溶胶凝胶法 PPT
合集下载
材料合成与制备第一章溶胶——凝胶法ppt课件
调节PH值或 加入电解质中和 微粒表面电荷
缩聚反应
凝胶
减压蒸发
不 同 溶 胶 — 凝 胶 过 程 中 凝 胶 的 形 成
1.过溶程胶温度—较凝低 胶合成工艺的优点
2.增进了多元组份体系的化学均匀性 3.过程易控制,可以实现过程的完全而精确控制,
可以调控凝胶的微观结构。
4.掺杂范围广泛,化学计量准确。 5.薄膜制备方法,Sol-Gel工艺更显出了独特的优越
法 的
4.复 合 材 料 的 制 备
适 用
5.超 细 粉 体 材 料 的 制 备
范 围
6.薄 膜 和 涂 层 材 料 的 制 备
1.3溶胶—凝胶合成工艺
传统胶体型
三种工艺机制 无机聚合物型 络合物型
1.3凝胶—溶胶合成工艺
(1)传统胶体型。通过控制溶液中金属离子的沉 淀过程,使形成的颗粒不团聚成大颗粒而沉淀 得到稳定均匀的溶胶,再经过蒸发得到凝胶。
比表面积:单位体积分散相的总表面积
s
s v
双电层与ζ电位
• 固液之间发生的相对移动的实际分界面, 即滑动面,滑动面上的电位即ζ电位。
• 双电层的结构示意图
颗粒间的范德华力
Hamaker假设粒子间的相互作用等于组成它们 的各分子之间的相互作用的加合,对于俩个彼 此平行的平板粒子,单位面积的相互作用能为
溶胶——凝胶合成方法原理
1.胶体(Golloid)一种分散相粒径介于 1 0 9 ~
1 0 7 m的分散体系,分散相粒子的质量可以忽略
不计,粒子之间的相互作用主要是短程作用力。
电学性质:电泳(在外电场的作用下,胶体分散 体系中的溶胶粒子向阴极定向迁移的现象。)
原因:胶体粒子带电
3-2 溶胶-凝胶法 PPT
胶体溶胶
干凝胶
干燥
纯化,浓缩
洗涤过滤
水凝胶
凝 聚
陈化
成型
颗粒
煅烧
催化剂
5
二.金属盐溶液的选择
1.阳离子选取:催化剂中所用的金属离子。 2.阴离子的选取:阴离子的选择涉及多方面的因素。 例如:溶解度、杂质含量、易获性、价格等可能存在的问题 等,应综合考虑。 阴离子应该比较容易经分解、挥发或洗涤除去。
溶胶凝胶法是指无机物或金属醇盐经过溶 液、溶胶、凝胶而固化,再经热处理而形 成氧化物或其它化合物固体的方法。
2
不同溶胶-凝胶过程的特征
化学特征
凝胶
前驱物
应用
胶体型 Sol-Gel 过程
无机聚 合物型 Sol-Gel 过程
络合物 型SolGel过程
调整pH值/加入电 解质/ 蒸发溶剂使 粒子形成凝胶网络
§3-2 溶胶-凝胶法
一.sol-gel法制备过程 二.金属盐溶液的选择 三.沉淀过程 四.胶凝过程 五.陈化 六.洗涤过滤 七.干燥 八.煅烧
1
作为载体,必须有大表面积和多孔的性质, 作为非负载的单一组分催化剂,也通常是制 成大表面积和高孔隙率的,对这类物质,一 般采用sol- gel法(溶胶-凝胶法) 。
(3)影响成核、长大速率的因素 A. 过饱和度↑ ,VN↑ B. 盐类极性↑, Vg ↑ ,常生成晶形沉淀
(4)沉淀的溶解度对晶粒大小的影响
沉淀的溶解度越大越易形成粗晶型
12
四.胶凝过程
胶凝过程对催化剂孔结构、比表面会产生很大影响
例如:PH=4时,硅胶胶粒最小,比表面最大 Sg=730m2/g,孔径=3.3nm,孔容最小为Vg=0.62ml/g
ε1
溶胶凝胶法 PPT
ehmite溶胶
将1M仲丁醇铝的仲丁醇溶液滴入温度高于80℃的去 离子水中进行水解,生成boehmite沉淀,加入适量 1.6M HNO3,使沉淀胶溶,经老化形成稳定的溶胶
溶胶-凝胶法应用
—铝胶制备及化学机理
铝盐溶液中,铝离子呈水合状态,即[Al(H2O)6]3+。由于 铝离子的正电荷与配位水分子中氢离子相斥,使氢离子 释放出来—水解反应
液相在凝胶孔中形成弯月面,
使凝胶承受一个毛细管压力, 将颗粒挤压在一起。如图2 所示。
湿凝胶在初期干燥过程中,
因有足够的液相填充于凝胶孔中, 凝胶体积的减少与蒸发了的液体 的体积相等,无毛细力起作用。 当进一步蒸发使凝胶体积减少量 小于蒸发掉的液体体积时,此时
图2 湿凝胶干燥过程中的毛 细管力
二、超临界干燥技术
1、凝胶的形成与划分 凝胶形成机理通常须经过三个必要的过程:
a).单体聚合成初次粒子;
b).粒子长大;
c).粒子交联成链状且形成三维网状结构。
溶胶(Sol)是由孤立的细小
沉淀物(precipitate)由孤
粒子或大分子组成,分散在溶液 立粒子聚集体组成而区别于凝
中的胶体体系。
胶。
当液相为水时称为水溶胶 (Hydrosol);当为醇时称为醇溶 胶(alcosol)。
溶胶-凝胶法的基本原理
-水解反应机理
