()f x 在ππ,62⎛⎫⎪⎝⎭上单调,且π5ππ263f f f ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则ϕ的值可以是()A .5π6-B .π6-C .π3D .2π3【正确答案】A【分析】根据()f x 在ππ,62⎛⎫⎪⎝⎭上单调,可得03ω<≤,再由π5ππ263f f f ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求得()f x 的一条对称轴和一个对称中心,进而求得2ω=,再求ϕ的值.【详解】对于函数()()sin f x x ωϕ=+,0ω>,因为()f x 在ππ,62⎛⎫⎪⎝⎭上单调,所以πππ262T ω-≤=,即03ω<≤.又π5ππ263f f f ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以π5π2π2623x +==为()f x 的一条对称轴,且ππ23,02⎛⎫+ ⎪ ⎪ ⎪⎝⎭即5π,012⎛⎫⎪⎝⎭为()f x 的一个对称中心,因为2π5πππ312432T-=<≤,所以2π3x =和5π,012⎛⎫⎪⎝⎭是()f x 同一周期内相邻的对称轴和对称中心,则2π5π4312T =-,即πT =,所以(]2π20,3Tω==∈,所以()()sin 2f x x ϕ=+,又5π,012⎛⎫⎪⎝⎭为()f x 的一个对称中心,则5π2π12k ϕ⨯+=,Z k ∈,则5ππ6k ϕ=-+,Z k ∈,当0k =时,5π6ϕ=-.故选:A.9.如图,在矩形ABCD 中,E F 、分别为边AD BC 、上的点,且3AD AE =,3BC BF =,设P Q 、分别为线段AF CE 、的中点,将四边形ABFE 沿着直线EF 进行翻折,使得点A 不在平面CDEF 上,在这一过程中,下列关系不能..成立的是()A .直线//AB 直线CD B .直线AB ⊥直线PQC .直线//PQ 直线ED D .直线//PQ 平面ADE【正确答案】C【分析】画出翻折之后的立体图形,根据点线面之间的位置关系以及平行与垂直的相关定理,可以证明或证伪相关命题.【详解】翻折之后如图所示:①因为3AD AE =,3BC BF =,所以//AB EF 且//EF CD ,因此//AB CD ,故选项A 成立;②连接FD ,因为P Q 、分别为FA FD 、的中点,所以//PQ AD ,又因为AB AD ⊥,所以AB PQ ⊥,故选项B 成立;③因为//PQ AD ,⋂=ED AD D ,所以PQ 与ED 不平行,故选项C 不成立;④因为//PQ AD ,且PQ ⊄平面ADE ,AD ⊂平面ADE ,所以//PQ 平面ADE ,故选项D 成立.故选:C10.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(图1所示).假定在水流量稳定的情况下,筒车上的每一个盛水筒都做逆时针匀速圆周运动,筒车转轮的中心O 到水面的距离h 为1.5m ,筒车的半径r 为2.5m ,筒车每秒转动rad 12π,如图2所示,盛水桶M 在0P 处距水面的距离为3m ,则2s 后盛水桶M 到水面的距离近似为()A .3.2mB .3.4mC .3.6mD .3.8m【正确答案】D设ts 后盛水桶M 到水面的距离h 关于t 的函数解析式为()()()sin 0,0h t A t b A ωϕω=++>>,根据题中信息求出函数()h t 的解析式,再令2t =即可得解.【详解】设ts 后盛水桶M 到水面的距离h 关于t 的函数解析式为()()()sin 0,0h t A t b A ωϕω=++>>,由题意可得()()max min 41.52.51h t A b h t A b ⎧=+=⎪⎨=-=-=-⎪⎩,解得 2.51.5A b =⎧⎨=⎩,由于筒车每秒转动rad 12π,所以,函数()h t 的最小正周期为()22412T s ππ==,所以,212T ππω==,则() 2.5sin 1.512t h t πϕ⎛⎫=++ ⎪⎝⎭,由于盛水桶M 在0P 处距水面的距离为3m ,则()0 2.5sin 1.53h ϕ=+=,可得3sin 5ϕ=,由于函数()h t 在0=t 附近单调递增,则ϕ为第一象限角,所以,4cos 5ϕ=,所以,()12 2.5sin 1.5 2.5cos 1.5622h πϕϕϕ⎛⎫⎛⎫=++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭()2.5 1.5 3.8m =≈.故选:D.思路点睛:建立三角函数模型解决实际问题的一般步骤:(1)审题:审清题目条件、要求、理解数学关系;(2)建模:分析题目变化趋势,选择合适的三角函数模型;(3)求解:对所建立的数学模型进行分析研究,从而得出结论.11.已知双曲线C 的方程为22221(0,0)x y a b a b -=>>l 与圆2220(0)x y mx m +-=>相切于M ,与双曲线C 的两条渐近线分别相交于A ,B ,且M 为AB中点,则双曲线C 的离心率为()A .2BCD【正确答案】B 【分析】.设出直线l 的方程,求出A ,B 的坐标,从而可得点M 的坐标,代入圆方程中即可求离心率【详解】依题意,设直线l的方程为(0)y n n =+>,圆2220(0)x y mx m +-=>的方程可化为222()x m y m -+=,即圆心坐标为(,0)m ,半径为m ,因为直线l 与圆相切于Mm =,由0n >可化简得m =,则直线l的方程为()3y x m =+,双曲线C 的两条渐近线分别为b y x a =,b y x a =-,由)y x m b y xa ⎧=+⎪⎪⎨⎪=⎪⎩得A,同理可得B ,因为M 为AB中点,由中点坐标公式可得222(3ma M b a -,M 在圆上,将M 的坐标代入圆方程可得222222())3ma m m b a -+=-,化简整理得222()0a b -=,从而可得a b =,则双曲线C 的离心率ce a==故选:B12.已知函数(),()f x g x 的定义域均为R ,且满足(1)(3)4,(1)(3)6---=++-=f x g x g x f x ,(2)g x +为奇函数,则1071()n f n ==∑()A .5350-B .5250-C .5150-D .5050-【正确答案】A【分析】由条件通过赋值,结合周期函数的定义证明()()h x f x x =+为周期为2的周期函数,再求()()0,1h h ,结合周期函数性质求1071()n h n =∑,由此可得结论.【详解】因为函数(2)g x +为奇函数,所以()()220g x g x ++-+=,在(1)(3)4f x g x ---=中将x 代换为1x +可得()(2)4f x g x --=①,在(1)(3)6g x f x ++-=中将x 代换为1x +可得(2)(2)6g x f x ++-=②,①②两式相减可得()()(2)(2)22g x f x f x g x ++--+-+=,所以()(2)2f x f x --=,即()(2)2f x x f x x -+-=+,设()()h x f x x =+,则()()2h x h x +=,所以函数()()h x f x x =+为周期为2的周期函数,由()()220g x g x ++-+=取0x =可得()20g =,由()(2)4f x g x --=取0x =可得(0)(2)4f g -=,所以(0)4f =,在()(2)2f x f x --=中取1x =可得()(1)12f f --=,在()(2)4f x g x --=中取1x =可得(1)(1)4f g -=④,在()(2)4f x g x --=中取=1x -可得(1)(3)4f g --=⑤,在()()220g x g x ++-+=中取1x =可得()()310g g +=⑥,将④⑤⑥相加可得()(1)18f f -+=,又()(1)12f f --=,所以()13f =,又(0)4f =,()()h x f x x =+,所以()()0004h f =+=,()()1114h f =+=,又函数()()h x f x x =+为周期为2的周期函数,所以()()()()1071()1231074107428n h n h h h h ==+++⋅⋅⋅+=⨯=∑,所以()()()()()1071()112210710742812107n h n n h h h =-=-+-+⋅⋅⋅+-=-++⋅⋅⋅+∑,所以()()()10711107107428428577853502n h n n =+⨯-=-=-=-∑,所以1071()5350n f n ==-∑.故选:A.知识点点睛:本题考查奇函数的性质,周期函数的定义,周期函数的性质,组合求和法,等差数列求和,考查赋值法,属于综合题,考查学生的逻辑推理能力和运算求解能力.二、填空题13.若复数z 满足(2i)12i z +=-,则z 的共轭复数z 的虚部为________.【正确答案】1【分析】根据复数的除法运算化简复数,即可由共轭复数的概念以及虚部概念求解.【详解】由(2i)12i z +=-得()()()()12i 2i 12i 2i 4i 2i 2i 2i 2i 5z ------====-++-,故i z =,且虚部为1,故114.在[]4,4-之间任取一个实数m ,使得直线0x y m ++=与圆222x y +=有公共点的概率为________.【正确答案】12/0.5【分析】利用直线与圆的位置关系求出m 的取值范围,再利用几何概型的概率公式可求得所求事件的概率.【详解】圆222x y +=因为直线0x y m ++=与圆222x y +=≤,解得22m -≤≤,因此,所求事件的概率为()()221442P --==--.故答案为.1215.已知正三棱柱111ABC A B C -所有顶点都在球O 上,若球O 的体积为32π3,则该正三棱柱体积的最大值为________.【正确答案】8【分析】由条件结合球的体积公式求球的半径,设正三棱柱的底面边长为x ,求出三棱柱的高,结合棱柱的体积求三棱柱的体积,再利用导数求其最大值.【详解】设正三棱柱111ABC A B C -的上,下底面的中心分别为12,O O ,连接12O O ,根据对称性可得,线段12O O 的中点O 即为正三棱柱111ABC A B C -的外接球的球心,线段OA 为该外接球的半径,设OA R =,由已知3432ππ33R =,所以2R =,即2OA =,设正三棱柱111ABC A B C -的底面边长为x ,设线段BC 的中点为D ,则2AD x =,1223323AO AD ==⨯=,在1Rt AO O △中,1OO ==所以12O O =,0x <<,又ABC 的面积1122S BC AD x =⋅=⨯=所以正三棱柱111ABC A B C -的体积242x V x =⨯设t ,则22123x t =-,02t <<,所以)2123V t t =-,02t <<,所以)2129V t '=-,令0V '=,可得3t =或3t =-,舍去,所以当0t <<0V '>,函数)2123V t t =-在0,3⎛⎫ ⎪ ⎪⎝⎭上单调递增,当2323t <<时,0V '<,函数()231232V t t =-在23,23⎛⎫ ⎪ ⎪⎝⎭上单调递减,所以当233t =时,()231232V t t =-取最大值,最大值为8,所以当22x =时,三棱柱111ABC A B C -的体积最大,最大体积为8.故答案为.816.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos a C c A b c -=-,且1a c +=,则当边c 取得最大值时,ABC 的周长为________.【正确答案】33/33【分析】由正弦定理结合两角和的正弦公式可求得cos A 的值,结合角A 的取值范围可得出角A 的值,利用正弦定理可求得c 的最大值及其对应的C 的值,进而可求得b 的值,由此可得出ABC 的周长.【详解】因为cos cos a C c A b c -=-,由正弦定理可得sin cos cos sin sin sin A C A C B C -=-,即()sin cos cos sin sin sin sin cos cos sin sin A C A C A C C A C A C C -=+-=+-,整理可得2cos sin sin A C C =,因为A 、()0,πC ∈,所以,sin 0C >,则1cos 2A =,故π3A =,由正弦定理可得)231sin sin 332c a c c C A =-,整理可得2332332sin 31sin 23sin Cc C C C=+++因为2π03C <<,当π2C =时,c 取最大值,且c 4323=-+,此时,(1143a c =-=--=,π6B =,所以,22c b ==因此,当边c 取得最大值时,ABC的周长为()((32423a b c ++=+-+-=-.故答案为.3三、解答题17.设等比数列{}n a 的前n 项和为n S ,且()*231n n S a n N =-∈.