北师大版七升八年级数学试卷(两份)

合集下载

北师大版七年级上册数学期末试卷及答案完整版 3套

北师大版七年级上册数学期末试卷及答案完整版 3套

七年级数学上册期末试卷及答案(考试时间100分钟,试卷满分100分)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 A .()21-B .21-C .()31- D .1--2.已知水星的半径约为24400000米,用科学记数法表示为( )米A .80.24410⨯ B .61044.2⨯ C .71044.2⨯ D .624.410⨯ 3.下列各式中,运算正确的是A .3a 2+2a 2=5a 4B .a 2+a 2=a 4C .6a -5a =1D .3a 2b -4ba 2=-a 2b4.如图所示几何体的左视图是5.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④12(∠α-∠β).正确的是: A .①②③④B .①②④C .①②③D .①②6.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是103,则m 的值是 A .9B .10C .11D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.已知∠A =30°36′,它的余角 = . 8.如果a -3与a +1互为相反数,那么a = . 9.写出所有在652- 和1之间的负整数: . 10.如果关于x 的方程2x +1=3和方程032=--xk 的解相同,那么k 的值为________.11.点C 在直线AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .12.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x ,那么x 的值为 .13.|x -3|+(y +2)2=0,则y x 为 .14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .15.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和为零,则a+b = .16.小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题8分)计算: (1)9+5×(-3)-(-2)2 ÷ 4; (2)()()14-2-61-31-212⨯+⎪⎭⎫ ⎝⎛÷⎪⎭⎫⎝⎛ 18.(本题8分)解下列方程: (1)13421+=+x x ; (2)1612312-+=-x x . 19.(本题5分)先化简,再求值:)]2(23[25222b a ab abc b a abc -+--,其中a =21-,b =-1,c =3. 20.(本题6分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(本题6分)在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22.(本题7分)如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(画图时保留痕迹)(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.23.(本题8分)如图,已知同一平面内∠AOB=90o,∠AOC=60o,(1)填空∠AOC= ;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60o改成∠AOC=2α(α<45o),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题8分)我市为打造八圩港风光带,现有一段河道整治任务由A B 、两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天? (1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下: 万颖:=++⨯x )241161(6161________ ; 刘寅:()1241161=⨯+y根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x y 、表示的意义,然后在,然后在方框中补全万颖、刘寅同学所列的方程:万颖:x 表示 ,刘寅:y 表示 ,万颖同学所列不完整的方程中的方框内该填 ,刘寅同学所列不完整的方程中的方框内该填 . (2)求A 工程队一共做了多少天.(写出完整的解答过程) 25.(本题10分)已知:线段AB=20 cm .(1)如图1,点P 沿线段AB 自A 点向B 点以2厘米/秒运动,点P 出发2秒后,点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,问再经过几秒后P 、Q 相距5cm?(2)如图2:AO=4 cm , PO=2 cm , ∠POB=60o ,点P 绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点能相遇,求点Q 运动的速度 .参考答案一、选择题 ACDD BB 二、填空题7.59o 24′ 8.1 9.-2,-1 10.7 11.7cm 戓1cm 12.5 13.-8 14.870 15.-1 16.3,4,10,11 三、解答题17.(1)解:原式=9+(-15)-1 (2分)= -7(4分) (2)解:原式=()()()14-46-31-6-21⨯+⨯⨯=-3+2-56…………………3分 =-57 …………………4分 或原式=()()14-46-61⨯+⨯= -1-56=-57…………………4分 18.(1)解:去分母得 3(x+1)=8x+6………………………………1分 去括号、移项、合并同类项,得 -5x=3………………………………2分 系数化为1,得 x=53-. ………………………………4分 (2)解:去分母得 2(2x-1)=(2x+1)-6………………………………1分 去括号、移项、合并同类项,得 2x=-3………………………………2分 系数化为1,得 x=23-. ………………………………4分 19.解:原式=]243[25222b a ab abc b a abc -+-- (1分) = b a ab abc b a abc 22224325+--- (2分) = 242ab abc - (3分) 当a =21-,b =-1,c =3时. 原式= 2)1()21(43)1()21(2-⨯-⨯-⨯-⨯-⨯ (4分) =23+ =5 (5分) 20.(各2分)1121.(1)容积:2)216(x x - ……………3分(2)当x=3时,容积为300cm 3……………4分 当x=3.5时,容积为283.5 cm 3……………5分答 当剪去的小正方形的边长为3cm 时,无盖长方体的容积大些.……………6分 22.(1)画角平分线(2分),画平行线(3分),画垂线 (4分) (2)AE=ED (5分) (3)DF<DE , (6分)理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.(7分) 23.(1)150° ………………………1分 (2)45° ………………………3分 (3)解:因为∠AOB =90°,∠AOC =2α 所以∠BOC =900+2α因为OD 、OE 平分∠BOC ,∠AOC 所以∠DOC =21∠BOC =45o +α,∠CO E=21∠AOC =α ……6分 所以∠DO E=∠DOC -∠CO E=450 ……8分 说明:其他解法参照给分.24.(1)x 表示A 、B 合做的天数(或者B 完成的天数);y 表示A 工程队一共做的天数; 1 ; y-6 . (每空1分共4分) (2)解:设A 工程队一共做的天数为y 天,由题意得:=-+)6(241161y y 1 …………………6分 解得y=12答:A 工程队一共做的天数为12天. ……8分 用另一种方法类似得分.(2)解答不完整只有答案扣2分. 25.解:(1)设再经过t s 后,点P 、Q 相距5cm , ①P 、Q 未相遇前相距5cm ,依题意可列223205t t +-()+=, 解得,t =115……2分 ②P 、Q 相遇后相距5cm ,依题意可列223205t t ++()+=, 解得,t =215……4分 答:经过115s 或215s 后,点P 、Q 相距5cm . 解:(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为12060=2s或120180560s += ……6分设点Q 的速度为y m/s ,当2秒时相遇,依题意得,2y 20218-==,解得y =9 当5秒时相遇,依题意得,5y 20614-==,解得y 2.8= 答:点Q 的速度为9m /s 2.8m /s 或. …………8 分 若只有一解得5分.数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )温度/℃383430 26 22 15 18 21 24图3 O O O O A B C D 图4图210.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。

七升八年级数学测试题

七升八年级数学测试题

八年级数学试卷(满分:100分)学号:__________ 班别:__________ 姓名:_________ 成绩:__________一、选择题(每小题3分,共30分,每题有且只有一个正确答案)1. “数x 不小于2”是指( )A .2x ≤B .2x ≥C .2<xD .2>x2. 一多项式分解因式的结果是(b +2)(2-b),则这个多项式是( )A .b 2-4B .4-b 2C .b 2+4D .-b 2-43.下列各式是完全平方式的是 ( )A .x 2-2x +1B .1+x 2C .x +xy +1D .x 2+2x -14.2(4)x -=( )A.28x -B.28xC.216x -D.216x5. 下列各式计算结果正确的是( )A .(a +1)(a-1)=(a +1)2B .(3a)2=6a 2C .(a +1)2=a 2+1D .a 2·a =a 36. 把多项式m 2(a -2)+m(2-a)分解因式等于( )A .(a -2)(m 2+m)B .(a -2)(m 2-m)C .m(a -2)(m -1)D .m(a -2)(m +1)7.下列各式是完全平方式的是 ( )A .x 2-2x +1B .1+x 2C .x +xy +1D .x 2+2x -18.不等式的解集在数轴上表示正确的是( )9.一元二次方程x 2﹣x ﹣2=0的解是( )A .x 1=1,x 2=2B .x 1=1,x 2=﹣2C. x 1=﹣1,x 2=﹣2 D .x 1=﹣1,x 2=210.若关于x 的方程x 2+2x+a=0不存在...实数根,则a 的取值范围是( )A.a <1B.a >1C.a ≤1D.a ≥1二、填空题(每小题3分,共15分)11. 计算:3x -5x =_______;4x +x =_______.12.不等式3x -2>4的解是 .13. 分解因式:x 2﹣9= .15.不等式组23132x x x x +>⎧⎪⎨-⎪⎩,≥的解集是 . 三、解答题(一)(每小题7分,共21分)16. 因式分解:3x -12x 3 17.化简:(a +1)2-(5a -3b)-a(a -1).18.解方程:3(2)2(2)x x x -=-四、解答题(三)(每小题8分,共24分)19. 因式分解:(提示:分组分解)a 2-b 2+ac +bc.20.解不等式:5(x-2)-2(x+1)≥321. 先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.五、解答题(三)(每小题10分,共10分)22. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?。

2022-2023学年北师大版七年级上册数学期末模拟试卷 (2)

2022-2023学年北师大版七年级上册数学期末模拟试卷 (2)

2022-2023年北师大版七年级上册数学期末模拟试卷 (2)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分)1. 3.14π-的相反数是( )A .0B . 3.14π--C . 3.14π+D .3.14π-2.已知标准状况下氢气的密度为0.09千克/米3.则在标准状况下,体积为0.001米3的氢气质量用科学记数法表示为( )A .-3910⨯千克B .-40.910⨯千克C .-5910⨯千克D .5910⨯千克3.一个正方体锯掉一个角后,顶点的个数是( )A .7个B .8个C .9个D .7个或8个或9个或10个 4.关于x 的方程73680k x -+=是一元一次方程,那么k 的值为( )A .2B .73 C .-2 D .375.轮船航行到C 处测得小岛A 的方向是北偏西20°,那么从A 观察C 处的方向为( )A .南偏东20°B .西偏南70°C .南偏东70°D .西偏南20°6.若整式-3x3ym+3xny+4经过化简后结果等于4,则m+n 的值为( )A .1B .2C .3D .47.如图,已知点O 在直线AB 上,∠COE=90°,OD 平分∠AOE ,∠COD=25°,则∠BOD 的度数为( )A .100°B .115°C .65°D .130°8.将一副三角板按如图所示的方式摆放,则1∠=( )A .45︒B .60︒C .65︒D .75︒9.如图,点D 为线段AC 的中点,2BC BD =,若2BC =,则AB 的长为( )A .3B .4C .5D .610.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32 B .2 C .52D .3二、填空题(本大题共5个小题,每小题3分,共15分)11.如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为___________.12.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______13.某公司生产的一种饮料由A 、B 两种原液按一定比例配制而成,其中A 原液成本价为10元/千克,B 原液为15元/千克,按现行价格销售每千克获得60%的利润率.由于物价上涨,A 原液上涨20%,B 原液上涨10%,配制后的总成本增加15%,公司为了拓展市场,打算再投入现行总成本的25%做广告宣传,使得销售成本再次增加,如果要保证每千克的利润率不变,则此时这种饮料的售价与原售价之差为_____元/千克.14.由31x -与2x 互为相反数,则x =______.15.如图,a ∥b ,c ∥d ,b ⊥e ,则∠1与∠2的关系是________.三、解答题(一)(本大题共3个小题,每小题8分,共24分)16.(本题8分)(1) 33+(-32)+7-(-3)(2)111135()532114⨯-⨯÷ (3)32012(2)2(3)25(1)--⨯-+---(4)4211(10.4)(2)63⎡⎤---÷⨯--⎣⎦ (5)若|x-4|+(3-y)2=0,求x y 的值17.(本题8分)解方程:.18.(本题8分)化简,求值.已知a =2111a a a---的值.四、解答题(二)(本大题共3个小题,每小题9分,共27分)19.(本题9分)某中学开设了书法、绘画、乐团、合唱等艺术类社团,全校每名学生选择了其中一项活动,为了解学生的报名情况,张老师抽选了一部分学生进行调查,并绘制了下面两个不完整的统计图,请你依据统计图中的信息,回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)求图2中表示合唱的扇形圆心角的度数;(4)若全校有共有1600名学生,请你估计全校选择参加乐团的学生有多少名?20.(本题9分)列一元一次方程解应用题(两问均需用方程求解):10月14日iPhone12在各大电商平台预约销售,预售不到24小时,天猫、京东等平台的iPhone12就被抢完,显示无货.为了加快生产进度,郑州一富士康工厂连夜帮苹果手机生产iPhone12中的某AB型电子配件,这种配件由A型装置和B型装置组成.已知该工厂共有1200名工人.(1)据了解,在日常工作中,该工厂生产A型装置的人数比生产B型装置的人数的3倍少400人,请问工厂里有多少名工人生产B型装置?(2)若急需的AB型电子配件每套由2个A型装置和1个B型装置配套组成,每人每天只能加工40个A型装置或30个B型装置.现将所有工人重新分成两组,每组分别加工一种装置,并要求每天加工的A、B型装置正好配套,请问该工厂每天应分别安排多少名工人生产A型装置和B型装置?21.(本题9分)已知数轴上两点A、B对应的数分别为1 ,3,点P为数轴上一动点,其对应的数为a(1)若点P到点A、点B的距离相等,求点P对应的数.(2)数轴上是否存在一个点P,使点P到点A、点B的距离之和为8 ,若存在,求出a的值,若不存在,请说明理由.(3)若点A以每分钟2个单位长度向左运动,点B以每分钟6个单位长度向左运动①当点P以每分钟1个单位长度从数轴上的数2开始向左运动,A、B、P三点同时出发,几分钟后P点到点A、点B的距离相等?②当点P以每分钟8个单位长度从原点开始向左运动,当遇到点A时;点P立即以同样的速度向右运动,当遇到点B时,点P立即以同样的速度向左运动,并不停地往返于点A与点B之间,A、B、P三点同时出发,求点A与点B重合时,点P所运动的总路程是多少个单位长度?五、解答题(三)(本大题共2个小题,每小题12分,共24分)22.(本题12分)某商店用41000元购买甲、乙两种服装共500件,服装的成本价与销售单价如下表所示.(1)该商店购买甲、乙两种服装各多少件?(2)若将这500件衣服全部售完,可获利多少元?23.(本题12分)如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB 向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.。

北师大版 2024年秋季七年级上册第一次月考数学试卷(全解全析)

北师大版 2024年秋季七年级上册第一次月考数学试卷(全解全析)

2024-2025学年七年级数学上学期第一次月考卷02(考试时间:120分钟;满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:第一章---第二章。

