数值方法课程设计幂法反幂法计算矩阵特征值和特征向量附Matlab程序
数值方法课程设计幂法反幂法计算矩阵特征值和特征向量-附Matlab程序
矩阵的特征值与特征向量的计算摘要物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。
矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。
幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。
其基本思想是任取一个非零的初始向量。
由所求矩阵构造一向量序列。
再通过所构造的向量序列求出特征值和特征向量。
反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。
本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。
计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。
然后通过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。
关键词:矩阵;特征值;特征向量;冥法;反冥法THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIXABSTRACTPhysics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and theoretical physics in some of the problems. Matrix eigenvalue calculation is a very important part in matrix computation. In this paper, we use the power method and inverse power method to calculate the maximum of the matrix, according to the minimum characteristic vector and the corresponding characteristic value.Power method is an iterative method to calculate the eigenvalues of a matrix. It has the advantage that the method is simple and suitable for sparse matrices, but sometimes the convergence rate is very slow. The basic idea is to take a non - zero initial vector. Construct a vector sequence from the matrix of the matrix. Then the eigenvalues and eigenvectors are obtained by using the constructed vector sequence.The inverse power method is used to calculate the minimum feature vectors and their eigenvalues of the matrix, and to calculate the eigenvalues of the matrix. In this paper, we use the inverse power method to calculate the minimum eigenvalue of a matrix and its corresponding eigenvalues. The basic idea of calculating the minimum characteristic vector of a matrix is to transform it to the maximum characteristic vector of the modulus of the inverse matrix. Then, according to the model, the minimum feature vector of the original matrix is introduced.Key words: Matrix;Eigenvalue;Eigenvector;Iteration methods;目录1 引言 (1)2 相关定理。
幂法和反幂法的matlab实现
幂法和反幂法的matlab实现幂法求矩阵主特征值及对应特征向量摘要矩阵特征值的数值算法,在科学和工程技术中很多问题在数学上都归结为矩阵的特征值问题,所以说研究利用数学软件解决求特征值的问题是非常必要的。
实际问题中,有时需要的并不是所有的特征根,而是最大最小的实特征根。
称模最大的特征根为主特征值。
幂法是一种计算矩阵主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,它最大的优点是方法简单,特别适用于大型稀疏矩阵,但有时收敛速度很慢。
用java来编写算法。
这个程序主要分成了四个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块;第四部分为页面设计及事件处理。
其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。
关键字:主特征值;特征向量;线性方程组;幂法函数块POWER METHOD FOR FINDING THE EIGENVALUES AND CORRESPONDING EIGENVECTORS OF THEMATRIXABSTRACTNumerical algorithm for the eigenvalue of matrix, in science and engineering technology, alot of problems in mathematics are attributed matrix characteristic value problem, so that studies using mathematical software to solve the eigenvalue problem is very necessary. In practical problems, sometimes need not all eigenvalues, but the maximum and minimum eigenvalue of real. The characteristic value of the largest eigenvalue of the modulus maximum.Power method is a calculation of main features of the matrix values (matrix according to the characteristics of the largest value) and the corresponding eigenvector of iterative method. It is the biggest advantage is simple method, especially for large sparse matrix, but sometimes the convergence speed is very slow.Using java to write algorithms. This program is divided into three parts: the first part is the matrix is transformed into linear equations; the second part for the sake of feature vector of the maximum; the third part isthe exponentiation function block. The fourth part is the page design and eventprocessing .The basic process is a power law function block by calling the matrix is transformed into linear equations method, after a series of validation and iteration results.Power method for finding the eigenvalues and corresponding eigenvectors of the matrixKey words: Main eigenvalue; characteristic vector; linear equations; power function block、目录1幂法......................................................... . (1)1.1幂法的基本理论和推导 (1)1.2幂法算法的迭代向量规范化 (2)2概要设计........................................................ (3)2.1设计背景 (3)2.2运行流程........................................... . (3)2.3运行环境........................................... (3)3程序详细设计 (4)3.1矩阵转化为线性方程组……..………………………………………. .43.2特征向量的极大值 (4)3.3求幂法函数块............….....…………...…......…………………………3.4界面设计与事件处理..........................................................................4运行过程及结果................................................ (6)4.1 运行过程....................................... ..................………………………………………. .64.2 运行结果................................................ .. (6)4.3 结果分析.......................................... (6)5结论 (7)参考文献 (8)附录 (56)1 幂法设实矩阵nn ijaA ⨯=)(有一个完备的特征向量组,其特征值为n λλλ ,,21,相应的特征向量为nx x x ,,21。
第10章MATLAB特征值与特征向量的计算实例解析
• A=[9 2 1 2 2;2 4 3 3 3;1 3 7 3 4;2 3 3 5 4;2 3 4 4 5];
• chol_test(A)
• B运=[行16结17果9:12 12;17 12 12 2 18;9 12 18 7 13;12 2 7 18 12;12 18 13 12 10];
• chCo=l_test(B)
k1 k2
m1
k2 m2
0
0
k2 m1 k2 k3 m2 k3 m3
0
0
k3 m2 k3 k4 m3 k4 m4
0
0
f1
f1
f2
2
f2
