综合性实验 极点配置全状态反馈控制指导书
实验八控制系统极点的任意配置综合性设计性实验
![实验八控制系统极点的任意配置综合性设计性实验](https://img.taocdn.com/s3/m/075482150a4e767f5acfa1c7aa00b52acfc79c4c.png)
实验八控制系统极点的任意配置(综合性设计性实验)
一、实验目的
1. 掌握用全状态反馈的设计方法实现控制系统极点的任意配置;
2. 用电路模拟的方法,研究参数的变化对系统性能的影响。
二、实验设备
同实验一。
三、实验内容
1. 用全状态反馈实现二阶系统极点的任意配置,并用电路模拟的方法予以实现;
2. 用全状态反馈实现三阶系统极点的任意配置,并通过电路模拟的方法予以实现。
四、实验原理(略)
五、实验步骤
请自行提出实验步骤,选择实验台上的通用电路单元设计并组建相应的模拟电路。
(K 值可参考取5,12,20等)。
完成实验报告,结合实验提出相应思考题。
毕业设计4“极点配置设计状态反馈控制器的算法”阅读材料-WSC
![毕业设计4“极点配置设计状态反馈控制器的算法”阅读材料-WSC](https://img.taocdn.com/s3/m/3fab941fbb68a98271fefa68.png)
阅读材料: 极点配置设计状态反馈控制器的算法工程实践中,系统的动态特性往往以时域指标给出,比如要求超调量小于等于多少,超调时间不超过多少,阻尼振荡频率不大于多少等。
例1(138P 例5.3.3)如例5-6图被控系统,设计状态反馈控制器,使得闭环系统是渐近稳定的,而且闭环系统的:超调量%5≤p σ,峰值时间(超调时间)s t p 50.≤,阻尼振荡频率10≤d ω。
例1 图1 系统结构图 解:仿照例5-5 )(1)(21s X s s X =,)(211)(32s X s s X +=,)(61)(3s U s s X += (1) ⇒ 状态方程: )()(6)()()(12)()()(3332221t u t x t xt x t x t xt x t x+-=+-== (2) 输出方程:1321)001(x x x x y =⎪⎪⎪⎭⎫⎝⎛= (3)由例5-6系统结构图,可以得到被控系统的一个状态空间模型。
x y u x x)001(1006001120010=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--=, (4) 容易检验该系统是能控的,因此,可以通过状态反馈来实现闭环系统的任意极点配置。
先写出开环系统的传递函数 072181)6)(12(1)(23+++=++=s s s s s s s G (5) 本题无开环零点,闭环系统的动态性能完全由闭环极点所决定。
由于所考虑的系统为3阶系统,故有3个闭环极点。
期望的3个闭环极点可以这样安排:一个极点远离虚轴,对闭环系统性能影响极小,于是可将系统近似成只有一对主导极点为22,11ζωζωλ-±-=n n j 的2阶系统。
ζ—2阶系统的阻尼比; n ω—2阶系统无阻尼自振频率。
由关系式: %5e 21/≤=--ξξπσ,s 5.012≤-=ζωπn p t (6)(参见《自动控制技术》,吴舒辞,中国林业出版社,2000年4月,37P 表2.5)当取 10707021≥=≥n ωζ,.,07.7≥n ζω时,满足上述条件。
状态反馈的极点配置
![状态反馈的极点配置](https://img.taocdn.com/s3/m/f531813031126edb6f1a1039.png)
东南大学自动化学院实验报告课程名称:自动控制基础实验名称:控制系统极点的任意配置院(系):自动化学院专业:自动化姓名:吴静学号:08008419实验室:实验组别:同组人员:实验时间:2011年4月29日评定成绩:审阅教师:一、实验目的1. 掌握用状态反馈的设计方法实现控制系统极点的任意配置;2. 用电路模拟的方法,研究参数的变化对系统性二、实验原理内容用全状态反馈实现二阶系统极点的任意配置,并用电路模拟的方法予予以实现; 理论证明,通过状态反馈的系统,其动态性能一定会优于只有输出反馈的系统。
设系统受控系统的动态方程为bu Ax x+= cx y =图6-1为其状态变量图。
图6-1 状态变量图令Kx r u -=,其中]...[21n k k k K =,r 为系统的给定量,x 为1⨯n 系统状态变量,u 为11⨯控制量。
则引入状态反馈后系统的状态方程变为bu x bK A x+-=)( 相应的特征多项式为)](det[bK A SI --,调节状态反馈阵K 的元素]...[21n k k k ,就能实现闭环系统极点的任意配置。
图6-2为引入状态反馈后系统的方框图。
图6-2 引入状态变量后系统的方框图实验时,二阶系统方框图如6-3所示。
图6-3 二阶系统的方框图引入状态反馈后系统的方框图如图6-4所示。
根据状态反馈后的性能指标:20.0≤p δ,s 5.0T p ≤,试确定状态反馈系数K1和K2图6-4 引入状态反馈后的二阶系统方框图三、实验步骤1.引入状态反馈前根据图6-3二阶系统的方框图,设计并组建该系统相应的模拟电路,如图6-9所示。
图6-9 引入状态反馈前的二阶系统模拟电路图在系统输入端加单位阶跃信号,用上位机软件观测c(t)输出点并记录相应的实验曲线,测量其超调量和过渡时间。
2.引入状态反馈后请预先根据前面给出的指标计算出状态反馈系数K1、K2。
根据图6-4引入状态反馈后的二阶系统的方框图,设计并组建该系统相应的模拟电路,如图6-10所示。
极点配置法设计状态反馈控制器——自动控制原理理论篇
![极点配置法设计状态反馈控制器——自动控制原理理论篇](https://img.taocdn.com/s3/m/ec049738bed5b9f3f90f1c53.png)
设计算法--适用于用能控标准形表示的SI系统的算法
a0 f1 0 a1 f 2 1
an1 f n n1
f1 0 a0 f2 1 a1
fn n1 an1
举例
例8-21 设系统的状态空间描述为
x(t)
0 6
1 0 5x(t) 1u(t)
y(t) 2 1x(t)
试求:(1)求状态反馈矩阵F使闭环系统有期望 极点s1,2=-3±2j; (2)绘制带有状态反馈控制器的状态变量图
举例----求解过程
解: 0
B 1
0 1 0 1 AB 6 51 5
rankS
rankB
AB
0 1
1 5
2
系统能控。
举例----求解过程
期望闭环系统特征多项式为:
(s s1)(s s2 ) (s 3 2 j)(s 3 2 j) s2 6s 13
设: F f1 f2
s sI A BF
6 f1
SI系统,所以设 F f1 f2 fn
| sI A BF |
0 1
0 0
s 0
0
s
s
0
a0
0 a1
1
0
1
0
f1
f
2
f
n
an1 1
极点配置法设计状态反馈控制器
——《自动控制原理-理论篇》第8.8节
线性系统的状态反馈及极点配置
![线性系统的状态反馈及极点配置](https://img.taocdn.com/s3/m/017784343968011ca3009148.png)