5.难度系数:0.69。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃【解答】解:若气温为零上10℃记作+10℃,则﹣8℃表示气温为零下8℃.故选:B.2.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A.B.C.D.【解答】解:A、绕轴旋转一周可得到圆柱,故此选项不合题意;B、绕轴旋转一周,可得到球体,故此选项不合题意;C、绕轴旋转一周,可得到一个中间空心的几何体,故此选项不合题意;D、绕轴旋转一周,可得到图中所示的立体图形,故此选项符合题意;故选:D.3.中国信息通信研究院测算,2020~2025年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×108【解答】解:10.6万亿=106000 0000 0000=1.06×1013.故选:B.4.用一个平面去截下列几何体,截面不可能是圆形的是()A. B.C. D.【解答】解:长方体用一个平面去截,可得出三角形、四边形、五边形、六边形的截面,不可能出现圆形的截面,因此选项A符合题意;圆锥体用平行于底面的一个平面去截,可得到圆形、因此选项B不符合题意,球体用一个平面去截可以得到圆形的截面,因此选项C不符合题意;圆锥体用平行于底面的平面去截,可得到圆形的截面,因此选项D不符合题意;故选:A.5.将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1cm),刻度尺上的“1cm”和“6cm”分别对应数轴上“﹣1.2cm”和“xcm”,则x的值为()A.3.8B.2.8C.4.8D.6【解答】解:根据数轴可知:x﹣(﹣1.2)=6﹣1,解得:x=3.8,故选:A.6.乐乐在数学学习中遇到了神奇的“数值转换机”,按如图所示的程序运算,若输入一个有理数x,则可相应的输出一个结果y.若输入x的值为﹣1,则输出的结果y为()A.6B.7C.10D.12【解答】解:把x=﹣1代入运算程序得:(﹣1)×(﹣3)﹣8=3﹣8=﹣5<0,把x=﹣5代入运算程序得:(﹣5)×(﹣3)﹣8=15﹣8=7>0,故输出的结果y为7.故选:B.7.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是()A.5B.6C.7D.8【解答】解:根据题意,1与4相对,2与6相对,3与5相对,∴1+4=5,2+6=8,3+5=8,∴相对两个面上的数字之和的最小值是5.故选:A.8.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2024+2023b﹣c2023的值为()A.2024B.2022C.2023D.0【解答】解:∵a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,∴a=﹣1,b=0,c=1,∴a2024+2023b﹣c2023=(﹣1)2024+2023×0﹣12023=1+0﹣1=0.故选:D.9.实数a,b满足a<0,a2>b2,下列结论:①a<b,②b>0,③1aa<1bb,④|a|>|b|.其中所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:∵a<0,a2>b2,∴|a|>|b|,∴a<b,故①符合题意,④符合题意;当a=﹣2,b=﹣1时,a2=4,b2=1,故②不符合题意;当a=﹣2,b=﹣1时,1aa=−12,1bb=−1,1aa>1bb,故③不符合题意;故选:B.10.若|m|=3,n2=4,且|m﹣n|=n﹣m,则m+n的值为()A.﹣1B.﹣1或5C.1或﹣5D.﹣1或﹣5【解答】解:∵|m|=3,n2=4,∴m=±3,n=±2,∵|m﹣n|=n﹣m,∴n﹣m≥0,即n≥m,∴n=2,m=﹣3或n=﹣2,m=﹣3,∴m+n=﹣1或m+n=﹣5,故选:D.第Ⅱ卷二、填空题(本大题共53分,共15分)11.若2m+1与﹣2互为相反数,则m的值为.【解答】解:∵2m+1与﹣2互为相反数,∴2m+1﹣2=0,∴m=12.故答案为:12.12.如图是由6个棱长均为1的正方体组成的几何体,该几何体的表面积为.【解答】解:主视图上有5个正方形,左视图和俯视图上有4个正方形,表面积为(5+4+4)x2=26.故答案为:26.13.高明区皂幕山某一天早晨的气温为16℃,中午上升了8℃,夜间又下降了10℃,则这天夜间皂幕山的气温是℃.【解答】解:16+8﹣10=14℃.故答案为:14.14.彰武县市场监督管理局规定我县出租车收费标准为:起步价2.50公里5.00元(即2.50公里内收费5.00元),超过2.50公里部分每超过0.60公里加收1.00元(不足0.60公里按0.60公里计算).周末小明和妈妈乘坐出租车去高山台森林公园游玩,已知小明家到高山台森林公园的里程是5.50公里,那么应付车费元.【解答】解:根据题意,得5+(5.50﹣2.50)÷0.6×1=10(元).故答案为:10.15.定义一个新运算ff(aa,bb)=�aa+bb(aa<bb)aa−bb(aa>bb),已知a2=4,b=1,则f(a,b)=.【解答】解:∵a2=4,∴a=±2,当a=2,b=1时,f(a,b)=f(2,1)=2﹣1=1;当a=﹣2,b=1时,f(a,b)=f(﹣2,1)=﹣2+1=﹣1;由上可得,f(a,b)的值为1或﹣1,故答案为:1或﹣1.三、解答题(本大题共9小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(每小题4分,共8分)计算:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|;(2)﹣14﹣0.5÷14×[1+(﹣2)2].【解答】解:(1)(﹣1)2÷12+(7﹣3)×34−|﹣2|=1×2+4×34−2=2+3﹣2=5﹣2=3;……………………4分(2)﹣14﹣0.5÷14×[1+(﹣2)2]=﹣1﹣0.5×4×(1+4)=﹣1﹣0.5×4×5=﹣1﹣10=﹣11.……………………8分17.(8分)把下列各数填在相应的大括号里(将各数用逗号分开):+8.3,﹣4,﹣0.8,﹣(﹣10),0,﹣13%,−343,﹣|﹣24|,π,﹣14.整数:{ …};非负数:{ …};分数:{ …};负有理数:{ …};【解答】解:﹣(﹣10)=10,﹣|﹣24|=﹣24,﹣14=﹣1,整数:{﹣4,﹣(﹣10),0,﹣|﹣24|,﹣14…};……………………2分非负数:{+8.3,﹣(﹣10),0,π…};……………………4分分数:{+8.3,﹣0.8,﹣13%,−343⋯};……………………6分负有理数:{﹣4,﹣0.8,﹣13%,−343,﹣|﹣24|,﹣14…}.……………………8分18.(7分)如图,直线上的相邻两点的距离为1个单位,如果点A、B表示的数是互为相反数,请回答下列问题:(1)那么点C表示的数是多少?(2)把如图的直线补充成一条数轴,并在数轴上表示:314,﹣3,﹣(﹣1.5),﹣|﹣1|.(3)将(2)中各数按由小到大的顺序用“<”连接起来.【解答】解:(1)∵点A、B表示的数是互为相反数,∴AB中点是原点,∴点C表示的数是﹣4;……………………1分(2)……………………4分(3)﹣3<﹣|﹣1|<﹣(﹣1.5)<314.……………………7分19.(8分)小车司机李师傅某天下午的营运全是在东西走向的常青公路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+18,﹣7,+7,﹣3,+11,﹣4,﹣5,+11,+6,﹣7,+9(1)李师傅这天最后到达目的地时,距离下午出车时的出发地多远?(2)李师傅这天下午共行车多少千米?(3)若每千米耗油0.6升,则这天下午李师傅用了多少升油?【解答】解:(1)18﹣7+7﹣3+11﹣4﹣5+11+6﹣7+9=36(千米),所以李师傅这天最后到达目的地时,距离下午出车时的出发地36千米远;……………………2分(2)18+7+7+3+11+4+5+11+6+7+9=88(千米),所以李师傅这天下午共行车88千米;……………………5分(3)88×0.6=52.8(升),所以这天下午李师傅用了52.8升油.……………………8分20.(8分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.【解答】解:(1)(5+4+4)×2=26(cm2),故答案为:26cm2;……………………2分(2)根据三视图的画法,画出相应的图形如下:……………………8分21.(8分)根据下列条件求值:(1)若a、b互为相反数,c、d互为倒数,m的绝对值为6,求aa+bb mm+cccc−mm的值.(2)已知a2b>0,ab<0,a2=9,|b|=1,求a+b的值.【解答】解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为6,∴a+b=0,cd=1,m=6或﹣6,当m=6时,原式=1﹣6=﹣5;当m=﹣6时,原式=1+6=7.综上所述:原式的值是﹣5或7.……………………4分(2)∵a2b>0,ab<0,∴b>0,a<0,∵a2=9,|b|=1,∴a=﹣3,b=1,∴a+b=﹣3+1=﹣2.……………………8分22.(8分)某自行车厂为了赶进度,一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减+4﹣2﹣4+13﹣11+15﹣9(1)根据记录可知第二天生产多少辆?(2)产量最多的一天比产量最少的一天多生产多少辆?(3)赶进度期间该厂实行计件工资加浮动工资制度.即:每生产一辆车的工资为60元,超过计划完成任务每辆车则在原来60元工资上再奖励15元;比计划每少生产一辆则在应得的总工资上扣发15元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?【解答】解:(1)200-2=198(辆),答:第二天生产198辆;……………………2分(2)15﹣(﹣11)=15+11=26(辆),答:产量最多的一天比产量最少的一天多生产26辆;……………………5分(3)60×[200×7+4+(﹣2)+(﹣4)+13+(﹣11)+15+(﹣9)]+15×[4+(﹣2)+(﹣4)+13+(﹣11)+15+(﹣9)]=60×1406+15×6=84450(元),答:该厂工人这一周的工资总额是84450元.……………………8分 23.(9分)已知13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53= =14× 2× 2. (2)猜想:13+23+33+…+n 3= .(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403. 【解答】解:(1)13+23+33+43+53=225=14×52×62,……………………3分 (2)猜想:13+23+33+…+n 3=14×n 2×(n +1)2. ……………………5分(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+…+393+403﹣(13+23+33+…+103) =14×402×412−14×102×112 =672400﹣3025=669375. ……………………9分24.(11分)如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t 秒.(1)当0.5=t 时,求点Q 到原点O 的距离; (2)当 2.5t =时,求点Q 到原点O 的距离;(3)当点Q 到点A 的距离为4时,求点P 到点Q 的距离.【答案】(1)解:当0.5=t 时,440.52t =×=,826−=, 当0.5=t 时,点Q 到原点O 的距离为6.………………………(2分)(2)解:当 2.5t =时,点Q 运动的距离为44 2.510t =×=, ∵点A 到原点的距离为8,点Q 从点A 出发,到达原点后再返回, ∴点Q 到原点O 的距离为2;………………………(4分) (3)解:点Q 到点的A 距离为4时,分三种情况讨论:①点Q 向左运动4个单位长度,此时运动时间:441t =÷=(秒),P 点表示的数是2−,Q 点表示的数是4;此时P 点到Q 点之间的距离是6.………………………(6分) ②点Q 向左运动8个单位长度到原点,再向右运动4个单位长度,则点Q 运动的距离为:8412+=,运动时间:1243t =÷=(秒) P 点表示的数是6−,Q 点表示的数是4;此时P 点到Q 点之间的距离是10.………………………(8分) ③点Q 向左运动8个单位长度到原点,再向右运动12个单位长度,则点Q 运动的距离为:81220+=,运动时间:2045t ÷(秒) P 点表示的数是10−,Q 点表示的数是12;此时P 点到Q 点之间的距离是22.综上,点P 到点Q 的距离为6或10或22.………………………(11分)。

北师大版七年级数学上册各章测试卷(共7套,含答案)

北师大版七年级数学上册各章测试卷(共7套,含答案)