()1求{}n a 的通项公式;()2若()()1311nn n n b a a +=++,求{}n b 的前n 项和n T .【正确答案】(1)13n n a -=.(2)311 2231n n T ⎛⎫=- +⎝⎭.【分析】()1利用数列的递推关系式的应用求出数列的通项公式.()2利用()1的结论,进一步利用裂项相消法求出数列的和.【详解】() 1等比数列{}n a 的前n 项和为n S ,且()*231.n n S a n N =-∈①当1n =时,解得11a =.当2n ≥时11231n n S a --=-②-①②得1323n n n a a a --=,所以13(nn a a -=常数),故11133n n n a --=⋅=.()2由于13n n a -=,所以()()1133111123131n n n n n n b a a -+⎛⎫==- ⎪++++⎝⎭,所以011311113112313131312231n n n n T -⎛⎫⎛⎫=-+⋯+-=- ⎪ ⎪+-+++⎝⎭⎝⎭.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.18.“五一黄金周”期间,某商场为吸引顾客,增加顾客流量,推出购物促销优惠活动,具体优惠方案有两种:方案一:消费金额不满300元,不予优惠;消费金额满300元减60元;方案二:消费金额满300元,可参加一次抽奖活动,活动规则为:从装有3个红球和3个白球共6个球的盒子中任取3个球(这些小球除颜色不同其余均相同),抽奖者根据抽到的红球个数不同将享受不同的优惠折扣,具体优惠如下:抽到的红球个数0123优惠折扣无折扣九折八折七折(1)现有甲乙两位顾客各获得一次抽奖活动,求这两位顾客恰好有一人获得八折优惠折扣的概率;(2)若李女士在该商场消费金额为x 元(300x >),请以李女士实付金额的期望为决策依据,对李女士选择何种优惠方案提出建议.【正确答案】(1)99200(2)答案见解析【分析】(1)先求事件抽奖的顾客获得八折优惠的概率,再根据独立重复试验的概率公式求两位顾客恰好有一人获得八折优惠折扣的概率;(2)在300x >条件下,分别求两种方案下李女士实付金额的期望,由此提出建议.【详解】(1)设事件A :抽奖的顾客获得八折优惠,则213336C C 9()C 20P A ⋅==;由于甲乙两位顾客获得八折优惠的概率均为920,设甲乙两位顾客恰好一人获得八折优惠的概率P ,则129999C (12020200P =⨯-=;所以甲乙两位顾客恰好一人获得八折优惠的概率为99200.(2)方案一:设实付金额1ξ,则160x ξ=-,(300x >).方案二:设实付金额2ξ,则2ξ的可能取值有:x ,0.9x ,0.8x ,0.7x ;(300x >).03236C 1()C 20P x ξ===;1233236C C 9(0.9)C 20P x ξ===;29(0.8)20P x ξ==;33236C 1(0.7)C 20P x ξ===;所以()219998178520201020102010100E x x x x x ξ=+⨯+⨯+⨯=.①若8560100x x -<,解得300400x <<,选择方案一;②若8560100x x -=,解得400x =,选择方案一或方案二均可;③若8560100x x ->,解得400x >,选择方案二.,所以当消费金额大于300且小于400时,选择方案一;当消费金额等于400时,选择方案一或方案二均可;当消费金额大于400时,选择方案二.19.如图,在直三棱柱111ABC A B C -中,点E ,F 分别是BC ,11AC 中点,平面11ABB A 平面AEF l =.(1)证明:l EF ∥;(2)若AB AC ==,平面11ACC A ⊥平面11ABB A ,且1AB EF ⊥,求直线l 与平面11A B E 所成角的余弦值.【正确答案】(1)证明过程见详解【分析】(1)取AB 中点G ,连接EG ,1A G ,先证明四边形1EGA F 为平行四边形,再证明EF ∥平面11ABB A ,再根据直线与平面平行的性质即可证明l EF ∥;(2)根据题意先证明11AC ,11A B ,1AA 两两垂直,从而建立空间直角坐标系,再根据1AB EF ⊥求得1AA 的值,再利用线面角的向量求法即可求解.【详解】(1)取AB 中点G ,连接EG ,1A G ,∵E ,G 分别是BC ,AB 中点,∴EG AC ∥且12EG AC =,又∵1A F AC ∥且112A F AC =,∴1A F EG ∥且1=A F EG ,∴四边形1EGA F 为平行四边形,∴1EF A G ∥,又EF ⊄平面11ABB A ,1AG ⊂平面11ABB A ,∴EF ∥平面11ABB A ,∵EF ⊂平面AEF ,平面AEF ⋂平面11ABB A l =,∴EF l ∥.(2)由三棱柱为直棱柱,∴1AA ⊥平面111A B C ,∴111AA AC ⊥,111AA A B ⊥,∵平面11ACC A ⊥平面11ABB A ,平面11ACC A 平面111ABB A AA =,11AC ⊂平面11ACC A ,∴11A C ⊥平面11ABB A ,∴1111A C A B ⊥,故以1A 为坐标原点,以11A C ,11A B ,1AA 分别为x ,y ,z 轴建立空间直角坐标系,设1AA a =,则1B ,F ,)E a ,(0,0,)A a ,所以1)AB a =- ,(0,)EF a =-,又1AB EF ⊥,则10AB EF ⋅=,解得2a =,所以2)E ,(0,0,2)A,则11A B =,12)A E =,设平面11A B E 法向量为(,,)n x y z =,所以11100n A B n A F ⎧⋅=⎪⎨⋅=⎪⎩,即020z ⎧=⎪+=,取x =,得1)n =- ,由(1)知直线EF l ∥,则l方向向量为(0,2)EF =-,设直线l 与平面11BCC B 所成角为α,则sin cos ,3n EF n EF n EF α⋅===⋅,则cos α=所以直线l 与平面11BCC B所成角的余弦值为3.20.已知抛物线C :22y x =,过(1,0)P 的直线与C 相交于A ,B 两点,其中O 为坐标原点.(1)证明:直线OA ,OB 的斜率之积为定值;(2)若线段AB 的垂直平分线交y 轴于M ,且12tan 5AMB ∠=,求直线AB 的方程.【正确答案】(1)证明见解析(2)10x -=或10x -=【分析】(1)直线与抛物线方程联立,利用韦达定理表示斜率乘积;(2)结合二倍角公式,求||4||3AB MN =,以及弦长公式求AB ,并利用韦达定理表示MN ,利用比值,即可求直线方程.【详解】(1)设1222(,),(,)A x y B x y ,设直线AB :x =my +1.联立221y x x my ⎧=⎨=+⎩化简可得:2220.y my --=由韦达定理可得:12122,2y y m y y +==-;所以1212221212124222OA OB y y y y k k y y x x y y ⋅====-⋅,所以直线OA ,OB 的斜率之积为定值2-.(2)设线段AB 的中点N ,设AMN θ∠=.则22tan 12tan tan 21tan 5AMB θθθ∠===-,解得2tan 3θ=,所以||2||3AN MN =,即||4||3AB MN =;所以12|||AB y y =-=又线段AB 的中点N ,可得122N y y y m +==,所以211N N x my m =+=+.因为MN AB ⊥,所以MN k m =-,所以2|||1)N M MN x x m =-=+.所以||4||3AB MN =,解得m =所以直线AB 的方程为:10x -=或10x +-=.21.已知()ln 1(R)f x x kx k =-+∈,()(e 2)x g x x =-.(1)求()f x 的极值;(2)若()()g x f x ≥,求实数k 的取值范围.【正确答案】(1)答案见解析(2)1k ≥【分析】(1)根据题意,求导得()f x ',然后分0k ≤与0k >讨论,即可得到结果.(2)根据题意,将问题转化为1n 2e l xx k x+≥-+在0x >恒成立,然后构造函数1ln ()e 2xx h x x+=-+,求得其最大值,即可得到结果.【详解】(1)已知1()ln 1,(),0f x x kx f x k x x'=-+=->(),当0k ≤时,()0f x '≥恒成立,()f x 无极值,当0k >时,1()kx f x x -'=,()f x 在10k ⎛⎫⎪⎝⎭,上单调递增,在1,k ⎛+∞⎫ ⎪⎝⎭单调递减,当1x k =时,()f x 有极大值,1(ln f k k=-,无极小值,综上:当0k ≤时,()f x 无极值;当0k >时,极大值为1()ln f k k=-,无极小值;(2)若()()g x f x ≥,则(e 2)ln 10x x x kx --+-≥在0x >时恒成立,l 2e 1n x x k x +∴≥-+恒成立,令()()221ln ln e e 2,xx x x x h x h x x x '+--=-+=,令2ln e x x x x φ=--(),则21(2)e 0(0)x x x x x xφ'=--+<>(),()x φ在()0+∞,单调递减,又12e 11e 0,(1)e 0e φφ-⎛⎫=->=-< ⎪⎝⎭,由零点存在定理知,存在唯一零点01,1e x ⎛⎫∈ ⎪⎝⎭,使得()00x φ=,即0001ln 20000000111ln e lne ,ln e e x x x x x x x x x x x -===,,令e (0),()(1)e 0,()x x x x x x x x ωωω'=>=+>()在()0+∞,上单调递增,000011ln(),ln x x x x ωω⎛⎫=∴= ⎪⎝⎭,即00ln x x -=∴当0(0,)x x ∈时,()h x 单调递增,0(,)x x ∈+∞单调递减,()()0000max 0001ln 11e 221x x x h x h x x x x +-==+=-+=,0()1k h x ∴≥=,即k 的取值范围为1k ≥.关键点睛:本题主要考查了用导数研究函数极值问题,难度较难,解答本题的关键在于分离参数,然后构造函数,将问题转化为最值问题.22.在直角坐标系xOy 中,已知曲线1C的参数方程为:1cos x y φφ⎧=⎪⎨⎪=⎩(φ为参数),曲线2C 的参数方程为:sin 2sin cos x ty t t =⎧⎨=+⎩(t 为参数).(1)将曲线12,C C 化为普通方程;(2)若曲线2C 与y 轴相交于,A B ,与x 轴相交于C ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,射线π:(0)6l θρ=≥与曲线2C 相交于P ,求四边形ACBP 的面积.【正确答案】(1)2212y x -=;21y x =+,[1,1]x ∈-(2)1【分析】(1)根据关系2221sin 1cos cos φφφ-=消去曲线1C 的参数可得其普通方程,根据平方关系消去参数t 可得曲线2C 的普通方程,(2)先求点,,,A B C P 的坐标,再求四边形ACBP 面积即可.【详解】(1)曲线1C的参数方程为:1cos x y φφ⎧=⎪⎨⎪=⎩(φ为参数)可得222221cos sin 2cos x y φφφ⎧=⎪⎪⎨⎪=⎪⎩(φ为参数)消去参数φ可得:2212y x -=,所以曲线1C 的普通方程为.2212y x -=曲线2C 的参数方程为sin 2sin cos x t y t t =⎧⎨=+⎩(t 为参数)可得22sin cos 12sin cos x t ty t t=⎧⎨=+⎩(t 为参数)消去参数t 可得21y x -=,又因为sin 2[1,1]t ∈-,所以[1,1]x ∈-.所以曲线2C 的普通方程为:21y x =+,[1,1]x ∈-.(2)易得曲线2C 与y 轴交于(0,1)±,与x 轴交于(1,0)-.将射线π:(0)6l θρ=≥化为直角坐标方程.(0)3y x =≥联立()22012y x y x ⎧=≥⎪⎪⎨⎪-=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩,所以四边形ACBP 的面积()112ACB ACPC P S S SAB x x =+=+=+所以四边形ACBP的面积为123.设,,x y z 均为正数,且1x y z ++=,证明:(Ⅰ)13xy yz zx ++≤(Ⅱ)22212x y z y z x z x y ++≥+++【正确答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【分析】(1)先由基本不等式可得222x y z xy yz xz ++≥++,再结合()2x y z ++的展开式即可证明原式成立;(2)利用柯西不等式[]2222()()()()1x y z x y y z x z x y z y z x z x y ⎛⎫+++++++≥++= ⎪+++⎝⎭证明.【详解】证明:(Ⅰ):因为()()()2222222222xy y z x z x y z xy yz xz+++++++=≥++所以22221()2223()x y z x y z xy yz xz xy yz zx =++=+++++≥++故13xy yz zx ++≤,当且仅当x y z ==时“=”成立.(Ⅱ),,x y z 均为正数,由柯西不等式得:2222[()()()]()1x y z x y y z x z x y z y z x z x y ⎛⎫+++++++≥++= ⎪+++⎝⎭即22221x y z y z x z x y ⎛⎫++≥ ⎪+++⎝⎭,故22212x y z y z x z x y ++≥+++,当且仅当x y z ==时“=”成立.本题考查利用基本不等式、柯西不等式等证明不等式,难度一般.证明时,利用整体思想,注意“1”的巧妙代换.。