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
溶胶-凝胶法的基本原理
-缩聚反应机理
溶胶-凝胶法的工艺过程
溶胶-凝胶法常用测试方法
测定前驱物金属醇盐的水解程度(化学定量分析法) 测定溶胶的物理性质(粘度、浊度、电动电位) 胶粒尺寸大小(准弹性光散射法、电子显微镜观察) 溶胶或凝胶在热处理过程中发生的物理化学变化
将1M仲丁醇铝的仲丁醇溶液滴入温度高于80℃的去 离子水中进行水解,生成boehmite沉淀,加入适量 1.6M HNO3,使沉淀胶溶,经老化形成稳定的溶胶
溶胶-凝胶法应用
—铝胶制备及化学机理
铝盐溶液中,铝离子呈水合状态,即[Al(H2O)6]3+。由于 铝离子的正电荷与配位水分子中氢离子相斥,使氢离子 释放出来—水解反应
液相在凝胶孔中形成弯月面,
使凝胶承受一个毛细管压力, 将颗粒挤压在一起。如图2 所示。
湿凝胶在初期干燥过程中,
因有足够的液相填充于凝胶孔中, 凝胶体积的减少与蒸发了的液体 的体积相等,无毛细力起作用。 当进一步蒸发使凝胶体积减少量 小于蒸发掉的液体体积时,此时
图2 湿凝胶干燥过程中的毛 细管力
二、超临界干燥技术
1、凝胶的形成与划分 凝胶形成机理通常须经过三个必要的过程:
a).单体聚合成初次粒子;
b).粒子长大;
c).粒子交联成链状且形成三维网状结构。
溶胶(Sol)是由孤立的细小
沉淀物(precipitate)由孤
粒子或大分子组成,分散在溶液 立粒子聚集体组成而区别于凝
中的胶体体系。
胶。
当液相为水时称为水溶胶 (Hydrosol);当为醇时称为醇溶 胶(alcosol)。
溶胶-凝胶法的基本原理
-水解反应机理
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
溶胶-凝胶法的基本原理
-缩聚反应机理
溶胶-凝胶法的工艺过程
溶胶-凝胶法常用测试方法
测定前驱物金属醇盐的水解程度(化学定量分析法) 测定溶胶的物理性质(粘度、浊度、电动电位) 胶粒尺寸大小(准弹性光散射法、电子显微镜观察) 溶胶或凝胶在热处理过程中发生的物理化学变化
溶胶凝胶ppt课件可修改全文
水解
缩聚
固化
溶液
溶胶
凝胶
凝胶
溶胶凝胶法制备氧化铝粉末实例
凝胶体
干燥后的胶状体
烧结后的纳米氧化铝粉
溶胶—凝胶法
• 溶胶-凝胶法是指一些易水解的金属化合物(无机盐或金属
醇盐),在饱和条件下,经水解和缩聚等化学反应首先制 得溶胶,继而将溶胶陈化、干燥和固化。
• 根据原料的种类可分有机金属醇盐法和无机盐法两种。
混合 初始原料
搅拌
浓缩
前驱体溶胶
粘性溶胶
纺丝
陶瓷纤维
热处理
干燥
凝胶纤维
溶胶-凝胶制备的Al2O3-YAG纤维
4.复合材料
复合材料
不
复 合 材 料
同 组 分 之 间
的
组 纳成 米和 复结 合构 材不 料同
的
纳 米 复 合 材 料
的 组 分 所 制 备 的
组 成 和 结 构 均 不 同
组 成 的 复 合 材 料
溶胶一凝胶法也存在某些问题:
1.目前所使用的有机化合物原料价格比较昂贵, 有些原料为有机物,对健康有害;
2. 通常整个溶胶-凝胶过程所需时间较长,常 需要几天或儿几周:
3. 凝胶中存在大量微孔,在干燥过程中又将会 逸出许多气体及有机物,并产生收缩。
4.若烧成不够完善,制品中会残留细孔及OH-根或C, 后者使制品带黑色
•
反应可延续进行,直至生成M(OH)n
• 缩聚反应:(OR)n-1M-OH + HO-M(OR)n-1 → (OR)n-1M-O-M(OR)n-1 + H2O
m(OR)n-2 M(OH)2 → [(OR) n-2M-O]m + mH2O
溶胶凝胶法PPT演示课件
• 凝胶(Gel)是具有固体特征的胶体体系,被分 散的物质形成连续的网状骨架,骨架空隙中充有 液体或气体。
2020/5/24
5
一、溶胶---凝胶法的发展 二、溶胶一凝胶法的基本原理 三、溶胶一凝胶法工艺过程 四、在制备材料方面的应用 五、展望
2020/5/24
6
二、溶胶一凝胶法的基本原理
sol-gel法制备薄膜涂层的基本原理是:将金属醇 盐或无机盐作为前驱体,溶于溶剂(水或有机溶 剂)中形成均匀的溶液,溶质与溶剂产生水解或 醇解反应,反应生成物聚集成几个纳米左右的粒 子并形成溶胶,再以溶胶为原料对各种基材进行 涂膜处理,溶胶膜经凝胶化及干燥处理后得到干 凝胶膜,最后在一定的温度下烧结即得到所需的 涂层。
(1)有机醇盐水解法 (2)无机盐水解法
此外还有:
2020/5/24
13
(3)熔融-淬冷法
熔融-淬冷法是以无机氧化物作为前驱物,加 热至完全熔融状态,然后迅速将其急淬于冷 水中并快速搅拌均匀,通过无机氧化物粒子 迅速溶解并进而聚集成胶体粒子溶胶化而形 成溶胶。