k4 m3
f3 f4
f3
f4
k4
m4
• 即2为上述系数矩阵的特征值。
• 若给定如下条件则可以编写程序example_10_10.m。
运行结果: x_nlimit =
即当n 时,
an
a0
1 2
b0 , bn
0, cn
c0
1 2
b0
a0 + b0/2
0
后代仅具有基因AA和aa。
b0/2 + c0
二、常染色体隐性病模型
1
M
=
0
1/ 2 1/ 2
最终隐性患者消失, 全部均为显性患者。
三、X—链遗传模型
X—链遗传是指雄性具有一个基因A或a,雌性具有两个基因AA或Aa或aa。其遗 传规律是雄性后代以相等概率得到母体两个基因中的一个,雌性后代从父体中 得到一个基因,并从母体的两个基因中等可能地得到一个。
2 4 6
【例10-1】给定矩阵
A
3
9
幂法反幂法求解矩阵最大最小特征值及其对应的特征向量
幂法反幂法求解矩阵最大最小特征值及其对应的特征向量幂法和反幂法是求解矩阵最大最小特征值及其对应特征向量的常用方法。
在本文中,我们将详细介绍这两种方法的原理和具体实现。
一、幂法(Power Method)幂法是一种迭代算法,用于求解矩阵的最大特征值及其对应的特征向量。
其基本思想是通过多次迭代得到矩阵的一个特征值和特征向量的近似值,并使其逼近真实值。
幂法的原理如下:1.初始化一个非零向量b0作为初始特征向量;2.计算b0的归一化向量b0/,b0,得到新的向量b1;3.计算矩阵A和向量b1的乘积Ab1,得到新的向量b2;4.对b2进行归一化,得到新的向量b3;5.重复步骤3和步骤4,直到b的变化趋于稳定;6.计算矩阵A和向量b的乘积Ab,得到新的向量b;7.特征值的近似值λ=,Ab,/,b。
具体实现如下:1.初始化一个非零向量b0;2.迭代n次进行如下操作:a. 计算bn=A*bn-1;b. 将bn进行归一化,得到bn=bn/,bn;3. 计算特征值的近似值lambda=,A*bn,/,bn;4. 特征向量的近似值vbn=bn。
幂法的优点是计算简单、迭代次数少,但对于含有多个特征值接近的矩阵,可能会收敛到次大特征值。
二、反幂法(Inverse Power Method)反幂法是幂法的拓展,用于求解矩阵的最小特征值及其对应的特征向量。
其基本思想是通过多次迭代得到矩阵的一个特征值和特征向量的近似值,并使其逼近真实值。
反幂法的原理如下:1.初始化一个非零向量b0作为初始特征向量;2.计算b0的归一化向量b0/,b0,得到新的向量b1;3.计算矩阵A的逆矩阵Ai和向量b1的乘积Ai*b1,得到新的向量b2;4.对b2进行归一化,得到新的向量b3;5.重复步骤3和步骤4,直到b的变化趋于稳定;6.计算矩阵A的逆矩阵Ai和向量b的乘积Ai*b,得到新的向量b;7.特征值的近似值λ=,Ai*b,/,b。
具体实现如下:1.初始化一个非零向量b0;2.迭代n次进行如下操作:a. 计算bn=inv(A)*bn-1;b. 将bn进行归一化,得到bn=bn/,bn;3. 计算特征值的近似值lambda=,inv(A)*bn,/,bn;4. 特征向量的近似值vbn=bn。
MATLAB中有关矩阵特征值和特征向量的计算
[x,y]=eig(A) 其中矩阵y的对角线元素存储的是A的所有特征值,且从小到大排列;而矩阵x的每一列存储的是相应的特征向量,所 以最后一列就是矩阵A的最大特征值所对应的特征向量。 实例运用: 1、先创建一个矩阵
2、调用eig()函数,所得矩阵x就是矩阵A的特征向量
3、调用diag()函数,所得结果就是矩阵A的特征值
博客园 用户登录 代码改变世界 密码登录 短信登录 忘记登录用户名 忘记密码 记住我 登录 第三方登录/注册 没有账户, 立即注册
MATLAB中 有 关 矩 阵 特 征 值 和 特 征 向 量 的 计 算
在MATLAB语言中,求矩阵的特征值和特征向量需要用到两个函数:eig()、diag() diag():可生成一个对角矩阵 调用eig函数的格式为:
幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量(DOC)
数值计算解矩阵的按模最大最小特征值及对应的特征向量一.幂法1. 幂法简介:当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。
矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21≥≥≥>(2) 存在n 个线性无关的特征向量,设为n x x x ,...,,21 1.1计算过程:i ni i i u xx αα,1)0()0(∑==,有对任意向量不全为0,则有1111112211211111111011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k ni ik i i ni i i k )(k (k))(k αλλλλλα++++=+=+++≈⎥⎦⎤⎢⎣⎡+++======∑∑ 可见,当||12λλ越小时,收敛越快;且当k 充分大时,有1)1111)11111λαλαλ=⇒⎪⎩⎪⎨⎧==+++(k )(k k(k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。
2 算法实现.,, 3,,1 , ).5()5(,,,,||).4();max(,).3()(max(;0,1).2(,).1()()()(停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←=←←k k N k y x Ay x x abs x y k N x A k k k3 matlab 程序代码function [t,y]=lpowerA,x0,eps,N) % t 为所求特征值,y是对应特征向量k=1;z=0; % z 相当于λy=x0./max(abs(x0)); % 规范化初始向量x=A*y; % 迭代格式b=max(x); % b 相当于βif abs(z-b)<eps % 判断第一次迭代后是否满足要求t=max(x);return;endwhile abs(z-b)>eps && k<Nk=k+1;z=b;y=x./max(abs(x));x=A*y;b=max(x);end[m,index]=max(abs(x)); % 这两步保证取出来的按模最大特征值t=x(index); % 是原值,而非其绝对值。
matlab求矩阵的特征值与特征向量
项目六 矩阵的特征值与特征向量实验1 求矩阵的特征值与特征向量实验目的学习利用Mathematica(4.0以上版本)命令求方阵的特征值和特征向量;能利用软件计算方 阵的特征值和特征向量及求二次型的标准形.基本命令1.求方阵M 的特征值的命令Eigenvalues[M]2.求方阵M 的特征向量的命令Eigenvectors[M]3.求方阵M 的特征值和特征向量的命令Eigensystem[M]注:在使用后面两个命令时,如果输出中含有零向量,则输出中的非零向量才是真正的特 征向量.4.对向量组施行正交单位化的命令GramSchmidt使用这个命令,先要调用“线性代数.向量组正交化”软件包,输入<<LinearAlgebra\Orthogonalization.m执行后,才能对向量组施行正交单位化的命令.命令GramSchmidt[A]给出与矩阵A 的行向量组等价的且已正交化的单位向量组. 5.求方阵A 的相似变换矩阵S 和相似变换的约当标准型J 的命令 JordanDecomposition[A]注:因为实对称阵的相似变换的标准型必是对角阵. 所以,如果A 为实对称阵,则 JordanDecomposition[A]同时给出A 的相似变换矩阵S 和A 的相似对角矩阵Λ.实验举例求方阵的特征值与特征向量.例1.1 求矩阵.031121201⎪⎪⎪⎭⎫ ⎝⎛--=A 的特征值与特值向量.1.求矩阵A 的特征值. 输入A={{-1,0,2},{1,2,-1},{1,3,0}}MatrixForm[A] Eigenvalues[A]则输出A 的特征值{-1,1,1}2.求矩阵A 的特征向量. 输入A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvectors[A]则输出 {{-3,1,0},{1,0,1},{0,0,0}} 即A 的特征向量为.101,013⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-3.利用命令Eigensystem 同时矩阵A 的所有特征值与特征向量. 输入A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigensystem[A]则输出矩阵A 的特征值及其对应的特征向量.例1.2 求矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2163/115/12/13/13/1A 的特征值和特征向量的近似值.输入A={{1/3,1/3,-1/2},{1/5,1,-1/3},{6,1,-2}}; Eigensystem[A]则屏幕输出的结果很复杂,原因是矩阵A 的特征值中有复数且其精确解太复杂.此时,可采用 近似形式输入矩阵A ,则输出结果也采用近似形式来表达.输入A={{1/3,1/3,-1/2},{1/5,1,-1/3},{6.0,1,-2}}; Eigensystem[A]则输出{{-0.748989+1.27186i,-0.748989-1.27186i,0.831311}, {{0.179905+0.192168i,0.116133+0.062477I,0.955675+0.i}, {0.179905-0.192168i,0.116133-0.062477i,0.955675+0.i}, {-0.0872248,-0.866789,-0.490987}}}从中可以看到A 有两个复特征值与一个实特征值.属于复特征值的特征向量也是复的;属于实 特征值的特征向量是实的.例1.3 已知2是方阵⎪⎪⎪⎭⎫ ⎝⎛=32131003t A 的特征值,求t .输入Clear[A,q];A={{2-3,0,0},{-1,2-t,-3},{-1,-2,2-3}}; q=Det[A] Solve[q==0,t]则输出{{t →8}}即当8=t 时,2是方阵A 的特征值.例1.4 已知)1,1,1(-=x 是方阵⎪⎪⎪⎭⎫⎝⎛---=2135212b aA 的一个特征向量,求参数b a ,及特征向 量x 所属的特征值. 设所求特征值为t ,输入Clear[A,B,v,a,b,t];A={{t-2,1,-2},{-5,t-a,-3},{1,-b,t+2}}; v={1,1,-1}; B=A.v;Solve[{B[[1]]==0,B[[2]]==0,B[[3]]==0},{a,b,t}]则输出{{a →-3, b →0, t →-1}}即0,3=-=b a 时,向量)1,1,1(-=x 是方阵A 的属于特征值-1和特征向量.矩阵的相似变换例1.5 设矩阵⎪⎪⎪⎭⎫⎝⎛=222222114A ,求一可逆矩阵P ,使AP P 1-为对角矩阵.方法1 输入Clear[A,P];A={{4,1,1},{2,2,2},{2,2,2}}; Eigenvalues[A]P=Eigenvectors[A]//Transpose则输出{0,2,6}{{0,-1,1},{-1,1,1},{1,1,1}}即矩阵A 的特征值为0,2,6.特征向量为⎪⎪⎪⎭⎫ ⎝⎛-110,⎪⎪⎪⎭⎫ ⎝⎛-111与⎪⎪⎪⎭⎫ ⎝⎛111,矩阵⎪⎪⎪⎭⎫ ⎝⎛--=111111110P . 可验证AP P 1-为对角阵, 事实上,输入 Inverse[P].A.P则输出{{0,0,0},{0,2,0},{0,0,6}}因此,矩阵A 在相似变换矩阵P 的作用下,可化作对角阵.