甘肃省兰州市第五十中学2022-2023学年高三第一次模拟考试数学(理科)试题(含答案解析)
甘肃省兰州市第五十中学2022-2023学年高三第一次模拟考试数学(理科)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合(){}2R log 22A x x =∈-<,{}1,0,1,2,3B =-,则A B ⋂真子集的个数()A .8B .7C .4D .62.设i 是虚数单位,若复数12z i =+,则复数z 的模为()A .1B .CD 3.下列命题中是假命题的是()A .∃x ∈R ,2log 0x =B .∃x ∈R ,cosx =1C .∀x ∈R ,2x >0D .∀x ∈R ,2x >04.已知α=()A .3B .3-C .1D .1-5.总体由编号为01,02,⋯,49,50的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为()附:第6行至第9行的随机数表27486198716441487086288885191620747701111630240429797991968351253211491973064916767787339974673226357900337091601620388277574950A .3B .19C .38D .206.已知非零单位向量,a b 满足a b a b +=- ,则a 与b a -的夹角是()A .6πB .3πC .4πD .34π7.若存在x ∈R ,使ax 2+2x +a <0是真命题,则实数a 的取值范围是()A .(-∞,1)B .(-∞,1]C .(-1,1)D .(-1,1]8.数列{}n a 满足11a =,且对任意的*n ∈N 都有11n na a a n +=++,则1n a ⎧⎫⎨⎬⎩⎭的前100项和为A .100101B .99100C .101100D .2001019.一个几何体三视图如下图所示,则该几何体体积为()A .12B .8C .6D .410.已知F 是椭圆E :()222210x y a b a b+=>>的左焦点,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若3PF QF =,且120PFQ ∠=︒,则椭圆E 的离心率为()A B .12C D 11.李雷和韩梅梅两人都计划在国庆节的7天假期中,到“东亚文化之都--泉州”“二日游”,若他们不同一天出现在泉州,则他们出游的不同方案共有A .16种B .18种C .20种D .24种12.已知函数()ln af x x x =-,若函数()f x 在[]1,e 上的最小值为32,则a 的值为A .B .e2-C .32-D .12e 二、填空题13.如图为计算y x =函数值的程序框图,则此程序框图中的判断框内应填________.14.已知0,0x y >>,若2282y x m m x y+>+恒成立,则实数m 的取值范围是________.15.已知直线12:l y x =,则过圆222410x y x y ++-+=的圆心且与直线1l 垂直的直线2l 的方程为________.16.对大于或等于2的自然数m 的n 次方幂有如下分解方式:2213=+23135=++241357=+++3235=+337911=++3413151719=+++根据上述分解规律,则2513579=++++,若3*()m m N ∈的分解中最小的数是73,则m 的值为__________.三、解答题17.在四边形ABCD 中,AB ∥CD ,1AD BD CD ===.(1)若32AB =,求BC ;(2)若2AB BC =,求cos BDC ∠.18.如图,在多面体ABCDEF 中,四边形ABCD 为直角梯形,AD BC ∥,AB ⊥AD ,四边形ADEF 为正方形,平面ADEF ⊥平面ABCD .BC =3AB =3AD ,M 为线段BD 的中点.(1)求证:BD ⊥平面AFM ;(2)求平面AFM 与平面ACE 所成的锐二面角的余弦值.19.清华大学自主招生考试题中要求考生从A ,B ,C 三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A ,B ,C 三题答卷数如下表:题ABC答卷数180300120(Ⅰ)负责招生的教授为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A 题作答的答卷中抽出了3份,则应分别从选择B ,C 题作答的答卷中各抽出多少份?(Ⅱ)测试后的统计数据显示,A 题的答卷得优的有60份,若以频率作为概率,在(Ⅰ)问中被抽出的选择A 题作答的答卷中,记其中得优的份数为X ,求X 的分布列及其数学期望E X ().20.已知椭圆()2222:10x y E a b a b +=>>:1l x ty =+交E 于A ,B 两点;当0=t 时,AB =(1)求E 的方程;(2)设A 在直线3x =上的射影为D ,证明:直线BD 过定点,并求定点坐标.21.设函数()()22f x alnx x a x =+-+,其中.a R ∈(Ⅰ)若曲线()y f x =在点()()22f ,处切线的倾斜角为4π,求a 的值;(Ⅱ)已知导函数()'f x 在区间()1e ,上存在零点,证明:当()1x e ∈,时,()2f x e >-.22.已知曲线C :22149x y +=和直线l :222x t y t=+⎧⎨=-⎩(t 为参数).(1)求曲线C 的参数方程和直线l 的普通方程;(2)过曲线C 上任意一点P 作与直线l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.23.已知,,R a b c ∈,且满足236a b c ++=,求22223a b c ++的最小值.参考答案:1.B【分析】利用对数不等式的解法及交集的定义,结合真子集的个数公式即可求解.【详解】由题()2log 22x -<,则024x <-<,得22x -<<,所以{}R 22A x x =∈-<<,{}{}{}R 221,0,1,2,31,0,1A B x x ⋂=∈-<<⋂-=-,所以A B ⋂真子集的个数为3217-=.故选:B.2.D【分析】根据复数模的计算公式,计算出z 的模.【详解】依题意,z ==,故选D.【点睛】本小题主要考查复数模的概念及运算,属于基础题.3.C【详解】21,log 0x x ∃==;0,cos 1x x ∃==;2,0x R x ∀∈≥;,20x x R ∀∈>,所以假命题是C 4.C【分析】由α为第二象限角,可得sin 0,cos 0αα><,再结合22sin cos 1αα+=,化简即可.cos 2sin cos sin cos ααααα+=+,因为α为第二象限角,所以sin 0,cos 0αα><,所以cos 2sin 2sin cos 211sin cos sin cos αααααααα-+=+=-=.故选:C.【点睛】本题考查同角三角函数基本关系的运用,考查学生的计算能力,属于基础题.5.B【解析】根据用用随机数表法进行简单随机抽样的方法,得出结论.【详解】解:从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,位于01至50中间,含端点,则这四个数为:41、48、28,19,故选:B .【点睛】本题主要考查用随机数表法进行简单随机抽样,属于基础题.6.D【分析】由||||a b a b +=- 等式两边同时平方可得0a b ⋅= ,同时计算出||b a - 的值,设a 与b a-的夹角为θ,代入公式()cos ||||a b a a b a θ⋅-=-,计算可得答案.【详解】解:由||||a b a b +=- 等式两边同时平方可得:222222a b a b a b a b ++⋅=+-⋅,化简可得:0a b ⋅= ,又因为222||21102b a a b a b -=+-⋅=+-=,所以||b a -=,设a 与b a -的夹角为θ,则()cos 2||||a b a a b a θ⋅-==-- ,又0θπ,所以34πθ=,故选:D .【点睛】本题主要考查向量的模、夹角及平面向量数量积的公式,考查学生的计算能力,属于中档题.7.A【分析】求得特称命题的否定,结合一元二次不等式在R 上恒成立求参数范围即可.【详解】命题:存在x ∈R ,使ax 2+2x +a <0的否定是:对任意的x R ∈,220ax x a ++≥.若对任意的x R ∈,220ax x a ++≥为真命题,则:当0a =时,20x ≥,显然不是恒成立,故舍去;当0a ≠时,0a >,且2Δ440a =-≤,解得[)1,a ∈+∞.综上所述,[)1,a ∈+∞.又因为原命题:存在x ∈R ,使ax 2+2x +a <0是真命题,故任意的x R ∈,220ax x a ++≥是假命题.故(),1a ∈-∞.故选:A .【点睛】本题考查由特称命题的真假求参数的范围,涉及一元二次不等式在R 上恒成立求参数范围,属综合基础题.8.D【详解】试题分析:由11n n a a a n +=++可得,取,并将这些等式两边相加可得因,因,故,故应选D.考点:数列求和的叠加和裂项相消等方法.【易错点晴】本题重点考查是数列求和的方法,解答时可充分借助题设条件,先想方设法求出数列{}n a 的通项公式,再求数列1n a ⎧⎫⎨⎬⎩⎭的前100项和.在求数列{}n a 一的通项公式时,依据11n n a a a n +=++道可得,再对取值,并将所得这个等式两边相加,抵消去相同的项并化简计算可得,当得到时,再巧妙地将其变形为,运用裂项相消的方法从而使问题获解.9.D【分析】根据三视图还原立体几何图得该几何体为三棱锥,然后代入棱锥体积计算公式求解.【详解】由三视图可知该几何体为三棱锥,如图,故其体积11234432V =⨯⨯⨯⨯=,故选:D .10.A【分析】根据题意设椭圆的右焦点,根据正弦定理即可求得a 和c 的关系,即可求得椭圆的离心率.【详解】解:设椭圆的右焦点F ',连接PF ',QF ',根据椭圆对称性可知四边形PFF Q '为平行四边形,则QF PF '=,且由120PFQ ∠=︒,可得60FPF '∠=︒,所以42PF PF PF a ''+==,则12PF a '=,32PF a =由余弦定理可得()()222222cos 603c PF PF PF PF PF PF PFPF ''''=+-︒=+-,即2222974444c a a a =-=,∴椭圆的离心率4e ==,故选:A .【点睛】本题考查椭圆离心率的求解,其中涉及到椭圆的定义以及余弦定理,对学生的分析与计算能力要求较高,难度较难.11.C【详解】分析:根据分类计数原理,“东亚文化之都﹣﹣泉州”“二日游”,任意相邻两天组合一起,一共有6种情况,如①②,②③,③④,④⑤,⑤⑥,⑥⑦,分两种情况讨论即可.详情:任意相邻两天组合一起,一共有6种情况,如①②,②③,③④,④⑤,⑤⑥,⑥⑦,若李雷选①②或⑥⑦,则韩梅梅有4种选择,选若李雷选②③或③④或④⑤或⑤⑥,则韩梅梅有3种选择,故他们不同一天出现在泉州,则他们出游的不同方案共有2×(4+6)=20,故答案为C点睛:本题主要考查计数原理,意在考查计数原理等基础知识的掌握能力和分类讨论思想的运用能力.12.A【详解】由题意,()221a x a f x x x x+'=+=,若0a ≥,则()0f x ¢>,函数()f x 在[]1,e 上单调递增,所以3(1)2f a =-=,矛盾;若1e a -<<-,函数()f x 在[1,]a 上递减,在[,]a e 上递增,所以3()2f a =,解得a =若10a -≤<,函数()f x 在[]1,e 上是递增函数,所以3(1)2f a =-=,矛盾;若a e ≤-,函数()f x 在[]1,e 上单调递减,所以3()2f e =,解得2ea =-,矛盾.综上a =故选:A.13.0?x <【分析】将y x =化简成分段函数即可求解【详解】由()()00x x y x x x ⎧≥⎪==⎨-<⎪⎩知,判断框内应填0?x <故答案为:0?x <14.42m -<<【详解】由于2282y xm m x y +>+恒成立,需2min 282y x m m xy ⎛⎫+>+⎪⎝⎭,由基本不等式得288y x x y +≥,因此282m m >+,∴42m -<<.