现代控制理论实验(一)线性系统的状态反馈及极点配置——09级自动化本科一.实验目的1.了解和掌握状态反馈及极点配置的原理。
2.了解和掌握利用矩阵法及传递函数法计算状态反馈及极点配置的原理与方法。
3.掌握在被控系统中如何进行状态反馈及极点配置,构建一个性能满足指标要求的新系统的方法。
二.实验原理及说明一个控制系统的性能是否满足要求,要通过解的特征来评价,也就是说,当传递函数是有理函数时,它的全部信息几乎都集中表现为它的极点、零点及传递函数。
因此若被控系统完全能控,则可以通过状态反馈任意配置极点,使被控系统达到期望的时域性能指标。
若有被控系统如图3-3-61所示,它是一个Ⅰ型二阶闭环系统。
图3-3-61 被控系统如图3-3-61所示的被控系统的传递函数为:12021S 11)1(1)(a S a S b T TS T TS S T S i i i ++=++=++=φ (3-3-51) 采用零极点表达式为:))(()(210λλφ--=S S b S (3-3-52)进行状态反馈后,如图3-3-62所示,图中“输入增益阵”L 是用来满足静态要求。
图3-3-62 状态反馈后被控系统设状态反馈后零极点表达式为:))(()(21**--=λλφS S b S (3-3-53)1.矩阵法计算状态反馈及极点配置1)被控系统被控系统状态系统变量图见图3-3-63。
图3-3-63 被控系统状态系统变量状态反馈后的被控系统状态系统变量图见图3-3-64。
图3-3-64 状态反馈后的被控系统状态系统变量图图3-3-61的被控系统的状态方程和输出方程为:状态方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=+-=••1i 1i 2211X Y u T 1X T 1X X T 1X T 1X (3-3-54)⎪⎩⎪⎨⎧=+==•∑CxY u Ax X B C B A 0),,(式中[]01,T 10B 0T 1T 1T 1A ,i i 21=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=C x x x , 被控系统的特征多项式和传递函数分别为:12010a a b S b )(+++=S S S φB A)C(SI 1--=)(A -SI det a a )(f 0120=++=S S S 可通过如下变换(设P 为能控标准型变换矩阵): —x P X =将∑0C B A ),,(化为能控标准型 ),,(————C B A ∑,即: ⎪⎩⎪⎨⎧=+=•——————x C Y u x A B X 式中 ⎥⎦⎤⎢⎣⎡-==-101a -a 10AP P A — , ⎥⎦⎤⎢⎣⎡==-10B P B 1— , []10b b CP C ==— 2)被控系统针对能控标准型),,(————C B A ∑引入状态反馈:⎥⎦⎤⎢⎣⎡=-=—————式中10k k k xk u ν (3-3-55)可求得对—x 的闭环系统),,—————C B k B A (-∑的状态空间表达式: 仍为能控标准型,即: ⎪⎩⎪⎨⎧=+-=•————————)(x C Y u x B k B A X 式中 ⎥⎦⎤⎢⎣⎡+-+-=-)()(—————1100k a k a 10k B A则闭环系统),,(——————C B k B A -∑的特征多项式和传递函数分别为: )()(—————00112k k a k a k)B (A SI det )(f ++++=⎥⎦⎤⎢⎣⎡--=S S S )k a (k a b S b B )k B A (SI C )(00112011k ———————)(+++++=⎥⎦⎤⎢⎣⎡--=-S S S φ3)被控系统如图3-3-61所示:其中:05.01==T T i则其被控系统的状态方程和输出方程为:[]XY uX X 0110012020=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=期望性能指标为:超调量M P ≤20%;峰值时间t P ≤0.5秒。
综合性实验 极点配置全状态反馈控制指导书
![综合性实验 极点配置全状态反馈控制指导书](https://img.taocdn.com/s3/m/d7edef18a76e58fafab0031e.png)
综合性实验 极点配置全状态反馈控制一、实验目的1.学习并掌握用极点配置方法设计全状态反馈控制系统的方法。
2.用电路模拟与软件仿真方法研究参数对系统性能的影响。
二、实验内容1.设计典型二阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。
2.设计典型三阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。
三、实验前准备工作1 推导图1的数学模型(状态空间表达式),分析系统的能控性。
2 若系统期望的性能指标为:超调量25%p M ≤,峰值时间0.5p t ≤,求出期望的极点值。
根据以上性能指标要求设计出状态反馈控制器。
3 推导图2的数学模型(传递函数),求出其单位阶跃响应的动态性能指标(超调量、调节时间、静态速度误差系数)。
4 推导图4的数学模型(状态空间表达式),分析系统的能控性。
5考虑系统稳定性等要求,选择理想极点为:S 1=-9,S 2 =-2+j2,S 3=-2-j2, 根据以上性能指标要求思考如何设计状态反馈控制器。
6 推导图7的数学模型(传递函数)。
四、实验步骤1.典型二阶系统(1)对一已知二阶系统(见图1)用极点配置方法设计全状态反馈系数。
(2)见图2和图3,利用实验箱上的电路单元U9、U11、U12和U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。
(3)改变系统模拟电路接线,使系统恢复到图1所示情况,测取阶跃响应,并与软件仿真结果比较。
(4)对实验结果进行比较、分析,并完成实验报告。
2.典型三阶系统(1)对一已知三阶系统(见图4)用极点配置方法设计全状态反馈系数。
(2)见图5和图7,利用实验箱上的电路单元U9、U11、U12、U15和U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。
(3)改变系统模拟电路接线,使系统恢复到图5所示情况,测取阶跃响应,并与软件仿真结果比较。
软件仿真直接在MATLAB 中实现。
6.2 反馈控制和极点配置 共64页
![6.2 反馈控制和极点配置 共64页](https://img.taocdn.com/s3/m/6816049e284ac850ac024215.png)
其中
[K1 K2]KPc
状态反馈极点配置定理(9/11)
由上式可知,状态完全不能控子系统的系统矩阵 A~22的特征 值不能通过状态反馈改变,即该部分的极点不能配置。 虽然状态完全能控子系统的 A~11的特征值可以任意配 置,但其特征值个数少于整个系统的系统矩阵 A 的特
2) 期望的极点必须是实数或成对出 现的共轭复数;
3) 期望的极点必须体现对闭环系统 的性能品质指标等的要求。