方法2 直接使用JordanDecomposition 命令, 输入jor=JordanDecomposition[A]则输出{{{0,-1,1},{-1,1,1},{1,1,1}},{{0,0,0},{0,2,0},{0,0,6}}}可取出第一个矩阵S 和第二个矩阵Λ,事实上,输入jor[[1]] jor[[2]]则输出{{0,-1,1},{-1,1,1},{1,1,1}} {{0,0,0},{0,2,0},{0,0,6}}输出结果与方法1的得到的结果完全相同.例1.6 已知方阵⎪⎪⎪⎭⎫ ⎝⎛-=11322002x A 与⎪⎪⎪⎭⎫⎝⎛-=y B 00020001相似, 求y x ,.注意矩阵B 是对角矩阵,特征值是y ,2,1-.又矩阵A 是分块下三角矩阵,-2是矩阵A 的特 征值.矩阵A 与B 相似,则2-=y ,且-1,2也是矩阵A 的特征值.输入Clear[c,v];v={{4,0,0},{-2,2-x,-2},{-3,-1,1}}; Solve[Det[v]==0,x]则输出{{x →0}}所以,在题设条件,0=x ,2-=y . 例1.7 已知二次型3231212322213212422),,(x x x x x x x x x x x x f +-++-=(1)求标准形; (2)求正惯性指数; (3)判断二次型是否正定. 输入A={{1,1,-2},{1,-2,1},{-2,1,1}}Eigenvalues[A]则输出矩阵A 的特征值为{-3,0,3}所以二次型的标准形为222133y y f +=;正惯性指数为1;该二次型不是正定的. 例1.8 求正交变换将二次型43324121242322213212222),,(x x x x x x x x x x x x x x x f -+-++++=化为标准形.输入A={{1,1,0,-1},{1,1,1,0},{0,1,1,-1},{-1,0,-1,1}} MatrixForm[A] X={x1,x2,x3,x4}; Expand[X.A.X]<<LinearAlgebra\Orthogonalization.m P=GramSchmidt[Eigenvectors[A]] P.A.Inverse[P]//MatrixForm则输出所求的正交变换矩阵P 与二次型矩阵A 标准形. 从结果知,所求二次型的标准型为24232221y y y y g +++-=实验习题1.求方阵⎪⎪⎪⎭⎫ ⎝⎛-----=122212221A 的特征值与特征向量.2.求方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=1111111111111111A 的特征值与特征向量.3.已知:0是方阵⎪⎪⎪⎭⎫ ⎝⎛t 01020101的特征值,求t .4.设向量Tk x )1,,1(=是方阵⎪⎪⎪⎭⎫⎝⎛=211121112A 的特征向量,求k .5.方阵⎪⎪⎪⎭⎫⎝⎛--=111010210A 是否与对角阵相似?6.已知:方阵⎪⎪⎪⎭⎫ ⎝⎛=x A 10100002与⎪⎪⎪⎭⎫⎝⎛-=10000002y B 相似,(1)求x 与y ;(2)求一个满足关系B AP P =-1的方阵P .7.设方阵⎪⎪⎪⎭⎫ ⎝⎛-=124222421A ,求正交阵C ,使得AC C B T =是对角阵.实验2 层次分析法实验目的通过应用层次分析法解决一个实际问题,学习层次分析法的基本原理与方法;掌握用层次 分析法建立数学模型的基本步骤;学会用Mathematica 解决层次分析法中的数学问题.基本原理层次分析法是系统分析的重要工具之一,其基本思想是把问题层次化、数量化, 并用数学 方法为分析、决策、预报或控制提供定量依据. 它特别适用于难以完全量化, 又相互关联、 相互制约的众多因素构成的复杂问题. 它把人的思维过程层次化、数量化,是系统分析的一中 新型的数学方法.运用层次分析法建立数学模型, 一般可按如下四个基本步骤进行.1.建立层次结构首先对所面临的问题要掌握足够的信息, 搞清楚问题的范围、因素、各因素之间的相互 关系,及所要解决问题的目标. 把问题条理化、层次化, 构造出一个有层次的结构模型. 在这个模型下,复杂问题被分解为元素的组成部分. 这些元素又按其属性及关系形成若干层次.层 次结构一般分三层:第一层为最高层, 它是分析问题的预定目标和结果, 也称目标层;第二层为中间层, 它是为了实现目标所涉及的中间环节, 如: 准则、子准则, 也称准则 层;第三层为最底层, 它包括了为实现目标可供选择的各种措施、决策方案等, 也称方案层.(章栋恩P268图26.1)图2-1注:上述层次结构具有以下特点:(1) 从上到下顺序地存在支配关系, 并用直线段表示;(2) 整个层次结构中层次数不受限制.2.构造判断矩阵构造判断矩阵是建立层次分析模型的关键. 假定以上一层的某元素y 为准则,它所支配 的下一层次的元素为n x x x ,,,21 ,这n 个元素对上一层次的元素y 有影响,要确定它们在y 中的比重. 采用成对比较法. 即每次取两个元素i x 和j x , 用ij a 表示i x 与j x 对y 的影响之比, 全部比较的结果可用矩阵A 表示,即.,,2,1,,)(n j i a A n n ij ==⨯ 称矩阵A 为判断矩阵.根据上述定义,易见判断矩阵的元素ij a 满足下列性质:)(,1),(1j i a j i a a ii ijji ==≠=当0>ij a 时,我们称判断矩阵A 为正互反矩阵.怎样确定判断矩阵A 的元素ij a 的取值呢? 当某层的元素n x x x ,,,21 对于上一层某元素y 的影响可直接定量表示时, i x 与j x 对y的影响之比可以直接确定, ij a 的值也可直接确定. 但对于大多数社会经济问题, 特别是比较 复杂的问题, 元素i x 与j x 对y 的重要性不容易直接获得, 需要通过适当的量化方法来解决. 通常取数字1~9及其倒数作为ij a 的取值范围. 这是因为在进行定性的成对比较时, 通常采用 5级制(表1),在每两个等级之间各有一个中间状态, 共1~9个尺度, 另外心理学家认为进行成 对比较的因素太多, 将超出人们的判断比较能力, 降低精确. 实践证明, 成对比较的尺度以 27±为宜, 故ij a 的取值范围是9,,2,1 及其倒数.表1 比较尺度ij a 的取值 97531/ijj i a x x 绝对强很强强较强相等3.计算层次单排序并做一致性检验层次单排序是指同一层次各个元素对于上一层次中的某个元素的相对重要性进行排序.具体做法是: 根据同一层n 个元素n x x x ,,,21 对上一层某元素y 的判断矩阵A ,求出它们对 于元素y 的相对排序权重,记为n w w w ,,,21 ,写成向量形式T n w w w w ),,,(21 =, 称其为A 的层次单排序权重向量, 其中i w 表示第i 个元素对上一层中某元素y 所占的比重, 从而得到层次单排序.层次单排序权重向量有几种求解方法,常用的方法是利用判断矩阵A 的特征值与特征向 量来计算排序权重向量w .关于正互反矩阵A ,我们不加证明地给出下列结果. (1) 如果一个正互反矩阵n n ij a A ⨯=)(满足),,2,1,,(n k j i a a a ik jk ij ==⨯则称矩阵A 具有一致性, 称元素k j i x x x ,,的成对比较是一致的; 并且称A 为一致矩阵.(2) n 阶正互反矩阵A 的最大特征根n ≥max λ, 当n =λ时, A 是一致的. (3) n 阶正互反矩阵是一致矩阵的充分必要条件是最大特征值 n =max λ.计算排序权重向量的方法和步骤设T n w ),,,(21ωωω =是n 阶判断矩阵的排序权重向量, 当A 为一致矩阵时, 根据n阶判断矩阵构成的定义,有⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n n n A ωωωωωωωωωωωωωωωωωω212221212111 (2.1) 因而满足,nw Aw = 这里n 是矩阵A 的最大特征根, w 是相应的特征向量; 当A 为一般的 判断矩阵时w Aw max λ=, 其中max λ是A 的最大特征值(也称主特征根), w 是相应的特征向量(也称主特征向量). 经归一化(即11=∑=ni iω)后, 可近似作为排序权重向量, 这种方法称为特征根法.一致性检验 在构造判断矩阵时, 我们并没有要求判断矩阵具有一致性, 这是由客观事物的复杂性 与人的认识的多样性所决定的. 特别是在规模大、因素多的情况下, 对于判断矩阵的每个元 素来说,不可能求出精确的j i ωω/, 但要求判断矩阵大体上应该是一致的. 一个经不起推敲 的判断矩阵有可能导致决策的失误. 利用上述方法计算排序权重向量, 当判断矩阵过于偏离 一致性时, 其可靠性也有问题. 因此,需要对判断矩阵的一致性进行检验, 检验可按如下步骤 进行: (1) 计算一致性指标CI1m a x --=n nCI λ (2.2)当,0=CI 即n =max λ时, 判断矩阵A 是一致的. 当CI 的值越大, 判断矩阵A 的不一致的程 度就越严重.(2) 查找相应的平均随机一致性指标RI 表2给出了n )11~1(阶正互反矩阵的平均随机一致性指标RI , 其中数据采用了 100~150个随机样本矩阵A 计算得到.(3) 计算一致性比例CRRICI CR =(2.3) 当10.0<C R 时, 认为判断矩阵的一致性是可以接受的; 否则应对判断矩阵作适当修正.4. 计算层次总排序权重并做一致性检验 计算出某层元素对其上一层中某元素的排序权重向量后, 还需要得到各层元素, 特别 是最底层中各方案对于目标层的排序权重, 即层次总排序权重向量, 再进行方案选择. 层次 总排序权重通过自上而下地将层次单排序的权重进行合成而得到. 考虑3个层次的决策问题: 第一层只有1个元素, 第二层有n 个元素, 第三层有m 个元 素.设第二层对第一层的层次单排序的权重向量为Tn w ),,,()2()2(2)2(1)2(ωωω =第三层对第二层的层次单排序的权重向量为n k w w w w Tkn k k k ,,2,1,),,,()3()3(2)3(1)3( ==以)3(k w 为列向量构成矩阵:n m nm m mn n n w w w w w w w w w w w w W ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛==)3()3(2)3(1)3(2)3(22)3(12)3(1)3(21)3(11)3()3(2)3(1)3(,,,,,,,,,,,),,,( (2.4) 则第三层对第一层的层次总排序权重向量为)2()3()3(w W w = (2.5) 一般地, 若层次模型共有s 层, 则第k 层对第一层的总排序权重向量为s k w W w k k k ,,4,3,)1()()( ==-(2.6) 其中)(k W 是以第k 层对第1-k 层的排序权向量为列向量组成的矩阵,)1(-k w 是第1-k 层对第 一层的总排序权重向量. 按照上述递推公式, 可得到最下层(第s 层)对第一层的总排序权重 向量为)2()3()1()()(w W W W w s s s -= (2.7)对层次总排序权重向量也要进行一致性检验. 具体方法是从最高层到最低层逐层进行 检验. 如果所考虑的层次分析模型共有s 层. 设第l (s l ≤≤3)层的一致性指标与随机一致性指标分别为)()(2)(1,,,l n l l CI CI CI (n 是第1-l 层元素的数目)与)()(2)(1,,,l n l l RI RI RI , 令)1()(1)(1)(],,[-=l l l l w CI CI CI (2.8) )1()(1)(1)(],,[-=l l l l w RI RI RI(2.9)则第l 层对第一层的总排序权向量的一致性比率为s l RICI CR CR l l l l ,,4,3,)()()1()( =+=-(2.10) 其中)2(CR 为由(2.3)式计算的第二层对第一层的排序权重向量的一致性比率.