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15.230x y +-=【分析】将圆的一般方程化为标准方程,求得圆心.由两条直线垂直可得直线2l 的斜率.由点斜式即可求得直线2l 的方程.【详解】圆222410x y x y ++-+=,化为标准方程可得()()22124x y ++-=则圆心坐标为()1,2-因为12:l y x =,直线1l 与直线2l 垂直由两条直线垂直的斜率关系可得直线2l 的斜率为12k =-由点斜式方程可得()1122y x =-++化简即230x y +-=故答案为:230x y +-=【点睛】本题考查了圆的一般方程与标准方程的转化,两条直线垂直时斜率关系,点斜式方程的简单应用,属于基础题.16.9【详解】试题分析:根据23=3+5,33=7+9+11,43=13+15+17+19,从23起,m 3的分解规律恰为数列3,5,7,9,若干连续项之和,23为前两项和,33为接下来三项和,故m 3的首数为m 2-m+1.∵m 3(m ∈N *)的分解中最小的数是73,∴m 2-m+1=73,∴m=9.故答案为9.考点:本题主要考查归纳推理,等差数列通项公式.点评:中档题,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题.17.(1)21【分析】(1)在三角形ABD 中,根据余弦定理可求出A ∠的大小,即为BDC ∠的大小,然后在三角形BCD 中根据余弦定理可以求出BC 的值(2)根据A BDC ∠=∠,分别表示出两角的余弦令其相等,可求出AB 的长度,从而求出cos BDC∠【详解】(1)在三角形ABD 中,根据余弦定理可得,22291134cos 324212AB AD BD A AB AD +-+-∠===⋅⋅⨯⨯,由题得:A ABD BDC ∠=∠=∠,所以3cos cos 4BDC A ∠=∠=,在三角形BCD 中,根据余弦定理可得,222312cos 11242BC BD CD BD CD BDC =+-⋅⋅⋅∠=+-⨯=,所以,BC =(2)设22AB BC a ==,在三角形ABD 中,根据余弦定理可得,2222411cos 2221AB AD BD a A a AB AD a +-+-∠===⋅⋅⨯⨯,在三角形BCD 中,根据余弦定理可得,22222112cos 22112BD CD BC a a BDC BD CD +-+--∠===⋅⋅⨯⨯,所以222a a -=,得:1a =或1a =(舍),则cos cos 1BDC A a ∠=∠==18.(1)证明见解析;【分析】(1)证明AF ⊥BD 以及BD ⊥AM 即可求证BD ⊥AM ;(2)在点A 处建立空间坐标系,分别计算平面AFM 与平面ACE 的法向量,结合空间角与向量角的联系计算即可.【详解】(1)因为四边形ADEF 为正方形,所以AF ⊥AD .又因为平面ADEF ⊥平面ABCD ,且平面ADEF 平面ABCD =AD ,AD ⊂平面ADEF ,所以AF ⊥平面ABCD ,而BD ⊂平面ABCD ,所以AF ⊥BD ,因为AB =AD ,M 线段BD 的中点,所以BD ⊥AM ,且AM ∩AF =A ,,AM AF ⊂平面AFM ,所以BD ⊥平面AFM (2)由(1)知AF ⊥平面ABCD ,所以AF ⊥AB ,AF ⊥AD ,又AB ⊥AD ,所以AB ,AD ,AF 两两垂直.分别以AB ,AD ,AF 为x 轴,y 轴,z 轴的正方向建立空间直角坐标系A -xyz (如图).设AB =1,则A (0,0,0),B (1,0,0),C (1,3,0),D (0,1,0),E (0,1,1),所以()1,1,0BD =- ,()0,1,1AE = ,()1,3,0AC =,设平面ACE 的一个法向量为(),,n x y z = ,则0,AC n AE n ⎧⋅=⎪⎨⋅=⎪⎩即300x y y z +=⎧⎨+=⎩,令y =1,则3,1x z =-=-,则()3,1,1n =--.由(1)知,()1,1,0BD =- 为平面AFM 的一个法向量.设平面AFM 与平面ACE 所成的锐二面角为θ,则cos cos ,11BD n BD n BD n θ⋅-⨯-+⨯+-⨯===.所以平面AFM 与平面ACE所成的锐二面角的余弦值为11.19.(Ⅰ)5份,2份;(Ⅱ)详见解析.【详解】试题分析:(Ⅰ)根据分层比是,所以每一层都是按此分层比抽取,题抽取,题抽取的是;(Ⅱ)由题可知得优的概率是,所以题抽取的3人中,答案满足优的份数,根据二项分布的公式列出分布列,和期望.试题解析:解:(Ⅰ)由题意可得:题AB C答卷数180300120抽出的答卷数352应分别从题的答卷中抽出份,份.(Ⅱ)由题意可知,A 题答案得优的概率为,显然被抽出的A 题的答案中得优的份数的可能取值为0,1,2,3,且1~3(,3)X B .0303128(0)3327P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭;1213124(1)339P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭;;333121(3)3327P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭随机变量的分布列为:8274929127所以842101231279927EX =⨯+⨯+⨯+⨯=().考点:1.分层抽样;2.二项分布.20.(1)2213x y +=;(2)证明见解析,定点()2,0.【分析】(1)首先根据题意得到223a b =,椭圆过点1,3⎛ ⎝⎭,从而得到a =1b =,即可得到椭圆的标准方程.(2)首先设()11,A x y ,()22,B x y ,则()13,D y ,联立椭圆与直线得到()223220t y ty ++-=,利用根系关系得到1212ty y y y ⋅=+,再写出直线()2112:33y y BD y x y x -=-+-,利用根系关系即可得到定点.【详解】(1)由题意得22222223c a b e a a -===,整理得223a b =,由0=t时,3AB =,得到椭圆过点⎛ ⎝⎭,得221213a b +=.因此a =1b =,故E 的方程是2213x y +=.(2)设()11,A x y ,()22,B x y ,则()13,D y .将1x ty =+代入2213x y +=得()223220t y ty ++-=,12223ty y t +=-+,12223y y t ⋅=-+,.从而1212ty y y y ⋅=+①.直线()2112:33y y BD y x y x -=-+-,设直线BD 与x 轴的交点为()0,0x ,则()21012303y y x y x --+=-,.所以()()12121120212121322333y x y ty y ty y x y y y y y y ---=+=+=+---,.将①式代入上式可得02x =.故直线BD 过定点()2,0.【点睛】本题第一问考查椭圆的标准方程,第二问考查直线与椭圆的位置关系,同时考查学生的计算能力,属于中档题.21.(Ⅰ)2a =;(Ⅱ)证明见解析【解析】(Ⅰ)求导得到()()'22a f x x a x =+-+,()'ta 12n 4f π==,解得答案.(Ⅱ)()()()12'0x x a f x x--==,故02a x=,()f x 在()01,x 上单调递减,在()0,x e 上单调递增,()20000min 2ln 2f x x x x x =--,设()22ln 2g x x x x x =--,证明函数单调递减,故()()2min g x g e e >=-,得到证明.【详解】(Ⅰ)()()2ln 2f x a x x a x =+-+,故()()'22af x x a x=+-+,()()'42tan 1242a f a π=+-+==,故2a =.(Ⅱ)()()()()12'220x x a af x x a x x--=+-+==,即()22,a x e =∈,存在唯一零点,设零点为0x ,故()()000'220af x x a x =+-+=,即02a x =,()f x 在()01,x 上单调递减,在()0,x e 上单调递增,故()()()()0220000i 0000m n ln 22ln 22a x x a x x x f x f x x x x +-+=+-+==200002ln 2x x x x =--,设()22ln 2g x x x x x =--,则()'2ln 2g x x x =-,设()()'2ln 2h x g x x x ==-,则()2'20h x x=-<,()h x 单调递减,()()1'12h g ==-,故()'2ln 20g x x x =-<恒成立,故()g x 单调递减.()()2min g x g e e >=-,故当()1x e ∈,时,()2f x e >-.【点睛】本题考查了函数的切线问题,利用导数证明不等式,转化为函数的最值是解题的关键.22.(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数);直线l 的普通方程为260x y +-=;(2).【分析】(1)令cos 2sin 3xy θθ⎧=⎪⎪⎨⎪=⎪⎩,即可得到椭圆的参数方程;消去t ,即可得到直线的普通方程;(2)根据参数方程,表示出点()2cos 3sin P θθ,到直线的距离,再表示出PA ,根据辅助角公式,即可求出PA 的最值.【详解】(1)令cos 2sin 3xy θθ⎧=⎪⎪⎨⎪=⎪⎩,可得曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数).根据222x ty t =+⎧⎨=-⎩消去t 可得,直线l 的普通方程为260x y +-=.(2)曲线C 上任意一点()2cos 3sin P θθ,到直线l :260x y +-=的距离为d =3sin 6θθ=+-()6θα=+-,其中4tan 3α=,且α为锐角.过点P 作PB l ⊥,垂足为B ,则30PAB Ð= ,PB d =.在Rt PBA 中,sin 30sin 30PB d PA ==︒︒()6θα=+-,其中4tan 3α=,且α为锐角.当()sin 1θα+=-时,PA取得最大值为5.当()sin 1θα+=时,PA.23.6【分析】利用柯西不等式求出最小值.【详解】由柯西不等式,得()()()2222123231a b c a ++++≥⋅++.得()()22226232336a b c a b c ++≥++=.所以222236a b c ++≥.当且仅当1a =,即1abc ===时,上式等号成立.所以22223a b c ++的最小值为6.。
高三数学理科模拟试卷一
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若函数f(x) = ax^2 + bx + c的图像开口向上,且f(1) = 2,f(-1) = 0,则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 02. 已知等差数列{an}的首项为a1,公差为d,若a1 + a2 + a3 = 12,a4 + a5 + a6 = 18,则数列{an}的通项公式为()A. an = 3n + 1B. an = 4n - 3C. an = 2n + 1D. an = 3n - 23. 设函数f(x) = log2(x + 1),则f(-1)的值为()A. 0B. 1C. -1D. 无定义4. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值为()A. √3/2B. √2/2C. 1/2D. √3/45. 若复数z满足|z - 1| = |z + 1|,则z在复平面上的几何位置是()A. 位于实轴上B. 位于虚轴上C. 位于第一象限D. 位于第二象限6. 已知函数f(x) = x^3 - 3x,则f'(x) = ()A. 3x^2 - 3B. 3x^2 + 3C. 3x - 3D. 3x + 37. 设向量a = (2, 3),向量b = (1, 2),则向量a与向量b的点积为()A. 7B. 5C. 3D. 18. 若等比数列{an}的首项为a1,公比为q,若a1 + a2 + a3 = 6,a4 + a5 + a6 = 54,则q的值为()A. 2B. 3C. 6D. 99. 已知函数f(x) = x^2 - 4x + 4,则f(x)在区间[1, 3]上的最大值为()A. 3B. 4C. 5D. 610. 在△ABC中,∠A = 30°,∠B = 60°,若AB = 4,则AC的长度为()A. 2√3B. 4√3C. 6D. 8二、填空题(本大题共5小题,每小题5分,共25分。
理科数学-2024届新高三开学摸底考试卷(全国通用)(解析版)
