立体图形的平面展开图

合集下载

立体图形的展开图ppt课件

立体图形的展开图ppt课件
1
常见平面图形:
三角形
正方形
长方形
平行四边形
菱形
2
圆形 扇形
圆环
椭圆形
3
常见立体图形:
正方体
长方体
4
圆柱体
圆锥体
5
四棱锥
三棱柱
6
三棱台
圆台
球体
7
你认为设计制作一个包装盒 需要了解什么? 要包装的物体的形状、大小; 它展开后的形状、大小; 材料、美术设计等等。
8
许多立体图形是由一些 平面图形围成的,将它 们适当的剪开,就可以 展开成平面图形.这就 是立体图形的平面展开 图.
21
想一想:图中的几个图形能否折叠 成为棱柱?
(1) (3)
(2)
(4)
22
这些图案分别在 正方体的哪个面 上?23能找出 符合要求 的展开图 吗?
(1)
(2)
(3)
24
(4)
猜猜哪 个才是
左 上后
“我”? 前 右

下 (1)



下 左后
上右 (3)
右 上
后 左前
下 (2)

下 前 上后
9
长方体的平面展开图
长方体
10
棱锥的平面展开图
三棱锥
11
圆柱体的平面展开图
圆柱体
12
圆锥体的平面展开图
圆锥体
13
棱台的平面展开图
三棱台
14
圆台的平面展开图
圆台
15
球体是否可以 展成平面图形? 球体
16
连一连
17
下列图形能折叠成什么图形?
圆柱体 圆锥
五棱柱

从不同方向看立体图形与立体图形的展开图 课件(共20张PPT) 人教版七年级数学上册

从不同方向看立体图形与立体图形的展开图 课件(共20张PPT)  人教版七年级数学上册
C
同学们,这节课我们学习了从不同方向看立体图形与立体图形的展开图,认识了多种立体图形的展开图,并且从展开图的角度进一步了解了立体图形与平面图形的转化关系.
教材习题:完成课本158-159页习题2,4,6,7,8,9,11题.实践性作业:在家里找一个物品放置在桌面上,请你分别画出从前面看、从左面看、从上面看该物体得到的图形.
重点
难点
古诗导入
《题西林壁》苏轼横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.问题1:从诗中可以看出作者苏轼从不同角度对庐山进行了仔细观察,那他都从哪些角度对庐山进行了观察呢?问题2:诗中隐含着什么道理?对你有什么启发?
同学们,你们知道这些精美的包装盒是怎么制成的吗?要设计、制作一个包装盒, 除了美术设计以外,还要了解它展开后的形状,根据它来准备材料.
知识点2:立体图形的展开图(重难点)
名称
正方体
长方体
五棱柱
圆柱
圆锥
立体图形
展开图(举例)
3.正方体的展开图:“一四一”型 : “二三一”型: “阶梯”型:
注:(1)不是所有的立体图形都能展开成平面图形,如球.(2)同一个立体图形】从不同方向观察几何体
6.1 几何图形
6.1.1 立体图形与平面图形
第2课时 从不同方向看立体图形与立体图形的展开图
1. 经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能会看到不一样的结果,能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,提高学生的画图能力.2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,初步建立空间观念,发展几何直观,培养动手操作能力和语言表达能力.
图片导入
1. 分别从前面、左面、上面看长方体、球、圆柱、圆锥,各能得到什么平面图形?2.请同学们阅读课本152-153页,动手画一画分别从前面、左面、上面观察图6.1-5得到的平面图形.