当最下层对第一层的总排序权重向量的一致性比率1.0)(<s CR 时, 就认为整个层次结构 的比较判断可通过一致性检验.应用举例问题 在选购电脑时, 人们希望花最少的钱买到最理想的电脑. 试通过层次分析法建立 数学模型,并以此确定欲选购的电脑.1. 建立选购电脑的层次结构模型(章栋恩P268图26.2 左边加目标层、准则层、方案层字样)图2-2该层次结构模型共有三层:目标层(用符号z 表示最终的选择目标); 准则层(分别用符号 521,,,y y y 表示“性能”、“价格”、“质量”、“外观”、“售后服务”五个判断准则); 方案层(分别用符号321,,x x x 表示品牌1, 品牌2, 品牌3三种选择方案).2.构造成对比较判断矩阵(1) 建立准则层对目标层的成对比较判断矩阵根据表1的定量化尺度, 从建模者的个人观点出发, 设准则层对目标层的成对比较判断矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=13123/13/113/12/19/113123/12/122/115/139351A(2.11) (2) 建立方案层对准则层的成对比较判断矩阵,113/1113/1331,123/12/115/13511252/1135/13/11,12/15/1213/1531,1252/1135/13/1154321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B B B B B3.计算层次单排序权重向量并做一致性检验先利用Mathematica 计算矩阵A 的最大特征值及特征值所对应的特征向量. 输入<<Miscellaneous\RealOnly.m(*调用只求实数运算的软件包*)A={{1.0,5,3,9,3},{1/5,1,1/2,2,1/2},{1/3,2,1,3,1},{1/9,1/2,1/3,1,1/3},{1/3,2,1,3,1}};(*以小数形式1.0输入进行近似计算, 可避免精确解太长、太复杂*) T=Eigensystem[A]//Chop(*输入//Chop, 把与零非常接近的数换成零*)则输出{{5.00974,Nonreal,Nonreal,0,0},{{0.88126,0.167913,0.304926,0.0960557,0.304926}, {0.742882,Nonreal,Nonreal,Nonreal,Nonreal}, {0.742882,Nonreal,Nonreal,Nonreal,Nonreal}, {-0.993398,0,0.0673976,0.0662265,0.0650555}, {-0.65676,0,0.57431,0.043784,-0.486742}}} (输出中的Nonreal 表示复数)从中得到A 的最大特征值,00974.5max =λ及其对应的特征向量T x )304926.0,0960557.0,304926.0,167913.0,88126.0(=输入Clear[x]; x=T[[2,1]];ww2=x/Apply[Plus,x]则得到归一化后的特征向量T w )173739.0,0547301.0,173739.0,0956728.0,502119.0()2(= 计算一致性指标1max --=n nCI λ,其中,00974.5,5max ==λn 故.002435.0=C I 查表得到相应的随机一致性指标 12.1=RI 从而得到一致性比率002174.0)2(==RICICR 因,1.0)2(<CR 通过了一致性检验,即认为A 的一致性程度在容许的范围之内, 可以用归一 化后的特征向量)2(w 作为排序权重向量. 下面再求矩阵)5,,2,1( =j B j 的最大特征值及特征值所对应的特征向量, 输入B1=B3={{1.0,1/3,1/5},{3,1,1/2},{5,2,1}}; B2=Transpose[B1];B4={{1.0,5,3},{1/5,1,1/2},{1/3,2,1}}; B5={{1.0,3,3},{1/3,1,1},{1/3,1,1}}; T1=Eigensystem[B1]//Chop T2=Eigensystem[B2]//Chop T3=Eigensystem[B3]//Chop T4=Eigensystem[B4]//Chop T5=Eigensystem[B5]//Chop则输出 {{3.00369,Nonreal, Nonreal},{{0.163954,0.46286,0.871137},{ Nonreal, Nonreal,0.871137}, { Nonreal, Nonreal, 0.871137}}};{{3.00369,Nonreal, Nonreal}, {{0.928119,0.328758,0.174679}, {0.928119, Nonreal, Nonreal}, {0.928119, Nonreal, Nonreal}}}{{3.00369, Nonreal, Nonreal}, {{0.163954,0.46286,0.871137}, { Nonreal, Nonreal,0.871137}, { Nonreal, Nonreal,0.871137}}}{{3.00369, Nonreal, Nonreal}, {{0.928119,0.174679,0.328758}, {0.928119, Nonreal, Nonreal}, {0.928119, Nonreal, Nonreal}}} {{3,0,0},{{0.904534,0.301511,0.301511}, {-0.973329,0.162221,0.162221},{-0.170182,-0.667851,0.724578}}从上面的输出可以分别得到)5,,2,1( =j B j 的最大特征值000.3,00369.3,00369.3,00369.3,00369.354321=====λλλλλ 以及上述特征值所对应的特征向量TT T TT x x x x x )301511.0,301511.0,904534.0()328758.0,174679.0,928119.0()871137.0,46286.0,163954.0()174679.0,328758.0,928119.0()871137.0,46286.0,163954.0(54321=====其中.5,,2,1),,,(321 ==i x x x x i i i i 为求出归一化后的特征向量, 输入Clear[x1,x2,x3,x4,x5]; x1=T1[[2,1]]; w1=x1/Apply[Plus,x1]x2=T2[[2,1]]; w2=x2/Apply[Plus,x2] x3=T3[[2,1]]; w3=x3/Apply[Plus,x3] x4=T4[[2,1]]; w4=x4/Apply[Plus,x4] x5=T5[[2,1]]; w5=x5/Apply[Plus,x5]则输出TT T TT w w w w w )200000.0,200000.0,600000.0()229651.0,12202.0,648329.0()581552.0,308996.0,109452.0()12202.0,229651.0,648329.0()581552.0,308996.0,109452.0(54321===== 计算一致性指标)5,,2,1(1=--=i n nCI i i λ,其中,3=n 输入lamda={T1[[1,1]],T2[[1,1]],T3[[1,1]],T4[[1,1]],T5[[1,1]]} CI=(lamda-3)/(3-1)//Chop则输出0,0018473.0,0018473.0,0018473.0,0018473.054321=====CI CI CI CI CI查表得到相应的随机一致性指标)5,,2,1(58.0 ==i RI i计算一致性比率5,,2,1, ==i RI CI CR iii ,输入CR=CI/0.58则输出.0,003185.0,003185.0,003185.0,003185.054321=====CR CR CR CR CR因),5,,2,1(,1.0 =<i CR i 通过了一致性检验. 即认为)5,,2,1( =j B j 的一致性程度在容许 的范围之内, 可以用归一化后的特征向量作为其排序权重向量.4. 计算层次总排序权重向量并做一致性检验购买个人电脑问题的第三层对第二层的排序权重计算结果列于表3.以矩阵表示第三层对第二层的排序权重计算结果为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2.0229651.0581552.012202.0581552.02.012202.0308996.0229651.0308996.06.0648329.0109452.0648329.0109452.0)3(W )3(W 即是第三层对第二层的权重向量为列向量组成的矩阵. 最下层(第三层)对最上层(第一层)的总排序权向量为)2()3()3(w W w =为了计算上式, 输入W3=Transpose[{w1,w2,w3,w4,w5}]; ww3=W3.ww2则从输出结果得到T w )452037.0,272235.0,275728.0()3(=为了对总排序权向量进行一致性检验, 计算)2(521)3().,,.,.(w I C I C I C CI =输入CI.ww2则从输出结果得到0015263.0)3(=CI 再计算)2(51)3(],,[w RI RI RI =,输入RI=Table[0.58,{j,5}]; RI.ww2则从输出结果得到 58.0.)3(=I R最后计算 )3()3()2()3(./...I R I C R C R C +=,可得0048057.0.)3(=R C 因为,1.0.)3(<R C 所以总排序权重向量符合一致性要求的范围.根据总排序权重向量的分量取值, 品牌3的电脑是建模者对这三种品牌机的首选.实验报告1.根据你的设想购置一台计算机, 需考虑什么样的判断准则? 利用层次分析法及数学软件做出最佳的决策.2.根据你的经历设想如何报考大学, 需要什么样的判断准则? 利用层次分析法及数学软件做出最佳的决策.3.假期到了, 某学生打算做一次旅游, 有四个地点可供选择, 假定他要考虑5个因素: 费用、景色、居住条件、饮食以及旅游条件. 由于该学生没有固定收入, 他对费用最为看重, 其次是旅游点的景色, 至于旅游条件、饮食, 差不多就行, 住什么地方就更无所谓了. 这四个旅游点没有一个具有明显的优势, 而是各有优劣. 该同学拿不定主意, 请用层次分析法帮助他找出最佳旅游点.4. 假设你马上就要从大学毕业, 正面临择业的问题, 你对工作的选择着重考虑下面几个因素: (1)单位的声誉; (2)收入; (3)专业是否对口; (4)是否有机会深造或晋升; (5)工作地点;(6)休闲时间. 对上述各种因素你可以根据自己的具体情况排序,也可以增加或减少所考虑的因素. 现在有四个单位打算你, 但如果用上述标准来衡量,没有一个单位具有明显的优势,请用层次分析法为你自己做一个合理的选择.。
幂法和反幂法的matlab实现
幂法和反幂法的matlab实现幂法求矩阵主特征值及对应特征向量摘要矩阵特征值的数值算法,在科学和工程技术中很多问题在数学上都归结为矩阵的特征值问题,所以说研究利用数学软件解决求特征值的问题是非常必要的。
实际问题中,有时需要的并不是所有的特征根,而是最大最小的实特征根。
称模最大的特征根为主特征值。
幂法是一种计算矩阵主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,它最大的优点是方法简单,特别适用于大型稀疏矩阵,但有时收敛速度很慢。
用java来编写算法。
这个程序主要分成了四个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块;第四部分为页面设计及事件处理。