(4)离子交换法
该方法通常可分为3个步骤:活性硅酸制备, 胶粒增长和稀硅溶胶浓缩。
2020/5/24
3
➢20世纪70 年代,sol-gel技术被成功地应用于 制备块状多组分凝胶玻璃,得到材料界研究 者的广泛关注并获得迅速发展。
➢20 世纪80年代以来,sol-gel技术进入了发展 的高峰时期。
2020/5/24
4
基本概念
• 溶胶(Sol)是具有液体特征的胶体体系,分散 的粒子是固体或者大分子,分散的粒子大小在 1~100nm之间。
9
(2)无机盐的溶胶-凝胶原理: 首先获得溶胶的前驱体溶液,再经水解来制得。
2020/5/24
5
一、溶胶---凝胶法的发展 二、溶胶一凝胶法的基本原理 三、溶胶一凝胶法工艺过程 四、在制备材料方面的应用 五、展望
2020/5/24
6
二、溶胶一凝胶法的基本原理
sol-gel法制备薄膜涂层的基本原理是:将金属醇 盐或无机盐作为前驱体,溶于溶剂(水或有机溶 剂)中形成均匀的溶液,溶质与溶剂产生水解或 醇解反应,反应生成物聚集成几个纳米左右的粒 子并形成溶胶,再以溶胶为原料对各种基材进行 涂膜处理,溶胶膜经凝胶化及干燥处理后得到干 凝胶膜,最后在一定的温度下烧结即得到所需的 涂层。
(1)有机醇盐水解法 (2)无机盐水解法
此外还有:
2020/5/24
13
(3)熔融-淬冷法
熔融-淬冷法是以无机氧化物作为前驱物,加 热至完全熔融状态,然后迅速将其急淬于冷 水中并快速搅拌均匀,通过无机氧化物粒子 迅速溶解并进而聚集成胶体粒子溶胶化而形 成溶胶。
(4)离子交换法
该方法通常可分为3个步骤:活性硅酸制备, 胶粒增长和稀硅溶胶浓缩。
2020/5/24
3
➢20世纪70 年代,sol-gel技术被成功地应用于 制备块状多组分凝胶玻璃,得到材料界研究 者的广泛关注并获得迅速发展。
➢20 世纪80年代以来,sol-gel技术进入了发展 的高峰时期。
2020/5/24
4
基本概念
• 溶胶(Sol)是具有液体特征的胶体体系,分散 的粒子是固体或者大分子,分散的粒子大小在 1~100nm之间。
9
(2)无机盐的溶胶-凝胶原理: 首先获得溶胶的前驱体溶液,再经水解来制得。
第二章溶胶凝胶法ppt课件(2024版)
25
醇-金属醇盐体系的缩聚反应
M(OR)n+xH2OM(OH)x(OR)n-x+xROH -M-OH + HO-M- -M-O-M- + H2O -M-OH + RO-M- -M-O-M- +ROH
S ( O i ) 4 S H ( O i ) 4 H ( O ) 3 S H O iS ( O i ) 3 H
光源
凸透镜
Fe(OH)3胶体
光锥
丁达尔效应示意图
2
2. 溶胶(sol) 具有液体特征的胶体体系,在液体介质中分散了 1~100nm粒子(基本单元)。
溶胶的特点: (1)溶胶不是物质而是一种“状态”
3
(2)溶胶与溶液的相似之处 溶质+溶剂→溶液 分散相+分散介质→溶胶(分散系)
分散相
液体 固体 气体 液体 固体 液体 气体
Si(OCH3)4(液体) > Si(OC2H5)4(液体) > Si(OC3H7)4(液体) > Si(OC4H9)4
② 在制备多组分氧化物溶胶时,不同元素醇盐的 水解活性不同
选择合适的醇盐品种,可使它们的水解速率达到较好 的匹配,从而保证溶胶的均匀性。
39
③ 起始溶液中的醇盐浓度必须保持适当 作为溶剂的醇加入量过多时,将导致醇盐浓度
1 预热到30C 控制在35C-
3 60C之间
B: 6 ml无水乙醇 2 ml乙酸 1.5ml浓盐酸 3 ml蒸馏水
A:23ml无水乙醇 20ml钛酸丁脂
28
淡黄色透 静置5—10min 明冻状溶 红外灯照射1—2h
胶
黄色干凝胶
80C恒温5h 干凝胶粉末
不同温 度焙烧
醇-金属醇盐体系的缩聚反应
M(OR)n+xH2OM(OH)x(OR)n-x+xROH -M-OH + HO-M- -M-O-M- + H2O -M-OH + RO-M- -M-O-M- +ROH
S ( O i ) 4 S H ( O i ) 4 H ( O ) 3 S H O iS ( O i ) 3 H
光源
凸透镜
Fe(OH)3胶体
光锥
丁达尔效应示意图
2
2. 溶胶(sol) 具有液体特征的胶体体系,在液体介质中分散了 1~100nm粒子(基本单元)。
溶胶的特点: (1)溶胶不是物质而是一种“状态”
3
(2)溶胶与溶液的相似之处 溶质+溶剂→溶液 分散相+分散介质→溶胶(分散系)
分散相
液体 固体 气体 液体 固体 液体 气体
Si(OCH3)4(液体) > Si(OC2H5)4(液体) > Si(OC3H7)4(液体) > Si(OC4H9)4