(新)北师大版七年级数学上册各章测试卷(共7套,含答案)第一章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于( )A.棱柱B.圆柱C.圆锥D.长方体2.将图中的图形绕虚线旋转一周,形成的几何体是( )(第2题)3.如图是一个螺母的示意图,从上面看得到的图形是( )(第3题)4.一个无盖的正方体盒子的表面展开图可以是如图所示的( )(第4题)A.①B.①②C.②③D.①③5.下列说法正确的是( )A.有六条侧棱的棱柱的底面一定是三角形B.棱锥的侧面是三角形C.长方体和正方体不是棱柱D.柱体的上、下两底面可以大小不一样6.用一个平面去截下列几何体,所得截面与其他三个不同的是( )(第7题)7.如图为一个长方体截去两个角后的立体图形,如果照这样截去长方体的八个角,则所得新的立体图形的棱有( )A.26条B.30条C.36条D.42条8.能由如图所示的平面图形折叠而成的立体图形是( )(第8题)9.把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A.78 B.72 C.54 D.4810.如图是由一些小立方块所搭的几何体从三个不同方向看到的图形,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要的小立方块个数是( )(第10题) A.50 B.51 C.54 D.60二、填空题(每题3分,共24分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是________.12.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________.13.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是______或______.(第13题)(第14题)(第15题)14.如图是从不同方向看一个立体图形得到的平面图形,则这个立体图形的侧面积是________.15.正方体木块的六个面分别标有数字1,2,3,4,5,6,如图是从不同方向观察这个正方体木块看到的数字情况,数字1对面的数字是______.16.如图,木工师傅把一根长为1.6 m的长方体木料锯成3段后,表面积比原来增加了80 cm2,那么这根木料原来的体积是________.(第16题)(第17题)(第18题)17.如图,长方形ABCD的长AB=4,宽BC=3,以AB所在的直线为轴,将长方形旋转一周后所得几何体从正面看到的形状图的面积是________.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么该几何体从______面看到的形状图的面积最大.三、解答题(19~21题每题10分,其余每题12分,共66分)19.(1)如图是一些基本立体图形,在括号里写出它们的名称.(第19题)(2)将这些几何体分类,并写出分类的理由.20.如图①②都是几何体的表面展开图,先想一想,再折一折,然后说出图①②折叠后的几何体的名称、棱数与顶点数.(第20题)21.如图是一个立体图形从三个不同方向看所得到的形状图,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留π).(第21题)22.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状).(1)王亮至少需要多少个小正方体?(2)王亮所搭几何体的表面积是多少?(第22题)23.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图(图②)中标出点P,Q,S的位置,当正方体的棱长为a时,求出展开图中三角形PSQ 的面积.(第23题)24.如图①至③是将正方体截去一部分后得到的几何体.(第24题)(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2 013个顶点,4 023条棱,试求出它的面数.答案一、1.B 2.B 3.B 4.D 5.B 6.D 7.C 8.D 9.B 10.C二、11.球 12.8 cm 13.6;7 14.18 cm 215.3 16.3 200 cm 317.24 18.正三、19.解:(1)球;圆柱;圆锥;长方体;三棱柱(2)第一类:球、圆柱、圆锥,几何体的面中含有曲面;第二类:长方体、三棱柱,几何体的面中不含有曲面.(答案不唯一)20.解:图①折叠后是长方体,有12条棱,8个顶点;图②折叠后是六棱柱,有18条棱,12个顶点.21.解:这个立体图形是圆柱,体积为π×⎝ ⎛⎭⎪⎫822×10=160π(cm 3). 22.解:(1)两人所搭成的几何体拼成一个大长方体,该大长方体的长、宽、高至少为3,3,4,所以它的体积为36,则它是由36个棱长为1的小正方体搭成的,那么王亮至少需要36-17=19(个)小正方体.(2)王亮所搭几何体的上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.23.解:如图所示.(第23题)S 所在位置有两种情况.如图,过点Q 作QT ⊥BC 交直线BC 于点T.S 三角形PSQ =52a ·a -12a ·52a ·12-12a ·32a ·12-a ·a ·12=a 2.由图可以看出三角形PS ′Q 和三角形PSQ 的面积相等,所以三角形PS ′Q 的面积也是a 2.24.解:(1)7;9;14;6;8;12;7;10;15 (2)f +v -e =2.(3)因为v =2 013,e =4 023,f +v -e =2,所以f +2 013-4 023=2,f =2 012,即它的面数是2 012.第二章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各数中是正数的是( )A .-12B .2C .0D .-0.22.2的相反数是( )A .2B .12C .-2D .-123.在-1,-2,0,1这四个数中最小的数是( )A .-1B .-2C .0D .14.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-1C .(-3)2÷(-2)2=32D .0-7-2×5=-175.有理数a ,b 在数轴上对应的位置如图所示,则( )(第5题)A .a +b <0B .a +b >0C .a -b >0D .a b>06.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .162×106C .1.62×108D .0.162×1097.已知|a|=5,|b|=2,且a <b ,则a +b 的值为( )A .3或7B .-3或-7C .-3D .-78.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a|一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.如图的数轴被墨迹盖住一部分,被盖住的整数点有( )(第9题)A .7个B .8个C .9个D .10个10.如图,下面每个表格中的四个数都是按相同规律填写的:(第10题)根据此规律确定x 的值为( )A .135B .170C .209D .252二、填空题(每题3分,共24分)11.-25的绝对值是________,倒数是________.12.某项科学研究,以45 min 为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1,以此类推,上午7:45应记为________.13.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2)g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多相差________.14.比较一个正整数a ,其倒数1a,相反数-a 的大小:________________.15.若x ,y 为有理数,且(5-x)4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 016=________.16.已知在如图所示没有标明原点的数轴上有四个点,且它们表示的数分别为a ,b ,c ,d ,若|a -c|=10,|a -d|=12,|b -d|=9,则|b -c|=________.(第16题)(第17题)17.按如图所示的程序进行计算,如果第一次输入的数是20,而结果不大于100时,应把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为________.18.一列数a 1,a 2,a 3,…,a n .其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 017=________.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6·正数集合{ …} 负分数集合{ …} 非负整数集合{ …} 有理数集合{ …} 20.计算:(1)-5-(-3)+(-4)-[-(-2)];(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).21.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +b a +b +c +m 2-cd 的值.22.一辆货车从超市出发,向东走了1 km ,到达小明家,继续向东走了3 km 到达小兵家,然后向西走了10 km ,到达小华家,最后又向东走了6 km 结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1 km ,请你在如图所示的数轴上表示出小明家、小兵家和小华家的具体位置.(第22题)(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1 km 的用油量为0.25 L ,请你计算货车从出发到结束行程共耗油多少升?23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a|=2,|b|=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.商人小周于上周日收购某农产品10 000 kg ,每千克2.3元,进入批发市场后共占5个摊位,每个摊位最多能容纳 2 000 kg 该农产品,每个摊位的市场管理价为每天20元.批发市场该农产品上周日的批发价为每千克 2.4元,下表为本周内该农产品每天的批发价格比前一天的涨跌情况.(涨记为正,跌记为负)星期一 二 三 四 五 与前一天相比价格的涨跌情况/元+0.3 -0.1 +0.25 +0.2 -0.5 当天的交易量/kg2 5002 0003 0001 5001 000(1)星期四该农产品价格为每千克多少元?(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元? (3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.25.观察下列各式: -1×12=-1+12;-12×13=-12+13; -13×14=-13+14;… (1)你发现的规律是____________________;(用含n 的式子表示)(2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 017×12 018.答案一、1.B 2.C 3.B 4.D 5.A 6.C 7.B 8.C 9.C10.C 点拨:首先根据图示,可得第n 个表格的左上角的数等于n ,左下角的数等于n +1;然后根据4-1=3,6-2=4,8-3=5,10-4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3,4,5,…,n +2,据此求出a 的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x 的值是多少即可.二、11.25;-5212.-3 13.0.6 g 14.-a <1a ≤a15.1 16.7 17.320 18.1 007三、19.解:正数集合{15,0.81,227,171,3.14,π,1.6·,…}负分数集合{-12,-3.1,…}非负整数集合{15,171,0,…}有理数集合{15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6·,…}20.解:(1)原式=-8. (2)原式=30. (3)原式=-73. (4)原式=-40.21.解:由题意,得a +b =0,cd =1, m =±2,所以m 2=4. 所以a +b a +b +c +m 2-cd=0+c+4-1 =0+4-1=3. 22.解:(1)略.(2)由题意得(+1)+(+3)+(-10)+(+6)=0(km ),因而货车最后回到超市. (3)由题意得,1+3+10+6=20(km ),货车从出发到结束行程共耗油0.25×20=5(L ).23.解:由ab 2<0,知a <0.因为a +b >0,所以b >0. 又因为|a|=2,|b|=3, 所以a =-2,b =3.所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪⎪⎪⎪⎪⎪-2-13+(3-1)2=73+4 =613. 24.解:(1)2.4+0.3-0.1+0.25+0.2=3.05(元). 所以星期四该农产品价格为每千克3.05元. (2)星期一的价格是2.4+0.3=2.7(元); 星期二的价格是2.7-0.1=2.6(元); 星期三的价格是2.6+0.25=2.85(元); 星期四的价格是3.05元;星期五的价格是3.05-0.5=2.55(元).因而最高价格为每千克3.05元,最低价格为每千克2.55元.(3)(2 500×2.7-5×20)+(2 000×2.6-4×20)+(3 000×2.85-3×20)+(1 500×3.05-2×20)+(1 000×2.55-20)-10 000×2.3=6 650+5 120+8 490+4 535+2 530-23 000=27 325-23 000=4 325(元).所以他在本周的买卖中共赚了4 325元.25.解:(1)-1n ×1n +1=-1n +1n +1(n 为正整数)(2)原式=-1+12-12+13-13+14-…-12 017+12 018=-1+12 018=-2 0172 018.第三章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各式中,代数式的个数是( )①12; ②a +38; ③ab =ba ; ④1x +y ; ⑤2a -1; ⑥a ; ⑦12(a 2-b 2); ⑧5n +2.A .5B .6C .7D .82.单项式-π3a 2b 的系数和次数分别是( )A .π3,3 B .-π3,3 C .-13,4 D .13,43.下列各组是同类项的是( )A .xy 2与-12x 2y B .3x 2y 与-4x 2yz C .a 3与b 3 D .-2a 3b 与12ba 34.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =15.下列去括号正确的是( )A .a -(2b -3c)=a -2b -3cB .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1C .2y 2+(-2y +1)=2y 2-2y +1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 26.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x7.如图,阴影部分的面积是( )(第7题)A .112x yB .132xy C .6xy D .3xy8.已知-x +3y =5,则代数式5(x -3y)2-8(x -3y)-5的值为( )A .80B .-170C .160D .609.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确答案是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz10.如图,小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数分别为3,6,9,….类似地,图②中棋子围成正方形,其颗数分别为4,8,12,….下列选项中既能围成三角形又能围成正方形的棋子颗数是( )(第10题)A .2 010B .2 012C .2 014D .2 016二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________. 12.已知15 m xn 和-29m 2n 是同类项,则|2-4x|+|4x -1|的值为________.13.已知有理数a ,b 在数轴上对应的点的位置如图所示,化简|a +b|-|b -a|的结果为________.(第13题)14.三角形三边的长分别为(2x +1) cm ,(x 2-2) cm 和(x 2-2x +1) cm ,则这个三角形的周长是________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.已知a 2-4ab =1,3ab +b 2=2,则整式3a 2+4b 2的值是________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分降低a 元后,再下调25%;乙公司推出的优惠措施是每分下调25%,再降低a 元.若甲、乙两公司原来每分的收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一个正六面体骰子,放在桌面上,将骰子按如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 017次后,骰子朝下一面的点数是________.(第18题)三、解答题(19,21,22题每题10分,其余每题12分,共66分) 19.先去括号,再合并同类项.(1)2a -(5a -3b)+(4a -b); (2)3(m 2n +mn)-4(mn -2m 2n)+mn.20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.21.已知A =y 2-ay -1,B =2by 2-4y -1,且2A -B 的值与字母y 的取值无关,求2(a 2b -1)-3a 2b +2的值.22.小刚在图书馆认识了新朋友小明,他想知道小明的年龄,于是说:“把你的年龄减去5,再乘2后减去结果的一半,再加11,把最后结果告诉我,我就能猜出你的年龄.”小明这样做后,小刚果然迅速猜到了小明的年龄.你能说出小刚是用了什么办法猜对的吗?23.A,B两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪20万元,每年加工龄工资4 000元;B公司半年薪10万元,每半年加工龄工资2 000元.A,B两家公司第n年的年薪分别是多少?从经济角度考虑,选择哪家公司有利?24.如图是一个长方形娱乐场所的设计图.其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少? (2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是大长方形的长和宽的一半,你说他的设计符合要求吗?为什么?(第24题)答案一、1.C 2.B 3.D 4.C 5.C 6.C 7.A 8.C9.B 点拨:由题意可知原多项式为(xy -2yz +3xz)+(xy -3yz -2xz)=2xy -5yz +xz ,则正确的答案为(2xy -5yz +xz)+(xy -3yz -2xz)=3xy -8yz -xz.10.D 二、11.12a 2-112.13 点拨:因为15m xn 和-29m 2n 是同类项,所以x =2.所以|2-4x|+|4x -1|=6+7=13.13.-2b 14.2x 2cm 15.416.11 点拨:因为a 2-4ab =1,所以3a 2-12ab =3 ①.因为3ab +b 2=2,所以12ab +4b 2=8 ②.①+②得3a 2+4b 2=11.17.乙 点拨:设甲、乙两公司原来的收费为每分b(b >a)元,则推出优惠措施后,甲公司的收费为(b -a)×75%=0.75b -0.75a (元),乙公司的收费为(0.75b -a )元.因为0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜.18.2三、19.解:(1)2a -(5a -3b)+(4a -b) =2a -5a +3b +4a -b =a +2b.(2)3(m 2n +mn)-4(mn -2m 2n)+mn =3m 2n +3mn -4mn +8m 2n +mn =11m 2n.20.解:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1) =-a 2-4a +3a 2-5a 2-2a +1 =-3a 2-6a +1.当a =-23时,原式=-3×⎝ ⎛⎭⎪⎫-232-6×⎝ ⎛⎭⎪⎫-23+1=113.(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-[-3xy +2(14x 2-xy)+23y 2]=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2. 因为|x -1|+(y +2)2=0, 所以x -1=0且y +2=0.所以x =1,y =-2.所以原式=12+13×(-2)2=73.21.解:2A -B =2(y 2-ay -1)-(2by 2-4y -1) =2y 2-2ay -2-2by 2+4y +1 =(2-2b)y 2+(4-2a)y -1. 由题意知2-2b =0,4-2a =0, 即a =2,b =1.2(a 2b -1)-3a 2b +2=2a 2b -2-3a 2b +2=-a 2b =-22×1=-4.22.解:设小明的年龄是x 岁,则2(x -5)-12×2(x -5)+11=x +6(小明说的这个数是x +6).所以只要小明说出这个数,小刚再把这个数减去6就能得知小明的年龄. 23.解:A 公司第n 年的年薪为200 000+4 000(n -1)=196 000+4 000n(元),B 公司第n 年的年薪为100 000×2+(2n -1)×2 000=198 000+4 000n(元). 因为n >0,所以196 000+4 000n <198 000+4 000n. 所以从经济角度考虑,选择B 公司有利. 24.解:(1)游泳池的面积为mn ; 休息区的面积为12×π×⎝ ⎛⎭⎪⎫n 22=18πn 2.(2)绿地的面积为ab -mn -18πn 2.(3)符合要求.理由如下:由已知得a =1.5b ,m =0.5a ,n =0.5b. 所以⎝ ⎛⎭⎪⎫ab -mn -18πn 2-12ab = 38b 2-π32b 2>0. 所以ab -mn -18πn 2>12ab ,即小亮设计的游泳池符合要求.第四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.小辉同学画出了如下的四个图形,你认为是四边形的是( )2.在党中央、国务院“振兴中央苏区”的精神鼓舞下,老区人民掀起了建设家乡的热潮.某村把一条弯曲的公路改为直道以达到缩短路程的目的,其道理用数学知识解释应是( )A .两点之间线段最短B .两点确定一条直线C .线段可以比较大小D .线段有两个端点3.对于下列直线AB ,线段CD ,射线EF ,能相交的是( )4.如图,OB ,OC 都是∠AOD 内部的射线,如果∠AOB =∠COD ,那么( )A .∠AOC>∠BODB .∠AOC =∠BOD C .∠AOC<∠BOD D .以上均有可能(第4题)(第5题)5.如图,下列等式中错误的是( )A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC6.晓敏早晨8:00出发,中午12:30到家,那么晓敏到家时时针和分针的夹角是( )A .160°B .165°C .120°D .125°7.下列说法正确的有( ) ①角的大小与所画边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线; ④如果∠AOC =12∠AOB ,那么OC 是∠AOB 的平分线.A .1个B .2个C .3个D .4个8.如图,射线OA 与正东方向所成的角是30°,射线OA 与射线OB 所成的角是100°,则射线OB 的方向为( )A .北偏西30°B .北偏西50°C .北偏西40°D .西偏北30°(第8题)(第9题)(第10题)9.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.如果∠AOC =30°,∠BOD =80°,那么∠COE 的度数为( )A .50°B .60°C .65°D .70°10.如图,C ,D 为线段AB 上的两点,M 是AC 的中点,N 是BD 的中点,如果MN =a ,CD =b ,那么线段AB 的长为( )A .2(a -b)B .2a -bC .2a +2bD .2a +b二、填空题(每题3分,共24分)11.工人师傅在用地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据________________________.12.如图,线段有________条,射线有________条.(第12题)13.时钟由2点30分到2点55分,时针走过的角度是________,分针走过的角度是________.14.如图,直径AC 与BD 互相垂直,则半径分别是______________________,扇形AOD 的圆心角是________,弧AD 可表示为________.(第14题)(第15题)(第16题)15.如图,已知线段AB ,延长AB 到C ,使BC =12AB ,D 为AC 的中点,DC =3 cm ,则DB=________.16.如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于________.17.如图,艺术节期间我班数学兴趣小组设计了一个长方形时钟作品,其中心为O ,数3,6,9,12标在各边中点处,数2在长方形顶点处,则数1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).(第17题)(第18题)18.点M,N在数轴上的位置如图所示,如果P是数轴上的另外一点,且3PM=MN,则点P对应的有理数是________.三、解答题(19题8分,20题6分,24题12分,其余每题10分,共66分)19.读句画图:如图,A,B,C,D四点在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)画线段AB;(4)连接BC,并反向延长BC.(第19题)20.计算:(1)83°46′+52°39′16″;(2)96°-18°26′59″;(3)20°30′×8;(4)105°24′15″÷3.21.如图,由点O引出6条射线OA,OB,OC,OD,OE,OF,且∠AOB=90°,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.(第21题)22.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第22题)23.如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,E 是线段AC 的中点,D 是线段AB 的中点,求DE 的长.(第23题)24.如图,B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm ,设点B 的运动时间为t s (0≤t ≤10).(1)当t =2时,①AB =________;②求线段CD 的长度. (2)用含t 的代数式表示运动过程中AB 的长.(3)在运动过程中,若AB 的中点为E ,则EC 的长是否发生变化?若不变,求出EC 的长;若发生变化,请说明理由.(第24题)25.如图,正方形ABCD 内部有若干个点,利用这些点以及正方形ABCD 的顶点A ,B ,C ,D 把原正方形分割成一些三角形(互相不重叠):(第25题)(1)填写下表:正方形ABCD 内点的个数 1 2 3 4 … n 分割成的三角形的个数46…(2)原正方形能否被分割成2 018个三角形?若能,求此时正方形ABCD 内部有多少个点;若不能,请说明理由.答案一、1.B 2.A 3.B 4.B 5.C 6.B 7.B 8.C 9.D 10.B 二、11.两点确定一条直线 12.6;813.12.5°;150°14.OA ,OB ,OC ,OD ;90°;AD ︵15.1 cm 16.135°17.② 点拨:根据钟表表盘的特征可得数1应该标在∠DOE 的平分线与DE 的交点处.故答案为②.18.-1或-5 点拨:因为3PM =MN ,所以PM =13×(3+3)=2.所以当点P 在点M 左侧时,点P 对应的有理数是-5;当点P 在点M 右侧时,点P 对应的有理数是-1.三、19.解:如图.(第19题)20.解:(1)83°46′+52°39′16″= 135°85′16″=136°25′16″.(2)96°-18°26′59 ″=95°59′60″-18°26′59″=77°33′1″. (3)20°30′×8=160°240′=164°. (4)105°24′15″÷3=35°8′5″.21.解:因为∠EOF =170°,∠AOB =90°,所以∠BOF +∠AOE =360°-∠EOF -∠AOB =360°-170°-90°=100°.又因为OF 平分∠BOC ,OE 平分∠AOD ,所以∠COF =∠BOF ,∠EOD =∠AOE. 所以∠COF +∠EOD =∠BOF +∠AOE =100°.所以∠COD =∠EOF -(∠COF +∠EOD)=170°-100°=70°.22.解:由题意可知∠AOB =180°-45°+30°=165°,165°÷2-30°=52.5°,所以渔船C 在观测站南偏东52.5°方向.23.解:因为AB =24 cm ,BC =38AB ,所以BC =38×24=9(cm ).所以AC =AB +BC =24+9=33(cm ). 因为E 是线段AC 的中点, 所以AE =12×33=16.5(cm ).因为D 是线段AB 的中点, 所以AD =12AB =12×24=12(cm ).所以DE =AE -AD =16.5-12=4.5(cm ). 24.解:(1)①4 cm②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)因为B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动,所以当0≤t ≤5时,AB =2t cm ;当5<t ≤10时,AB =10-(2t -10)=20-2t(cm ). (3)不变.因为AB 的中点为E ,C 是线段BD 的中点, 所以EC =12(AB +BD)=12AD =12×10=5(cm ).25.解:(1)填表如下: 正方形 ABCD 内点的个数,1,2,3,4,…,n 分割成的 三角形的个数,4,6,8,10,…,2n +2(2)能.当2n +2=2 018,即n =1 008时,原正方形被分割成2 018个三角形,此时正方形ABCD 内部有1 008个点.第五章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x =1B .2x+1=0 C .3x +y =2 D .x 2-1=5x2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =y aC .若a =b ,则ac =bcD .若b a=d c,则b =d3.下列方程中,解是x =2的方程是( )A .23x =2B .-14x +12=0 C .3x +6=0 D .5-3x =14.下列解方程过程正确的是( )A .由47x =5-27x ,得4x =5-2xB .由30%x +40%(x +1)=5,得30x +40(x +1)=5C .由x0.2-1=x ,得5x -1=xD .由x -6=8,得x =25.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .26.已知方程2x -3=m3+x 的解满足|x|-1=0,则m 的值是( )A .-6B .-12C .-6或-12D .任何数7.已知方程7x +2=3x -6与关于x 的方程x -1=k 的解相同,则3k 2-1的值为( )A .18B .20C .26D .-268.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是( )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=1009.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的一个砝码后,天平仍呈平衡状态,如图②,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元二、填空题(每题3分,共24分) 11.方程2x -1=0的解是x =________. 12.已知关于x 的方程(a -3)x|2a -7|-5=0是一元一次方程,则a =________.13.若k 是方程3x +1=7的解,则4k +3=________.14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有__________幅.15.一个两位数,个位上的数字是十位上的数字的2倍,如果把十位上与个位上的数字对调,那么所得的两位数比原两位数大27,求原两位数.若设原两位数个位上的数字为x ,则可列方程为____________________;若设原两位数十位上的数字为y ,则可列方程为______________________.16.甲、乙两个足球队连续进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜________场.(第18题)17.某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为________元.18.如图是一块在电脑屏幕上出现的长方形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)5y -3=2y +6; (2)5x =3(x -4);(3)2x +13-5x -16=1; (4)x 0.7-0.17-0.2x 0.03=1.20.若x=5是方程ax-6=22+a的解.试求关于y的方程ay+5=a-3y的解.21.轮船在静水中的航行速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.22.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15 m3,按每立方米1.8元收费;如果超过15 m3,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元收费.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.23.用一个长60 m的篱笆围成一个长方形鸡场(鸡场的一边靠墙,墙长为20 m).如图,若BC=2AB,求AB和BC的长,并检验是否符合要求;若不符合要求,提出改进意见,并求出改进后的AB,BC的长,使其仍满足BC=2AB.(1)一变:若不利用墙,使围成鸡场的长比宽多6 m,求鸡场的面积;(2)二变:不利用墙,若围成正方形、圆形,分别求出鸡场的面积,并猜想要使鸡场的面积更大一些,最好围成什么图形.(第23题)24.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适?为什么?答案一、1.A 2.C 3.B 4.C 5.B 6.C 7.C 8.A 9.A 10.C 二、11.1212.4 点拨:由题意得|2a -7|=1且a -3≠0,解得a =4. 13.11 14.6915.10×x 2+x =10x +x2-27;10y +2y =10×2y +y -27 16.6 17.340 18.143 三、19.解:(1)y =3. (2)x =-6. (3)x =-3. (4)x =1417.20.解:把x =5代入方程ax -6=22+a ,得5a -6=22+a ,解得a =7, 把a =7代入关于y 的方程ay +5=a -3y ,得7y +5=7-3y , 解得y =15.21.解:设甲、乙两码头间的距离为x km ,由题意得x 20+4+x20-4=5.解这个方程得x=48.所以甲、乙两码头间的距离为48 km .22.解:若该户一月份的用水量为15 m 3,则需支付水费15×(1.8+1)=42(元),而42<58.5,所以该户一月份的用水量超过15 m 3.设该户一月份的用水量为x m 3,则列方程为42+(2.3+1)(x -15)=58.5,解得x =20. 所以该户一月份的用水量为20 m 3. 23.解:设AB =x m ,根据题意, 得x +x +2x =60,解得x =15, 所以BC =30 m >20 m . 所以不符合题意. 改进意见:墙AE 做鸡场一边AD 的一部分,如图,设AB =y m ,此时可得方程2(y +2y)-20=60,解得y =403,所以AB =403 m .AD =BC =803m >20 m ,符合题意.(第23题)(1)设宽为z m ,则长为(z +6) m . 由题意,得2(z +6+z)=60. 解得z =12,则长为12+6=18(m ),所以鸡场的面积为12×18=216(m 2). (2)若围成正方形, 则其边长为60÷4=15(m ), 所以面积为152=225(m 2);若围成圆形,则其半径为60÷2π=30π(m ),所以面积为π×⎝ ⎛⎭⎪⎫30π2=900π≈286.6(m 2).因为286.6>225,所以要使鸡场的面积更大一些,最好围成圆形. 24.解:(1)正常情况下,甲、乙两人能履行该合同.理由如下:设两人合做需x 天,由题意得x 30+x20=1,解得x =12,因为12<15,所以正常情况下,两人能履行该合同. (2)调走甲更合适.理由如下:完成这项工程的75%所用天数为34÷⎝ ⎛⎭⎪⎫130+120=9(天),若调走甲,设共需y 天完成,由题意得 34+y -920=1,解得y =14, 因为14<15,所以能履行该合同.若调走乙,设共需z 天完成,由题意得34+z -930=1,解得z =16.5,因为16.5>15,所以不能履行该合同.综上可知,调走甲更合适.第六章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.在下列调查中,适宜采用普查的是( )A .了解我省中学生的视力情况B .了解九(1)班学生校服的尺码情况C .检测一批电灯泡的使用寿命D .调查台州《600全民新闻》栏目的收视率2.为了了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )A .1 500名学生的体重是总体B .1 500名学生是总体C .每名学生是个体D .100名学生是所抽取的一个样本3.PM 2.5指数是衡量空气污染程度的一个重要指标,在一年中最可靠的一种观测方法是( )A .随机选择5天进行观测B .选择某个月进行连续观测C .选择在春节7天期间连续观测D .每个月随机选中5天进行观测4.要反映北京市某周内每天最高气温的变化情况,采用的统计图比较合适的是( )A .条形统计图B .扇形统计图C .折线统计图D .上述三种统计图都可以5.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角的度数是( )A .36°B .72°C .108°D .180°。