其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。
关键字:主特征值;特征向量;线性方程组;幂法函数块POWER METHOD FOR FINDING THE EIGENVALUES AND CORRESPONDING EIGENVECTORS OF THEMATRIXABSTRACTNumerical algorithm for the eigenvalue of matrix, in science and engineering technology, alot of problems in mathematics are attributed matrix characteristic value problem, so that studies using mathematical software to solve the eigenvalue problem is very necessary. In practical problems, sometimes need not all eigenvalues, but the maximum and minimum eigenvalue of real. The characteristic value of the largest eigenvalue of the modulus maximum.Power method is a calculation of main features of the matrix values (matrix according to the characteristics of the largest value) and the corresponding eigenvector of iterative method. It is the biggest advantage is simple method, especially for large sparse matrix, but sometimes the convergence speed is very slow.Using java to write algorithms. This program is divided into three parts: the first part is the matrix is transformed into linear equations; the second part for the sake of feature vector of the maximum; the third part isthe exponentiation function block. The fourth part is the page design and eventprocessing .The basic process is a power law function block by calling the matrix is transformed into linear equations method, after a series of validation and iteration results.Power method for finding the eigenvalues and corresponding eigenvectors of the matrixKey words: Main eigenvalue; characteristic vector; linear equations; power function block、目录1幂法......................................................... . (1)1.1幂法的基本理论和推导 (1)1.2幂法算法的迭代向量规范化 (2)2概要设计........................................................ (3)2.1设计背景 (3)2.2运行流程........................................... . (3)2.3运行环境........................................... (3)3程序详细设计 (4)3.1矩阵转化为线性方程组……..………………………………………. .43.2特征向量的极大值 (4)3.3求幂法函数块............….....…………...…......…………………………3.4界面设计与事件处理..........................................................................4运行过程及结果................................................ (6)4.1 运行过程....................................... ..................………………………………………. .64.2 运行结果................................................ .. (6)4.3 结果分析.......................................... (6)5结论 (7)参考文献 (8)附录 (56)1 幂法设实矩阵nn ij a A ⨯=)(有一个完备的特征向量组,其特征值为nλλλ ,,21,相应的特征向量为nx x x ,,21。
幂法及其MATLAB程序
5.2 幂法及其MATLAB 程序5.2.2 幂法的MATLAB 程序用幂法计算矩阵A 的主特征值和对应的特征向量的MATLAB 主程序function [k,lambda,Vk,Wc]=mifa(A,V0,jd,max1)lambda=0;k=1;Wc =1; ,jd=jd*0.1;state=1; V=V0;while ((k<=max1)&(state==1))Vk=A*V; [m j]=max(abs(Vk)); mk=m;tzw=abs(lambda-mk); Vk=(1/mk)*Vk;Txw=norm(V-Vk); Wc=max(Txw,tzw); V=Vk;lambda=mk;state=0;if (Wc>jd)state=1;endk=k+1;Wc=Wc;endif (Wc<=jd)disp('请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:')elsedisp('请注意:迭代次数k 已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc 如下:') endVk=V;k=k-1;Wc;例 5.2.2 用幂法计算下列矩阵的主特征值和对应的特征向量的近似向量,精度510-=ε.并把(1)和(2)输出的结果与例5.1.1中的结果进行比较.(1)⎪⎪⎭⎫ ⎝⎛-=4211A ; (2)⎪⎪⎪⎭⎫ ⎝⎛=633312321B ;(3)⎪⎪⎪⎭⎫ ⎝⎛--=1124111221C ;(4)⎪⎪⎪⎭⎫ ⎝⎛---=20101350144D . 解 (1)输入MATLAB 程序>>A=[1 -1;2 4]; V0=[1,1]';[k,lambda,Vk,Wc]=mifa(A,V0,0.00001,100),[V,D] = eig (A), Dzd=max(diag(D)), wuD= abs(Dzd- lambda), wuV=V(:,2)./Vk,运行后屏幕显示结果请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc =33 3.00000173836804 8.691862856124999e-007Vk = V = wuV =-0.49999942054432 -0.70710678118655 0.44721359549996 -0.894428227562941.00000000000000 0.70710678118655 -0.89442719099992 -0.89442719099992Dzd = wuD =3 1.738368038406435e-006由输出结果可看出,迭代33次,相邻两次迭代的误差W c ≈8.69 19e-007,矩阵A 的主特征值的近似值lambda ≈3.000 00和对应的特征向量的近似向量V k ≈(-0.500 00,1.00000T ), lambda 与例5.1.1中A 的最大特征值32=λ近似相等,绝对误差约为1.738 37e-006,V k 与特征向量X =T22k T )1,21(- )0(2≠k 的第1个分量的绝对误差约等于0,第2个分量的绝对值相同.由wuV 可以看出,2λ的特征向量V (:,2) 与V k 的对应分量的比值近似相等.因此,用程序mifa.m 计算的结果达到预先给定的精度510-=ε.(2) 输入MATLAB 程序>>B=[1 2 3;2 1 3;3 3 6]; V0=[1,1,1]';[k,lambda,Vk,Wc]=mifa(B,V0,0.00001,100), [V,D] = eig (B), Dzd=max(diag(D)), wuD= abs(Dzd- lambda), wuV=V(:,3)./Vk,运行后屏幕显示结果请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc = Dzd = wuD =3 9 0 9 0Vk = wuV =0.50000000000000 0.816496580927730.50000000000000 0.816496580927731.00000000000000 0.81649658092773V =0.70710678118655 0.57735026918963 0.40824829046386-0.70710678118655 0.57735026918963 0.408248290463860 -0.57735026918963 0.81649658092773(3) 输入MATLAB 程序>> C=[1 2 2;1 -1 1;4 -12 1];V0=[1,1,1]';[k,lambda,Vk,Wc]=mifa(C,V0,0.00001,100), [V,D] = eig (C), Dzd=max(diag(D)), wuD=abs(Dzd-lambda),Vzd=V(:,1),wuV=V(:,1)./Vk,运行后屏幕显示请注意:迭代次数k 已经达到最大迭代次数max1,主特征值的迭代值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc =100 0.09090909090910 2.37758124193119Dzd = wuD =1.00000000000001 0.90909090909091Vk= Vzd = wuV =0.99999999999993 0.90453403373329 0.904534033733350.99999999999995 0.30151134457776 0.301511344577781.00000000000000 -0.30151134457776 -0.30151134457776由输出结果可见,迭代次数k 已经达到最大迭代次数max 1=100,并且lambda 的相邻两次迭代的误差Wc ≈2.377 58>2,由wuV 可以看出,lambda 的特征向量V k 与真值Dzd 的特征向量V zd 对应分量的比值相差较大,所以迭代序列发散.