② 在制备多组分氧化物溶胶时,不同元素醇盐的 水解活性不同
选择合适的醇盐品种,可使它们的水解速率达到较好 的匹配,从而保证溶胶的均匀性。
39
③ 起始溶液中的醇盐浓度必须保持适当 作为溶剂的醇加入量过多时,将导致醇盐浓度
1 预热到30C 控制在35C-
3 60C之间
B: 6 ml无水乙醇 2 ml乙酸 1.5ml浓盐酸 3 ml蒸馏水
A:23ml无水乙醇 20ml钛酸丁脂
28
淡黄色透 静置5—10min 明冻状溶 红外灯照射1—2h
胶
黄色干凝胶
80C恒温5h 干凝胶粉末
不同温 度焙烧
溶胶凝胶法总结.ppt
20世纪30年代W.Geffcken证实用金属醇盐的水解和 凝胶化可以制备氧化物薄膜。
1971年德国H.Dislich报道了通过金属醇盐水解制备 了SiO2-B2O-Al2O3-Na2O-K2O多组分玻璃。
1975年B.E.Yoldas和M.Yamane制得整块陶瓷材料及 多孔透明氧化铝薄膜。
溶胶-凝胶法及其应用
Sol-gel-SCFD
c
1
目录
基本概念 发展历程 基本原理和工艺过程 常用测试方法 应用举例 优势,缺陷 未来
c
2
溶胶-凝胶法的基本概念
胶体(colloid)是一种分散相粒径很小的分散 体系,分散相粒子的重力可以忽略,粒子之间 的相互作用主要是短程作用力。
溶胶(Sol)是具有液体特征的胶体体系,分 散的粒子是固体或者大分子,分散的粒子大小 在1~1000nm之间。
胶溶反应中胶核呈正电性,外层吸附了电量相等的负电离子。
c
15
溶胶-凝胶法的应用(2)
-功能材料中制备粉体材料
La2O3 La(NO3)3溶液
HNO3 La: Fe=1:1
Fe(NO3)3.6H2O Fe(NO3)3溶液 柠檬酸
La3+、Fe3+的柠檬酸溶液
50~80℃
含La3+、Fe3+的溶胶
60~90℃
c
4
溶胶-凝胶法的基本概念
-溶胶与凝胶的结构比较
溶胶 凝胶
无固定形状 固定形状
Байду номын сангаас
固相粒子自由运动
固相粒子按一定网 架结构固定不能自 由移动
这种特殊的网架结构赋予凝胶很高的比表面。
c
5
溶胶-凝胶法的发展历程
1971年德国H.Dislich报道了通过金属醇盐水解制备 了SiO2-B2O-Al2O3-Na2O-K2O多组分玻璃。
1975年B.E.Yoldas和M.Yamane制得整块陶瓷材料及 多孔透明氧化铝薄膜。
溶胶-凝胶法及其应用
Sol-gel-SCFD
c
1
目录
基本概念 发展历程 基本原理和工艺过程 常用测试方法 应用举例 优势,缺陷 未来
c
2
溶胶-凝胶法的基本概念
胶体(colloid)是一种分散相粒径很小的分散 体系,分散相粒子的重力可以忽略,粒子之间 的相互作用主要是短程作用力。
溶胶(Sol)是具有液体特征的胶体体系,分 散的粒子是固体或者大分子,分散的粒子大小 在1~1000nm之间。
胶溶反应中胶核呈正电性,外层吸附了电量相等的负电离子。
c
15
溶胶-凝胶法的应用(2)
-功能材料中制备粉体材料
La2O3 La(NO3)3溶液
HNO3 La: Fe=1:1
Fe(NO3)3.6H2O Fe(NO3)3溶液 柠檬酸
La3+、Fe3+的柠檬酸溶液
50~80℃
含La3+、Fe3+的溶胶
60~90℃
c
4
溶胶-凝胶法的基本概念
-溶胶与凝胶的结构比较
溶胶 凝胶
无固定形状 固定形状
Байду номын сангаас
固相粒子自由运动
固相粒子按一定网 架结构固定不能自 由移动
这种特殊的网架结构赋予凝胶很高的比表面。
c
5
溶胶-凝胶法的发展历程
溶胶凝胶法ppt
▪ 按照所使用的原料不同,该法又可分为以 无机盐或无机化合物为原料及其在水溶液 中的水解一聚合反应为基础的所谓无机溶 胶一凝胶法(胶体工艺)和以金属醇盐或 金属的有机化合物为原料及其在醇溶剂的 水解一聚合反应为基础的所谓醇盐溶胶一 凝胶法(聚合工艺)。
▪ 胶体工艺的前体是金属盐,利用盐溶液的水解, 通过化学反应产生胶体沉淀,利用胶溶作用使沉 淀转化为溶胶,并通过控制溶液的温度、pH值可 以控制胶粒的大小。通过使溶胶中的电解质脱水 或改变溶胶的浓度,溶胶凝结转变成三维网络状 凝胶。
溶胶-凝胶合成生产设备
▪ 这条合成路线的中心化学问题是反应物分 子(或离子)母体在水或其他有机溶剂中 进行水解和聚合反应,即由分子态→聚合 体→溶胶→凝胶→晶态(或非晶态)的全 部过程。
▪ 所以这条合成路线可以通过对过程化学上 的了解和有效的控制来合成一些特定结构 和聚集态的固体化合物和材料。
二、溶胶一凝胶工艺方法