p2 p1
p3
反馈控制与极点配置(4/5)
基于指定的期望闭环极点,线性定常连续系统的状态反馈极点 配置问题可描述为: 给定线性定常连续系统 x AxBu
确定反馈控制律 uKxv
使闭环系统K(A-BK,B,C)的极点任意配置的充分必要条件为
被控系统(A,B,C)状态完全能控。
□
证明 (1) 先证充分性(条件结论)。
即证明,若被控系统(A,B,C)状态完全能控,则状态反馈闭 环系统K(A-BK,B,C)必能任意配置极点。
由于线性变换和状态反馈都不改变状态能控性,而开环被 控系统(A,B,C)状态能控,因此一定存在线性变换能将其 变换成能控规范II形。
由于状态反馈闭环系统保持其开环系统的状态完全能控 特性,故该闭环系统只能是状态不完全能观的。
这说明了状态反馈可能改变系统的状态能观性。 从以上说明亦可得知,若SISO系统没有零点,则状态反馈不
改变系统的状态能观性。
SISO系统状态反馈极点配置方法(1/10)
6.2.2 SISO系统状态反馈极点配置方法
本节讨论如何利用状态反馈与输出反馈来进行线性定常连续 系统的极点配置,即使反馈闭环控制系统具有所指定的闭环极 点。 对线性定常离散系统的状态反馈设计问题,有完全平行的 结论和方法。
状态空间极点配置控制实验易杰
![状态空间极点配置控制实验易杰](https://img.taocdn.com/s3/m/3bb6778881eb6294dd88d0d233d4b14e85243eae.png)
下面采用四种不同的方法计算反馈矩阵 K。 方法一:按极点配置步骤进行计算。
2) 计算特征值
ቤተ መጻሕፍቲ ባይዱ
因此有 系统的反馈增益矩阵为: 确定使状态方程变为可控标准型的变换矩阵 T: T = MW 式中:
其中“GL1IP State-Space”为直线一级倒立摆的状态空间 模型,双击打开如下窗口:
双击“Controller1”模块,打开状态反馈矩阵K 设置窗口:
把计算得到的 K 值输入上面的窗口。 运行仿真,得到以下结果:
图 4 直线一级倒立摆状态空间极点配置MATLAB Simulink 仿真结果
(进入MATLAB Simulink 实时控制工具箱“Googol Education Products”打开 “Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ Poles Experiments”中的“Poles Control M File1”)
简约工作计划总结通用模版
单击此处添加副标题
状态空间极点配置控制实验课件 易杰
1、 状态空间分析 2、 极点配置及仿真仿真 3、 极点配置控制实验 4、 实验结果及实验报告
单击此处添加副标题
实验二 状态空间极点配置控制实验
1、状态空间分析
X = AX + Bu
对于控制系统
X 为状态向量( n 维) u 控制向量(纯量) n × n维常数矩阵 n ×1维常数矩阵
6.2-6.3 反馈控制与极点配置-系统镇定
![6.2-6.3 反馈控制与极点配置-系统镇定](https://img.taocdn.com/s3/m/54e6771ca8114431b90dd8f4.png)
n 1
状态反馈极点配置定理(6/6)
如果由期望的闭环极点所确定的特征多项式为 f*(s) sn a1*sn-1 … an*
那么,只需令fK(s) f*(s),即取
a1 kn a1*, , an k1 an* 则可将状态反馈闭环系统K(ABK, B, C)的极点配置在特 征多项式f*(s)所规定的极点上 即证明了充分性 同时, 我们还可得到相应的状态反馈阵为 K=[k1 k2 … kn] 其中
能通过反馈控制而达到渐近稳定的系统是可镇定的
镇定只要求闭环极点位于复平面的左半开平面之内
镇定问题的重要性主要体现在3个方面: 首先, 稳定性往往是控制系统能够正常工作的必要条 件, 是对控制系统的最基本的要求; 其次, 许多实际的控制系统是以渐近稳定作为最终设 计目标;
系统镇定(2/2)
SISO系统状态反馈极点配置方法(5/10)
3. 求反馈律: 因此开环特征多项式
f(s) s22s5,
而由期望的闭环极点1j2所确定的期望闭环特征多项式 f*(s) s22s5,
则得状态反馈阵K为
~ 1 * K K Tc 2 [ a 2 - a 2 [ 5 - ( -5 ) - 7 / 3 a 1 - a 1 ]T c 2
对能控规范II形 馈阵如下
( A, B) 进行极点配置,
求得相应的状态反
*
~ * K an an
an 1 an 1
*
a1 a1
因此, 原系统的相应状态反馈阵K为
~ 1 K KTc 2
SISO系统状态反馈极点配置方法(3/10)
下面通过两个例子来说明计算状态反馈阵K的方法 例6-2 设线性定常系统的状态方程为
状态反馈与极点配置报告
![状态反馈与极点配置报告](https://img.taocdn.com/s3/m/ef19fa9a6529647d27285227.png)
自动控制原理(课程设计)一、题目用MATLAB创建用户界面,并完成以下功能:(1)由用户输入被控系统的状态空间模型、闭环系统希望的一组极点;(2)显示未综合系统的单位阶跃响应曲线;(3)显示采用一般设计方法得到的状态反馈矩阵参数;(4)显示闭环反馈系统的单位阶跃响应曲线;(5)将该子系统嵌入到寒假作业中程序中。
分别对固定阶次和任意阶次的被控系统进行设计。
分别给出设计实例。
二、运行结果界面:如图由用户输入被控系统的状态空间模型、闭环系统希望的一组极点例如,输入010001034A⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦,1B⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,[]2000C=,0D=,闭环系统希望的一组极点:22j-+、22j--、5-如图所示:被控系统的单位阶跃响应曲线闭环系统的单位阶跃响应曲线状态反馈矩阵显示三、讨论该闭环控制系统的状态反馈与极点配置设计系统可用于任意阶次的控制系统。
在此之前,我还做了一个固定阶次的控制系统状态反馈与极点配置的Matlab 控制台程序(见附录二)。
该系统的利用状态反馈进行极点任意配置所采用的方法为一般方法,其步骤如下:①判断受控系统是否完全能控;②由给定的闭环极点要求确定希望的闭环特征多项式的n个系数~i a;③确定原受控系统的特征多项式系数ia;④确定系统状态反馈矩阵~~~~[,,,]12nff fF=的诸元素~~11ii if a a-=--;⑤确定原受控系统化为能控标准形的变换阵的逆1P-,⑥确定受控系统完成闭环极点配置任务的状态反馈阵~1F F P-=。