七年级数学上册第2课时 从不同方向看立体图形和立体图形的展开图

七年级数学上册第2课时 从不同方向看立体图形和立体图形的展开图

《部编版》;统编;新人教版第2课时从不同方向看立体图形和立体图形的展开图【知识与技能】1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.2.通过实际操作,能认识和判断立体图形的平面展开图.【过程与方法】在立体图形与平面图形相互转换的过程中,初步建立空间观念,培养几何意识.【情感态度】激发学生学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.【教学重点】识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形.【教学难点】画出从正面、左面、上面看正方体及简单组合体的平面图.一、情境导入,初步认识多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境.跨越学科界限,以苏东坡的诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”营造一个崭新的数学学习氛围,并从中挖掘蕴含的数学道理.比一比讲台上依次放置粉笔盒、乒乓球、热水瓶.请四位学生上来后按照不同的方位站好,然后向同学们汇报各自看到的情形.从身边的事物入手,采用游戏的形式,有助于学生积极主动地参与,激发学生的学习潜能,感受新知.自己从中发现从不同的方向看,确实看到的可能不一样.如何进行楼房的图纸设计?出示楼房模型.多媒体展示神舟八号无人飞船.问:如何进行飞船的图纸设计?(出示三张设计平面图),并问每张图分别从什么方向看?看起来,楼房、航天飞船等均是立体图形,但是设计图都是平面图形,建筑单位、工厂均按照平面设计图加工,其中一个小零件如课本第117页图4.1-6,先需要看的图是图(2),所以,我们要研究立体图形从不同方向看它得到的平面图.进一步培养学生的空间想象能力以及与他人合作交流的能力.二、思考探究,获取新知探究 1 分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)让学生从不同方向观察立体图形,体验立体图形转化为平面图形的过程.长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形,以四人小组为学习单位进行小组创作,培养学生的观察力和创新能力.教科书第117页图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?【教学说明】小组合作学习,你摆我答,动手画一画,展示此活动设计既能引发学生动脑思考、动手实践,在你摆我答的小组合作学习中,又给学生创造了交流的机会,引导学生学会合作,突破创新,达到共同提高的目的.探究2 (1)出示教材第118页图4.1-9的平面展开图,让学生说一说这是什么立体图形?【教学说明】教师让学生回答,若学生对此有困难,可让学生自己动手画一画,剪一剪,仔细体会.(2)让学生拿出自己的墨水盒或其他正方体方盒,动手剪一剪,看能得到几种正方体的展开图.【教学说明】正方体的展开图是教学重点,教师必须对此重视,让学生以小组为单位展开讨论和剪切,争取尽可能地多剪出几种展开图,教师根据学生回答情况予以板书和归纳.三、典例精析,掌握新知例1 你能画出如图所示的正方体和圆柱体的从不同方向看到的平面图形吗?试试看!【分析】正方体的从不同方向看到的平面图形都是正方形,圆柱体从正面、左面看到的平面图形都是长方形,从上往下看是圆.解:正方体看到的结果分别如图所示:圆柱体看到的结果如下所示:例2 (1)前面所讲的苏东坡的《题西林壁》中有一句传诵千古的名句:“横看成岭侧成峰,远近高低各不同”,请用简单的几何图形画出这句话所表达的意境.(2)同伴交流一下这句话给我们的启示,特别谈谈对我们学习数学知识的启迪.【分析】从诗句的意思中应看出这句话是以群山为背景的.诗句中所蕴含的哲理会是仁者见仁,智者见智,所以,互相交流十分必要.解:(1)如图(2)以下启示供参考:“变换思考角度,获得的结论就不同”.“从不同角度看同一问题,可能获得不同的解决途径”等.例 3 如图,需要再补画一个面,折叠后才能围成一个正方体,下面是四位同学补画另一个面的情况(图中阴影部分),其中正确的是().【分析】A、C、D三项中的展开图都不能围成正方体,只有B项符合要求.【答案】B四、运用新知,深化理解1~3.教材第118~119页练习.【教学说明】这几道题是考查立体图形的视图和展开图的.题目较为简单,教师可让学生举手回答.【答案】1.(1)是从上面看到的;(2)是从正面看到的;(3)是从左面看到的.2.圆柱体—(4),圆锥体—(6),三棱柱—(3).3.C五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?提醒学生注意:多看,多动手,多想象,是学好几何知识的基本途径之一.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.本节教学应通过引导观察和实际动手操作,让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现从不同角度看物体可以得到不同的结果,在实践中体验认识生活与客观世界,并逐步养成勤于动手,善于观察,勇于思考的学习习惯.。