▪ 聚合工艺的前体是金属醇盐,将醇盐溶解在有机 溶剂中,加入适量的水,醇盐水解,通过脱水、 脱醇反应缩聚合,形成三维网络。
四正丁氧基锆 Zr(OC4H9)4
醇盐溶胶一凝胶法制备玻璃制品的工艺流程
ZnSe/SiO2纳米复合材料的制备工艺流程
5.3 Sol-gel原料及其合成
5.3.1 原料
▪ Sol-gel原料主要有二大类,金属醇盐、无机金属盐
5.2 Sol-gel法的主要工艺方法
一、概述
▪ 溶胶是指有胶体颗粒分散悬浮其中的液体,即大小在1~ 100nm之间的固体颗粒分散于液体介质中所形成的多相体 系。这些固体颗粒一般由103~109个原子组成,称为胶体。
▪ ▪ 凝胶是指内部呈网络结构,网络间隙中含有液体的固体。
当溶胶受到某种作用(如温度变化、搅拌、化学反应 或电化学平衡等)而导致体系新粘度增大到一定程度,可 得到一种介于固态和液态之间的冻状物,它有胶粒聚集成 的三度空间网状结构,网络了全部或部分介质,是一种相 当粘稠的物质,即为凝胶。
▪ 胶体工艺的前体是金属盐,利用盐溶液的水解, 通过化学反应产生胶体沉淀,利用胶溶作用使沉 淀转化为溶胶,并通过控制溶液的温度、pH值可 以控制胶粒的大小。通过使溶胶中的电解质脱水 或改变溶胶的浓度,溶胶凝结转变成三维网络状 凝胶。
溶胶-凝胶合成生产设备
▪ 这条合成路线的中心化学问题是反应物分 子(或离子)母体在水或其他有机溶剂中 进行水解和聚合反应,即由分子态→聚合 体→溶胶→凝胶→晶态(或非晶态)的全 部过程。
▪ 所以这条合成路线可以通过对过程化学上 的了解和有效的控制来合成一些特定结构 和聚集态的固体化合物和材料。
二、溶胶一凝胶工艺方法
▪ 聚合工艺的前体是金属醇盐,将醇盐溶解在有机 溶剂中,加入适量的水,醇盐水解,通过脱水、 脱醇反应缩聚合,形成三维网络。
四正丁氧基锆 Zr(OC4H9)4
醇盐溶胶一凝胶法制备玻璃制品的工艺流程
ZnSe/SiO2纳米复合材料的制备工艺流程
5.3 Sol-gel原料及其合成
5.3.1 原料
▪ Sol-gel原料主要有二大类,金属醇盐、无机金属盐
5.2 Sol-gel法的主要工艺方法
一、概述
▪ 溶胶是指有胶体颗粒分散悬浮其中的液体,即大小在1~ 100nm之间的固体颗粒分散于液体介质中所形成的多相体 系。这些固体颗粒一般由103~109个原子组成,称为胶体。
▪ ▪ 凝胶是指内部呈网络结构,网络间隙中含有液体的固体。
当溶胶受到某种作用(如温度变化、搅拌、化学反应 或电化学平衡等)而导致体系新粘度增大到一定程度,可 得到一种介于固态和液态之间的冻状物,它有胶粒聚集成 的三度空间网状结构,网络了全部或部分介质,是一种相 当粘稠的物质,即为凝胶。
第章溶胶-凝胶法ppt课件
B(OCH3)3 4
阳离子
Ge Zr Y Ca
M(OR)n
Ge(OC2H5)4 Zr(O-iC3H7)4 Y(OC2H5)3
(OC2H5)2
1.2 溶胶-凝胶法的基本原理
一、溶胶-凝胶法基本概念
❖ 溶胶-凝胶法(Precursor):是用含高化学活性组分的化合物作 前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学 反应,在溶液中形成稳定的透明溶胶体系;溶胶经陈化胶粒间缓 慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去 流动性的溶剂;凝胶经过干燥脱去其间的溶剂成为一种多孔空间 结构的干凝胶,最后烧结固化制备出分子乃至纳米亚结构的材料。
❖ 羟基与烷氧基之间也存在缩合反应 :
(OR)n-x(HO)x-lM-OH + ROM(OR)n-x-l (OH)x → (OR)n-x(OH)M-O-M(OR)n-x-l (OH)x(OH)x + R-OH
的水解-缩聚反应:
❖ a.水解反应的机理是水分子中的氧原子与硅原子发生亲核结合, 就像是羟基取代了烷氧基。
❖ 粒子间总的相互作用能
➢ 粒子间距H较大时,双电层未重叠,吸引力起作用,出现极小值a; ➢ H缩小到一定距离时发生双电层重叠,排斥力起作用,出现极大值Vmax; ➢ H缩短到一定程度时引力又占优,出现极小值b,发生凝胶化。
10
1.2 溶胶-凝胶法的基本原理
二、溶胶稳定机制 2、溶胶稳定机制
➢ 溶胶是固体或大分子颗粒分散于液相的胶体体系,具有很大的 界面存在,界面原子的吉布斯自由能比内部原子高,粒子间便有 相互聚结从而降低表面能的趋势。 ➢ 增加体系中粒子间结合所须克服的能垒可使之在动力学上稳定。 增加粒子间能垒通常有三个基本途径:(1)使胶粒带表面电荷;(2) 利用空间位阻效应;(3)利用溶剂化效应。
阳离子
Ge Zr Y Ca