四、参考文献[1]黄家英.《自动控制原理》.高等教育出版社,2010.5[2]唐向红,郑雪峰.《MATLAB及在电子信息类》.电子工业出版社,2009.6[3]吴大正,高西全.《MATLAB新编教程》.机械工业出版社,2008.4五、附录function varargout = tufeiqiang(varargin)%TUFEIQIANG M-file for tufeiqiang.fig% TUFEIQIANG, by itself, creates a new TUFEIQIANG or raises the existing% singleton*.%% H = TUFEIQIANG returns the handle to a new TUFEIQIANG or the handle to% the existing singleton*.%% TUFEIQIANG('Property','Value',...) creates a new TUFEIQIANG usingthe% given property value pairs. Unrecognized properties are passed via % varargin to tufeiqiang_OpeningFcn. This calling syntax produces a% warning when there is an existing singleton*.%% TUFEIQIANG('CALLBACK') and TUFEIQIANG('CALLBACK',hObject,...) call the% local function named CALLBACK in TUFEIQIANG.M with the given input % arguments.%% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one% instance to run (singleton)".%% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help tufeiqiang% Last Modified by GUIDE v2.5 20-May-2015 23:49:56% Begin initialization code - DO NOT EDITgui_Singleton = 1;gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @tufeiqiang_OpeningFcn, ...'gui_OutputFcn', @tufeiqiang_OutputFcn, ...'gui_LayoutFcn', [], ...'gui_Callback', []);if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});elsegui_mainfcn(gui_State, varargin{:});end% End initialization code - DO NOT EDIT% --- Executes just before tufeiqiang is made visible.function tufeiqiang_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn.% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% varargin unrecognized PropertyName/PropertyValue pairs from the% command line (see VARARGIN)% Choose default command line output for tufeiqianghandles.output = hObject;% Update handles structureguidata(hObject, handles);% UIWAIT makes tufeiqiang wait for user response (see UIRESUME)% uiwait(handles.figure1);% --- Outputs from this function are returned to the command line. function varargout = tufeiqiang_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT);% hObject handle to figure% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structurevarargout{1} = handles.output;function WZH_Callback(hObject, eventdata, handles)% hObject handle to WZH (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)A=get(handles.edit1,'String');A=char(A);A=str2num(A);B=get(handles.edit2,'String');B=char(B);B=str2num(B);C=get(handles.edit3,'String');C=char(C);C=str2num(C);D=get(handles.edit4,'String');D=char(D);D=str2num(D);sys = ss(A,B,C,D);axes(handles.axes1);set(handles.axes1,'unit','normalized');step(sys);%title('••×••••••••••••×•••ì•••ú••')set(findobj(gca,'Type','line','Color',[0 0 1]),...'Color','red',...'LineWidth',2)% --- Executes on button press in BFK.function BFK_Callback(hObject, eventdata, handles)% hObject handle to BFK (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)A=get(handles.edit1,'String');A=char(A);A=str2num(A);B=get(handles.edit2,'String');B=char(B);B=str2num(B);C=get(handles.edit3,'String');C=char(C);C=str2num(C);D=get(handles.edit4,'String');D=char(D);D=str2num(D);P=get(handles.edit5,'String');P=char(P);P=str2num(P);K = acker(A,B,P);at = A-B*K;bt = B;ct = C;dt = D;%[num,den]=zp2tf(z,p,k);%[num1,den1]=cloop(num,den);axes(handles.axes1);set(handles.axes1,'unit','normalized');%step(cloop(num,den));%rlocus(A,B,K,0)%step(num1,den1);sys = ss(at,bt,ct,dt);step(sys);title('±••··••••••••••••×•••ì•••ú••')set(findobj(gca,'Type','line','Color',[0 3 3]),...'Color','yellow',...'LineWidth',2)function FKC_Callback(hObject, eventdata, handles)% hObject handle to FKC (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)A=get(handles.edit1,'String');A=char(A);A=str2num(A);B=get(handles.edit2,'String');B=char(B);B=str2num(B);Z=get(handles.edit5,'String');Z=char(Z);Z=str2num(Z);Zif rank(ctrb(A,B)) == rank(A)N = acker(A,B,Z);Nstr=num2str(N)H = findobj('tag','edit6');set(H,'string',str);elsemsgbox('•••••••••••••••••••••••• ');endfunction pushbutton6_Callback(hObject, eventdata, handles)% hObject handle to pushbutton6 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)A=get(handles.edit1,'String');AA=char(A);AA=str2num(A);AB=get(handles.edit2,'String');BB=char(B);BB=str2num(B);BM = ctrb(A,B);if rank(M) == rank(A)msgbox('•••••ê••••••••••••••••••');%[num,den]=zp2tf(z,p,k);%[num1,den1]=cloop(num,den);%step(cloop(num,den));%rlocus(A,B,K,0)%step(num1,den1);elsemsgbox('•••••••••••••••••••••••• '); end。
自动控制原理学生实验:线性系统的状态反馈及极点配置
![自动控制原理学生实验:线性系统的状态反馈及极点配置](https://img.taocdn.com/s3/m/4c168b1e964bcf84b9d57b64.png)
实验报告线性系统的状态反馈及极点配置一.实验要求了解和掌握状态反馈的原理,观察和分析极点配置后系统的阶跃响应曲线。
二.实验内容及步骤1.观察极点配置前系统极点配置前系统的模拟电路见图3-3-64所示。
图3-3-64 极点配置前系统的模拟电路实验步骤:注:‘S ST’不能用“短路套”短接!(1)将信号发生器(B1)中的阶跃输出0/+5V作为系统的信号输入r(t)。
(2)构造模拟电路:按图3-3-64安置短路套及测孔联线,表如下。
(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A3单元输出端OUT(Uo)。
注:CH1选‘X1’档。
(4)运行、观察、记录:将信号发生器(B1)Y输出,施加于被测系统的输入端rt,按下信号发生器(B1)阶跃信号按钮时(0→+5V阶跃),观察Y从0V阶跃+5V时被测系统的时域特性。
等待一个完整的波形出来后,点击停止,然后移动游标测量其调节时间ts。
实验图像:由图得ts=3.880s 2.观察极点配置后系统 极点的计算:受控系统如图所示,若受控系统完全可控,则通过状态反馈可以任意配置极点。
受控系统设期望性能指标为:超调量M P ≤5%;峰值时间t P ≤0.5秒。
由1095.01t 707.0%5eM n n 2n p 1/p 2=≥⇒≤-==⇒≤=--ωωζωπζζζπ取因此,根据性能指标确定系统希望极点为:⎪⎩⎪⎨⎧--=+-=07.707.707.707.7*2*1j j λλ受控系统的状态方程和输出方程为:⎪⎩⎪⎨⎧=+=-----⋅-xC y b x A x μ式中][01,10,020120,21=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=----C b A x x x系统的传递函数为:202020a S a S βS β)(2012010++=+++=S S S G受控制系统的可控规范形为:[][]020T C C b T b a a T A T A X T X X C Y U b X A X K K i o K K KK k K K K ===⎥⎦⎤⎢⎣⎡==⎥⎦⎤-⎢⎣⎡-=⎥⎦⎤-⎢⎣⎡-===⎩⎨⎧=+=---10111,1020120010T ββ为变换阵),(式中当引入状态反馈阵K K =[K 0K 1]后,闭环系统()K K K K K C b K b A ,,-的传递函数为:()()()01201120120)20(20)(K S K S K a S K a S S S G o ++++=+++++=ββ而希望的闭环系统特征多项为:1001.14))(()(2*2*1**12*++=--=++=S S S S a S a S S f oλλ 令G K (S)的分母等于F #(S),则得到K K 为:[][]9.58010-==K K K k最后确定原受控系统的状态反馈阵K :由于 1-=T K K k求得和===---111,T C b T b T A T A K k K求得 ⎥⎥⎦⎤⎢⎢⎣⎡-=-1102011T所以状态反馈阵为: [][]9.59.91102019.580-=⎥⎥⎦⎤⎢⎢⎣⎡--=K极点配置系统如图所示:极点配置后系统根据极点配置后系统设计的模拟电路见下图所示。
极点配置与状态反馈
![极点配置与状态反馈](https://img.taocdn.com/s3/m/ed14279aaa00b52acec7ca3c.png)
输出反馈对能控性、能观性的影响
定理:输出至状态微分处的反馈不改变系统 的能观性,但可能改变系统的能控性。
u
B
x x C y
A
x (A HC)x Bv
y Cx
H
示例:Y (s) U (s)
b1s b0 s2 a1s a0
A
0 1
a0 a1
,
b
b1 b2
,
c
0
1
A
hc
0 1
无直接传输系统的状态反馈
原系统
x Ax Bu
y Cx
引入状态反馈 新系统
u v Kx
x (A BK)x Bv
y Cx
v uB
x x C y
A
K
状态反馈增益矩阵K的维数?系统的特征多项式和传 递函数?