2024届新高三开学摸底考试卷(全国通用)理科数学本试卷共22题(含选考题).全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目1.已知全集{}{}1,2,3,4,5,6,1,4,5,6U A ==,{}1,2,3,5B =,则5∉()A .()U AB ðB .()U B AðC .A BD .A B【答案】A【解析】由题设{4,6}U B =ð,故(){4,6}U B A =I ð,(){1,4,5,6}U B A =U ð,{1,2,3,4,5,6}A B = ,{1,5}A B = ,所以5∉()U A B ð,故选A.2.复数2i1ia z -+=+在复平面上对应的点位于虚轴上,则实数a 的值为()A .1B .2C .1-D .2-【答案】B 【解析】()()()()2i 1i 2i 22i 1i 1i 1i 22a a a a z -+--+-+===+++-,因为复数z 对应点在虚轴上,所以202a -=,解得2a =.故选B.3.已知2022年第1季度农村居民人均消费支出为4391元,为本季度农村居民人均可支配收入的76%,本季度农村居民人均可支配收入的来源及其占比的统计数据的饼状图如图所示,根据饼状图,则下列结论正确的是()A .财产净收入占农村居民人均可支配收入的4%B .工资性收入占农村居民人均可支配收入的40%C .经营净收入比转移净收入大约多659元D .财产净收入约为173元【答案】D【解析】由题知,农村居民人均可支配收入为43910.765778÷≈,工资性收入占农村居民人均可支配收入的2543577844%÷≈,财产净收入占农村居民人均可支配收入的百分比为10.440.320.213%---≈,故A 错、B 错;经营净收入与转移净收入差为()57780.320.21636⨯-≈元,故C 错误; 财产净收入为57780.03173⨯≈元,故D 正确.故选D.4.已知a b ,是平面内两个非零向量,那么“a b ∥ ”是“存在0λ≠,使得||||||a b a b λλ+=+ ”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【详解】若a b ∥,则存在唯一的实数0μ≠,使得a b μ= ,故a b b b b λμλμλ+ =+=+,而()||||||||a b b b b λμλλμ++ ==+,存在λ使得λμλμ+=+成立,所以“a b ∥ ”是“存在0λ≠,使得||||||a b a b λλ+=+ ”的充分条件,若0λ≠且||||||a b a b λλ+=+ ,则a 与b λ 方向相同,故此时a b ∥,所以“a b ∥ ”是“存在0λ≠,使得||||||a b a b λλ+=+ ”的必要条件,故“a b ∥”是“存在0λ≠,使得||||||a b a b λλ+=+”的充要条件,故选C.5.已知3sin 375︒≈,)A .34B .43C.4D.3【答案】B【解析】因为3sin 375︒≈,所以4cos375︒=≈,sin 82︒︒+=()()sin 53sin cos 53cos 53sin sin 4545454535︒-︒︒︒︒-︒︒︒+=-cos 45cos sin 53cos 5345︒︒︒︒=()()4sin 9037cos37453cos 9037sin 3735-==︒︒︒-︒≈=︒︒.故选B.6.某个函数的大致图象如图所示,则该函数可能是()A .21cos 41x xy x =+B .22sin 1x y x =+C .22(e e )1x x y x -+=+D .32sin 1x xy x -+=+【答案】B【解析】4个选项中的函数定义域均为R,设该函数为()f x ,对于A,()()()()2211cos cos 44,,11x x x xf x f x f x f x x x -=-==--++,故21cos 41x x y x =+为奇函数,且()40f >,对于B,()()()222sin 2sin ,,11x x f x f x f x x x -=-==-++故()f x 为奇函数,()2sin 44017f =<,对于C,()()()()222(e e )2(e e ),,11x x x x f x f x f x f x x x --++=-==-++,故()f x 为偶函数,对于D,()()()3322sin sin ,11x x x x f x f x f x x x -+-=-==-++,故()f x 为奇函数,()64sin44117f -+=<-,由图知函数为奇函数,故排除C ;由()40f <,排除A,由()41f >-,排除D,故选B .7.在2023年3月12日马来西亚吉隆坡举行的Yong Jun KL Speedcubing 比赛半决赛中,来自中国的9岁魔方天才王艺衡以4.69秒的成绩打破了“解三阶魔方平均用时最短”吉尼斯世界纪录称号.如图,一个三阶魔方由27个单位正方体组成,把魔方的中间一层转动了45︒之后,表面积增加了()A .54B.54-C.108-D.81-【答案】C【解析】如图,转动了45︒后,此时魔方相对原来魔方多出了16个小三角形的面积,显然小三角形为等腰直角三角形,设直角边x ,,则有23x =,得到32x =-,由几何关系得:阴影部分的面积为21127(324S ==所以增加的面积为1271616(1084S S ===-故选C.8.设M 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,P 是C 上的一个动点.当P 运动到下顶点时,||PM 取得最大值,则C 的离心率的取值范围是()A.2⎫⎪⎪⎣⎭B.0,2⎛ ⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎝⎦【答案】B【解析】设()00,P x y ,()0,M b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PMx y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,0b y b -≤≤,由题意知当0y b=-时,2PM 取得最大值,所以32b b c -≤-,可得222a c ≥,即212e <,则0e <≤.故选B .9.瑞士著名数学家欧拉在1765年证明了定理:三角形的外心、重心、垂心位于同一条直线上,这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作ABC ,4AB AC ==,点(1,3)B -,点(4,2)C -,且其“欧拉线”与圆222:()(3)M x a y a r -+-+=相切.则圆M 上的点到直线30x y -+=的距离的最小值为()A .B .C .D .6【答案】A【解析】点D 为BC 中点,在ABC 中,4AB AC ==,所以BC 边上的高线、垂直平分线和中线合一,则ABC 的“欧拉线”为AD ,因为点()1,3B -,点()4,2C -,所以31,22D ⎛⎫⎪⎝⎭,因为直线BC 的斜率为32114+=---,所以AD 斜率为1,方程为1322y x -=-,即10x y --=,因为“欧拉线”与圆222:()(3)M x a y a r -+-+=相切所以圆心(,3)a a -到“欧拉线”,r r ==圆心(,3)a a -到直线30x y -+=的距离为=所以圆M 上的点到直线30x y -+=的距离的最小值为=故选A.10.已知直四棱柱1111ABCD A B C D -的底面为正方形,12,1AA AB ==,P 为1CC 的中点,过,,A B P 三点作平面α,则该四棱柱的外接球被平面α截得的截面圆的周长为()A B C .2πD .2【答案】D【解析】由题意知直四棱柱1111ABCD A B C D -的外接球的半径122R ==如图,取1DD 的中点E ,连接,,AE PE BP ,易知四边形ABPE 为矩形,且平面α即为平面ABPE ,分别取11,AA BB 的中点,M N ,连接,,MN NP ME ,则易得四边形MNPE 为正方形,由四棱柱的对称性可知,其外接球的球心O 即为正方形MNPE 的中心,取ME 的中点1O ,连接1O O ,则11//,O O EP O O ⊄平面ABPE ,EP ⊂平面ABPE ,所以1//O O 平面ABPE ,故球心O 到平面APE 的距离与1O 到平面APE 的距离相等,过点1O 作1O H AE ⊥,垂足为H ,易知AB ⊥面11AA D D ,1O H ⊂面11AA D D ,故1AB O H ⊥,又AB ⋂,,AE A AB AE =⊂平面ABPE ,所以1O H ⊥平面ABPE ,又1O H =1sin 454O E ︒=,所以球心O 到平面APE 的距离为4,由球的性质知,截面圆的半径r =4==,所以截面圆的周长为2ππ2r =.故选D.11.若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为()A .12B .1C .e D .2e 【答案】B【解析】设直线()111y k x =+-与曲线e x y =相切于点()11,e xx ,直线()211y k x =+-与曲线ln y x =相切于点()22,ln x x ,则11e x k =,且111e 11x k x +=+,所以11e 1xx =,221k x =,且222ln 11x k x +=+,所以22ln 1x x =,令()ln f x x x =,()1ln f x x '=+,当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0f x '<,()f x 单调递减,当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>,()f x 单调递增,且()10f =,()0,0x f x →→,所以当()0,1x ∈时,()0f x <,因为()222ln 1f x x x ==,()111e e 1x xf x ==,即()()12e 10x f x f ==>,所以()()121,,e 1,x x ∞∞∈+∈+,所以12=e x x ,故11221e 1xk k x =⋅=,故选B.12.已知函数()f x 与()g x 的定义域均为R ,(1)f x +为偶函数,且1(3)()f x g x -+=,1()(1)f x g x --=,则下面判断错误的是()A .()f x 的图象关于点(2,1)中心对称B .()f x 与()g x 均为周期为4的周期函数C .20221()2022i f i ==∑D .2023()0i g i ==∑【答案】C【解析】因为()1f x +为偶函数,所以()()11f x f x +=-+①,所以()f x 的图象关于直线1x =轴对称,因为()()11f x g x --=等价于()()11f x g x --=②,又()()31f x g x -+=③,②+③得()()132f x f x -+-=④,即()()132f x f x +++=,即()()22f x f x +=-,所以()()()422f x f x f x +=-+=,故()f x 的周期为4,又()()13g x f x =--,所以()g x 的周期也为4,故选项B 正确,①代入④得()()132f x f x ++-=,故()f x 的图象关于点()2,1中心对称,且()21f =,故选项A 正确,由()()22f x f x +=-,()21f =可得()()01,41f f ==,且()()132f f +=,故()()()()12344f f f f +++=,故20221()5054(1)(2)2021(1)i f i f f f ==⨯++=+∑,因为()1f 与()3f 值不确定,故选项C 错误,因为()()31f x g x -+=,所以()()()()()()10,30,013,211g g g f g f ===-=-,所以()()()()022130g g f f ⎡⎤+=-+=⎣⎦,故()()()()01230g g g g +++=,故20230()50600i g i ==⨯=∑,所以选项D 正确,故选C .二、填空题:本题共4小题,每小题5分,共20分.13.53x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数是__________.【答案】-15【解析】5555213C (3)C rr rr r rr T xxx --+⎛⎫=-=- ⎪⎝⎭,令523-=r 得1r =,所以3x 的系数为511(3)C 15-=-.14.某高校鼓励学生深入当地农村拍摄宣传片,带动当地旅游业的发展,帮助当地居民提升经济收入.若统计发现在某一时段内,200部宣传片的浏览量X (万次)服从正态分布()1.5,0.09N ,则该时段内这200部宣传片中浏览量在(]0.9,1.8万次的个数约为______.(参考数据:()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈)【答案】164【解析】因为浏览量X (万次)服从正态分布()1.5,0.09N ,所以浏览量X (万次)的均值 1.5μ=,方差20.09σ=,0.3σ=,故()(1.2 1.8)0.6827P X P X μσμσ-<≤+=<≤≈,(22)(0.9 2.1)0.9545P X P X μσμσ-<≤+=<≤≈,故[]1(0.9 1.8)(1.2 1.8)(0.9 2.1)(1.2 1.8)0.81862P X P X P X P X <≤=<≤+<≤-<≤≈.