电气化铁道主要供电方式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气化铁道主要供电方

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

接触网的供电方式

我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。

1、直接供电方式

如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰

矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。

2、吸流变压器(BT)供电方式

这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF 线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。

由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。

BT供电方式原理结线图

H—回流线;T—接触网;R—钢轨; SS—牵引变电所;BT—吸

流变压器。

牵引网阻抗与机车至牵引变电所的长度不是简单的线性关系。随着取流位置的不同,牵引网内的电流分布可有很大不同,例如图中当机车位于供电臂内第一台BT前方时,牵引负荷未通过吸流变压器一次绕组,其二次绕组没有电流流通,因此牵引网按直接供电方式运行,到达BT处后,吸流变压器一次绕组有牵引电流流过,牵引回流被迫由钢轨逆行至远离电源侧的吸上线进入回流线,再经吸流变压器二次绕组返回牵引变电所,使牵引网阻抗大增。图的曲线是机车由牵引变电所出发在不同位置时的牵引网总阻抗。图中曲线是供电方式长回路牵引网阻抗,即牵引负荷全程流经接触网和回流线时的阻抗,相当于机车位于吸上线处的牵引网阻抗。牵引网阻抗通常较直接供电方式大。

BT供电方式牵引网阻抗图

1—直接供电方式牵引网阻抗;

2—BT供电方式长回路牵引网阻抗;

3—列车由牵引母线侧运行至末端牵引网阻抗变化。

3、自耦变压器(AT)供电方式

采用AT供电方式时,牵引变电所主变输出电压为55kV,经AT (自耦变压器,变比2:1)向接触网供电,一端接接触网,另一端接正馈线(简称AF线,亦架在田野侧,与接触悬挂等高),其中点抽头则与钢轨相连。AF线的作用同BT供电方式中的NF线一样,起到防干扰功能,但效果较前者为好。此外,在AF线下方还架有一条保护(PW)线,当接触网绝缘破坏时起到保护跳闸作用,同时亦兼有防干扰及防雷效果。

显然,AT供电方式接触网结构也比较复杂,田野侧挂有两组附加导线,AF线电压与接触网电压相等,PW线也有一定电位(约几百伏),增加故障几率。当接触网发生故障,尤其是断杆事故时,更是麻烦,抢修恢复困难,对运输干扰极大。但由于牵引变电所馈出电压高,所间距可增加一倍,并可适当提高末端网压,在电力系统网络比较薄弱的地区有其优越性。

4、直供+回流(DN)供电方式

这种供电方式实际上就是带回流线的直接供电方式,NF线每隔一定距离与钢轨相连,既起到防干扰作用,又兼有PW线特性。由于没有吸流变压器,改善了网压,接触网结构简单可靠。近年来得到广泛应用。

综上所述,早期电气化铁路均采用直接供电方式,为避免和减少对外部环境的电磁干扰,研发了BT、AT和DN供电方式,就防护效果来看,AT方式优于BT和DN方式,就接触网的结构性能来讲,DN方式最为简单可靠。随着通信技术的快速发展,光缆的普遍应用,通信设施及无线电装置自身的防干扰性能大为增强,考虑到接触网的运行可靠性对电气化铁路的安全运行至关重要,所以通常认为,一般情况下DN供电方式为首选,在电力系统比较薄弱的地区,经过经济技术比较,可采用AT供电方式,BT供电方式则尽量少采用或不采用。本人认为,这是近三十年来我国电气化铁路供电方式发展和应用的实践过程中总结出来的普遍看法,同样也要接受今后的实践检验,不断总结提高。

AT供电方式的优缺点

优点:

它无需提高牵引网的绝缘强度即可将供电电压提高一倍。在相同的牵引负荷条件下,接触悬挂和正馈线中的电流大致可减少一半。AT供电方式牵引网单位阻抗约为BT供电方式牵引网单位阻抗的1/4左右。从而提高了牵引网的供电能力,大大减小了牵引网的电压损失和电能损失。牵引变电所的间距可增大到90-100KM,不但变电所需要数量可以减少,而且相应的外部高压输电线数量也可以减少,还有利于选择既便利运营管理又缩短外部高压输电线长度的变电所位置。由于AT供电方式无需在AT处将接触悬挂进行电分段,故当牵引重载列车运行的高速度、大电流电力机车通过AT处时,受电弓上不会发生强烈拉弧,能满足高速、重载列车运输的需要。同时,AT供电方式对附近通信线路的综合防护效果要优于BT供电方式。

缺点:

构造比较复杂。在开闭所、分区所、AT所以及主变压器副边中性点不接地的牵引变电所都设置自藕变压器等。牵引网中除了接触悬挂和正馈线之外,还有保护线PW、横向联接线、辅助联接、放电器等,所以,AT供电方式的工程投资要大于BT。相应的施工、维修和运行也比其他供电方式的工程投资要大。

相关文档
最新文档