实际上,实数矩阵C 的特征值的近似值为i ,i ,010*********.000321=-==λλλ ,并且对应的特征向量的近似向量分别为X T1=1k (0.90453403373329,0.30151134457776,-0.30151134457776)T ,X =T 22k (-0.72547625011001,-0.21764287503300-0.07254762501100i, 0.58038100008801-0.29019050004400i )T ,X =T33k ( -0.72547625011001, -0.21764287503300 + 0.07254762501100i,0.58038100008801 + 0.29019050004400i)T0,0(21≠≠k k , 03≠k 是常数).(4)输入MATLAB 程序>> D=[-4 14 0;-5 13 0;-1 0 2]; V0=[1,1,1]';[k,lambda,Vk,Wc]=mifa(D,V0,0.00001,100), [V,Dt] =eig (D), Dtzd=max(diag(Dt)), wuDt=abs(Dtzd-lambda),Vzd=V(:,2),wuV=V(:,2)./Vk,运行后屏幕显示结果请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc如下:k = lambda = Wc =19 6.00000653949528 6.539523793591684e-006Dtzd = wuDt =6.00000000000000 6.539495284840768e-006Vk = Vzd = wuV =0.79740048053564 0.79740048053564 0.797400480535640.71428594783886 0.56957177181117 0.79740021980618-0.24999918247180 -0.19935012013391 0.797403088133705.3 反幂法和位移反幂法及其MATLAB程序5.3.3 原点位移反幂法的MATLAB程序(一)原点位移反幂法的MATLAB主程序1用原点位移反幂法计算矩阵A的特征值和对应的特征向量的MATLAB主程序1 function [k,lambdan,Vk,Wc]=ydwyfmf(A,V0,jlamb,jd,max1)[n,n]=size(A); A1=A-jlamb*eye(n); jd= jd*0.1;RA1=det(A1);if RA1==0disp('请注意:因为A-aE的n阶行列式hl等于零,所以A-aE不能进行LU分解.')returnendlambda=0;if RA1~=0for p=1:nh(p)=det(A1(1:p, 1:p));endhl=h(1:n);for i=1:nif h(1,i)==0disp('请注意:因为A-aE的r阶主子式等于零,所以A-aE不能进行LU分解.')returnendendif h(1,i)~=0disp('请注意:因为A-aE的各阶主子式都不等于零,所以A-aE 能进行LU分解.')k=1;Wc =1;state=1; Vk=V0;while((k<=max1)&(state==1))[L U]=lu(A1); Yk=L\Vk;Vk=U\Yk; [mj]=max(abs(Vk));mk=m;Vk1=Vk/mk; Yk1=L\Vk1;Vk1=U\Yk1;[m j]=max(abs(Vk1));mk1=m;Vk2=(1/mk1)*Vk1;tzw1=abs((mk-mk1)/mk1);tzw2=abs(mk1-mk);Txw1=norm(Vk)-norm(Vk1);Txw2=(norm(Vk)-norm(Vk1))/norm(Vk1);Txw=min(Txw1,Txw2); tzw=min(tzw1,tzw2);Vk=Vk2;mk=mk1; Wc=max(Txw,tzw);Vk=Vk2;mk=mk1;state=0;if(Wc>jd)state=1;endk=k+1;%Vk=Vk2,mk=mk1,endif (Wc<=jd)disp('A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:')elsedisp('A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k 已经达到最大迭代次数max1,按模最小特征值的迭代值lambda,特征向量的迭代向量Vk,相邻两次迭代的误差Wc 如下:')endhl,RA1endend[V,D]=eig(A,'nobalance'),Vk;k=k-1;Wc;lambdan=jlamb+1/mk1;例5.3.2 用原点位移反幂法的迭代公式(5.28),根据给定的下列矩阵的特征值n λ的初始值n λ~,计算与n λ对应的特征向量n X 的近似向量,精确到0.000 1. (1)⎪⎪⎪⎭⎫ ⎝⎛----210242011,2.0~2=λ;(2)⎪⎪⎭⎫ ⎝⎛-4211,001.2~2=λ;(3)⎪⎪⎪⎭⎫ ⎝⎛--3315358215211,8.26~3=λ.解 (1)输入MATLAB 程序>> A=[1 -1 0;-2 4 -2;0 -1 2];V0=[1,1,1]';[k,lambda,Vk,Wc]=ydwyfmf(A,V0,0.2,0.0001,10000)运行后屏幕显示结果 请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行LU 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc = hl =3 0.2384 1.0213e-007 0.8000 1.0400 0.2720Vk = V = D =1.0000 -0.2424 -1.0000 -0.5707 5.1249 0 00.7616 1.0000 -0.7616 0.3633 0 0.2384 00.4323 -0.3200 -0.4323 1.0000 0 0 1.6367(2)输入MATLAB 程序>> A=[1 -1;2 4];V0=[20,1]';[k,lambda,Vk,Wc]=ydwyfmf(A,V0,2.001,0.0001,100)运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行LU 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc = hl =2 2.0020 5.1528e-007 -1.0010 -0.0010Vk = V = D =1.0000 -1.0000 0.5000 2 0-1.0000 1.0000 -1.0000 0 3(3)输入MATLAB 程序>> A=[-11 2 15;2 58 3;15 3 -3];V0=[1,1,-1]';[k,lambdan,Vk,Wc]=ydwyfmf(A,V0,8.26, 0.0001,100)运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行LU 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambdan= Wc = hl =2 8.2640 6.9304e-008 -19.2600 -961.9924 -6.1256Vk = V = D =-0.7692 0.7928 0.6081 0.0416 -22.5249 0 00.0912 0.0030 -0.0721 0.9974 0 8.2640 0-1.0000 -0.6095 0.7906 0.0590 0 0 58.2609例 5.3.3 用原点位移反幂法的迭代公式(5.28),计算⎪⎪⎪⎭⎫ ⎝⎛-----=1026471725110A 的分别对应于特征值 1.001~11=≈λλ,.001 2~22=≈λλ, 001.4~33=≈λλ的特征向量1X ,2X ,3X 的近似向量,相邻迭代误差为0.001.将计算结果与精确特征向量比较. 解 (1)计算特征值 1.001~11=≈λλ对应的特征向量1X 的近似向量.输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]= ydwyfmf(A,V0,1.001, 0.001,100),[V,D]=eig(A);Dzd=min(diag(D)), wuD= abs(Dzd- lambda),VD=V(:,1),wuV=V(:,1)./Vk,运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行L U 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:hl =-1.00100000000000 5.98500100000000 -0.00299600100000k = lambda = RA1 =5 1.00200000000000 -0.00299600100000Vk = VD = wuV =-0.50000000000000 -0.40824829046386 0.81649658092773-0.50000000000000 -0.40824829046386 0.81649658092773-1.00000000000000 -0.81649658092773 0.81649658092773Wc = Dzd = wuD =1.378794763695562e-009 1.00000000000000 0.00200000000000 从输出的结果可见,迭代5次,特征向量1X 的近似向量1~X 的相邻两次迭代的误差Wc ≈1.379 e-009,由wuV 可以看出,1~X = Vk 与VD 的对应分量的比值相等.特征值1λ的近似值lambda ≈1.002与初始值=1~λ 1.001的绝对误差为0.001,而与 1λ的绝对误差为0.002,其中 =1X T )000000000001.000 , 000000000000.500- , 000000000000.500( -, =1~X T )000000000001.000 , 000000000000.500- , 000000000000.500(-. (2)计算特征值.001 2~22=≈λλ对应特征向量2X 的近似向量.输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]=ydwyfmf(A,V0,2.001, 0.001,100) ,[V,D]=eig(A); WD=lambda-D(2,2),VD=V(:,2),wuV=V(:,2)./Vk,运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行L U 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:hl =-2.00100000000000 -8.01299900000000 0.00200099900000k = Wc = lambda = WD =2 3.131363162302120e-007 2.00200000000016 0.00200000000016Vk = VD = wuV =-0.24999999999999 0.21821789023599 -0.87287156094401 -0.49999999999999 0.43643578047198 -0.87287156094398 -1.00000000000000 0.87287156094397 -0.87287156094397 从输出的结果可见,迭代2次,特征向量2X 的近似向量2~X 的相邻两次迭代的误差Wc ≈3.131e-007,2~X 与2X 的对应分量的比值近似相等.