输出反馈至参考微分处
新系统
x (A HC)x Bu y Cx
传递函数 C(sI A HC)1B
Ao P1AP, bo P1b, co cP
0 1 0 0 0 0
0
0
1
0
0
1
Ao
0 0
0 0
0 0
1 0
0 1
,
bo
2 3
,
co
1
0
0
0
0
a0 a1 a2 a3 a4 4
第一能观标准型
Review
SISO系统第二能控、能观标准型1
第二能控标准型
0 1 0 0 0
0 0 0 0 a0
b1
1
0
0
0
a1
b2
Ao
0 0
1 0
0 1
现代控制理论实验指导书4-极点配置
![现代控制理论实验指导书4-极点配置](https://img.taocdn.com/s3/m/ac834e6df56527d3240c844769eae009581ba2d9.png)
现代控制理论实验指导书4-极点配置实验五利⽤MATLAB 求解极点配置问题实验⽬的:1、学习极点配置状态反馈控制器的设计算法;2、通过编程、上机调试,掌握系统极点配置设计⽅法。
实验原理:给定⼀个连续时间系统的状态空间模型:xA xB u =+ (5.1)其中:nx R ∈是系统的n 维状态向量,mu R ∈是m 维的控制输⼊,A 和B 分别是适当维数的已知常数矩阵。
在状态反馈u K x =- (5.2)作⽤下,闭环系统的状态⽅程是()xA B K x =- (5.3)由线性时不变系统的稳定性分析可知,闭环系统(5.3)的稳定性由闭环系统矩阵A B K -的特征值决定,即闭环系统(5.3)渐近稳定的充分必要条件是矩阵A B K -的所有特征值都具有负实部。
⽽由经典控制理论知道,矩阵A B K -的特征值也将影响诸如衰减速度、振荡、超调等过渡过程特性。
因此,若能找到⼀个适当的矩阵K ,使得矩阵A B K -的特征值位于复平⾯上预先给定的特定位置,则以矩阵K 为增益矩阵的状态反馈控制器(5.2)就能保证闭环系统(5.3)是渐近稳定的,且具有所期望的动态响应特性。
这种通过寻找适当的状态反馈增益矩阵K ,使得闭环系统极点(即矩阵A B K -的特征值)位于预先给定位置的状态反馈控制器设计问题称为是状态反馈极点配置问题,简称为极点配置问题。
对给定的线性定常系统(5.1)和⼀组给定的期望闭环极点12{,,}n λλλΩ= ,按以下步骤可以设计出使得闭环系统(5.3)具有给定极点}12{,,}n λλλΩ= 的状态反馈控制器(5.2)。
第1步:检验系统的能控性。
如果系统是能控的,则继续第2步。
第2步:利⽤系统矩阵A 的特征多项式1110det()n n n I A a a a λλλλ---=++++确定011,,,n a a a - 的值。
第3步:确定将系统状态⽅程变换为能控标准形的变换矩阵T 。
若给定的状态⽅程已是能控标准形,那么1T =。
(第11讲)极点配置与状态反馈
![(第11讲)极点配置与状态反馈](https://img.taocdn.com/s3/m/6866fcacdd3383c4bb4cd202.png)
Ao P 1 AP, bo P 1b, co cP
第一能观标准型 四川理工自动化教研室
tgq77@
Review
SISO系统第二能控、能观标准型
第二能控标准型 1 0 0 0 0 0 0 0 0 1 0 0 Ac 0 0 0 1 0 , b c 0, cc b0 b1 b2 b3 b4 0 0 0 0 1 0 a0 a1 a2 a3 a4 1 1 n 1 1 cAn 1
•在外扰下无静差跟踪。如使状态和控制的 二次型积分函数最小,即最优控制。
J (x, u) xT Qx uT Ru dt
0
四川理工自动化教研室
tgq77@
SISO系统的极点配置:问题表述
已知系统方程
x Ax bv y cx
* * 1 , * ,, * 和n个期望闭环极点值 2 n
A
y
四川理工自动化教研室
tgq77@
Review
0 1 Ac 0 0 0
SISO系统第一能控、能观标准型
T Qc b Ab An 1b
第一能控标准型
Ao
0 0 0 a0 1 Ac T 1 AT , b c T 1b, c c cT 0 0 0 0 a1 1 0 0 a2 , b c 0, c c 1 2 3 4 5 0 1 0 a3 0 0 0 0 1 a4 T T T T P 1 Qo c cA cAn1 A ,b c ,c b
u
B
x
A
H
6.2 反馈控制和极点配置
![6.2 反馈控制和极点配置](https://img.taocdn.com/s3/m/90c7502125c52cc58ad6be06.png)
0
0
A%L B%LK%L 1*3
1 0
1*2
0 1
1*1
0
2*2
1
2*1
3*1
其中
* ij
为期望闭环特征多项式的系数。
– 因此,将开环的A%L和 B%L 带入代数上述方程,由该方 程的第3,5,6行(即每个分块的最后一行)可得如下 关K%于L 状态反馈阵
2020/4/18
基于龙伯格能控规范II形的设
K pK2 K1
1124
68
50
0 0
0 0
0 1
24 68 50 24 68 49
则在反馈律u=-Kx+v下的闭环系统的状态方程为
25 69 49 0 1 x24 69 50x1 0v