八年级数学上学期期中模拟测试卷02(北师大版)考试版

八年级数学上学期期中模拟测试卷02(北师大版)考试版
D.函数图象经过第二、三、四象限
8.如图,一棵垂直于地面的树在一次强台风中从高地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为( )
A.4.5米B.6米C. 米D.9米
9.已知点(﹣4,y1),(2,y2)都在直线y=﹣ x+b上,则y1与y2的大小关系是( )
A.y1>y2B.y1=y2C.y1<y2D.不能确定
(2)如图2,若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.
22.(10分)如图,已知直线y=﹣ x+1与x轴、y轴分别交于A、B两点,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,点P为直线BC上一个动点.
(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.
20.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.测试范围:第一-第四单元(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、单项选择题(本题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的。)
1.81的平方根为( )
A.3B.±3C.9D.±9
(1)轿车到达乙地时,求货车与甲地的距离;
(2)求线段CD对应的函数表达式;
(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(含答案)

北师大版七年级数学上册第一章《丰富的图形世界》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分)1.如图,是小云同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“动”字相对的面上的字是()A.造B.劳C.幸D.福2.一个棱柱有8个面,这是一个()A.四棱柱B.六棱柱C.七棱柱D.八棱柱3.一个长方体的棱长之和是180厘米,相交于一个顶点的三条棱的长度和是()A.45厘米B.30厘米C.90厘米D.60厘米4.一个几何体由若干大小相同的小正方体搭成,从左面和上面看到的这个几何体的形状图如图所示,则搭这个几何体需用小正方体的个数不可能是()A.5 B.6 C.7 D.85.如图所示,以直线为轴旋转一周,可以形成圆柱的是()A.B.C.D.6.用一个平面将一个正方体截去一部分,其面数将()A.增加B.减少C.不变D.不能确定7.用平面去截一个几何体,如果截面的形状是长方形,那么该几何体不可能是()A.正方体B.长方体C.圆柱D.圆锥8.如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.9.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤直棱柱的侧面一定是长方形.其中正确的个数是()A.2个B.3个C.4个D.5个10.如图,硬纸板上有10个无阴影的正方形,从中选1个,使得它与图中多个有阴影的正方形一起能折叠成一个正方体纸盒,选法共有()A.4种B.5种C.6种D.7种二、填空题(每小题2分,共20分)1.一个正n棱柱有18条棱,一条侧棱为10cm,一条底边为3cm,则它的侧面积是_____2cm.2.一个几何体由几个大小相同的小立方块搭成,从正面和上面看到的这个几何体的形状如图所示,若组成这个几何体的小立方块的个数为n,则n的最少值为______.3.用一个平面去截三棱柱不可能截出以下图形中的_____(填序号).①等腰三角形,②等边三角形,③圆,④正方形,⑤五边形,⑥梯形.4.若用一个平面去截一个五棱柱,截面的边数最少是_____________;最多是____________.5.如图,一个正方体的六个面分别写着六个连续的整数,且相对面上的两个整数的和都相等,将这个正方体放在桌面,将其以如图所示的方式滚动,每滚动90︒算一次,请问滚动2022次后,正方体贴在桌面一面的数字是___________.6.如图,若平面展开图按虚线折叠成正方体后,相对面上两个数之积为20,则+__________.x y7.如图,将长方形纸片ABCD沿EF折叠后,若1110∠的度数为______.∠=︒,则28.将一个长4cm,2cm宽的长方形绕它的长边所在的直线旋转一周,所得几何体的体积为______3cm.9.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______. 10.用若干大小相同的小立方块搭一个几何体,使得从左面和从上面看到的这个几何请从A,B两题中任选一题作答.我选择___________题.A.搭成该几何体的小立方块最少有___________个.B.根据所给的两个形状图,要画出从正面看到的形状图,最多能画出___________种不同的图形.三、解答题(每小题6分,共60分)1.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.2.如图是由九块积木搭成,这几块积木都是相同的正方体,请画出从正面、左面、上面看到的这个几何体的形状图.3.已知一个直棱柱,它有21条棱,其中一条侧棱长为10cm,底面各条边长均为4cm.(1)这个直棱柱是几棱柱?(3)求这个棱柱的所有侧面的面积之和.4.用若干相同的小正方体搭成一个几何体,使它从正面和上面看到的形状如图.(1)这样的几何体只有一种吗?(2)它最多需要多少个小正方体?最少需要多少个小正方体?(3)画出搭成几何体所用正方体最多时的从左面看的视图.5.如图所示,在长方形ABCD中,BC=6cm,CD=8cm.现绕这个长方形的一边所在直线旋转一周得到一个几何体。

24-25八年级数学第一次月考卷(深圳专用,北师大版八上第1~2章:勾股定理+实数)(考试版A4)

24-25八年级数学第一次月考卷(深圳专用,北师大版八上第1~2章:勾股定理+实数)(考试版A4)

2024-2025学年八年级数学上学期第一次月考卷(深圳专用)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大版第一章勾股定理+第二章实数。

5.难度系数:0.68。

第Ⅰ卷一、选择题:本大题共8小题,每小题3分,共24分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列数中是无理数的是()A.2πB.3.1415926C.117D. 3.6-2.以下列各组数为边长,不能构成直角三角形的是()A.8,15,17B.7,24,25C.6,8,10D.1,13)A3=B=C6´=D+= 4.如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A.16B.25C.144D.1695.实数a ,b 在数轴上的位置如图所示,且|a |>|b ||2a +b |的结果为( )A .2a +b .﹣2a +b C .a +b D .2a ﹣b6.使代数式y =有意义的自变量x 的取值范围是( )A .4x ¹B .3x >C .3x ³D .3x ³且4x ¹7.在四边形ABCD 中,AD BC ∥,90D Ð=°,5AD =,3BC =,分别以A ,C 为圆心,大于12AC 的长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O ,若点O 是AC 的中点,则CD 的长为( )A B C .D .48.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC BD ,交于点O .若1AD =,4BC =,则22AB CD +等于( )A .15B .16C .17D .20第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。

七年级数学上册 期末试卷(2)北师大版

七年级数学上册 期末试卷(2)北师大版

七年级(上)期末数学试卷一、选择题(本题包括10小题。

)1.下列说法正确的是( )A.-5,a 不是单项式B.2abc -的系数是2-C.3y x -22的系数是31-,次数是4 D.y x 2的系数为0,次数为22.下列调查方式合适的是( )A.为了了解某电视机的使用寿命,采用普查的方式B.调查某市初中学生利用网络媒体自主学习的情况,采用普查的方式C.调查某中学七年级一班学生的视力情况,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式3.从新华网获悉:商务部5月27日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16 553亿元人民币. 16 553亿用科学记数法表示为( ) A.8103 1.655⨯ B. 11103 1.655⨯ C. 12103 1.655⨯ D. 13103 1.655⨯ 4.若有理数a ,b 在数轴上对应点的位置如图,则下列各式正确的是( )A.0<b +aB.0<b -aC.0>b a ⋅D.0>ba5.如图是某几何体从三个不同的方向看到的图形,下列判断正确的是( )A.该几何体是圆柱,高为2B.该几何体是圆锥,高为2C.该几何体是圆柱,半径为2D.该几何体是圆锥,半径为26.一个四棱柱被一刀切去一部分,剩下的部分可能是( )A.四棱柱B.三棱柱C.五棱柱D.以上都有可能7.某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比.如图是对某年级60篇学生的调查报告进行整理,分成5组画出的频数直方图.如果从左到右5个小长方形的高度的比为1∶2∶7∶6∶4,那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀,且分数为整数)( )A.30篇B.24篇C.18篇D.27篇8.如图,⊙O 的半径为1,分别以⊙O 的直径AB 上的两个四等分点21O ,O 为圆心,21为半径作半圆,则图中阴影部分的面积为( )A. πB.21π C. 41π D.2π 9.若方程0=k +x1-2k 是关于x 的一元一次方程,则方程的解为x=( )A.-1B.1C. 21D. 21-10.观察下列算式:5616=3,187 2=3,729=3,243=3,81=3,27=3,9=3,3=387654321,….根据上述算式的规律可知,018 23的末位数字是( )A.3B.9C.7D.1二、填空题(本题包括5小题。

第二章 有理数及其运算 达标测试卷(含答案)北师大版(2024)数学七年级上册

第二章 有理数及其运算 达标测试卷(含答案)北师大版(2024)数学七年级上册

第二章 有理数及其运算达标测试卷(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 若气温上升2 ℃记作+2 ℃,则气温下降3 ℃应记作( )A. -2 ℃B. +2 ℃C. -3 ℃D. +3 ℃ 2. 23-的绝对值是( ) A. 23 B. 23- C. 32 D. 32- 3. 发展新能源汽车是我国应对气候变化、推动绿色发展的战略举措.据统计,2022年国内新能源汽车销量超过6 800 000辆,数据6 800 000用科学记数法可表示为( )A. 0.68×107B. 6.8×106C. 68×105D. 680×1044. 下列各式中结果为负数的是( ) A. 23- B.(-3)2 C. -(-3) D. 3--5. 在-2□3的“□”中填入一个运算符号,使其运算结果最小,则“□”中填的是( )A. +B. -C. ×D. ÷6. 下列两数比较大小正确的是( )A .−31>−0.3B .−78<−89C .0<-1 .−32<−43 7. 若(x -1)2+2y +=0,则x +y 的值等于( )A. -3B. 3C. -1D.18. 小明家的汽车在阳光下曝晒后车内温度达到了60 ℃,打开车门后经过8 min 降低到与室外同温32 ℃,再启动空调关车门,若每分钟降低4 ℃,降到设定的20 ℃共用时间是( )A. 10 minB. 11 minC. 12 minD. 13 min9. 点A ,B 在数轴上的位置如图1所示,若点A ,B 表示的数分别为a ,b ,且满足a +b >0,则下列一定是正数的为( )A. aB. -aC. bD. -b图110.《庄子》中记载:“一尺之℃,日取其半,万世不竭.”这句话的意思是一尺长的木棍,每天截取它的一半,永远也截不完.若按此方式截一根长为1的木棍,第5天截取后木棍剩余的长度是( )A. 512B. 412C. 5112-D. 4112-二、填空题(本大题共6小题,每小题3分,共18分)11.13-的倒数是.12.13. 数轴上,如果点A表示78-,点B表示67-,那么离原点较近的点是__________.(填A或B)14. 太原市某天中午的温度是5 ℃,下午上升了2 ℃,由于冷空气南下,到夜间又下降了9 ℃,则这天夜间的温度是__________℃.15. 如图2,有一根木棒MN放置在数轴(单位长度是1 cm)上,它的两端M,N分别落在点A,B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为24,当点N移动到点A时,点M所对应的数为6.由此可得木棒MN的长为__________cm.图216. 已知a=3,b=5,且+a b=-a-b,则a-b的值为__________.三、解答题(本大题共6小题,共52分)17. (每小题4分,共8分)计算:18.(每小题4分,共8分)用简便方法计算:19.(6分)有理数x,y在数轴上对应的点如图3所示.(1)在数轴上表示出-x,y;(2)把x,y,0,-x,y这五个数用“<”号连接起来.图320.(8分)七年级小梅同学在学习完第二章《有理数及其运算》后,对运算产生了浓厚的兴趣.她借助有理数的运算,定义了一种新运算“℃”,规则如下:a℃b=a×b+2×a.(1)求(-2)℃(-3)的值;(2)(-5)℃[2℃(-4)].21. (10分)某蛋糕店在某一时段的销售情况如下,请分别完成下列问题:(1)该蛋糕店在一周的销售中,盈亏情况如下表:(盈余为正,亏损为负,单位:元)表中星期四的盈亏被墨水涂污了,请你算出星期四的盈亏数,并说明星期四是盈还是亏?盈亏是多少?(2)该蛋糕店去年1~3月平均每月盈利2万元,4~6月平均每月亏损1万元,7~8月平均每月亏损2万元,9~12月平均每月盈利4万元,则该蛋糕店去年总的盈亏情况如何?22.(12分)阅读:已知在纸面上有一数轴(如图4),折叠纸面,若数轴上表示数1的点与表示数-1的点重合,则数轴上表示数-2的点与表示数2的点重合.图4折叠纸面,使数轴上表示数-4的点与表示数0的点重合,解答下列问题:(1)数轴上表示数3的点与表示数_________ 的点重合;(2)若点A到原点的距离是5个单位长度,并且A,B两点经折叠后重合,求点B表示的数;(3)若数轴上M,N两点之间的距离为100,并且M,N两点经折叠后重合,如果点M表示的数比点N 表示的数大,直接写出点M,N表示的数.附加题(共20分,不计入总分)对于有理数x,y,a,t,若,则称x和y关于a的“美好关联数”为t.例如(1)-3和5关于2的“美好关联数”为_________;(2)若x和2关于3的“美好关联数”为4,求x的值;(3)若x0和x1关于1的“美好关联数”为1,x1和x2关于2的“美好关联数”为1,x2和x3关于3的“美好关联数”为1,…,x40和x41关于41的“美好关联数”为1,….①x0+x1的最小值为___________;②x1+x2+x3+…+x40的最小值为___________.(江西贺振宇)第二章有理数及其运算达标测试卷参考答案答案速览一、1. C 2. A 3. B 4. D 5. C 6. B 7. C 8. B 9. C 10. A二、11. -3 12. 1413. B14. -2 15. 6 16. 8或2三、解答题见“答案详解”答案详解15. 6 解析:由数轴知木棒MN的长为(24-6)÷3=6℃cm℃.16. 8或2 =3,b=5,所以+b=-a-b,所以a+b≤0.所以a=3℃b=-5,或a=-3℃b=-5.℃a=3℃b=-5℃℃a-b=8℃℃a=-3℃b=-5℃℃a-b=2.所以a-b的值为8℃2.三、17.(1)-16;(2)-26.19. 解:(1)在数轴上表示-x,y如图所示:(2)用“<”号连接为-x℃y℃0℃y℃x.20. 解:(1)(-2)⊕(-3)=(-2)×(-3)+2×(-2)=6-4=2;(2)(-5)⊕[2⊕(-4)]=(-5)⊕[2×(-4)+2×2]=(-5)⊕(-8+4)=(-5)⊕(-4)=(-5)×(-4)+2×(-5)=20-10=10℃21. 解:(1)根据表格知,星期四的盈亏数为4580-[(-278)+(-703)+2000+(-80)+380+1880]=4580-319 9=1381(元).因为1381是正数,所以星期四是盈利,盈利1381元.(2)记盈利为正,亏损为负,该蛋糕店去年总的盈亏数为2×3+(-1)×3+(-2)×2+4×4=15(万元).所以该蛋糕店去年总共盈利15万元.22. 解:因为数轴上表示数-4的点与表示数0的点重合,所以折点为-2.(1)-7(2)因为点A到原点的距离是5个单位长度,所以点A表示的数为5或-5.因为A,B两点经折叠后重合,所以当点A表示-5时,-2-(-5)=3,-2+3=1;当点A表示5时,5-(-2)=7,-2-7=-9.所以点B表示的数是1或-9.(3)点M,N表示的数分别为48,-52.附加题解:(1)8(3)①1解析:因为x0和x1关于1的“美好关联数”为1,所以点的距离和为1,所以只有当x0=0,x1=1时,x0+x1有最小值1.……。