立体图形的表面展开图

立体图形的表面展开图

04
立体图形展开图的应用
立体图形展开图在工业设计中的应用
外观设计
立体图形展开图可用于工业产品的外观设计,通过将产品 表面展开成平面图形,设计师可以更好地掌握产品的形状 、尺寸和比例。
结构设计
立体图形展开图在工业产品的结构设计中也发挥着重要作 用。设计师可以通过展开图确定产品的构造方式、连接方 式和加工方法等。
确定不规则形状
对于不规则的立体图形,首先需要确 定其不规则的形状和特点。
分割成规则部分
将不规则的立体图形分割成若干个规 则的立体图形,这些规则的图形可以 更容易地制作展开图。
制作规则部分的展开图
对每个规则的立体图形分别制作其展 开图。
组合展开图
将所有规则部分的展开图组合在一起 ,形成完整的表面展开图。
立体图形展开图的绘制工具与软件
手绘工具
包括纸张、笔、尺子等基本绘图工具,适合制作 简单的立体图形展开图。
二维绘图软件
如AutoCAD、SolidWorks等,这些软件可以方便 地绘制出各种立体图形的展开图。
三维建模软件
如SketchUp、3ds Max等,这些软件可以模拟立 体图形的外观和结构,并生成相应的展开图。
展开图的分类
根据立体图形展开图等。
不同类型的立体图形具有不同的展开特点和方法,需要根据具体情况进行分析和 计算。
03
立体图形展开图的制作方法
规则立体图形的展开图制作方法
定义表面展开图
将立体图形的表面分割成一系 列二维图形,这些图形遵循一 定的规律和顺序,组成完整的
工艺设计
立体图形展开图可以帮助设计师在工艺设计阶段更好地理 解产品的制造过程,进行工艺流程的规划和制定。
立体图形展开图在建筑设计中的应用

立体图形平面展开图

立体图形平面展开图

特点
步骤
选择合适的投影面,将立体图形放置 在投影面上,保持立体图形与投影面 平行,然后按照投影规律绘制平面展 开图。
平行投影法能够保持立体图形的形状 和大小不变,适用于绘制各种立体图 形的平面展开图。
中心投影法
01 02
定义
中心投影法是一种将三维立体图形投影到二维平面的方法,通过将立体 图形放置在投影中心,光源从中心发出照射到立体图形上,然后将投影 面上的影子描绘下来。
分类
常见的立体图形包括长方体、正 方体、圆柱体、圆锥体、球体等 。
立体图形的特点
01
02
03
空间性
立体图形存在于三维空间 中,具有空间占有明确的边界和结构。
方向的明确性
立体图形在空间中具有明 确的方向性,如上下、左 右、前后等。
立体图形与平面图形的区别
05
立体图形平面展开图的 实例分析
实例一:纸盒的折叠与展开
纸盒的折叠与展开是立体图形平面展开 图最直观的实例之一。通过将纸盒折叠 成所需的立体形状,然后展开成平面图 形,可以展示立体图形与平面图形之间
的转换关系。
纸盒的展开图通常采用轴对称或中心对 称的方式,以简化制作过程并确保展开 后的平面图形与原始立体形状相匹配。
长方体的平面展开图有多种形式,包括 一字型、L型、U型和十字型等。
VS
详细描述
长方体的平面展开图是由其六个面中的四 个或五个面围成的。其中,一字型展开图 是由长方体的三组对面分别平铺而成;L 型展开图是长方体的三组对面中,两组对 面平铺,另一组对面的一个面折叠;U型 展开图是长方体的三组对面中,两组对面 的两个面平铺,另一组对面的一个面折叠 ;十字型展开图则是长方体的两组对面平 铺,另外两组对面的两个面折叠。

立方体平面展开图

立方体平面展开图

展开图的连续性
总结词
立方体平面展开图的连续性是指其展开过程中各部分之间的连续变化,即各部分之间没有明显的断裂 或间隙。
详细描述
在立方体平面展开图中,各面之间的展开和折叠应保持连续,没有突然的转折或跳变。这种连续性保 证了展开图在折叠回立方体时能够平滑过渡,不会产生突兀的形状或结构。
展开图的稳定性
02
立方体的平面展开方式
展开图的定义
01
展开图是将立体几何图形沿着某 些棱或面进行切割,将其展开成 平面图形的过程。
02
立方体的平面展开图是指将一个 立方体切割并展开成平面图形的 结果。
展开图的种类
11种
立方体的平面展开图有11种基本 类型,包括“一”字型、“L”型 、“T”型、“十”字型、“凹” 字型等。
03
立方体平面展开图的特 性
展开图的对称性
总结词
立方体平面展开图的对称性是指其展开后的图形具有对称的特点,即图形在折叠 回立方体后能够完全恢复原状。
详细描述
立方体平面展开图的对称性主要表现在其展开后的图形具有轴对称、中心对称或 旋转对称等特性。这些对称性使得展开图在折叠回立方体时能够准确还原,确保 了立方体的完整性。
在建筑设计中的应用
01
02
03
建筑设计参考
立方体平面展开图可以为 建筑设计提供参考,帮助 设计师更好地理解建筑的 空间结构和立体感。
施工图绘制
在建筑施工过程中,立方 体平面展开图可以作为施 工图绘制的基础,为施工 提供准确的指导。
建筑模型制作
利用立方体平面展开图, 可以制作出精确的建筑模 型,用于展示和推敲设计 方案。
立方体的性质
总结词
立方体具有空间对称性、平行性和垂直性等性质。