48 13698 1 1
通过验算可知,该闭环系统的极点为-2,-1±j2,达到设计要求。
2020/4/18
根轨迹法,都是通过改变极点的位置来改善性能指标,本 质上均属于极点配置方法。
– 本节所讨论得极点配置问题,则是指如何通过状态 2020/4反/18 馈阵K的选择,使得状态反馈闭环系统的极点恰
2020/4/18
反馈控制与极点配置(4/5)
• 基于指定的期望闭环极点,线性定常连续系统 的状态反馈极点配置问题可描述为:
状态反馈极点配置定理(11/11)
– 由于状态反馈闭环系统保持其开环系统的状态完 全能控特性,故该闭环系统只能是状态不完全能观 的。
– 这说明了状态反馈可能改变系统的状态能观性。 – 从以上说明亦可得知,若SISO系统没有零点,则状
态反馈不改变系统的状态能观性。
2020/4/18
2020/4/18
f2 *(s)(ss4 *)s(s5 *)s22 *s1 2 *2
控制实验指导书2012-1
![控制实验指导书2012-1](https://img.taocdn.com/s3/m/81c50704763231126edb1112.png)
实验报告实验课程:控制工程基础学生姓名:沈家勇学号: 5901111188 专业班级:机制115班目录实验一典型环节的电路模拟与软件仿真研究----------------4 实验二典型系统动态性能和稳定性分析--------------------11 实验三控制系统的频域与时域分析-------------------------14 实验四Matlab环境下校正环节的设计-----------------------21概述一.实验系统功能特点1.系统可以按教学需要组合,满足“自动控制原理”课程初级与高级实验的需要。
只配备ACT-I实验箱,则实验时另需配备示波器,且只能完成部分基本实验。
要完成与软件仿真、混合仿真有关的实验必须配备上位机(包含相应软件)及并口通讯线。
2.ACT-I实验箱内含有实验必要的电源、信号发生器以及非线性与高阶电模拟单元,可根据教学实验需要进行灵活组合,构成各种典型环节与系统。
此外,ACT-I实验箱内还可含有数据处理单元,用于数据采集、输出以及和上位机的通讯。
3.配备PC微机作操作台时,将高效率支持“自动控制原理”的教学实验。
系统提供界面友好、功能丰富的上位机软件。
PC微机在实验中,除了满足软件仿真需要外,又可成为测试所需的虚拟仪器、测试信号发生器以及具有很强柔性的数字控制器。
4.系统的硬件、软件设计,充分考虑了开放型、研究型实验的需要。
除了指导书所提供的10个实验外,还可自行设计实验。
二.系统构成实验系统由上位PC微机(含实验系统上位机软件)、ACT-I实验箱、并行通讯线等组成。
ACT-I实验箱内装有以AD C812芯片(含数据处理系统软件)为核心构成的数据处理卡,通过并口与PC微机连接。
1.实验箱ACT-I简介ACT-I控制理论实验箱主要由电源部分U1单元、信号源部分U2单元、与PC机进行通讯的数据处理U3单元、元器件单元U4、非线性单元U5~U7以及模拟电路单元U8~U16等共16个单元组成,详见附图。
实验二 状态反馈与极点配置
![实验二 状态反馈与极点配置](https://img.taocdn.com/s3/m/19181ed280eb6294dd886c0e.png)
实验二 状态反馈与极点配置一、实验目的a) 掌握状态反馈极点配置的设计方法。
b) 掌握运用模拟运算放大电路实现状态反馈。
c) 验证极点配置理论。
二、实验仪器a) TDN —AC/ACS 型自动控制系统实验箱一台b) 示波器c) 万用表三、实验原理和电路为了更好地达到系统所要求的各种性能指针,需要通过设计系统控制器,改善原有系统的性能。
由于系统的性能与其极点分布位置有密切关系,因而极点配置是系统设计的关键。
极点配置就是利用状态反馈或输出反馈使闭环系统的极点位于所希望的极点位置。
在系统综合设计中,状态反馈和输出反馈是两种常用的反馈形式,而在现代控制理论中系统的物理特性是采用系统内部状态变量来描述的,利用内部状态变量乘以系数(向量)与系统参考输入综合构成的反馈系统,具有更优的控制效果。
1、单输入单输出状态反馈的极点配置受控系统如图2-1,图2-1受控系统其中状态变量1()1/G S S =,2()1/(0.051)G S S =+,状态变量1x 、2x ,对系统进行极点配置,达到系统期望的性能指针:输出超调量5%P M ≤;峰值时间0.5p t s ≤;系统频宽10b ω≤;跟踪误差0p e =(对于阶跃输入)。
i. 确定受控系统的状态空间模型211()()x u x G S =-,122()x x G S =,1y x =,系统的状态方程为:.11.2220200101x x u x x ⎡⎤-⎡⎤⎡⎤⎡⎤⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦;[]1210x y x ⎡⎤=⎢⎥⎣⎦ ii.确定期望的极点21P M e ζ-=;21p n t ωζ=-;22412244b ωωζζζ=-+-+可解得0.707ζ≥,选0.707ζ=;9n ω≥由10b ω≤选10n ω=。