故浏览量在(]0.9,1.8万次的作品个数约为2000.8186164⨯≈.15.如图,四边形ABCD 中,AC 与BD 相交于点O ,AC 平分DAB ∠,π3ABC ∠=,33AB BC ==,则sin DAB ∠的值_______.【答案】14【解析】在ABC 中,π,3,13ABC AB BC ∠===,由余弦定理得2222cos AC AB BC AB BC ABC ∠=+-⨯⨯2213123172=+-⨯⨯⨯=,所以AC .由正弦定理得sin sin BC ACBAC ABC=∠∠,sinsin14BC ABCBACAC∠∠⋅==.即cos BAC∠=.又因为AC平分DAB∠,所以sin2sin cos14DAB BAC BAC∠∠∠==.16.已知抛物线24y x=的焦点为F,点,P Q在抛物线上,且满足π3PFQ∠=,设弦PQ的中点M到y轴的距离为d,则1PQd+的最小值为__________.【答案】1【解析】由抛物线24y x=可得准线方程为=1x-,设|||,0,,|(0)PF a QF b a b==>>,由余弦定理可得22222||||||2||||cosPQ PF QF PF QF PFQ a b ab=+-⋅∠=+-,由抛物线定义可得P到准线的距离等于PF,Q到准线的距离等于||QF,M为PQ的中点,由梯形的中位线定理可得M到准线=1x-的距离为11(||||)()22PF QF a b+=+,则弦PQ的中点M到y轴的距离1()12d a b=+-,故2222222||()344(1)()()PQ a b ab a b abd a b a b+-+-=⨯=⨯+++,又2()0,20,4,a b a ba b ab++>>≤∴≤,则222223()()||441(1)()a ba bPQd a b++-≥⨯=++,当且仅当a b=时,等号成立,所以1PQd+的最小值为1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分).如图,四棱锥-P ABCD中,底面ABCD为等腰梯形,AB CD∥,12AD DC AB==,且平面PAD⊥平面ABCD,PD AD⊥.(1)求证:BD PA ⊥;(2)PB 与平面ABCD 所成的角为30 ,求二面角--A PB C 的正弦值.【解析】(1)证明:取AB 的中点E ,连接CE ,则由题意知BCE 为正三角形,所以60ABC ∠= ,由等腰梯形知120BCD ∠= ,设2AD CD BC ===,则4AB =,23BD =,故222AD BD AB +=,即得90ADB ∠=o ,所以AD BD ⊥,因为平面PAD ⊥平面ABCD ,PD AD ⊥,平面PAD ⋂平面ABCD AD =,PD ⊂平面PAD ,所以PD ⊥平面ABCD ,又BD ⊂平面ABCD ,所以PD BD ⊥,因为AD PD D =I ,AD ,PD ⊂平面PAD ,所以BD ⊥平面PAD ,因为PA ⊂平面PAD ,所以BD PA ⊥.(2)由(1)得DA ,DB ,DP 两两垂直,以D 为坐标原点,DA ,DB ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,因为PD ⊥平面ABCD ,所以PB 平面ABCD 所成的角为30PBD ∠= ,设2AD CD BC ===,则23DB =2PD =,则()2,0,0A ,()002P ,,,()0,23,0B ,()3,0C -,则()2,0,2PA =-,()0,23,2PB =- ,()3,2PC =--,设平面PAB 的法向量为(),,m x y z=,则00PA m PB m ⎧⋅=⎪⎨⋅=⎪⎩ ,即220320x z z -=⎧⎪⎨-=⎪⎩,取3z =,则3,1,3m = ,设平面PBC 的法向量为(),,n a b c = ,则00PC n PB n ⎧⋅=⎪⎨⋅=⎪⎩,即2020a c c ⎧-=⎪⎨-=⎪⎩,取c =则(n =,所以1cos ,7m n m n m n ⋅==,所以二面角A PB C --7=.18.(12分)设正项数列{}n a 的前n 项和为n S ,且1n a +=(1)求数列{}n a 的通项公式;(2)能否从{}n a 中选出以1a 为首项,以原次序组成的等比数列()121,,,,1m k k k a a a k = .若能,请找出公比最小的一组,写出此等比数列的通项公式,并求出数列{}n k 的前n 项和n T ;若不能,请说明理由.【解析】(1)1n a +2428n n n S a a =+-当1n =时,211114284S a a a =+-=,即()21112800a a a --=>,得14a =或12a =-(舍去).由2428n n n S a a =+-,……①得()21114282n n n S a a n ---=+-≥,……②-①②得:2211422n n n n n a a a a a --=-+-,化简得()()1120n n n n a a a a ----+=.因为0n a >,所以120n n a a ---=,()122n n a a n -=+≥,即数列{}n a 是以4为首项,2为公差的等差数列,所以()22n a n n *=+∈N .(2)存在.当114k a a ==,238k a a ==时,会得到数列{}n a 中原次序的一列等比数列()121,,,,,1m k k k a a a k = ,此时的公比2q =,是最小的,此时该等比数列的项均为偶数,均在数列{}n a 中;下面证明此时的公比最小:114k a a ==,假若2k a 取26a =,公比为6342=,则323492k a ⎛⎫=⨯= ⎪⎝⎭为奇数,不可能在数列{}n a 中.所以11422m m m k a -+=⋅=.又1222m m k m a k +=+=,所以21mm k =-,即{}n k 的通项公式为()12n n k n -=∈*N ,故()1212122121 (212212)n nn n T n n +-=-+-++-=-=---.19.(12分)人工智能(AI )是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某公司成立了,A B 两个研究性小组,分别设计和开发不同的AI 软件用于识别音乐的类别.记两个研究性小组的AI 软件每次能正确识别音乐类别的概率分别为12,P P .为测试AI 软件的识别能力,计划采取两种测试方案.方案一:将100首音乐随机分配给,A B 两个小组识别,每首音乐只被一个AI 软件识别一次,并记录结果;方案二:对同一首歌,,A B 两组分别识别两次,如果识别的正确次数之和不少于三次,则称该次测试通过.(1)若方案一的测试结果如下:正确识别的音乐数之和占总数的35;在正确识别的音乐数中,A 组占23;在错误识别的音乐数中,B 组占12.(i )请根据以上数据填写下面的22⨯列联表,并通过独立性检验分析,是否有95%的把握认为识别音乐是否正确与两种软件类型有关?正确识别错误识别合计A 组软件B 组软件合计100(ii )利用(i )中的数据,视频率为概率,求方案二在一次测试中获得通过的概率;(2)研究性小组为了验证AI 软件的有效性,需多次执行方案二,假设1243P P +=,问该测试至少要进行多少次,才能使通过次数的期望值为16?并求此时12,P P 的值.附:()()()()22()n ad bc a b c d a c b d K -=++++,其中n a b c d =+++.()20P K x ≥0.1000.0500.0100.0050.0010x 2.7063.8416.6357.87910.828【解析】(1)(i )依题意得22⨯列联表如下:正确识别错误识别合计A 组软件402060B 组软件202040合计6040100因为22100(40202020)25 2.778 3.841604060409K ⨯-⨯==≈<⨯⨯⨯,且()2 3.8410.05P K ≥=,所以没有95%的把握认为软件类型和是否正确识别有关;(ii )由(i )得1221,32P P ==,故方案二在一次测试中通过的概率为2222122122222222221211214C 1C C C 1C C 332322329P ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅-⋅⋅+⋅⋅-+⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;(2)方案二每次测试通过的概率为()()()()()()222212212221122212222122C 1C C C 1C C P P P P P P P P P =⋅-⋅⋅+⋅⋅-+⋅1212833PP PP ⎛⎫=- ⎪⎝⎭()21212833PP PP =-+2124163927PP ⎛⎫=--+ ⎪⎝⎭,所以当1249PP =时,P 取到到最大值1627,又1243P P +=,此时1223P P ==,因为每次测试都是独立事件,故n 次实验测试通过的次数(),X B n P ,期望值()16E X nP ==,因为1627p ≤,所以1627162716n p =≥⨯=所以测试至少27次,此时1223P P ==.20.(12分)已知双曲线:C ()22210y x b b-=>的左、右焦点分别为1F ,2F ,A 是C 的左顶点,C 的离心率为2.设过2F 的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线12x =于M 、N 两点,证明:22MF NF ⋅ 为定值;(3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值;否则,说明理由.【解析】(1)由题可得1,2c a a ==,故可得2c =,则222413b c a =-=-=,故C 的标准方程为2213y x -=.(2)由(1)中所求可得点A ,2F 的坐标分别为()()1,0,2,0-,又双曲线渐近线为y =,显然直线PQ 的斜率不为零,故设其方程为2x my =+,m ⎛≠ ⎝⎭,联立双曲线方程2213y x -=可得:()22311290m y my -++=,设点,P Q 的坐标分别为()()1122,,,x y x y ,则121222129,3131m y y y y m m +=-=--,()121224431x x m y y m +=++=--,()221212122342431m x x m y y m y y m --=+++=-;又直线AP 方程为:()1111y y x x =++,令12x =,则11321y y x =⋅+,故点M 的坐标为1113,221y x ⎛⎫⋅ ⎪+⎝⎭;直线AQ 方程为:()2211y y x x =++,令12x =,则22321y y x =⋅+,故点N 的坐标为2213,221y x ⎛⎫⋅ ⎪+⎝⎭;则22MF NF ⋅ 12123333,,221221y y x x ⎛⎫⎛⎫=-⋅⋅-⋅ ⎪ ⎪++⎝⎭⎝⎭212212122299999313444414413131y y m m x x x x m m -=+⋅=+⋅--+++-+--9990449=+⋅=-故22MF NF ⋅ 为定值0.(3)当直线PQ 斜率不存在时,对曲线22:13y C x -=,令2x =,解得3y =±,故点P 的坐标为()2,3,此时290PF A ∠=︒,在三角形2PF A 中,223,3AF PF ==,故可得245PAF ∠=︒,则存在常数2λ=,使得222PF A PAF ∠=∠成立;当直线PQ 斜率存在时,不妨设点P 的坐标为(),x y ,2x ≠,直线2PF 的倾斜角为α,直线PA 的倾斜角为β,则2PF A πα∠=-,2PAF β∠=,假设存在常数2λ=,使得222PF A PAF ∠=∠成立,即2παβ-=,则一定有()22tan tan tan tan 21tan βπααββ-=-==-,也即2221PA PF PA k k k -=-;又22PF y k x -=--;()()()22222221211111PA PA yy x k x y k x y x ++==-+--+;又点P 的坐标满足2213y x -=,则2233y x =-,故()()()()222222*********PA PA y x y x k k x y x x ++==-+-+-+()()()()221212242212y x y x yx x x x x ++===--++--+-2PF k =-;故假设成立,存在实数常数2λ=,使得222PF A PAF ∠=∠成立;综上所述,存在常数2λ=,使得222PF A PAF ∠=∠恒成立.21.