特征值2λ的近似值lambda ≈2.002与初始值=2~λ 2.001的绝对误差约为0.001,而lambda 与2λ的绝对误差约为0.002,其中 =2~X T )00000000000000.1,99999999999499.0,99999999999249.0(---, =2X T ) 000000000001.000- ,000000000000.500- ,99999999999-0.249( . (3)计算特征值 001.4~33=≈λλ对应特征向量3X 的近似向量.输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]=ydwyfmf(A,V0,4.001, 0.001,100)[V,D]=eig(A);WD=lambda-max(diag(D)),VD=V(:,3),wuV=V(:,3)./Vk,运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行L U 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:hl =-4.00100000000000 -30.00899900000000 -0.00600500099999 k = lambda = Wc = WD =2 4.00199999999990 1.996084182914842e-007 0.00199999999990Vk = VD = wuV =0.40000000000001 -0.32444284226153 -0.81110710565380 0.60000000000001 -0.48666426339229 -0.81110710565381 1.00000000000000 -0.81110710565381 -0.81110710565381 从输出的结果可见,迭代2次,特征向量3X 的近似向量3~X 的相邻两次迭代的误差Wc ≈1.996e-007,3~X 与3X 的对应分量的比值近似相等.特征值3λ的近似值 4.001~4.0022=≈λ与初始值lambda 的绝对误差近似为001.0,而lambda 与3λ的绝对误差约为0.002,其中 =3X (-0.400 000 000 000 00,-0.600 000 000 000 00,-1.000 000 000 000 00T ), =3~X T )000000000001.000 ,100000000000.600 ,10000000000.400(.(二)原点位移反幂法的MATLAB 主程序2用原点位移反幂法计算矩阵A 的特征值和对应的特征向量的MATLAB 主程序2function [k,lambdan,Vk,Wc]=wfmifa1(A,V0,jlamb,jd,max1)[n,n]=size(A); jd= jd*0.1;A1=A-jlamb*eye(n);nA1=inv(A1); lambda1=0;k=1;Wc =1;state=1; U=V0;while ((k<=max1)&(state==1))Vk=A1\U; [m j]=max(abs(Vk)); mk=m; Vk=(1/mk)*Vk;Vk1=A1\Vk;[m1 j]=max(abs(Vk1)); mk1=m1,Vk1=(1/mk1)*Vk1;U=Vk1,Txw=(norm(Vk1)-norm(Vk))/norm(Vk1);tzw=abs((lambda1-mk1)/mk1);Wc=max(Txw,tzw); lambda1=mk1;state=0;if (Wc>jd)state=1;endk=k+1;endif (Wc<=jd)disp('请注意迭代次数k,特征值的近似值lambda,对应的特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:')elsedisp('请注意迭代次数k 已经达到最大迭代次数max1, 特征值的近似值lambda,对应的特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:') end[V,D] =eig(A,'nobalance'),Vk=U;k=k-1;Wc;lambdan=jlamb+1/mk;例5.3.4 用原点位移反幂法的迭代公式(5.27),计算例题5.3.3,并且将这两个例题的计算结果进行比较.再用两种原点位移反幂法的MATLAB 主程序,求979999999990.999~1=λ对应的特征向量. 解 (1)计算特征值 1.001~11=≈λλ对应特征向量1X 的近似向量.输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]=wfmifa1(A,V0,1.001,0.001,100)运行后屏幕显示结果请注意迭代次数k,特征值的近似值lambda,对应的特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = lambda = Wc =5 1.00200000000138 1.376344154436924e-006Vk’ = -0.50000000000000 -0.50000000000000 -1.00000000000000同理可得,另外与两个特征值对应的特征向量.(2)再用两种原点位移反幂法的MATLAB 主程序,求979999999990.999~1=λ对应的特征向量.输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]=ydwyfmf(A,V0,0.99999999999997,0.001,100) 运行后屏幕显示结果请注意:因为A-aE 的各阶主子式都不等于零,所以A-aE 能进行LU 分解.A-aE 的秩R(A-aE)和各阶顺序主子式值hl 、迭代次数k,按模最小特征值的近似值lambda,特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:hl =-0.99999999999997 6.00000000000045 0.00000000000010RA1 = 1.039168751049192e-013 k = 2 lambda = 1.00000000000000输入MATLAB 程序>> A=[0 11 -5;-2 17 -7;-4 26 -10];V0=[1,1,1]';[k,lambda,Vk,Wc]=wfmifa1(A,V0, 0.99999999999997,0.001,100) 运行后屏幕显示结果请注意迭代次数k,特征值的近似值lambda,对应的特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:k = 3 lambda = 1.00000000000000 Wc =5.412337245047640e-016Vk = 0.50000000000000 0.50000000000000 1.00000000000000 Wc = 4.317692037236759e-013 Vk =0.500000000000000.500000000000001.000000000000005.4 雅可比(Jacobi)方法及其MATLAB 程序5.4.3 雅可比方法的MATLAB 程序用雅可比方法计算对称矩阵A 的特征值和对应的特征向量的MATLAB 主程序function [k,Bk,V,D,Wc]=jacobite(A,jd,max1)[n,n]=size(A);Vk=eye(n);Bk=A;state=1;k=0;P0=eye(n); Aij=abs(Bk-diag(diag(Bk)));[m1 i]=max(Aij);[m2 j]=max(m1);i=i(j);while ((k<=max1)&(state==1))k=k+1,aij=abs(Bk-diag(diag(Bk)));[m1 i]=max(abs(aij));[m2 j]=max(m1);i=i(j),j,Aij=(Bk-diag(diag(Bk)));mk=m2*sign(Aij(i,j)),Wc=m2,Dk=diag(diag(Bk));Pk=P0;c=(Bk(j,j)-Bk(i,i))/(2*Bk(i,j)),t=sign(c)/(abs(c)+sqrt(1+c^2)),pii=1/( sqrt(1+t^2)), pij=t/( sqrt(1+t^2)),Pk(i,i)=pii;Pk(i,j)=pij;Pk(j,j)=pii; Pk(j,i)=-pij;Pk,B1=Pk'*Bk;B2=B1*Pk; Vk=Vk*Pk,Bk=B2,if (Wc>jd)state=1;elsereturnendPk;Vk;Bk=B2;Wc;endif (k>max1)disp('请注意迭代次数k 已经达到最大迭代次数max1,迭代次数k,对称矩阵Bk,以特征向量为列向量的矩阵V,特征值为对角元的对角矩阵D 如下:')elsedisp('请注意迭代次数k,对称矩阵Bk,以特征向量为列向量的矩阵V,特征值为对角元的对角矩阵D 如下:')endWc;k=k; V=Vk;Bk=B2;D=diag(diag(Bk));[V1,D1]=eig(A,'nobalance')例5.4.2 用雅可比方法的MATLAB 程序计算矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=12101152302756135612A 的特征值i λ和对应的特征向量i X (4,3,2,1=i ).解 (1)保存名为jacobite.m 为M 文件;(2)输入MATLAB 程序>> A=[12 -56 3 -1;-56 7 2 0;3 2 5 1;-1 0 1 12];[k,B,V,D,Wc]=jacobite(A,0.001,100)(3)运行后屏幕显示如下:k = i = j = mk = Wc =1 2 1 -56 56c = t =-0.04464285714286 -0.95635313919972pii = pij =0.72270271801843 -0.69115901308510Pk =0.72270271801843 0.69115901308510 0 0 -0.69115901308510 0.72270271801843 0 0 0 0 1.00000000000000 00 0 0 1.00000000000000Vk =0.72270271801843 0.69115901308510 0 0 -0.69115901308510 0.72270271801843 0 00 0 1.00000000000000 00 0 0 1.00000000000000Bk =65.55577579518456 0 0.78579012788509 -0.72270271801843 -0.00000000000001 -46.55577579518456 3.51888247529217 -0.691159013085100.78579012788509 3.51888247529217 5.00000000000000 1.00000000000000 -0.72270271801843 -0.69115901308510 1.00000000000000 12.00000000000000 k =i = j = mk = Wc =2 3 2 3.51888247529217 3.51888247529217c = t =-7.32558932518824 -0.06793885568129pii = pij =0.99770011455446 -0.06778260409592Pk =1.00000000000000 0 0 00 0.99770011455446 