M(OR)n
Ge(OC2H5)4 Zr(O-iC3H7)4 Y(OC2H5)3
(OC2H5)2
1.2 溶胶-凝胶法的基本原理
一、溶胶-凝胶法基本概念
❖ 溶胶-凝胶法(Precursor):是用含高化学活性组分的化合物作 前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学 反应,在溶液中形成稳定的透明溶胶体系;溶胶经陈化胶粒间缓 慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去 流动性的溶剂;凝胶经过干燥脱去其间的溶剂成为一种多孔空间 结构的干凝胶,最后烧结固化制备出分子乃至纳米亚结构的材料。
❖ 羟基与烷氧基之间也存在缩合反应 :
(OR)n-x(HO)x-lM-OH + ROM(OR)n-x-l (OH)x → (OR)n-x(OH)M-O-M(OR)n-x-l (OH)x(OH)x + R-OH
的水解-缩聚反应:
❖ a.水解反应的机理是水分子中的氧原子与硅原子发生亲核结合, 就像是羟基取代了烷氧基。
❖ 粒子间总的相互作用能
➢ 粒子间距H较大时,双电层未重叠,吸引力起作用,出现极小值a; ➢ H缩小到一定距离时发生双电层重叠,排斥力起作用,出现极大值Vmax; ➢ H缩短到一定程度时引力又占优,出现极小值b,发生凝胶化。
10
1.2 溶胶-凝胶法的基本原理
二、溶胶稳定机制 2、溶胶稳定机制
➢ 溶胶是固体或大分子颗粒分散于液相的胶体体系,具有很大的 界面存在,界面原子的吉布斯自由能比内部原子高,粒子间便有 相互聚结从而降低表面能的趋势。 ➢ 增加体系中粒子间结合所须克服的能垒可使之在动力学上稳定。 增加粒子间能垒通常有三个基本途径:(1)使胶粒带表面电荷;(2) 利用空间位阻效应;(3)利用溶剂化效应。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水解反应生成的沉淀[Al(OH)3(H2O) 3]0在溶液酸度提高时,能够 溶解,变成离子,形成沉淀-胶溶反应(PrecipitationPeptization)
n [Al(OH)3(H2O) 3]0 + xHNO3 = { [Al(OH)3(H2O) 3]nHx}x+ + xNO3-
胶溶反应中胶核呈正电性,外层吸附了电量相等的负电离子。
溶胶-凝胶法的缺陷
原料成本较高 存在残留小孔洞 存在残留的碳 较长的反应时间 有机溶剂对人体有一定的危害性
溶胶-凝胶法的未来
1994年7月在美国加利福尼亚的圣地亚哥举 行的关于Sol-Gel光子学的会议上,展示了 三种很有前途的产品: 1. 西班牙的D.Levy小组演示了液晶显示器。 2. 爱尔兰的B.D.MacCraith发明的光纤传感器。 3. 法国的J.Livage制备的生物寄生检测器。
溶胶凝胶法
目录
基本概念 发展历程 基本原理和工艺过程 常用测试方法 应用举例 优势,缺陷 未来
溶胶-凝胶法的基本概念
胶体(colloid)是一种分散相粒径很小的分散 体系,分散相粒子的重力可以忽略,粒子之间 的相互作用主要是短程作用力。
溶胶(Sol)是具有液体特征的胶体体系,分 散的粒子是固体或者大分子,分散的粒子大小 在1~1000nm之间。
溶胶-凝胶法的应用
-功能材料中制备纤维
Si(OCH3)4 C2H5OH
H2O,HCl
C2H5OH NdCl3.6H2O
搅拌(室温)
混合溶液
放置、脱水(室温~8 0%)
粘性溶胶
拉纤维(室温)
凝胶纤维
加热(10℃/h) 500℃ 1h,冷却至室温
铷玻璃纤维
溶胶-凝胶法的应用
-功能材料中制备膜材料
Nd(NO3)3.6H2O H2O,HCl C2H5OH
凝胶(Gel)是具有固体特征的胶体体系,被 分散的物质形成连续的网状骨架,骨架空隙中 充有液体或气体,凝胶中分散相的含量很低, 一般在1%~3%之间。
溶胶-凝胶法的基本概念
简单的讲,溶胶-凝胶法就是用含高化学活 性组分的化合物作前驱体,在液相下将这些原 料均匀混合,并进行水解、缩合化学反应,在 溶液中形成稳定的透明溶胶体系,溶胶经陈化 胶粒间缓慢聚合,形成三维空间网络结构的凝 胶,凝胶网络间充满了失去流动性的溶剂,形 成凝胶。凝胶经过干燥、烧结固化制备出分子 乃至纳米亚结构的材料。
C2H5OH Si(OCH3)4
混合溶液
保持2~4h,室温
粘性溶胶
包覆
包覆膜
加热1h
Nd.SiO2膜
溶胶-凝胶法的应用
-功能材料中制备单晶
溶胶-凝胶法的应用
-功能材料中制备复合材料
溶胶-凝胶法的应用(3)
-催化剂的制备及应用
溶胶-凝胶法的优势