(12分)已知函数()()2111ln 22f x x a x b x x x ⎛⎫=----+ ⎪⎝⎭,其中,R a b ∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 存在三个零点123,,x x x (其中123x x x <<).(i )若1a >,函数()1ln 2g x x x =+,证明:()102b g a a a<-<-;(ii )若01a <<,证明:()221313111121138112381a a x x x x a a a a ⎛⎫⎛⎫++++--< ⎪⎪++⎝⎭⎝⎭.【解析】(1)函数()f x 的定义域为()()()()310,,x x a f x x ∞--+='-.①若1a >时,01x <<11x a <<a x a >()f x '-0+0-()f x 极小值 极大值②若1a =时,()0f x '≤恒成立,()f x 单调递减,③若01a <<时0x a<<a 1<<a x 11x >()f x '-0+0-()f x 极小值极大值 ④若0a ≤时,()0,1x ∈时,()()0,f x f x '<单调递减;()1,x ∈+∞时,()()0,f x f x '>单调递增.综上所述,当1a >时,()()0,1,x f x ∈单调递减,()()1,,x a f x ∈单调递增,()(),,x a f x ∞∈+单调递减;当1a =时,()()0,,x f x ∞∈+单调递减;当01a <<时,()()0,,x a f x ∈单调递减,(),1x a ∈,()f x 单调递增,()()1,,x f x ∞∈+单调递减;当0a ≤时,()()0,1,x f x ∈单调递减,()()1,,x f x ∞∈+单调递增.(2)(i )由(1)知当1a >时,()()0,1,x f x ∈单调递减,()()1,,x a f x ∈单调递增,()(),,x a f x ∞∈+单调递减.所以()f x 存在三个零点,只需()0f a >和()10f <即可,所以()2111ln 022a a a b a a a ⎛⎫----+> ⎪⎝⎭且()1111ln10122a b ⎛⎫----+< ⎪⎝⎭,整理得()1ln 2b a g a a >+=且12b a <.此时,()11111ln ln 22222b g a a a a a a a a a a --+<--+-=--,令()1ln 2h a a a =--,易知()h a 在()1,+∞上单调递减有()()1102h a h <=-<,所以()102b g a a a <-<-.(ii )由(1)知,当01a <<时,()()0,,x a f x ∈单调递减,()(),1,x a f x ∈单调递增,()()1,,x f x ∞∈+单调递减所以12301x a x x <<<<<.若()f x 存在三个零点,只需()10f >和()0f a <即可,所以()2111ln 022a a a b a a a ⎛⎫----+< ⎪⎝⎭且()1111ln10122a b ⎛⎫----+> ⎪⎝⎭,整理得11ln 22a b a a<<+,因为()2111ln 22a a f x x b x x x +=-+--+,设1t x =,则方程2111ln 022x a x b x x x +-+--+=,即为()2111ln 022a a t t x t b -+++-+=记123123111,,t t t x x x ===,则123,,t t t 为方程()2111ln 022a a t t t t b -+++-+=三个不同的根,设313111x t k t x a==>>.要证:()221313111121138112381a a x x x x a a a a ⎛⎫⎛⎫++++--< ⎪⎪++⎝⎭⎝⎭,即证:()()21313221138112381a a t t t t a a a a ++⎛⎫++--< ⎪++⎝⎭,即证:()()21321321138112381a a t t a a a a t t +++--<+++,而()21111111ln 022a a t t t t b -+++-+=且()23333111ln 022a a t t t t b -+++-+=,所以()()()22131313ln ln 102a t t t t a t t -+--+-=,所以131313ln ln 222t t t t a a t t -+--=-⨯-,即证:()()21321313ln ln 2113811381t t a a a t t a a a t t -++-⨯<-+++,即证:()()11323213ln1138110681t t t t a a t t a a ++++>-++,即证:()()221ln 11381101681k ka a k a a ++++>-++,记()()1ln ,11k k k k k ψ+=>-,则()2112ln 0(1)k k k k k ψ'⎛⎫=--> ⎪-⎝⎭,所以()k ψ在()1,+∞为增函数,所以()()k a ψψ>所以()()()()22221ln 1ln 113811113811011681681k ka aa a a a k a a a a a +++++++>+>--++++,设()()()()()221113811ln ,016181a a a a a a a a a ω-++=+<<+++,则()()6543222301412561413010(1)81a a a a a a a a a a a ω'++++++=>+++,所以()a ω在()0,1上是增函数,所以()()10a ωω<=所以()()()()221113811ln 06181a a a a a a a -+++<+++,即()()221ln 1138111681a aa a a a a ++++>-++所以若12301,a x x x <<<<,则()221313111121138112381a a x x x x a a a a ⎛⎫⎛⎫++++--< ⎪⎪++⎝⎭⎝⎭.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为2240x y x +-=.曲线2C 的参数方程为cos 1sin x y ββ=⎧⎨=+⎩(β为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C 和曲线2C 的极坐标方程;(2)若射线θα=(0ρ≥,π02α<<)交曲线1C 于点P ,直线()π2θαρ=+∈R 与曲线1C 和曲线2C 分别交于点M 、N ,且点P 、M 、N 均异于点O ,求MPN △面积的最大值.【解析】(1)把cos x ρθ=,sin y ρθ=代入2240x y x +-=,得曲线1C 的极坐标方程为24cos ρρθ=,即4cos ρθ=.将cos 1sin x y ββ=⎧⎨=+⎩中的参数消去,得曲线2C 的普通方程为2220x y y +-=,把cos x ρθ=,sin y ρθ=代入,得曲线2C 的极坐标方程为22sin ρρθ=,即2sin ρθ=.(2)由题得4cos OP α=,3π4cos 4sin 2OM αα⎛⎫=+= ⎪⎝⎭,π2sin 2cos 2ON αα⎛⎫=+= ⎪⎝⎭,4sin 2cos NM OM ON αα=+=+,因为OP MN ⊥,所以()()2114sin 2cos 4cos 24sin cos 2cos 22MPN S MN OP αααααα=⨯=+⋅=+△()()22sin 2cos 21222αααϕ=++=++≤,其中1tan 2ϕ=,π02ϕ<<,当π22αϕ+=,即π42ϕα=-时,MPN △的面积取得最大值2.23.[选修4—5:不等式选讲](10分)已知函数()1g x x =-的最小值为m ,()()f x g x x =+的最小值为n .实数a ,b ,c 满足a b c m ++=,abc n =,a b ¹,0c >.(1)求m 和n ;(2)证明:a b +<【解析】(1)函数()1g x x =-的最小值为0m =,此时1x =,当1x >时,()121f x x x x =-+=-,当01x ≤≤时,()11f x x x =-+=,当0x <时,()121f x x x x =--=-+,函数()21,111,0112,0x x f x x x x x x ->⎧⎪=-+=≤≤⎨⎪-<⎩,函数在(,0]-∞上单调递减,在[1,)+∞上单调递增,当01x ≤≤时,()1f x =,所以函数()f x 的最小值为1n =,故0,1m n ==.(2)由(1)知0a b c ++=,1abc =,因为0a b c +=-<,10ab c=>,所以a<0,0b <,0a ->,0b ->,1()()a b c ab-+-==,又因为2()()()2a b ab a b a b --⎛⎫=--<≠ ⎪⎝⎭,所以212ab a b ⎛⎫> ⎪--⎝⎭,又1()()a b ab -+-=,所以3[()()]4a b -+->,所以()()a b -+->a b +<。
模拟高考理科数学真题
模拟高考理科数学真题高考理科数学真题模拟一、选择题1. 已知函数$f(x)=\frac{3x+2}{x-4}$,则$f(2)=$A. 1B. 2C. 3D. 42. 方程$x^2-4x+3=0$的根为A. $x=1$和$x=3$B. $x=1$和$x=2$C. $x=1$和$x=4$D. $x=2$和$x=3$3. 等比数列$\{a_n\}$的首项为2,公比为$\frac{1}{3}$,如果$a_1+a_2+...+a_6=37\frac{1}{9}$,则$a_6=$A. $\frac{61}{27}$B. $\frac{69}{27}$C. $\frac{73}{27}$D. $\frac{81}{27}$4. 函数$f(x)=ax^2+bx+c$的图象与$x$轴交于两点$A(1,0)$和$B(3,0)$,则$f(x)$的值域为A. $[0, +\infty)$B. $[c, +\infty)$C. $(-\infty, c]$D. $(-\infty, 0]$5. 设$x=y^2$,$y\neq 0$,则$\frac{dy}{dx}=$A. $\frac{1}{2y}$B. $\frac{1}{2x}$C. $\frac{2}{y}$D. $\frac{y}{2}$二、填空题1. 设$AB=3$,$BC=4$,$CD=2$,$\angle{ABC}=60^\circ$,$\angle{BCD}=45^\circ$,则$AD=$_____2. 如果$\log_2{x}+\log_2{(1-x)}=0$,则$x=$_____3. 函数$f(x)=\sin(2x+\frac{\pi}{4})$的表达式化简为_____4. 已知二次函数$y=ax^2+bx+c$的图象经过点$(1,2)$和$(-1,-2)$,则$a+b+c=$_____5. 圆心在直线$2x-y=3$上,并且与直线$x-y-2=0$相切的圆的方程为_____三、解答题1. 某校学生中,男生和女生的比例为$3:2$,如果男生少20人,则男生和女生人数的比例为$1:2$,请问这个学校共有多少名学生?2. 已知矩形的长为$x-1$,宽为$x+2$,且矩形的面积等于其周长,求矩形的长和宽。
甘肃省靖远一中2024届高三下学期第一次模拟考试(数学试题理)试题
甘肃省靖远一中2024届高三下学期第一次模拟考试(数学试题理)试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()e x f x x=,关于x 的方程()()()2140(f x m f x m m ++++=∈R)有四个相异的实数根,则m 的取值范围是( ) A .44,e e 1⎛⎫---⎪+⎝⎭B .()4,3--C .4e ,3e 1⎛⎫--- ⎪+⎝⎭D .4e ,e 1∞⎛⎫--- ⎪+⎝⎭ 2.已知()22log 217y xx =-+的值域为[),m +∞,当正数a ,b 满足2132m a b a b+=++时,则74a b +的最小值为( ) A .94B .5C .5224+ D .93.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位4.已知函数()2x f x x x ln a ⎛⎫=- ⎪⎝⎭,关于x 的方程f (x )=a 存在四个不同实数根,则实数a 的取值范围是( )A .(0,1)∪(1,e )B .10e ⎛⎫ ⎪⎝⎭,C .11e ⎛⎫ ⎪⎝⎭,D .(0,1)5.在边长为1的等边三角形ABC 中,点E 是AC 中点,点F 是BE 中点,则AF AB ⋅=( ) A .54B .34C .58D .386.已知1F 、2F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过点2F 与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段12F F 为直径的圆外,则双曲线离心率的取值范围是( )A .(2,)+∞B .(3,2)C .(2,3)D .(1,2)7.设复数z 满足z ii z i-=+,则z =( ) A .1B .-1C .1i -D .1i +8.已知复数12iz i-=-(i 为虚数单位)在复平面内对应的点的坐标是( ) A .31,55⎛⎫- ⎪⎝⎭B .31,55⎛⎫-- ⎪⎝⎭C .31,55⎛⎫ ⎪⎝⎭D .31,55⎛⎫- ⎪⎝⎭9.已知函数2ln(2),1,()1,1,x x f x x x -⎧=⎨-+>⎩若()0f x ax a -+恒成立,则实数a 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .[0,1]C .[1,)+∞D .[0,2]10.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种11.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩,则32y x --的取值范围为( )A .3,42⎡⎤⎢⎥⎣⎦B .(1,2]C .(,0][2,)-∞+∞D .(,1)[2,)-∞⋃+∞12.将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,若()g x 为奇函数,则m 的最小值为( )A .9πB .29π C .18π D .24π二、填空题:本题共4小题,每小题5分,共20分。