(北师大版)2024-2025学年八年级数学上学期期中押题测试卷(一)(解析版)

(北师大版)2024-2025学年八年级数学上学期期中押题测试卷(一)(解析版)

2024-2025学年八年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:(北师版)八年级上册第一章~第四章。

5.难度系数:0.85。

一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.实数16的平方根是( )A.4B.-4C.±4D.16【答案】C【详解】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.详解:∵(±4)2=16,∴实数16的平方根是±4.故选C.点睛:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.下列4个数中,3.1415926,22,π7C.πDA.3.1415926B.227故选:C .【点睛】本题主要考查了无理数的实数的分类,熟练地掌握无理数的定义是解题的关键.常见的无理数有:含π的数、开不尽方的数、有规律但是不循环的数.3.下列运算中正确的是( )A B .2+C .2=12D =−24.下列各组数据中的三个数,可以作为直角三角形三边长的是( )A .1,2,3B .2,4,7C .6,8,10D .13,14,155.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为()A.2m B.3m C.3.5m D.4m6.在平面直角坐标系中,点5,−2所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据各象限内的点的坐标符号规律即可得.【详解】解:因为点5,−2的横坐标为5>0,纵坐标为−2<0,所以点5,−2所在的象限是第四象限,故选:D.【点睛】本题考查了点所在的象限,熟练掌握各象限内的点的坐标符号规律是解题关键.7.关于直线l:y=−2x+4,下列说法不正确的是()A.函数的图象经过第一、二、四象限B.y随x的增大而减小C.函数的图象是由y=−2x的图象向上平移4个单位长度得到的D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【答案】D【分析】由k=−2<0,b=4>0,可得图象经过一、二、四象限,y随x的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵y =−2x +4,k =−2<0,b =4>0,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;∵y =−2x +4函数的图象是由y =−2x 的图象向上平移4个单位长度得到的,故C 不符合题意;当x =0时,y =4,∴A(x 1,y 1),B(x 2,y 2)两点在该函数图象上,且x 1<x 2,则y 1>y 2,故D 符合题意;故选:D .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.8.一次函数y =kx +b 与y =x−2的图象如图所示,则关于x ,y 的方程组y =kx +b y =x−2 的解是( )A .x =4y =2B .x =4y =−2C .x =2y =1D .x =2y =−1【答案】A 【分析】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.先利用y =x−2确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:对于y =x−2,当x =4时,y =4−2=2,∴两直线交点坐标为(4,2),∴方程组y =kx +b y =x−2 的解x =4y =2 ,故选:A .9.若kb >0,则正比例函数y =kx 与一次函数y =bx +k 在同一坐标系中的图象可能是( )A .B .C .D .【答案】A 【分析】本题考查一次函数的图象,解答本题的关键是明确一次函数的性质,由kb >0,得k 、b 同号,再分k >0,b >0及k <0,b <0,两种情况讨论即可得答案.【详解】解:∵kb >0,∴k 、b 同号,若k >0,b >0,y =kx 图象经过第一、三象限,y =bx +k 经过第一、二、三象限,若k <0,b <0,y =kx 图象经过第二、四象限,y =bx +k 经过第二、三、四象限,只有选项A 符合,故选:A .10.如图,一次函数交x 轴于点A (4,0),交y 轴于点B (0,3),过点A 作AC ⊥AB ,且AC =AB .连接BC ,当点C在第一象限时,直线BC 的解析式为( )A .y =17x +3B .y =16x +3C .y =15x−3D .y =14x +3【答案】A【分析】根据点A 和B 的坐标求出线段OA 和OB 的长,过点C 作CD ⊥x 轴于D ,由全等三角形的判定可得出△ABO≌△CAD ,由全等三角形的性质可得AD =OB =3,CD =OA =4,从而求出点C 的坐标,继而可求出直线BC 的解析式.【详解】过点C 作CD ⊥x 轴于D ,二、填空题(本题共6小题,每小题3分,共18分.)11.若电影院的5排3号记为(5,3),则4排7号记为.【答案】(4,7)【分析】根据题意明确对应关系,排在前,号在后,然后进行分析解答.【详解】解:电影院中的5排3号记为(5,3),则4排7号记为(4,7).故答案为:(4,7).【点睛】本题主要考查坐标确定位置,掌握在平面中确定一个点的位置需要知道纵坐标和横坐标两个条件.12.如图,已知RtΔABC中,∠C=90°,BC=20,AC=15,CD是斜边AB上的高,求AD的长度为.13.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.【答案】y=﹣x+3【分析】将点(1,2)代入一次函数解析式为y=kx+b,得到k+b=2,又因为y随x的增大而减小,可得出k小于0,取k=-1,可得出b=3,确定出满足题意的一次函数解析式,本题答案不唯一.【详解】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=-1,可得出b=3,则一次函数为y=-x+3.故答案为y=-x+3【点睛】此题考查了一次函数的性质,一次函数y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.此外本题的答案不唯一,只要满足k为负数,且k+b=2即可.14.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞m.15.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF=.16.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.【答案】(21008,21009)【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=1008×2+1即可找出点A2017的坐标.【详解】由图可知:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∵2017=504×4+1,∴点A2017在第一象限,∵2017=1008×2+1,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案是:(21008,21009)【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)求下列各式中的x:(1)1(x−1)3=−4;2(2)(2x+1)2=9.题的关键.18.(8分)计算(2)(3+÷19.(8分)平面直角坐标系中,△ABC各顶点坐标分别为A0,1、B2,0、C4,3.(1)若△A′B′C′与△ABC关于y轴对称,请在平面直角坐标系中画△A′B′C′;(2)△A′B′C′的面积是________;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)见解析(2)4(3)P10,0或−6,0【分析】本题考查了作轴对称图形、三角形的面积、坐标与图形,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据轴对称的性质得出点A、B、C的对应点A′、B′、C′,再顺次连接即可;(2)利用割补法求三角形面积即可;(3)根据三角形的面积求出BP=8,进而即可得出点P的坐标.【详解】(1)解:△A′B′C′如图所示:;20.(8分)如图,直线y=−3x+6交x轴和y轴于点A和点B,点C(0,−3)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△BCP的面积为18,求点P的坐标;【答案】(1)点A坐标为(2,0),点B坐标为(0,6)(2)点P的坐标为(4,−6)或(−4,18)【分析】本题考查一次函数图像上点的坐标特征,熟知一次函数的图像和性质是解题的关键.(1)根据坐标轴上的点的坐标特征即可解决问题.(2)由△BCP的面积为18可求出点P的横坐标,据此可解决问题.【详解】(1)将y=0代入y=−3x+6得,−3x+6=0,解得x=2,∴点A坐标为(2,0).将x=0代入y=−3x+6得,21.(8分)如图,在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A,H,B在一条直线上),并修一条路CH.测得CB=2千米,CH=1.6千米,HB=1.2千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.22.(10分)2022年春节,某地连续14天进行了3次全员核酸检测.某次,甲乙两家医院对A、B两个小区居民进行检测,在整个检测过程中,检测的人数y(人)与检测时间x(分)的对应关系如图所示:(1)两家医院共检测______人,甲乙两家医院检测的速度差是______.(2)求出两家医院的y与x的函数关系式;(3)甲医院开始检测多长时间两家医院检测人数相差200人?【答案】(1)6000,8人/分(2)y甲=20x−1000;y乙=12x(3)甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【分析】(1)由图象直接可得答案;(2)在图象上找两点或一点,利用待定系数法可得答案;(3)有甲检测人数比乙多200和乙检测人数比甲多200两种情况,列出含绝对值的方程即可解得答案.【详解】(1)解:两家医院共检测3000+3000=6000(人),甲医院速度是3000÷(200−50)=20(人/分),乙医院速度是3000÷250=12(人/分),∴甲乙两家医院检测的速度差是8(人/分),故答案为:6000,8人/分;(2)解:设y 甲=kx +b ,将(50,0),(200,3000)代入得:50k +b =0200k +b =3000 ,解得k =20b =−1000,∴y 甲=20x−1000;设y 乙=k′x ,将(250,3000)代入得:250k ′=3000,解得k ′=12,∴y 乙=12x ;所以甲医院的y 与x 的函数关系式为:y =20x−1000;乙医院的y 与x 的函数关系式为:y =12x ;(3)解:根据题意得:|20x−1000−12x |=200,解得x =100或x =150,∴x−50=50或x−50=100,答:甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【点睛】本题考查一次函数的应用,解题的关键是正确识图,熟练应用待定系数法列出函数关系式.23.(10简:2−12=以上这种化简的步骤叫做分母有理化.也可以用如下方法化简.(1)请化简:2;(2)选择合适的方法化简1(n 为正整数);(3)++++⋯+24.(12分)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与直线l2:y=x交于点A(a,2),与y轴交于点B(0,5),与x轴交于点C.(1)求直线l1的函数表达式;(2)在y轴上存在一点P,使得S△AOP=S△AOC,求出点P的坐标;(3)点E为直线l1上的动点,过点E作x轴的垂线,交于l2点F,点H为y轴上一动点,且△EFH为等腰直角三角形,求满足条件的点E的坐标.。

2024--2025学年河南省郑州市北师大版七年级上册 数学期中试卷 (A)

2024--2025学年河南省郑州市北师大版七年级上册 数学期中试卷 (A)

2024--2025学年河南省郑州市北师大版七年级上册数学期中试卷(A )1.在-(-2)、|-1|、-|0|,-22,(-3)2,-(-4)5中正数有()A .1个B .2个C .3个D .4个2.下列各组数中,结果相等的是()A.与B.与C.与D.与3.人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是()A .143344937kmB .1433449370kmC .14334493700kmD .1.43344937km4.下列选项中,两个单项式属于同类项的是()A .a 3与b 3B .-2a 2b与ba2C .x2y 与-xy2D .3x 2y 与-4x2yz5.已知整式的值为6,则整式的值为()A .0B .12C .14D .186.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D .7.如图,从边长为的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.B .C .D .68.若,则多项式的值为()A .B .5C.D .9.如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为,,,,,则下列正确的是()A.B.C.D.10.如图,一个立方体的六个面上分别标着连续的自然数,若相对两个面上所标之数的和相等,则这六个数的和为()A.69B.75C.78D.8111.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记作+0.22,那么小东跳出了3.85米,记作______.12.一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____cm.13.已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为_____.14.将一个边长为a的正方形纸片[如图(1)]剪去两个小长方形,得到一个如图(2)所示的“”形图案,则这个“”形图案的周长为____.15.如果关于的多项式与多项式的次数相同,则=_________.16.计算(1)(2).17.化简,求值:,其中,.18.一个几何体由几个完全相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小正方体的个数.(1)请画出从正面看、从左面看到的这个几何体的形状图;(2)若小正方体的棱长为1,求这个几何体的表面积.19.某种箱装水果的标准质量为每箱10千克,现抽取8箱样品进行检测,称重如下(单位:千克):10.2,9.9,9.8,10.1,9.6,10.1,9.7,10.2.为了求得这8箱样品的总质量,我们可以选取一个基准质量进行简化运算.(1)你认为选取的这个恰当的基准质量为______千克;(2)根据你选取的基准质量,用正、负数填写下表;(超过基准质量的部分记为正数,不足基准质量的部分记为负数)原质量(千克)10.29.99.810.19.610.19.710.2与基准质量的差距(千克)(3)这8箱样品的总质量是多少?20.如图,两摞完全相同的课本整齐地叠放在讲台上,请根据图中所给出的信息,回答下列问题:(1)每本课本的厚度为cm.(2)若有一摞上述规格的课本x本整齐地叠放在讲台上,请用含x的代数式表示出这摞课本的顶部距离地面的高度.(3)当时,求课本的顶部距离地面的高度.21.【问题情境】某综合实践小组计划进行废物再利用的环保小卫士活动.他们准备用废弃的宣传单制作成装垃圾的无盖纸盒.【操作探究】(1)若准备制作一个无盖的正方体纸盒,如图(1),图形经过折叠能围成一个无盖正方体纸盒.(填A,B,C,或D)(2)如图(2)是小明的设计图,把它折成一个无盖正方体纸盒后与“保”字所在面相对的面上的文字是.(3)如图(3),有一张边长为20cm的正方形废弃宣传单,小华将其四个角各剪去一个边长为4cm小正方形后,折成无盖长方体纸盒.求这个无盖长方体纸盒的底面积和容积.22.某中学准备在网上订购一批篮球和跳绳,查阅后发现篮球每个售价为120元,跳绳每根售价为25元.现有甲、乙两家网店均提供包邮服务,并提出了各自的优惠方案.甲网店:买一个篮球送一根跳绳;乙网店:篮球和跳绳都按定价的付款.已知要购买篮球40个,跳绳x根.(1)若在甲网店购买,则需付款元;若在乙网店购买,则需付款元;(用含x的代数式表示)(2)当时,在哪家网店购买较为合算?(3)当时,你认为还有更为省钱的购买方案吗?如果没有,请说明理由;如果有,请写出你的购买方案,并计算需要付款的金额.23.已知点A,B在数轴上分别表示a,b.任务要求(1)对照数轴填写下表:a 83b 404A ,B 两点间的距离48124问题探究(2)若A ,B 两点间的距离记为d ,试问d 和a ,b 有何数量关系.问题拓展(3)当x 等于多少时,的值最小,最小值是多少?(4)若点C 表示的数为x ,当点C 在什么位置时,|x-1|+|x-5|的值最小,最小值是多少?。