起始原料是分子级的能制备较均匀的材料 较高的纯度 组成成分较好控制,尤其适合制备多组分材料 可降低程序中的温度 具有流变特性,可用于不同用途产品的制备 可以控制孔隙度 容易制备各种形状
boehmite溶胶
将1M仲丁醇铝的仲丁醇溶液滴入温度高于80℃的去 离子水中进行水解,生成boehmite沉淀,加入适量 1.6M HNO3,使沉淀胶溶,经老化形成稳定的溶胶
溶胶-凝胶法应用
—铝胶制备及化学机理
铝盐溶液中,铝离子呈水合状态,即[Al(H2O)6]3+。由于 铝离子的正电荷与配位水分子中氢离子相斥,使氢离子 释放出来—水解反应
溶胶-凝胶法的基本原理
溶剂化: M(H2O)nz+=M(H2O)n-1(OH)(z-1)+H+ 水解反应: M(OR)n+xH2O=M(OH)x(OR)n-x+xROH------M(OH)n 缩聚反应 失水缩聚:-M-OH+HO-M-=-M-O-M-+H2O 失醇缩聚:-M-OR+HO-M-=-M-O-M-+ROH
溶胶-凝胶法的基本概念
-溶胶与凝胶的结构比较
这种特殊的网架结构赋予凝胶很高的比表面。
溶胶-凝胶法的发展历程
1846年法国化学家J.J.Ebelmen用SiCl4与乙醇混合后, 发现在湿空气中发生水解并形成了凝胶。
20世纪30年代W.Geffcken证实用金属醇盐的水解和 凝胶化可以制备氧化物薄膜。
[Al(H2O)6]3+ = [Al(OH)(H2O) 5]2+ + H+ [Al(OH)(H2O) 5]2+ = [Al(OH)2(H2O) 4] + + H+ [Al(OH)2(H2O) 4]+ = [Al(OH)3(H2O) 3]0 + H+
溶液的Ph值升高,水解程度增大
溶胶-凝胶法应用
—铝溶胶制备及化学机理
1971年德国H.Dislich报道了通过金属醇盐水解制备 了SiO2-B2O-Al2O3-Na2O-K2O多组分玻璃。
1975年B.E.Yoldas和M.Yamane制得整块陶瓷材料及 多孔透明氧化铝薄膜。
80年代以来,在玻璃、氧化物涂层、功能陶瓷粉料以 及传统方法难以制得的复合氧化物材料得到成功应用。
溶胶-凝胶法的应用(2)
-功能材料中制备粉体材料
La2O3 La(NO3)3溶液
HNO3 La: Fe=1:1
Fe(NO3)3.6H2O Fe(NO3)3溶液 柠檬酸
La3+、Fe3+的柠檬酸溶液
50~80℃
含La3+、Fe3+的溶胶
60~90℃
含La3+、Fe3+的凝胶
120℃
干凝胶
热处理
ห้องสมุดไป่ตู้
LaFeO3的超细粉末 10~100nm
溶胶-凝胶法的基本原理
-水解反应机理
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
溶胶-凝胶法的基本原理
-缩聚反应机理
溶胶-凝胶法的工艺过程
溶胶-凝胶法常用测试方法
测定前驱物金属醇盐的水解程度(化学定量分析法) 测定溶胶的物理性质(粘度、浊度、电动电位) 胶粒尺寸大小(准弹性光散射法、电子显微镜观察) 溶胶或凝胶在热处理过程中发生的物理化学变化
(XRD、中子衍射、DTA-TG) 反应中官能团及键性质的变化(红外分光光度计、拉
曼光谱仪) 溶胶、凝胶粒子中的结构(GC-MS) 固态物体的核磁共振谱测定M-O结构状态
溶胶-凝胶法的应用
前驱体
纳米颗粒 纤维
溶胶
湿凝胶
气凝胶
多孔材料
涂层、薄膜
干凝胶
致密块体
溶胶-凝胶法应用(1)
—铝胶制备及化学机理
n [Al(OH)3(H2O) 3]0 + xHNO3 = { [Al(OH)3(H2O) 3]nHx}x+ + xNO3-
胶溶反应中胶核呈正电性,外层吸附了电量相等的负电离子。
溶胶-凝胶法的缺陷
原料成本较高 存在残留小孔洞 存在残留的碳 较长的反应时间 有机溶剂对人体有一定的危害性
溶胶-凝胶法的未来
1994年7月在美国加利福尼亚的圣地亚哥举 行的关于Sol-Gel光子学的会议上,展示了 三种很有前途的产品: 1. 西班牙的D.Levy小组演示了液晶显示器。 2. 爱尔兰的B.D.MacCraith发明的光纤传感器。 3. 法国的J.Livage制备的生物寄生检测器。
溶胶凝胶法
目录
基本概念 发展历程 基本原理和工艺过程 常用测试方法 应用举例 优势,缺陷 未来
溶胶-凝胶法的基本概念
胶体(colloid)是一种分散相粒径很小的分散 体系,分散相粒子的重力可以忽略,粒子之间 的相互作用主要是短程作用力。
溶胶(Sol)是具有液体特征的胶体体系,分 散的粒子是固体或者大分子,分散的粒子大小 在1~1000nm之间。
溶胶-凝胶法的应用
-功能材料中制备纤维
Si(OCH3)4 C2H5OH
H2O,HCl
C2H5OH NdCl3.6H2O