高考数学理科模拟试题(附答案)
高三年级第一次模拟考试数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.........。
1.复数23()1i i +-= ( )A .-3-4iB .-3+4iC .3-4iD .3+4i2.已知条件:|1|2,:,p x q x a +>>⌝⌝条件且p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .1a ≥ B .1a ≤ C .1a ≥- D .3a ≤-3.函数()|2|ln f x x x =--在定义域内零点可能落在下列哪个区间内( )A .(0,1)B .(2,3)C .(3,4)D .(4,5) 4.如右图,是一程序框图,则输出结果为( )A .49B .511 C .712 D .613 5.已知n S 为等差数列{}n a 的前n 项和,若641241,4,S S S S S ==则 的值为( )A .94B .32C .54D .46.要得到函数()sin(2)3f x x π=+的导函数'()f x 的图象,只需将()f x 的图象( )A .向左平移2π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B .向左平移2π个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变)C .向右平移4π个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)D .向右平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) 7.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若|FM|=2|ME|,则该双曲线的离心率为( )A .3B .2C .3D .28.如图所示的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能,在这25种可能中电路从P 到Q 接通的情况有( )A .30种B .10种C .24种D .16种第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上。
高三理科数学摸底考试试卷
1. 已知函数f(x) = ax^2 + bx + c(a≠0),若f(1) = 3,f(-1) = 1,则f(0)的值为()A. 2B. 1C. 0D. -12. 下列函数中,定义域为实数集R的是()A. y = 1/xB. y = √(x^2 - 1)C. y = log2(x)D. y = sin(x)3. 若向量a = (2, -3),向量b = (-1, 2),则向量a与向量b的夹角θ的余弦值为()A. 1/5B. 2/5C. -1/5D. -2/54. 在△ABC中,已知a=5,b=7,c=8,则△ABC的面积S为()A. 14B. 21C. 28D. 355. 下列命题中,正确的是()A. 对于任意实数x,x^2 ≥ 0B. 对于任意实数x,x^3 ≥ 0C. 对于任意实数x,|x| ≥ 0D. 对于任意实数x,x|x| ≥ 06. 已知数列{an}的前n项和为Sn,若an = 2^n - 1,则S5的值为()A. 31B. 63C. 127D. 2557. 已知等差数列{an}的首项为a1,公差为d,若a3 = 5,a6 = 15,则a1 + a10的值为()A. 25B. 30C. 35D. 408. 若函数y = x^3 - 3x + 1在x=1处取得极值,则该极值为()A. 1B. -1C. 0D. -39. 已知复数z = a + bi(a,b∈R),若|z-1| = |z+i|,则a的值为()A. 0B. 1C. -1D. 不存在10. 下列不等式中,正确的是()A. x^2 + 1 > 0B. x^2 - 1 > 0C. x^2 - 1 < 0D. x^2 + 1 < 011. 已知等比数列{an}的首项为a1,公比为q,若a3 = 2,a5 = 16,则a1的值为______。
12. 若复数z = 3 + 4i的共轭复数为z',则|z-z'|的值为______。
精品解析:河南省濮阳市2022-2023学年高三下学期第一次摸底考试理科数学试题(原卷版)
理科数学
考生注意:
1.答题前,考生务必将自己的姓名,考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.
2回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
(2)若方程 有三个不同的实数根,求a的取值范围.
(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.
[选修4-4:坐标系与参数方程]
22.在直角坐标系xOy中,已知点 ,直线l的参数方程是 (t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程是 .
(1)求l 普通方程与曲线C的直角坐标方程;
(2)设l与C相交于点A,B,求 的值.
[选修4-5:不等式选讲]
23.已知正实数 , , 满足 ,
(1)证明: ;
(2)求 的最小值.
4
6
8
10
30
40
60
70
由数据可知 , 线性相关,且满足回归直线方程 ,则当该款新产的生产线为12条时,预计月产量为()
A 73件B.79件C.85件D.90件
4.函数 的大致图象为()
A. B.
C. D.
5.若 的展开式中常数项为 ,则正整数 的值为()
A.6B.7C.8D.9
6.设 ,且 ,则()
A. B. C. D.
12.已知函数 与 的图象没有公共点,则实数 的取值范围是()
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分
13.已知正六边形ABCDEF的边长为2,则 _________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学基础模拟试题(一)
一、选择题:
1.已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则B C A R ⋂=( )
A 、}{1,5,7
B 、}{3,5,7
C 、}{1,3,9
D 、}{1,2,3
2、复数z=i i 212-+的共轭复数是( ) A 、i - B 、i C 、i 53- D 、i 5
3 3.已知平面向量a =(1,1),b =(1,-1),则向量
1322-=a b ( ) A .(-2,-1) B .(-2,1)
C .(-1,0)
D .(-1,2)
4、设数列的前n 项和,则的值为
A 、15
B 、16
C 、49
D 、64
5.如果执行右面的程序框图,那么输出的S=( )
A .2450
B .2500
C .2550
D .2652
6.函数πsin 23y x ⎛⎫=-
⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )
7.在数列{}n a 中,11
++=n n a n ,且9=n S ,则n=( )
A.97
B.98
C.99
D.100
{}n a 2n S n =8a A.
B . C
D
8.设n S 是等差数列{}n a 的前n 项和,若3163=S S 则=12
6S S ( ) A.103 B.31 C.81 D.91
9.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )
A .
34000cm 3 B .38000cm 3 C .2000cm 3 D .4000cm 3
10.设数列{}n a 是公差为正数的等比数列,已知,15321=++a a a .80321=a a a 则131211a a a ++的值为( )
A.120
B.105
C.90
D.75
11.将函数)62sin(2π
+=x y 的图象向右平移4
1个周期后,所得图像对应的函数为)(x f ,则函数)(x f 的单调递增区间( ) A. )](125,12[Z k k k ∈+
-ππππ B. )](12
11,125[Z k k k ∈++ππππ C. )](247,245[Z k k k ∈+-ππππ D. )](2419,247[Z k k k ∈++ππππ 12、已知等比数列{n a }中,各项都是正数,且2312,2
1,a a a 成等差数列,则87109a a a a ++=( ) A. B. C.
D 、 第II 卷
二、填空题:(本大题共4小题,每小题5分)
13.若x , y 满足约束条件 ,则z =2x +y 的最大值为 .
14.(理科)在二项式324
1(n x x 的展开式中倒数第3项的系数为45,则含有3x 的项的系数为 .
15.已知ϑ是第四象限角,且534sin =⎪⎭⎫ ⎝⎛
+πϑ,则=⎪⎭⎫ ⎝
⎛-4tan πϑ_____. 16.数列{a n }是等差数列,公差d ≠0,且a 2046+a 1978-a 22012=0,{b n }是等比数列,
且b 2012=a 2012,则b 2010·b 2014=________.
1212322+322-50210210x y x y x y +-≤⎧⎪--≥⎨⎪-+≤⎩
三、简答题:(解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分12分)设锐角三角形ABC 的内角A 、B 、C 的对边分别为a.b.c,若a=2b A sin .
(1)求B 的大小.
(2)求C A sin cos +的取值范围.
18.(本小题满分12分)在高二年级某班学生在数学校本课程选课过程中,已知第一小组与第二小组各有六位同学.每位同学都只选了一个科目,第一小组选《数学运算》的有1人,选《数学解题思想与方法》的有5人,第二小组选《数学运算》的有2人,选《数学解题思想与方法》的有4人,现从第一、第二两小组各任选2人分析选课情况.
(Ⅰ)求选出的4 人均选《数学解题思想与方法》的概率;
(Ⅱ)设为选出的4个人中选《数学运算》的人数,求的分布列和数学期望.
19.(本小题满分12分)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.
求证:(1)直线EF ∥平面PCD ;
(2)平面BEF ⊥平面PAD .
ξξ
20.(本小题满分12分)在数列{}n a 中,11a =,122n n n a a +=+.(Ⅰ)设1
2n n n a b -=.证明:数列{}n b 是等差数列;(Ⅱ)求数列{}n a 的前n 项和n S .(全国Ⅰ卷第19题)
21.(本小题满分12分)如图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB BC ⊥,AD CD =,
CAD ∠=30︒.
(Ⅰ)若AD =2,AB BC =2,求四面体ABCD 的体积;
(Ⅱ) 若二面角C AB D --为60︒,求异面直线AD 与BC 所成角的余弦值.
22.(本小题满分10分)在平面直角坐标系中,以原点为极点,x 轴的非负半轴为极轴建立极坐标系,直
线l 的参数方程为2222x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4ρ=.
(1)若l 的参数方程中的2t =-M 点,求M 的极坐标和曲线C 直角坐标方程;
(2)若点(0,2)P ,l 和曲线C 交于,A B 两点,求
11PA PB +. -。