陕西榆林榆阳区2023-2024学年七年级上册数学期中试卷及答案北师大版

陕西榆林榆阳区2023-2024学年七年级上册数学期中试卷及答案北师大版

陕西榆林榆阳区2023-2024学年七年级上册数学期中试卷及答案北师大版注意事项:1.本试卷分为第一部分(选择题)和第二郁分(非选择题).全卷共6页,总分120分.考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号.3.请在答题卡上各题的指定区城内作答,否则作答无效.4.作图时,先用铅笔作图,再用规定签字笔描黑.5.考试结束,本试卷和答题卡一并交回.第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1. 实数5-的相反数是( )A. 5B. 5-C. 15D. 15-【答案】A【解析】【分析】本题主要考查了相反数的判断,根据相反数的定义解答即可.【详解】5-的相反数是5.故选:A .2. 当2x =时,代数式32x -的值是( )A. 4- B. 0 C. 2 D. 4【答案】D【解析】【分析】把2x =代入32x -计算即可.【详解】把2x =代入32x -得,323224x -=´-=.故选D .【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.3.长沙市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游,据有关部门统计报道:2023年中秋国庆假期八天累计接待游客263万人次.将263万用科学记数法表示为( ).A. 62.6310´B. 72.6310´C. 70.26310´D. 526.310´【答案】A【解析】【分析】根据科学记数法定义即可得.【详解】解:263万62630000 2.6310==´,故选A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ´的形式,其中110a £<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.4. 下列单项式中,与32mn -是同类项的是( )A. 2mn- B. 312mn C. 33m n - D. 2mn 【答案】B【解析】【分析】本题考查同类项,利用同类项的定义:具有相同种类的字母,并且相同字母的指数相同,进行判断即可.【详解】解:32mn -的同类项字母只含m 和n ,且m 的次数为1,n 的次数为3,选项中只有312mn 符合,的5. 下列图形中不能围成正方体的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查正方体的展开图,要记牢能组成正方体的基本形态:“一四一”“三三”“二二二”“一三二”;根据正方体展开图的特征,逐一进行分析即可得出答案.【详解】解:正方体的展开图有“一四一”“三三”“二二二”“一三二”类型,由分析可知不能折叠成正方体的是C ,故选:C .6. 某食品包装袋上标有净含量“250克±5克”,有4袋食品重量如下,其中不合格的是( ).A. 256B. 248C. 253D. 249【答案】A【解析】【分析】根据正负数的意义:题中以250克为标准,记为0,超过部分为正,不足的部分为负,由此即可得到答案.【详解】解:∵2505245-=(克)2505255+=(克)∴合格的范围为:245克---255克故选:A【点睛】本题主要考查了正负数的意义,解题的关键在于能够熟练掌握正负数的意义.7. 现定义一种新运算“*”,规定*mn m n m n =--,则()3*3-的值等于( )A. 9- B. 32 C. 23- D. 32-【答案】B 的【分析】根据题目所给的定义代值计算即可.【详解】解:∵*mn m n m n =--,∴()()()339933*3333362´---=-=-==--+,故选B .【点睛】本题主要考查了有理数的四则混合计算,正确理解新定义是解题的关键.8. 观察下列等式:122=,224=,328=,4216=,5232=,6264=,…,则20232的个位数字是( )A. 2B. 4C. 6D. 8【答案】D【解析】【分析】本题考查数字类规律探索,根据观察可得,2的乘方个位数字以“2、4、8、6”循环,据此求解即可.【详解】解:根据观察可得,2的乘方个位数字以“2、4、8、6”循环,202345053¸=LL ,20232的个位数字与32的个位数字相同是8.故选:D .第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 单项式2457x y -的系数是______.【答案】57-【解析】【分析】本题考查了单项式系数的概念;根据单项式中的数字因数叫做单项式的系数,即可得出答案.【详解】解:单项式2457x y -的系数是57-,故答案为:57-.10.用一个平面分别去截长方体,圆锥,三棱柱这三种几何体,所得的截面形状可能是长方形的几何体有______个.【答案】2【解析】【分析】本题考查了几何体的截面;根据几何体的形状,截面的角度和方向进行判断即可.【详解】解:用一个平面去截长方体和三棱柱,所得的截面形状可能是长方形,圆锥的截面形状不可能是长方形,所以,所得的截面形状可能是长方形的几何体有2个,故答案为:2.11.某工地上有一些水泥,平均每天用去5吨,用了h 天,还剩下30吨,则这个工地上原来有_______吨水泥.(用含h 代数式表示)【答案】()530h +##()305h +【解析】【分析】根据用去5h 的加上剩下的30,列出代数式即可求解.【详解】解:依题意,这个工地上原来有()530h +吨水泥.故答案为:()530h +.【点睛】本题考查了列代数式,理解题意是解题的关键.12. 若()2120x y -++=,则xy 的值为______.【答案】2-【解析】【分析】本题考查了绝对值和偶次方的非负性,代数式求值;根据非负数的性质列式求出x 、y ,然后代入代数式计算即可.【详解】解:∵()2120x y -++=,∴10x -=,20y +=,的∴1x =,=2y -,∴()122xy =´-=-,故答案为:2-.13. 有理数,,a b c 在数轴上的位置如图所示,则a c c b b a ++---=______.【答案】2c【解析】【分析】本题考查了数轴,绝对值,有理数的加减;根据数轴可得0b c a <<<,且a c >,然后利用有理数加减的运算法则判断出绝对值内式子的正负,再根据绝对值的性质化简,然后合并即可.【详解】解:由数轴得:0b c a <<<,且a c >,∴0a c +>,0c b ->,0b a -<,∴()2a c c b b a a c c b a b a c c b a b c ++---=++---=++--+=,故答案为:2c .三、解答题(共13小题,计81分.解答应写出过程)14. 计算:()()193852æö-¸-´-+-ç÷èø.【答案】4-【解析】【分析】本题考查有理数的混合运算,先计算乘除,后计算加减,即可求解.【详解】解:原式345=-+-4=-15. 先化简,再求值:()()2222x y xy x y xy ---的值,其中1x =-,2y =.【答案】2x y ;2【解析】【分析】先根据整式加减运算法则进行化简,然后再代入数据求值即可.【详解】解:()()2222x y xy x y xy ---22222x y xy x y xy--+=2x y =,把1x =-,2y =代入得:原式()2122=-´=.【点睛】本题主要考查了整式化简求值,解题的关键是熟练掌握整式加减运算法则,准确计算.16. 在数轴上把下列各数表示出来,并用“<”将它们连接起来.2-,22-,3.5,()1--【答案】见解析,()212 3.52<--<-<-【解析】【分析】本题考查了利用数轴比较有理数的大小,绝对值,相反数,有理数的乘方;先利用绝对值,相反数,有理数的乘方法则化简各数,再把各数表示在数轴上,然后根据数轴上右边的点表示的数总比左边的大用“<”将它们连接起来.【详解】解:22-=,242-=-,()11--=,把各数表示在数轴上如图:由数轴得:()2212 3.5-<--<-<.17.如图是用6个完全相同的小正方体搭成的几何体.请分别画出从正面、上面和左面看得到的形状图.【答案】见解析【解析】【分析】分别画出从正面,上面和左面看到的图形即可.【详解】解:如图所示.【点睛】本题考查从不同方向看几何体,熟练掌握从不同方向看到的图形的画法是解题的关键.18.已知x 的相反数是-3,y 的倒数是14-,z 是多项式272x x +-的次数,求2x y z +的值.【答案】21x y z +=【解析】【分析】根据题意求出x ,y ,z 的值,再代入计算即可解答.【详解】因为x 的相反数是-3,y 的倒数是14-,z 是多项式272x x +-的次数,所以3x =,4y =-,2z =,所以()234212x y z ´+-+==.【点睛】本题考查了相反数、倒数、多项式的次数的概念.19.已知酒精冻结的温度是117C -°,现有一杯酒精的温度是11C °放在一个制冷的装置里,每分钟温度可降低1.6C °,要使这杯酒精冻结需要几分钟?【答案】80分钟【解析】【分析】先求解温度差,再利用这个温差除以下降的速度即可.【详解】解:()11117128C --=°,128 1.680¸=(分).【点睛】本题考查的是有理数的减法的实际应用,除法的实际应用,理解题意,列出正确的运算式是解本题的关键.20.某服装店新开张,第一天销售服装x 件,第二天的销售量比第一天的2倍还多5件,第三天的销售量比第二天的3倍少8件,请用含x 的代数式表示这三天一共销售的服装件数.【答案】912x +【解析】【分析】本题考查了列代数式和整式加减的应用,先用代数式表示出第二天的销售量,再利用题干中的数量关系表示出第三天的销售量,把三天的销售量相加化简即可得出结论.【详解】解:因为第一天销售服装x 件,第二天比第一天的2倍还多5件,所以第二天销售了()25x +件.因为第三天销售量比第二天的3倍少8件,所以第三天销售的服装件数为()325867x x +-=+,三天的销售总量为:()()()2567912x x x x ++++=+件.【点睛】21.如图是一张长方形纸片,长方形的长为6cm ,宽为4cm ,若将此长方形纸片绕它的一边所在直线旋转一周,得到一个几何体.(1)这个几何体的名称是 ,这个现象用数学知识解释为 ;(2)求得到的这个几何体的体积(结果保留π)【答案】(1)圆柱,面动成体;(2)得到的几何体的体积为2144cm p 或296cm p 【解析】【分析】本题考查几何体的体积以及面动成体;(1)根据面动成体可知,将长方形纸片绕它的一边所在直线旋转一周,得到的几何体是圆柱;(2)分两种情况确定出圆柱的底面半径和高,再根据圆柱的体积公式计算即可求解.的【小问1详解】解:将长方形纸片绕它的一边所在直线旋转一周,得到的几何体是圆柱,这个现象用数学知识解释为面动成体,故答案为:圆柱,面动成体;【小问2详解】①若绕4cm 的边所在直线旋转一周,得到的是底面半径为6cm ,高为4cm 的圆柱,它的体积为:2264144cm p p ´´=;②若绕6cm 的边所在直线旋转一周,得到的是底面半径为4cm ,高为6cm 的圆柱,它的体积为:224696cm p p ´´=;综上:得到的几何体的体积为2144cm p 或296cm p .22. 已知223M x ax =++,232N x x =-+-,其中a 是一个有理数.(1)若M N +的结果中不含x 的一次项,求a 的值;(2)当1a =-时,求2M N -.【答案】(1)3a =-(2)2477x x -+【解析】【分析】本题考查了整式的加减;(1)计算M N +,根据结果中不含x 的一次项,令x 的系数为0,即可求出a 的值;(2)把1a =-代入,列出算式,然后去括号、合并同类项即可.【小问1详解】解:()222233231M N x ax x x x a x +=++-+-=+++,∵M N +的结果中不含x 的一次项,∴30a +=,∴3a =-;【小问2详解】当1a =-时,()22223232M N x x x x -=-+--+-2223264x x x x -++-+=2747x x -+=.23.出租车司机小张某天上午营运全是在东西走向的政府大道上进行的,如果规定向东为正,向西为负,他这天上午的行程记录如下(单位:千米):15+,3-,16+,11-,10+,12-,4+,15-,16+,18-.(1)将最后一名乘客送达目的地时,小张在上午出发点的东边还是西边?距离出发点多少千米?(2)若出租车耗油量为0.6升/千米,出车时,油箱里有汽油76.2升,小张这天上午从营运开始到送完最后一名乘客,途中是否需要加油?请说明理由.【答案】(1)将最后一名乘客送达目的地时,小张在上午出发点的东边,距离出发点2千米.(2)小张这天上午从营运开始到送完最后一名乘客,途中不需要加油,理由见解析.【解析】【分析】(1)本题考查有理数的加法运算和正负数的意义,根据题意列式并掌握运算法则即可解题.(2)本题考查了绝对值的意义,利用绝对值算出总路程,结合耗油量为0.6升/千米,算出总油耗,再与油箱里的汽油进行比较,即可解题.【小问1详解】解:由题知,1531611101241516182-+-+-+-+-=(千米),答:将最后一名乘客送达目的地时,小张在上午出发点的东边,距离出发点2千米.【小问2详解】解:由题知,()1531611101241516180.672+-++-++-++-++-´=(升),76.272 4.2-=(升),答:小张这天上午从营运开始到送完最后一名乘客,途中不需要加油.24.如图,某公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是b 米的小路,余下的部分设计成花圃(阴影部分)进行美化,并用篱笆将花圃不靠墙的三边围起来.(1)用含,a b 的代数式表示所用篱笆的总长度;(2)若30a =,5b =,篱笆的造价为60元/米,请计算全部篱笆的造价.【答案】(1)()441a b --米(2)5940元【解析】【分析】本题主要考查整式的加减的实际应用,从生活实际中出发,以数学知识解决生活实际中的问题,同时也考查了长方形周长的计算.(1)先根据所给的图形,得出花圃的长和宽,然后根据长方形周长公式求出篱笆总长度;(2)直接将a 和b 代入第(1)问所求的面积式子中,再乘以60,得出结果.【小问1详解】解:由图可得:花圃的长为()212a b --米,宽为()a b -米;所以篱笆的总长度为()()2122a b a b --+-21222a b a b=--+-()441a b =--米;【小问2详解】解:当30a =,5b =时,441a b --430451=´-´-99=(米),全部篱笆的造价为99605940´=(元),答:全部篱篱笆的造价是5940元.25. 用正方形和圆按照一定规律摆出下列一组图形:(1)按照这样的规律摆下去,第4个图形中有 个正方形, 个圆;(2)按照这样的规律摆下去,第n 个图形中有 个正方形, 个圆;(用含n 的代数式表示)(3)若第n 个图形中有100个圆,求第n 个图形中有多少个正方形?【答案】(1)4,13(2)n ,()31n +(3)有33个正方形【解析】【分析】本题考查了图形类规律探索;(1)观察图形可知,依次增加1个正方形,3个圆,然后可得答案;(2)根据(1)中分析,可得第n 个图形中有n 个正方形,()31n +个圆;(3)根据(2)中规律列式求出n 的值,进而可得答案.【小问1详解】解:∵第1个图形中有1个正方形,4个圆;第2个图形中有2个正方形,7个圆;第3个图形中有3个正方形,10个圆;∴依次增加1个正方形,3个圆,∴第4个图形中有4个正方形,13个圆,故答案为:4,13;【小问2详解】由(1)可知,第n 个图形中有n 个正方形,()31n +个圆,故答案为:n ,()31n +;【小问3详解】∵第n 个图形中有100个圆,的n+=,∴31100n=,∴33∴有33个正方形.26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧的一点,且点A、B之间的距离为20,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同t t>秒.时出发,设运动时间为()0①经过多长时间,P、Q两点相遇;②经过多长时间,P、Q两点相距4个单位长度?-【答案】(1)12-,85t(2)①经过10s,P、Q两点相遇;②经过8s或12s,P、Q两点相距4个单位长度【解析】【分析】本题考查了数轴上两点间的距离,列代数式,一元一次方程的应用;(1)根据数轴上两点间的距离求出点B表示的数,根据点P运动的速度和方向列代数式可得点P表示的数;--,然后根据P、Q两点相遇时表示的数相同(2)①求出t秒后点Q表示的数为123t,列方程求出t的值即可;②分点Q在点P左侧和点Q在点P右侧两种情况,分别根据P、Q两点相距4个单位长度列方程求解即可.【小问1详解】解:∵点A表示的数为8,点B在点A左侧,点A、B之间的距离为20,-=-,∴点B表示的数是82012∵点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,-,∴点P表示的数是85t故答案为:12-,85t -;【小问2详解】①由题意得,t 秒后点Q 表示的数为123t --,当P 、Q 两点相遇时,可得85123t t -=--,解得:10t =,即经过10s ,P 、Q 两点相遇;②当点Q 在点P 左侧时,由题意得:()851234t t ----=,解得:8t =;当点Q 在点P 右侧时,由题意得:()123854t t ----=,解得:12t =;综上,经过8s 或12s ,P 、Q 两点相距4个单位长度.。

2022-2023学年北师大版七年级数学上册第三章整式及其加减定向测试试题(解析版)

2022-2023学年北师大版七年级数学上册第三章整式及其加减定向测试试题(解析版)