搅拌(室温)
混合溶液
放置、脱水(室温~8 0%)
粘性溶胶
拉纤维(室温)
凝胶纤维
加热(10℃/h) 500℃ 1h,冷却至室温
铷玻璃纤维
溶胶-凝胶法的应用
-功能材料中制备膜材料
Nd(NO3)3.6H2O H2O,HCl C2H5OH
凝胶(Gel)是具有固体特征的胶体体系,被 分散的物质形成连续的网状骨架,骨架空隙中 充有液体或气体,凝胶中分散相的含量很低, 一般在1%~3%之间。
溶胶-凝胶法的基本概念
简单的讲,溶胶-凝胶法就是用含高化学活 性组分的化合物作前驱体,在液相下将这些原 料均匀混合,并进行水解、缩合化学反应,在 溶液中形成稳定的透明溶胶体系,溶胶经陈化 胶粒间缓慢聚合,形成三维空间网络结构的凝 胶,凝胶网络间充满了失去流动性的溶剂,形 成凝胶。凝胶经过干燥、烧结固化制备出分子 乃至纳米亚结构的材料。
C2H5OH Si(OCH3)4
混合溶液
保持2~4h,室温
粘性溶胶
包覆
包覆膜
加热1h
Nd.SiO2膜
溶胶-凝胶法的应用
-功能材料中制备单晶
溶胶-凝胶法的应用
-功能材料中制备复合材料
溶胶-凝胶法的应用(3)
-催化剂的制备及应用
溶胶-凝胶法的优势
起始原料是分子级的能制备较均匀的材料 较高的纯度 组成成分较好控制,尤其适合制备多组分材料 可降低程序中的温度 具有流变特性,可用于不同用途产品的制备 可以控制孔隙度 容易制备各种形状
boehmite溶胶
将1M仲丁醇铝的仲丁醇溶液滴入温度高于80℃的去 离子水中进行水解,生成boehmite沉淀,加入适量 1.6M HNO3,使沉淀胶溶,经老化形成稳定的溶胶
溶胶-凝胶法应用
—铝胶制备及化学机理
铝盐溶液中,铝离子呈水合状态,即[Al(H2O)6]3+。由于 铝离子的正电荷与配位水分子中氢离子相斥,使氢离子 释放出来—水解反应
溶胶-凝胶法的基本原理
溶剂化: M(H2O)nz+=M(H2O)n-1(OH)(z-1)+H+ 水解反应: M(OR)n+xH2O=M(OH)x(OR)n-x+xROH------M(OH)n 缩聚反应 失水缩聚:-M-OH+HO-M-=-M-O-M-+H2O 失醇缩聚:-M-OR+HO-M-=-M-O-M-+ROH
溶胶-凝胶法的基本概念
-溶胶与凝胶的结构比较
这种特殊的网架结构赋予凝胶很高的比表面。
溶胶-凝胶法的发展历程
1846年法国化学家J.J.Ebelmen用SiCl4与乙醇混合后, 发现在湿空气中发生水解并形成了凝胶。
20世纪30年代W.Geffcken证实用金属醇盐的水解和 凝胶化可以制备氧化物薄膜。
[Al(H2O)6]3+ = [Al(OH)(H2O) 5]2+ + H+ [Al(OH)(H2O) 5]2+ = [Al(OH)2(H2O) 4] + + H+ [Al(OH)2(H2O) 4]+ = [Al(OH)3(H2O) 3]0 + H+
溶液的Ph值升高,水解程度增大
溶胶-凝胶法应用
—铝溶胶制备及化学机理
1971年德国H.Dislich报道了通过金属醇盐水解制备 了SiO2-B2O-Al2O3-Na2O-K2O多组分玻璃。
1975年B.E.Yoldas和M.Yamane制得整块陶瓷材料及 多孔透明氧化铝薄膜。
80年代以来,在玻璃、氧化物涂层、功能陶瓷粉料以 及传统方法难以制得的复合氧化物材料得到成功应用。
溶胶-凝胶法的应用(2)
-功能材料中制备粉体材料
La2O3 La(NO3)3溶液
HNO3 La: Fe=1:1
Fe(NO3)3.6H2O Fe(NO3)3溶液 柠檬酸
La3+、Fe3+的柠檬酸溶液
50~80℃
含La3+、Fe3+的溶胶
60~90℃
含La3+、Fe3+的凝胶
120℃
干凝胶
热处理
ห้องสมุดไป่ตู้
LaFeO3的超细粉末 10~100nm
溶胶-凝胶法的基本原理
-水解反应机理
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
溶胶-凝胶法的基本原理
-缩聚反应机理
溶胶-凝胶法的工艺过程
溶胶-凝胶法常用测试方法
测定前驱物金属醇盐的水解程度(化学定量分析法) 测定溶胶的物理性质(粘度、浊度、电动电位) 胶粒尺寸大小(准弹性光散射法、电子显微镜观察) 溶胶或凝胶在热处理过程中发生的物理化学变化
(XRD、中子衍射、DTA-TG) 反应中官能团及键性质的变化(红外分光光度计、拉
曼光谱仪) 溶胶、凝胶粒子中的结构(GC-MS) 固态物体的核磁共振谱测定M-O结构状态
溶胶-凝胶法的应用
前驱体
纳米颗粒 纤维
溶胶
湿凝胶
气凝胶
多孔材料
涂层、薄膜
干凝胶
致密块体
溶胶-凝胶法应用(1)
—铝胶制备及化学机理