这样期望极点为:*17.077.07j λ=-+*27.077.07j λ=--iii. 确定状态反馈矩阵K原系统特征多项式:12110det()...2020n s n sI A s a s a s a s s ---=++++=++期望的闭环系统特征多项式:**212det()()()14.1100sI A BK s s s s λλ--=--=++ 计算K :K =[10020-,14.120-]=[80,-5.9]计算变换矩阵p :1111111[...]...1n n n a p A b Ab b a a ----⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦1/20011p ⎡⎤=⎢⎥-⎣⎦[][]1/20080 5.99.9 5.911K K p ⎡⎤==-=-⎢⎥-⎣⎦iv. 确定输入放大系数L闭环传递函数为2()20/(14.1100)G s s s =++系统要求跟踪阶跃信号误差为0则000lim(1())lim (1/()/)1/5p t s e y t s s G s s L →→==-=-=- 得L=52、极点配置的系统结构图图2-2极点配置后的系统将原系统的反馈线路与状态x1反馈线路合并后图2-3极点配置后的系统一、实验内容及步骤1、根据图2-4接线图2-4极点配置后系统的模拟电路M、峰值时间2、输入阶跃信号,用示波器观察并记录系统输出的波形,测量超调量Pt。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合性实验极点配置全状态反馈控制
一、实验目的
1.学习并掌握用极点配置方法设计全状态反馈控制系统的方法。
2.用电路模拟与软件仿真方法研究参数对系统性能的影响。
二、实验内容
1.设计典型二阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。
2.设计典型三阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。
三、实验前准备工作
1 推导图1的数学模型(状态空间表达式),分析系统的能控性。
2 若系统期望的性能指标为:超调量,峰值时间,求出期望的极点值。
根据以上性能指标要求设计出状态反馈控制器。
3 推导图2的数学模型(传递函数),求出其单位阶跃响应的动态性能指标(超调量、调节时间、静态速度误差系数)。
4 推导图4的数学模型(状态空间表达式),分析系统的能控性。
5考虑系统稳定性等要求,选择理想极点为:S1=-9,S2 =-2+j2,S3=-2-j2,
根据以上性能指标要求思考如何设计状态反馈控制器。
6 推导图7的数学模型(传递函数)。
四、实验步骤
1.典型二阶系统
(1)对一已知二阶系统(见图1)用极点配置方法设计全状态反馈系数。
(2)见图2和图3,利用实验箱上的电路单元U9、U11、U12和U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。
(3)改变系统模拟电路接线,使系统恢复到图1所示情况,测取阶跃响应,并与软件仿真结果比较。
(4)对实验结果进行比较、分析,并完成实验报告。
2.典型三阶系统
(1)对一已知三阶系统(见图4)用极点配置方法设计全状态反馈系数。
(2)见图5和图7,利用实验箱上的电路单元U9、U11、U12、U15和
U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。
(3)改变系统模拟电路接线,使系统恢复到图5所示情况,测取阶跃响应,并与软件仿真结果比较。
软件仿真直接在MATLAB中实现。
五、实验原理及接线电路
1. 典型二阶系统全状态反馈的极点配置设计方法
(1)被控对象状态方程与能控性
若被控系统(A、B、C)完全能控,则通过状态反馈可以任意配置极点。
取图8.1.1所示系统为实验系统:
图1
(2)理想极点配置
期望的性能指标为:超调量 , 峰值时间
(3)状态反馈系数确定
加入全状态反馈后系统的特征方程为
配置理想极点,则有
于是可计算出
按极点配置设计的具有全状态反馈的系统结构如图2所示。
系统的模拟电路图如图3所示。
图中参数Rx1,Rx2分别为18,33,注意反馈电路的连接。
图3
2.典型三阶系统全状态反馈的极点配置设计方法:
(1)典型三阶系统如图4所示
图4
该闭环系统的模拟电路图如图5所示:
图5
可以用劳斯判据判断该闭环系统是不稳定的。
(2)理想极点和理想闭环特征方程
考虑系统稳定性等要求,选择理想极点为:
S1=-9,S2 =-2+j2,S3=-2-j2,
由此可得理想闭环特征方程为。
(3)全状态反馈系数设计
取X1,X2,X3为状态变量,带全状态反馈的典型三阶系统方块图如图6所示。
求取加全状态反馈后的闭环特征方程,可以得到:
令其与理想的闭环特征方程一致,可以得到全状态反馈系数,k1=-0.72,k2=-2.2,k3=-1.2。
图6
(4)全状态反馈的典型系统的模拟电路如图7所示。
Rx1,Rx2,Rx3阻值分别为270,91,150。
图 7
五、实验结果分析及报告
1.记录实验得到曲线,保存为位图文件。
2.分析实验结果得出结论。
3.按要求完成实验报告。