七年级数学上册第三章整式及其加减定向测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若7,24m n n p +=-=,则3m n p +-=( )A .11-B .3-C .3D .112、某人骑自行车t (小时)走了()km s ,若步行()km s ,则比骑自行车多用3(小时),那么骑自行车每小时比步行多走( )()km .A .3s s t t --B .3s s t t -+C .()s t s +D .(3)s t -3、2x 与(3)x -的5倍的差( ).A .3x +B .315x --C .315x -+D .33x -+4、下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .1895、下列各式中,与22a b 为同类项的是( )A .22a b -B .2ab -C .22abD .22a6、m 、n 都是正整数,则多项式23m n m n x y ++-的次数是( )A .mB .m n +C .22m n +D .不能确定7、语句“比x 的15小5的数”可以表示成( ) A .155x - B .()155x - C .155x + D .155x - 8、式子x yz +,2x -,2ax bx c ++,0,21x y π-,a ,b x 中,下列结论正确的是( ) A .有4个单项式,2个多项式B .有3个单项式,3个多项式C .有5个整式D .以上答案均不对9、下列是按一定规律排列的多项式:﹣x +y ,x 2+2y ,﹣x 3+3y ,x 4+4y ,﹣x 5+5y ,x 6+6y ,…,则第n 个多项式是( )A .(﹣1)nxn +nyB .﹣1nxn +nyC .(﹣1)n +1xn +nyD .(﹣1)nxn +(﹣1)nny10、按一定规律排列的单项式:x ,3x ²,5x ³,7x 4,9x 5,……,第n 个单项式是( )A .(2n -1)n xB .(2n +1)n xC .(n -1)n xD .(n +1)n x第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任写一个二次单项式:____________.2、一组按规律排列的式子:25811234,,,,(0)b b b b ab a a a a --≠,其中第7个式子是_______,第n 个式子是_______(n 为正整数).3132022个数是 _____. 4、有理数a ,b ,c 在数轴上表示的点如图所示,化简||||2||a b a c b c +---+=__________.5、如果某种药品降价40%后的价格为a 元,那么这种药品降价前的价格为______元.三、解答题(5小题,每小题10分,共计50分)1、代数式2323(324)(3)a a a a a a +---里的“”是“+,-,×,÷”中某一种运算符号.(1)如果“”是“+”,化简:2323(324)(3)a a a a a a +---;(2)当1a =-时,2323(324)(3)a a a a a a +---2=-,请推算“”所代表的运算符号.2、下面各行中的数都是正整数, 观察规律并解答下列问题:(1)数字12的位置在第4行,从左往右数第5个数,可以表示成(4,5),那么(5,6)表示的数是(2)第n 行有 个数(用含n 的代数式表示)(3)数字2022排在第几行?从左往右数第几个数?请简要说明理由.3、先化简再求值:()()222323x y x y x ++--,其中x 1,y 2==-.4、【做一做】列代数式(1)已知一个三位数的个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数可表示为 ;(2)某地区夏季高山的温度从山脚处开始每升高100米,降低0.7℃,若山脚温度是28℃,则比山脚高x 米处的温度为 ℃;(3)已知某礼堂第1排有18个座位,往后每一排比前一排多2个座位.则第n 排共有座位数 个.【数学思考】(4)上面所列的代数式都属于我们所学习的整式中的 ;(5)请你任意写一个关于x 的这种类型的数字系数的二次式 ;(6)用字母表示系数,写一个关于x 的二次三项式,并注明字母系数应满足的条件 ;【问题解决】(7)若代数式3x |m |﹣(m ﹣2)x +4是一个关于x 的二次三项式,求m 的值.5、化简:(1)2222625x y xy x y xy --+; (2)23322352427x x x x x -+--++-;(3)22223456m mn n mn n -+--; (4)333362534x y xy xy x y -++-;(5)2222212685342ab a b ab a b ab -+++--; (6)222()3()6()5()m n n m m n m n -+-----.-参考答案-一、单选题1、D【解析】【分析】根据添括号法则,对原式变形,再代入求值,即可.【详解】3m n p +-=()+(2)m n n p +-,当724m n n p +=-=,时,原式=7+4=11. 故选D .【考点】本题主要考查代数式求值,掌握添括号法则,是解题的关键.2、B【解析】【分析】先求出两种方法各自的速度,再将速度作差即可得出所求.【详解】 骑自行车的速度为:s t 步行速度为:3s t + 骑自行车比步行每小时快出的路程:3ss t t -+.故选B【考点】本题考查代数式计算的应用,掌握速度、时间、路程之间的关系是解题关键.3、C【解析】【分析】先根据题意列出代数式,然后去括号,合并同类项,即可求解.【详解】解:根据题意得:()253x x --2515315x x x =-+=-+ .故选:C .【考点】本题主要考查了列代数式,整式的加减运算,明确题意,准确列出代数式是解题的关键.4、C【解析】【分析】由观察发现每个正方形内有:224,236,248,⨯=⨯=⨯=可求解b ,从而得到a ,再利用,,a b x 之间的关系求解x 即可.【详解】解:由观察分析:每个正方形内有:224,236,248,⨯=⨯=⨯=218,b ∴=9,b ∴=由观察发现:8,a =又每个正方形内有:2419,36220,48335,⨯+=⨯+=⨯+=18,b a x ∴+=1898170.x ∴=⨯+=故选C .【考点】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.5、A【解析】【分析】含有相同字母,并且相同字母的指数相同的单项式为同类项,据此分析即可【详解】与22a b 是同类项的特点为含有字母,a b ,且对应a 的指数为2,b 的指数为1,只有A 选项符合;故选A .【考点】本题考查了同类项的概念,掌握同类项的概念是解题的关键.6、D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式23m n m n x y ++-的次数是m ,n 中的较大数是该多项式的次数.【详解】单项式m x 的次数是m ,单项式2n y 的次数是n ,3m n +-是常数项,又因为未知m 和n 的大小,所以多项式的次数无法确定,【考点】此题考查多项式,解题关键在于掌握其定义.7、A【解析】【分析】根据题目中的数量关系解答即可.【详解】解:∵x 的15是15x , ∴“比x 的15小5的数”可以表示成155x -. 故选A .【考点】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解答本题的关键是仔细读题,找出题目所给的数量关系.8、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和是多项式.【详解】解:x yz +是两个单项式的和,是多项式;2x -是单项式;2ax bx c ++是3个单项式的和,是多项式:0,a 是单项式;21x y π-是单项式;b x 不是整式,综上所述,单项式共有4个,多项式共有2个,整式共有6个,【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键.9、A【解析】【分析】从三方面(符号、系数的绝对值、指数)总结规律,再根据规律进行解答便可.【详解】解:按一定规律排列的多项式:﹣x+y,x2+2y,﹣x3+3y,x4+4y,﹣x5+5y,x6+6y,…,则第n个多项式是:(﹣1)nxn+ny,故选:A.【考点】本题考查的是整式中的多项式的规律探究,掌握探究的方法是解题的关键.10、A【解析】【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1)xn,故选:A.【考点】本题考查的是单项式,根据题意找出规律是解答此题的关键.1、答案不唯一,如:2xy.【解析】【分析】根据单项式的定义,数与字母的积的形式的代数式是单项式,所有字母的指数和叫做这个单项式的次数,这样符合条件的单项式有多个.【详解】解:根据定义,只要字母的指数和为2即可,本题答案不唯一,如:2xy.故答案为答案不唯一,如:2xy.【考点】本题考查单项式的定义,确定单项式次数时,要记住所有字母的指数和叫做这个单项式的次数.2、207ba-31(1)nnnba--【解析】【分析】根据分子的变化得出分子变化的规律,根据分母的变化得出分母变化的规律,根据分数符号的变化规律得出分数符号的变化规律,即可得到该组式子的变化规律.【详解】分子为b,指数为2,5,8,11,...,∴分子指数的规律为3n – 1,分母为a,指数为1,2,3,4,...,∴分母指数的规律为n,分数符号为-,+,-,+,….,∴其规律为()1n-,于是,第7个式子为207b a-, 第n 个式子为31(1)n nn b a --, 故答案为:207b a -,31(1)n n n b a --. 【考点】此题考查了列代数式表示数字变化规律,先根据分子、分母的变化得出规律,再根据分式符号的变化得出规律是解题的关键.3【解析】【分析】根据前4个数归纳类推出一般规律,由此即可得.【详解】解:第1=第2=,第3个数为2613==,第424=⨯,归纳类推得:第n ,其中n 为正整数,则第2022==. 【考点】 本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.4、33b c --##33c b【解析】【分析】根据数轴得出a b +,a c -,1b -的符号,再去绝对值即可.【详解】 由数轴得0a b c b c <<<,<, ∴0a b +<,0a c -<,0b c +>,∴||||2||a b a c b c +---+()()2a b a c b c =-++--+22a b a c b c =--+---33b c =--.故答案为:33b c --.【考点】本题主要考查了数轴和绝对值,掌握数轴、绝对值以及合并同类项的法则是解题的关键.5、53a ##53a 【解析】【分析】降价40%后的价格为a 元,则降价前的价格的60%是a 元,据此即可求解.【详解】解:a ÷(1﹣40%)=53a , 故答案是:53a .【考点】本题考查了代数式的列法,正确理解:降价40%后的价格为a 元,则降价前的价格的60%是a 元,是关键.三、解答题1、(1)322a a a -++;(2)-.【解析】【分析】(1)把“+”代入原式,去括号合并即可得到结果;(2)原式去括号后,把1a =-代入计算即可求出所求.【详解】解:(1)原式23233243a a a a a a =+---+322a a a =-++.(2)由题意得,2323(324)(3)2a a a a a a +---=-2323324()32a a a a a a +--+=-23232()2a a a a a +--=-当1a =-时,代入上式得321[1(1)]2-++--=-,即[1(1)]2-=,--=,∵1(1)2∴“”所表示的运算符号是“-”.【考点】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.2、 (1)22n-(2)(21)(3)45行;86个;理由见解析【解析】【分析】(1)根据图中的数据,可以发现数字的变化特点,从而写出(5,6)表示的数;(2)根据图中的数据,可以写出第n行的数字个数;(3)根据前面发现的数字的变化特点,可以写出数字2022排在第几行,从左往右数第几个,并说出理由.(1)解:由图中的数据可知,第n行的最大的一个数据是2n,奇数行的数据从左到右依次增大,偶数行的数据从左到右依次减小,第n行有(2n-1)个数,(5,6)表示数字的位置在第5行,从左往右数第6个数,∴第4行最大的一个数是2416=,∴第5行的数据从左往右依次为17,18,19,20,21,22,23,24,25,∴第5行,从左往右数第6个数是22,即 (5,6)表示的数是22,故答案为:22;(2)解:∵第1行有1个数,第2行有3个数,第3行有5个数,……∴第n 行有(2n -1)个数,故答案为:(2n -1);(3)解:数字2022排在第45行,从左往右数第86个数.理由如下:当n 为偶数时,该行第一个数为2n ,自左向右减小;当n 为奇数时,该行最后一个数为2n ,自左向右增大.∵2452025=,所以第45行最后一个数(第89个)为2025,∴数字2022排在第45行,从左往右数第86个数.【考点】本题考查数字的变化规律,解答本题的关键是明确题意,发现数字的变化特点,写出相应的数字.3、3y x +,5-.【解析】【分析】根据整式的加减运算法则化简原式,再代入求值.【详解】解:原式222623x y x y x =+--+3y x =+,当x 1,y 2==-时,原式()321615=⨯-+=-+=-.【考点】本题考查整式的化简求值,解题的关键是掌握整式的加减运算法则.4、(1)100c +10b +c ;(2)(﹣0.007x +28);(3)(2n +16);(4)多项式;(5) x 2+1;(6)ax 2+bx +c(a 、b 、c 均不为0);(7)-2.【解析】【分析】(1)根据题意,用含a 、b 、c 的代数式表示出这个三位数即可;(2)根据题意,用含x 的代数式表示出比山脚高x 米处的温度即可;(3)根据题意,用含n 的代数式表示出第n 排的座位数即可;(4)根据前三个小题的结果判断即可;(5)根据整式的相关概念按要求写出即可;(6)根据多项式的相关概念按要求写出即可;(7)根据多项式的相关概念可以得到关于m 的方程,从而可以求得m 的值.【详解】解:(1)由题意可得,这个三位数可表示为100c +10b +a ,故答案为:100c +10b +c ;(2)由题意可得,比山脚高x 米处的温度为:28﹣100x ×0.7=﹣0.007x +28, 故答案为:(﹣0.007x +28);(3)由题意可得,第n 排共有座位18+2(n ﹣1)=18+2n ﹣2=2n +16,故答案为:(2n +16);(4)上面所列的代数式都属于我们所学习的整式中的多项式,故答案为:多项式;(5)关于x 的这种类型的数字系数的二次式可以是:x 2+1,故答案为:x 2+1;(6)由题意可得,满足条件的多项式可以是:ax 2+bx +c (a 、b 、c 均不为0),故答案为:ax 2+bx +c (a 、b 、c 均不为0);(7)∵代数式3x |m |﹣(m ﹣2)x +4是一个关于x 的二次三项式,∴|m |=2且m ﹣2≠0,解得:m =﹣2,即m 的值是﹣2.【考点】本题考查整式的相关概念以及列代数式,解答本题的关键是明确题意,列出相应的代数式.5、(1)22x y xy -;(2)3412x x +-;(3)22282m mn n --;(4)3325x y xy ++;(5)22238 3.53a b ab ab +-+;(6)22()4()m n m n ----. 【解析】【分析】根据同类项的概念,合并同类项即可,其中第6小题将m n -看作一个整体进行计算即可.【详解】(1)2222625x y xy x y xy --+()()226521x y xy =-+-+22x y xy =-;(2)23322352427x x x x x -+--++-()3232(22)457x x x =-+-++--=3412x x +-;(3)22223456m mn n mn n -+--222(35)(46)m mn n =+--+-=22282m mn n --;(4)333362534x y xy xy x y -++-()()3364235x y xy =-+-++3325x y xy =++;(5)2222212685342ab a b ab a b ab -+++-- ()22212584632a b ab ab ⎛⎫=-+++-+- ⎪⎝⎭=22238 3.53a b ab ab +-+;(6)222()3()6()5()m n n m m n m n -+-----=222()3()6()5()m n m n m n m n -+-----=()()226()35()m n n m --+--=22()4()m n m n ----.【考点】本题考查了多项式的加减,掌握合并同类项的方法是解题的关键.。