立体图形的展开图

立体图形的展开图
在化学中,立体图形展开图可以用于研究分子的结构和性质,如化学键、分子构型、分子间 作用力等。
THANK YOU
汇报人:XXX
添加标题
正方体的展开图可以通过折叠、剪裁等方式制作出来,也可以使用计算机软件进行设计
添加标题
正方体的展开图在工程、建筑、设计等领域有着广泛的应用,例如:在工程领域,可以 用于制作模型、结构设计等;在建筑领域,可以用于制作建筑模型、室内设计等
长方体的展开图
长方体的展开图有11种 常见的展开图有:长方形、正方形、三角形、梯形等 展开图的特点:每个面都是长方形或正方形 展开图的应用:用于包装、建筑、家具等领域
添加副标题
立体图形的展开图
汇报人:XXX
目录
PART One
立体图形的展开图 概念
PART Three
立体图形展开图的 绘制步骤
PART Five
立体图形展开图的 应用
PART Two
立体图形的展开图 类型
PART Four
立体图形展开图的 绘制技巧
立体图形的展开图 概念
展开图的定义
立体图形的展开图是指将立体图形展开成平面图形的过程
立体图形展开图可以帮助设计师确 定机械结构的受力情况,从而更好 地进行强度分析和优化设计。
在科学研究中的应用
立体图形展开图在数学、物理、化学等领域的研究中具有重要应用价值。
在数学中,立体图形展开图可以用于研究几何体的性质和结构,如体积、表面积、对称性等。
在物理中,立体图形展开图可以用于研究物体的运动和力,如力学、光学、电磁学等。
绘制展开图:根据验证结果,绘制立体图形的展开图,注意线条的流畅性和准确性。
检查和修改:绘制完成后,对展开图进行检查和修改,确保其符合立体图形的性质和特点。

正方体11种平面展开图

正方体11种平面展开图

正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。

第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。

第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。

第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。

第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。

②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。

③长方体、正方体中各面的关系:相对、相邻。

每个面都有1个相对的面,4个相邻的面。

注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。

④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。

⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:互逆正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。

长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。

(即2个相对的面是正方形,其余四个面变为完全相同的长方形。

)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。

(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……。

立体图形的展开图(课件)

立体图形的展开图(课件)
第四章 几何图形初步
4.1.3 立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
立体图形的展开图
1.了解立体图形可由平面图形围成,立体图形可 展开为平面图形;
2.掌握正方体的展开图,熟悉圆柱、圆锥、棱柱、 棱锥的表面展开图,能根据展开图判断立体图 形的形状.
立体图形的展开图





立体图形的展开图

第二类: "1-3-2"型





立体图形的展开图

第三类: "2-2-2"型




第四类: "3-3"型

立体图形的展开图
将正方体相对的面涂上颜色,你会发现什么?
对 面 相

不 相 连

?