北师大版七年级上学期期末考试数学试卷(含答案)一

北师大版七年级上学期期末考试数学试卷(含答案)一

北师大版七年级数学第一学期期末考试试题及答案本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣12的相反数是( )A .12B .121C .121-D .﹣12 2.下列各图中,表示“射线CD ”的是( )A .B .C .D .3.下列图形中,不是正方体表面展开图的是( )A .B .C .D .4.小明投掷一枚硬币100次,出现“正面朝上”51次,则“正面朝上”的频率为( )A .49B .51C .0.49D .0.515.由5个相同的小正方体组成的几何体如图所示,从正面看该几何体得到的平面图形是( )A .B .C .D .6.世界文化遗产﹣﹣长城的总长约为2100000m ,数据2100000用科学记数法可表示为( )A .0.21×107B .2.1×105C .2.1×106D .21×1057.下列各选项中不是同类项的是( )A .﹣3与13B .2a 与2bC .5x 2y 与﹣2x 2yD .﹣xy 与2yx8.下列调查中最适合采用全面调查的是( )A .调查七(1)班学生定制校服的尺寸B .调查市场上奶制品的质量情况C .调查黄河水质情况D .调查全市《习语近人》节目的观看情况9.若x =1是关于x 的方程2x +a =0的解,则a 的值为( )A .﹣1B .﹣2C .1D .210.一幢房子一面墙的形状由一个长方形和一个三角形组成(如图),若把该墙面设计成长方形形状,面积保持不变,且底边长仍为a ,则这面墙的高度应该为( )A .2b +hB .h b 21C .b +2hD .b +h 11.如图,在正方形ABCD 中,E 为DC 边上一点,沿线段BE 对折后,若∠ABF 比∠EBF 大15°,则∠EBC 的度数是( )A .15°B .20°C .25°D .30°第11题图 第12题图 12.“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.如图2,用“格子乘法”表示两个两位数相乘,则a 的值为( )A .2B .3C .4D .5第Ⅱ卷(非选择题共102分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣23= .14.五边形的对角线一共有 条.15.在空气的成分中,氮气约占78%,氧气约占21%,其他微量气体约占1%.若要表示以上信息,最合适的统计图是 .16.如图是一个生日蛋糕盒,这个盒子棱数一共有 条.17.下面的框图表示了小明解方程3(x +5)+x =﹣5的流程:其中,步骤“③”的依据是 .18.已知1<x <a ,写一个符合条件的x (用含a 的代数式表示): .三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(﹣3.2)+12.5+(﹣16.8)﹣(﹣2.5).20.(本题4分)化简:(x +2)﹣(3﹣2x ).21.(本题4分)解方程:3x ﹣2=4+x .22.(本题5分)根据下列语句,画出图形.如图,已知四点A ,B ,C ,D .①画直线AB ;②连接AC 、BD ,相交于点O ;③画射线AD ,BC ,交于点P .23.(本题5分)解方程:36231=+--x x24.(本题6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.25.(本题6分)先化简,再求值:xy +2y 2+2(x 2﹣y 2)﹣2(x 2﹣xy ),其中x =﹣3,y =2.26.(本题6分)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?27.(本题8分)某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为名,补全条形统计图(画图并标注相应数据);(2)“陶艺”课程所对应的扇形圆心角的度数是°?(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?28.(本题8分)某校七年级(1)班想买一些运动器材供班上同学大课间活动使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?根据这段对话,请你求出篮球和排球的单价各是多少元?29.(本题10分)阅读下面材料:数学课上,老师给出了如下问题如图1,∠AOB=80°,OC平分∠AOB,若∠BOD=20°,请你补全图形,并求∠COD的度数.以下是小明的解答过程:解:如图2,因为OC平分∠AOB,∠AOB=80°,所以∠BOC=∠AOB=°.因为∠BOD=20°,所以∠COD=∠BOC + =°.小静说:“我觉得这个题有两种情况,小明考虑的是OD在∠AOB外部的情况,事实上,OD还可能在∠AOB的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图3中画出另一种情况对应的图形,并求出此时∠COD的度数.30.(本题12分)在数学综合实践活动课上,小亮同学借助于两根小木棒m、n研究数学问题:如图,他把两根木棒放在数轴上,木棒的端点A、B、C、D在数轴上对应的数分别为a、b、c、d,已知|a+5|+(b+1)2=0,c=3,d=8.(1)求m和n的长度;(2)小亮把木棒m、n同时沿x轴正方向移动,m、n的速度分别为4个单位/s和3个单位/s,设平移时间为t (s)①若在平移过程中原点O恰好是木棒m的中点,则t=(s);②在平移过程中,当木棒m、n重叠部分的长为2个单位长度时,求t的值.。

八年级数学期中模拟卷(考试版A4)【测试范围:北师大版八年级上册第1章-第4章】(河南专用)

八年级数学期中模拟卷(考试版A4)【测试范围:北师大版八年级上册第1章-第4章】(河南专用)

2024-2025学年八年级数学上学期期中模拟卷(河南专用)(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:北师版八年级上册第1章-第4章。

5.难度系数:0.75。

第I 卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项 中,只有是一项符合题目求的1.使代数式有意义的x 的取值范围是( )A .x≥0B .﹣5≤x <5C .x≥5D .x≥﹣52.下列各数中,是无理数的是( )A .0B .227C D .3 )A .2B .C .-D .±4.若点(,)P a b 在第二象限内,则(,)P a b -在( )A .第一象限B .第二象限C .第三象限D .第四象限5.下列计算正确的是( )A B .C D6.已知点()12y -,,()23y ,都在直线y x b =-+上,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .无法确定71+最接近的整数是( )A.5B.4C.3D.28.一个直角三角形有两条边分别是3cm,4cm,则第三条边的长度是()A.5cm B cm C.5cm cm D.以上都不对9.毕达哥拉斯树也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树状图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.如图,若正方形A,B,C,D的边长分别是2,3,1,2,则正方形G的边长是()A.8B.C.D.510.大年三十晚上,小六驾车从家出发到烟花燃放指定点去燃放烟花炮竹,小六驾车匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后小六加快速度继续匀速行驶,零点之前到达指定燃放地点,燃放结束后,小六驾车匀速返回.其中,x表示小六从家出发后所用时间,y表示小六离家的距离.下面能反映y与x的函数关系的大致图象是( )A.B.C.D.第II卷二、填空题:本题共5小题,每题3分,共15分。

北师大七年级数学上册第二单元测试题(两份)

北师大七年级数学上册第二单元测试题(两份)

第二章 有理数及其运算一、耐心填一填:(每题3分,共30分)1、52-的绝对值是 ,52-的相反数是 ,52-的倒数是 . 2、某水库的水位下降1米,记作 -1米,那么 +1.2米表示 . 3、数轴上表示有理数-3.5与4.5两点的距离是 .4、已知|a -3|+24)(+b =0,则2003)(b a += .5、已知p 是数轴上的一点4-,把p 点向左移动3个单位后再向右移1个单位长度,那么p 点表示的数是______________。

6、最大的负整数与最小的正整数的和是_____。

7、()1-2003+()20041-= 。

8、若x 、y 是两个负数,且x <y ,那么|x | |y | 9、若|a |+a =0,则a 的取值范围是10、如果a 2=16,那么a= ,如果a 3=-27,那么a= ;二、精心选一选:(每小题3分,共24分.请将你的选择答案填在括号中.)1、如果一个数的平方与这个数的差等于0,那么这个数只能是( )A 0B -1C 1D 0或12、绝对值大于或等于1,而小于4的所有的正整数的和是( )A 8B 7C 6D 53、计算:(-2)100+(-2)101的是( )A 2100 B -1 C -2 D -21004、两个负数的和一定是( )A 负B 非正数C 非负数 D 正数5、已知数轴上表示-2和-101的两个点分别为A ,B ,那么A ,B 两点间的距离等于( )A 99 B 100 C 102 D 1036、若01<<-a ,则a 、a 2、a1、的大小关系是( ) A 、a a a <<21 B 、a a a 12<< C 、21a a a << D 、aa a 12<<7、若x >0,y <0,且|x|<|y |,则x +y 一定是( )A 负数B 正数C 0D 无法确定符号 8、一个数的绝对值是3,则这个数可以是( )A 3B 3-C 3或3- D31 9、()34--等于( )A 12- B 12 C 64- D 6410、,162=a 则a 是( )A 4或4- B 4- C 4 D 8或8- 三、计算题(每小题4分,共32分)1、()26++()14-+()16-+()8+2、()3.5-+()2.3-()5.2--()8.4+-3、()8-)02.0()25(-⨯-⨯4、 ⎪⎭⎫⎝⎛-+-127659521()36-⨯5、 ()1-⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷31143106、8+()23-()2-⨯ 7、81)4(2033--÷- 8、100()()222---÷⎪⎭⎫ ⎝⎛-÷32四、(5分)m =2,n =3,求m+n 的值五、(5分)已知a 、b 互为相反数,c 、d 互为负倒数(即1cd =-),x 是最小的正整数。

【小升初】北师大版2022-2023学年数学升学分班考真题模拟测试卷AB卷2套(含解析)

【小升初】北师大版2022-2023学年数学升学分班考真题模拟测试卷AB卷2套(含解析)

【小升初】北师大版2022-2023学年数学升学分班考真题试卷模拟测试卷(A 卷)一.计算题(共4小题)1.(2022春•射阳县月考)直接写出得数。

202%÷=8394⨯=2132+=31.64⨯=0.48 1.2÷=1:0.8752=30.2=5030%⨯=4253÷=0.258.34⨯⨯=2.(2022•新晃县模拟)计算下面各题,能简便的就简便算。

5512.7 5.399⨯+⨯389(4)81717÷--1399341050⨯+÷55317864÷⨯-3.(2022春•江宁区期中)解方程或比例。

5176320x +=2525%38x x -=1356:4x=4.(2022•曲靖)列式计算。

(1)一个数的6倍是10.2与的和,求这个数。

395(2)0.9与的差乘15,所得的积再减去0.8,结果是多少?23二.选一选(共6小题)5.(2022秋•卢龙县期末)圆的半径由增加到,这个圆的面积增加了 。

1cm 2cm (2)cm A .1B .3C .D .3ππ6.(2021秋•绥滨县期末)3:13,比的前项加6,比的后项( ),比值没有变。

A .加6B .加12C .乘37.(2022•中山市)如果长方形的长增加,宽增加,则它的面积增加 20%50%()A .B .C .D .10%30%70%80%8.(2021秋•玄武区校级期末)一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是 ()A .200平方厘米B .400平方厘米C .800平方厘米9.(2021秋•新县期末)若,,,式子的值是 。

2a =6b =4c =62a b c -+()A .28B .14C .410.(2022•曲靖)一块长方体肥皂的长是15厘米,宽是8厘米,高是8厘米。

七升八数学试卷及答案解析

七升八数学试卷及答案解析

七升八数学试卷及答案解析(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--河南省许昌市建安区2017-2018学年下学期期末考试七年级数学试卷一、选择题(每小题3分,共30分)1.9的算术平方根是()A.3 B.﹣3 C.±3 D.92.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2) D.(3,﹣2)3.下列调查中,适宜采用普查方式的是()A.调查热播电视剧《人民的名义》的收视率B.调查重庆市民对皮影表演艺术的喜爱程度C.调查某社区居民对重庆万达文旅城的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量4.若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3 B.3﹣a<3﹣b C.﹣3a>﹣3b D.3a<3b5.如图,周董从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,则∠ABC的度数是()A.80°B.90°C.100°D.95°6.新区四月份第一周连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86,则这七天空气质量变化情况最适合用哪种统计图描述()A.折线统计图B.扇形统计图C.条形统计图D.以上都不对7.若m=﹣4,则估计m的值所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<58.如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为()A.5050m2B.5000m2C.4900m2D.4998m29.如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围()A.大于b B.小于a C.大于b且小于a D.无法确定10.关于x,y的方程组的解是,则关于x,y的方程组的解是()A.B.C.D.二、填空题(每小题3分,共30分)11.的相反数是.12.如图,当剪子口∠AOB增大15°时,∠COD增大度.13.已知,则.14.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为.15.如图,条件(填写所有正确的序号)一定能判定AB∥CD.①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;16.对于有理数x,y定义新运算:x*y=ax+by﹣5,其中a,b为常数,已知1*2=﹣9,(﹣3)*3=﹣2,则2a﹣b= .17.一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数分布表时,如果取组距为3,那么应分成组.18.如图是一组密码的一部分,请你运用所学知识找到破译的“钥匙”.目前,已破译出“正做数学”的真实意思是“祝你成功”.若“正”所处的位置为(x,y),你找到的密码钥匙是:横坐标,纵坐标,破译的“今天考试”真实意思是.19.若不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是.20.从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出,如入射光线OA的反射光线为AB,∠OAB=75°.在如图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=22°.则∠AOD的度数是.三、解答题(共60分)21.(8分)计算(1)++(﹣1)2017;(2)|﹣2|+2(﹣1).22.(10分)解方程组或不等式组(1)解方程组(2)解不等式组.23.(6分)推理填空,如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(),∴AC∥DF(),∴∠D=∠1(),又∵∠C=∠D(),∴∠1=∠C(),∴BD∥CE().24.(6分)某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为多少人A等级的人数是多少请在图中补全条形统计图.(2)图①中,a等于多少D等级所占的圆心角为多少度25.(8分)已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.26.(10分)4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五?一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五?一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五?一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?27.(12分)如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B (b,a),且a、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC若存在这样一点,求出点M的坐标,若不存在,试说明理由;(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.。

北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)

北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)

北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2题图
n
m
b
a
70°
70°
110°
第3题图
C
B
A
21
12第六题图


B A 七年级升八年级数学试卷一(北师大版)

一、填空题(把你认为正确的答案填入横线上,每小题3分,27分)
1、计算)1)(1(+-x x = 。

2、如图,互相平行的直线是 。

3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。

4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。

5、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正
△,…如此下去,结果如下表:
所 剪 次 数 1 2 3 4 … n
正三角形个数 4
7
10
13

a
n
则=n
a 。

6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。

7、已知4
1
2
+
-kx x 是一个完全平方式,那么k 的值为 。

8、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示
为 。

9、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别
是 。

二、选择题(把你认为正确的答案的序号填入括号,每小题3分,共21分)
10、下列各式计算正确的是 ( )
A . a 2+ a 2=a 4
B. 2
11a a a =
÷- C. 226)3(x x = D. 222)(y x y x +=+
11、能把任意三角形分成面积相等的两个三角形的线段是这个三角形的一条( )
F
E
D C
B A
E
D
C
B
A
A 、角平分线
B 、中线
C 、高线
D 、既垂直又平分的线段
12、下列方程组中,是二元一次方程组的是( )
⎪⎩⎪⎨⎧=-=+⎩⎨
⎧==⎩⎨
⎧=+=⎩⎨
⎧-=+=4
2312y 11、4
3、712、312、y x x D y x C y x xy B z y y x A 13、教室的面积约为60m ²,它的百万分之一相当于 ( )
A. 小拇指指甲盖的大小
B. 数学书封面的大小
C. 课桌面的大小
D. 手掌心的大小
14、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130°
15、平面上4条直线两两相交,交点的个数是 ( )
A. 1个或4个
B. 3个或4个
C. 1个、4个或6个
D. 1个、3个、4个或6个
16、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论:
① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,
四个结论中成立的是 ( )
A. ① ② ④
B. ① ② ③
C. ② ③ ④
D. ① ③ ④
三、解答题(共52分)
17、(8分)计算
201220112)2
3
()32()31(-⨯---
18、(8分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6,AC=8, 求AB 、CD 的长。

O
E
D C
B
A
19、(12分)超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会。

摇奖机是一个圆形转盘,被分成16等分,摇中
红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、 40元。

一次性购物满300元者,如果不摇奖可返还现金15元。

(1)摇奖一次,获一等奖的概率是多少?
(2)老一次性购物满了300元,他是参与摇奖划算
还是领15元现金划算,请你帮他算算。

20、(10分)如图,已知△ABC 中,AB = AC,点D 、E 分别在AB 、AC 上,且BD = CE,如何说
明OB=OC 呢?
21、(14分)如图所示,∠BAC=∠ABD=90°,AC=BD ,点O 是AD ,BC 的交点,点E 是AB 的中点. (1)图中有哪几对全等三角形,请写出来; (2)试判断OE 和AB 的位置关系,并给予证明.
七年级升八年级数学试卷二(北师大版)

一、选择题(每题3分,共18分) 1、下列运算正确的是( )
A 、1055a a a =+
B 、2446a a a =⨯
C 、a a a =÷-10
D 、0
44a a a =-
2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,
在这五种图形中是轴对称图形的有( ) A 、1个 B 、2个 C 、3个 D 、4个
3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、
154 B 、31 C 、51 D 15
2 4、若,16x 252
=则x 的值为( )
A 、54±
B 、45±
C 、2516±
D 、16
25± 5、下列条件中,能判定两个直角三角形全等的是( )
A 、一锐角对应相等
B 、两锐角对应相等
C 、一条边对应相等
D 、两条直角边对应相等 6、下列各组数中以a ,b ,c 为边的三角形不是Rt △的是( )
A 、a=2,b=3, c=4
B 、a=5, b=12, c=13
C 、a=6, b=8, c=10
D 、a=3, b=4, c=5
二、填空题(每空3分,共30分)
7、等腰三角形的一个角为1000
,则它的底角为 . 8、单项式3
13
xy -
的次数是 . 9、一个三角形的三个角的度数之比为2:3:4,则该三角形按角分应为 三角形. 10、在十届全国人大四次会议上谈到解决“三农”问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元. 11、等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是 .
12、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 . 13、若2
29a ka ++是一个完全平方式,则k 等于 . 14、()32+m (_________)=942
-m
15、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心,AD 为半径作AE 弧,再以AB 的
中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 . 16、观察下列运算并填空:
1×2×3×4+1=25=52
; 2×3×4×5+1=121=112
; 3×4×5×6+1=361=192
;……
根据以上结果,猜想:(n+1)(n+2)(n+3)(n+4)+1= 。

三、解答题(共52分)
17、(10分)化简求值:2
2
(2)()(3)5x y x y x y y +-+--,其中2x =-,12
y =.
18、(10分)计算:3
2
112(20053)()3
3
--++--.
19、(12分)如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F ,你能找出一对全等的三角形吗?为什么它们是全等的?
20、(20分)(1)在Rt△ABC中,∠C=90°。

已知a=9,b=12,求c;
(2)在Rt△ABC中,∠C=90°。

已知a=5,b=12,求c;
(3)如图:在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

相关文档
最新文档