立体图形的展开图
正 方 体 展 开 图
-
立体图形的展开图
自主反思:
立体图形的展开图 做个巧手活 看个妙东西 当个小帮手
立体图形的展开图
做个巧手活
1、折叠下列图形,看能不能折叠成一个立 体图形?
(1)
(2)
(3)
→经过动手折叠发现( 1 )( 3 )
可以折叠成一个( 三棱锥 )
立体图形的展开图
立体图形是平面图形围成的,把这些立 体图形的表面适当剪开,得到的平面图形称 为相应图形的展开图.
1.立体图形和平面图形之间的关系?
展开
有些立体图形
有些平面图形 折叠
平面图形 立体图形
2.常见的一些立体图形的展开图是 什么样的?正方体展开图中不能

(完整版)正方体11种平面展开图

(完整版)正方体11种平面展开图

正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。

第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。

第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。

第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。

第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。

②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。

③长方体、正方体中各面的关系:相对、相邻。

每个面都有1个相对的面,4个相邻的面。

注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。

④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。

⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:互逆正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。

长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。

(即2个相对的面是正方形,其余四个面变为完全相同的长方形。

)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。

(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……。

立体图形的平面展开图复习课程知识讲稿

立体图形的平面展开图复习课程知识讲稿
立体图形的平面展开图复习课 程知识讲稿
目录
CONTENTS
• 立体图形与平面展开图的基本概念 • 常见立体图形的平面展开图 • 平面展开图的特性与性质 • 立体图形与平面展开图的联系与区别 • 立体图形平面展开图的绘制技巧与注意事项
01
CHAPTER
立体图形与平面展开图的基 本概念
立体图形的定义与分类
关系
平面展开图是立体图形的一种表现形式,通过平面展开图可以了解立体图形的 形状和结构。
应用
平面展开图在工程、建筑、机械等领域中有着广泛的应用,如建筑设计、产品 建模等。
02
CHAPTER
常见立体图形的平面展开图
正方体的平面展开图
要点一
总结词
正方体的平面展开图有三种基本形式,分别是“十”字形 、“田”字形和“凹”字形。
要点二
详细描述
正方体的平面展开图是由六个相同的正方形组成,通过不 同的组合方式,可以形成不同的平面展开图。其中,“十 ”字形是由两个正方形组成水平面,另外四个正方形组成 四个垂直面;“田”字形是由四个正方形组成水平面,另 外两个正方形组成两个垂直面;“凹”字形则是由四个正 方形组成水平面,一个正方形作为顶面,另一个正方形作 为底面。
球体的平面展开图
总结词
球体的平面展开图是一个全圆。
详细描述
球体的平面展开图是将球体展开成平面形式。由于球体是一个完全对称的立体图形,因此其平面展开图就是一个 全圆。这个全圆的半径等于球体的半径。
03
CHAPTER
平面展开图的特性与性质
平面展开图的折叠性
总结词
折叠性是指平面展开图可以通过折叠还原为立体图形的能力 。
THANKS
谢谢
在数学和工程领域中,平面展开 图被广泛用于解决几何和物理问 题,例如计算表面积、体积等。

立体图形的展开图

立体图形的展开图
2、 要学会动手实践,与同学合作。
3、友情提醒:不是所有立体图形都 有平面展开图,比如球体。
你能找出常见的几何体吗?
常见的立体图形
包围着体的是面。 长方体面有平正方的体面和曲圆的柱面两圆种锥

棱柱
棱锥
立体图形又叫做几何体简称为体
面 曲面
平面
曲面
平面
平面
曲面
曲面
平面
曲面
练习:围成下面这些立体图形的各
蚊子


壁虎
4.如图,一只瓢虫落在铁桶的A处, 一只蜘蛛爬到铁桶的B处时发现了瓢 虫,请你帮助蜘蛛找到一条最快到 达瓢虫停留的地方消灭害虫。
A
?
B
4.如图,一只瓢虫落在铁桶的A处, 一只蜘蛛爬到铁桶的B处时发现了瓢 虫,请你帮助蜘蛛找到一条最快到 达瓢虫停留的地方消灭害虫。
A
?
B
4.如图,一只瓢虫落在铁桶的A处,


长方体的展开图

考考你
1.如图,上面的图形分别是下面哪个立体图形 展开的形状?把它们用线连起来.
2 下面几个图形是一些常见几何体的 展开图,你能正确说出这些几何体的 名字么?
圆锥
四棱锥 长方体 三棱柱
三棱锥 三棱柱
正方体
圆柱
3.下图所示的平面图形中不能围成三棱 柱的是( B )
4.下列哪个平面图形沿虚线折叠不能围成 正方体的是( B )
2、点无大小,线有直线和曲线,面有平的面 和曲的面。
3、点动成线,线动成面,面动成体。 4、体由面围成,面与面相交成线,线与线相
交成点。 5、……
做一做
1.粉笔盒的形状类似于长方体,它是由 六 个 面围成的,这些面都是 长方形 ,有 八 个 顶点,经过每个顶点都有 三 条棱。

正方体11种平面展开图

正方体11种平面展开图

正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。

第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。

第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。

第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。

第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。

②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。

③长方体、正方体中各面的关系:相对、相邻。

每个面都有1个相对的面,4个相邻的面。

注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。

④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。

⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:互逆正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。

长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。

(即2个相对的面是正方形,其余四个面变为完全相同的长方形。

)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。

(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……。

正方体11种展开图

正方体11种展开图

类型六:十字型
总结词
由两个相同的等腰直角三角形和两个相同的矩形组成的展开图,呈十字形状。
详细描述
这种类型的展开图在正方体的两个相对的面上保留了一个矩形,而其他面则由两个等腰直角三角形组成,整体呈 十字形状。
类型七:二字型
总结词
由两个相同的矩形和两个相同的等腰直角三角形组成的展开图,呈二字形状。
详细描述
正方体11种展开图
• 正方体的基本特性 • 正方体的11种展开图 • 正方体展开图的制作方法 • 正方体展开图的应用场景 • 正方体展开图的挑战与未来发展
01
正方体的基本特性
定义与特性
01
正方体是一种三维几何体,由六 个正方形面组成,每个面都是等 大的正方形。
02
正方体的体对角线、棱和面都是 对称的,具有高度的空间对称性 。
05
正方体展开图的挑战与未来发展
当前面临的挑战
寻找新的展开方式
目前已知的正方体展开图种类有 限,需要探索新的展开方式以丰
富其多样性。
证明无解的存在
对于某些特定条件下的正方体展开 问题,需要证明无解的存在,这需 要深入的数学理论支持。
实际应用中的限制
正方体展开图在实际应用中可能受 到材料、工艺等因素的限制,需要 解决这些实际问题。
正方体的几何属性
正方体的体积是边长的三次方,记作 V=a^3,其中a是正方体的边长。
正方体的表面积是6倍的边长的平方, 记作A=6a^2。
正方体的展开与折叠
正方体的展开是将正方体的表面沿某些边展开成平面的过程,通常用于制作纸盒等 包装材料。
正方体的折叠则是将展开的平面重新折回成立体的过程,常用于制作纸艺模型和玩 具。
详细描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

口诀:三个两排一对齐
141型
231型 同一个立 体图形可 以有多种 不同的展 开图. 相 连 上左 下右 隔隔 一一 行列
巧记正方体的展开图口诀 : “一四一”“一三二”, “一”在同层可任意, “三个二”成阶梯, “二个三”“日”相连, 异层必有“日”, “凹”“田”不能有, 掌握此规律,运用定自如。
将一个正方体的表面沿某些棱剪开, 能展成哪些平面图形? 友情提示: 1、沿着棱剪 2、展开后是 一个图形
可以动手剪,也 可以想着画.
(141型:6种) 口诀:中间四个一连串,两边各一随便放
(231型:3种) 口诀:二三紧连挪一个,三一相连一随便
(222型:1种)
口诀:两两相连各挪一
(33型:1种)
红 蓝

下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
A B C
D
E
F
G
下面4个图是一些多面体的表面展 开图,你能说出这些多面体的名字吗?
正方体
长方体
四棱锥
三棱柱
P118
探究和练习
下面图形都是由4个三边都相等的三角形组成 的,哪一个可以折叠成多面体呢?动手做做看。
(1)
(2)
(3)
“坚”在下,“就”在后,胜利在哪里?

持 就 是 胜 利
如果“你”在前面,那么谁在后面?
了 !
太 棒
你 们
KEY:

4.1.3立体图形和平面图形 (第3课时)
学习目标
1.能画出简单的几何体的展开图 ,并能根据展开图
判断几何体的形状;
2. 通过“展开”和“围成”两种途径认识常见几
何体的展开图 ,尤其是正方体表面展开图。
想一想,我们是如何做的这些几何体, 试着将这些立体图形的表面展开吧!
圆 柱
展开
圆锥
展开
多面体是由平 面图形围成的 立体图形,沿 着多面体的一 些棱将它剪开, 可以把多面体 的表面展开成 一个平面图形, 这就是多面体 的表面展开图。
相关文档
最新文档