0.06778260409592 00 -0.06778260409592 0.99770011455446 00 0 0 1.00000000000000Vk =0.72270271801843 0.68956942653035 0.04684855775127 0 -0.69115901308510 0.72104058455581 0.04898667221449 00 -0.06778260409592 0.99770011455446 00 0 0 1.00000000000000Bk =65.55577579518456 -0.05326290114092 0.78398290060672 -0.72270271801843 -0.05326290114093 -46.79484464383285 0 -0.757352030626270.78398290060672 0.00000000000000 5.23906884864829 0.95085155680318 -0.72270271801843 -0.75735203062627 0.95085155680318 12.00000000000000 k = i = j = mk = Wc =3 4 3 0.95085155680318 0.95085155680318c = t =-3.55519802380213 -0.13796227443116pii = pij =0.99061693994324 -0.13666776612460Pk =1.00000000000000 0 0 00 1.00000000000000 0 00 0 0.99061693994324 0.136667766124600 0 -0.13666776612460 0.99061693994324 Vk =0.72270271801843 0.68956942653035 0.04640897492032 0.00640268773403 -0.69115901308510 0.72104058455581 0.04852702732712 0.006694899061430 -0.06778260409592 0.98833863446096 0.136353445918420 0 -0.13666776612460 0.99061693994324 Bk =65.55577579518456 -0.05326290114092 0.87539690801061 -0.60877636330628 -0.05326290114093 -46.79484464383285 0.10350561019562 -0.750245751038800.87539690801061 0.10350561019562 5.10788720522532 -0.00000000000000 -0.60877636330628 -0.75024575103880 -0.00000000000000 12.13118164342297 k =i = j = mk = Wc =4 1 3 0.87539690801061 0.87539690801061c = t =-34.52598931799430 -0.01447880833914pii = pij =0.99989519853186 -0.01447729093877Pk =0.99989519853186 0 -0.01447729093877 00 1.00000000000000 0 00.01447729093877 0 0.99989519853186 00 0 0 1.00000000000000Vk =0.72329885394465 0.68956942653035 0.03594133368062 0.00640268773403 -0.69038403871280 0.72104058455581 0.05852805174080 0.006694899061430.01430846595712 -0.06778260409592 0.98823505512105 0.13635344591842-0.00197857901214 0 -0.13665344314206 0.99061693994324Bk =65.56845049923633 -0.05175883827808 -0.00000000000000 -0.60871256264964-0.05175883827809 -46.79484464383285 0.10426586517177 -0.75024575103880-0.00000000000000 0.10426586517177 5.09521250117356 0.00881343252823-0.60871256264964 -0.75024575103880 0.00881343252823 12.13118164342297 k = i = j = mk = Wc =5 4 2 -0.75024575103880 0.75024575103880c = t =39.27114962375084 0.01272992971264pii = pij =0.99991898429114 0.01272889838836Pk =1.00000000000000 0 0 00 0.99991898429114 0 -0.012728898388360 0 1.00000000000000 00 0.01272889838836 0 0.99991898429114Vk =0.72329885394465 0.68959505973603 0.03594133368062 -0.00237529014628-0.69038403871280 0.72106738763160 0.05852805174080 -0.002483695665250.01430846595712 -0.06604148348220 0.98823505512105 0.13720519702737-0.00197857901214 0.01260946237032 -0.13665344314206 0.99053668440964Bk =65.56845049923633 -0.05950288535679 -0.00000000000000 -0.60800441437674-0.05950288535680 -46.80439521951078 0.10436960328590 0.00000000000000-0.00000000000000 0.10436960328590 5.09521250117356 0.00748552889860-0.60800441437674 0.00000000000000 0.00748552889860 12.14073221910090 k =i = j = mk = Wc =6 4 1 -0.60800441437674 0.60800441437674c = t =-43.93694931878409 -0.01137847012503pii = pij =0.99993527149402 -0.01137773361366Pk =0.99993527149402 0 0 0.011377733613660 1.00000000000000 0 00 0 1.00000000000000 0-0.01137773361366 0 0 0.99993527149402Vk =0.72327906130899 0.68959505973603 0.03594133368062 0.00585436528595-0.69031109235777 0.72106738763160 0.05852805174080 -0.010338540582940.01274645560931 -0.06604148348220 0.98823505512105 0.13735911385404-0.01324851347145 0.01260946237032 -0.13665344314206 0.99045005670500Bk =65.57536865930122 -0.05949903382392 -0.00008516835377 -0.00000000000000-0.05949903382393 -46.80439521951078 0.10436960328590 -0.00067700797883-0.00008516835377 0.10436960328590 5.09521250117356 0.00748504437150-0.00000000000000 -0.00067700797883 0.00748504437150 12.13381405903603 k =i = j = mk = Wc =7 3 2 0.10436960328590 0.10436960328590c = t =-2.486337309269764e+002 -0.00201098208240pii = pij =0.99999797798167 -0.00201097801616Pk =1.00000000000000 0 0 00 0.99999797798167 0.00201097801616 00 -0.00201097801616 0.99999797798167 00 0 0 1.00000000000000…………………………………………………………………………请注意迭代次数k,对称矩阵Bk,以特征向量为列向量的矩阵V,特征值为对角元的对角矩阵D 如下:V1 =0.68990429476497 -0.03732423222484 0.00588594854431 -0.722913771734500.72058252860300 -0.05998661236737 -0.01028322161977 0.69069289931337-0.06802029759277 -0.98795368410472 0.13841044442471 -0.012779125692250.01288885768193 0.13768088498200 0.99030407443219 0.01325486405899D1 =-46.80463661419736 0 0 00 5.09541442877727 0 00 0 12.13382202426702 00 0 0 65.57540016115307k =10B =65.57540016045945 0.00000000000175 -0.00020481967566 0.000000148628360.00000000000175 -46.80463661419739 0.00000062739984 0.00000000000000-0.00020481967566 0.00000062739984 5.09541442947090 -0.000000000007370.00000014862836 -0.00000000000000 -0.00000000000737 12.13382202426704V =0.72291389811507 0.68990429521617 0.03732177568689 0.00588595055487-0.69069269613201 0.72058252932816 0.05998894273570 -0.010283223540620.01278247108107 -0.06802028564977 0.98795364164379 0.13841044446122-0.01325533307898 0.01288885601755 -0.13768084024946 0.99030407439520D =65.57540016045945 0 0 00 -46.80463661419739 0 00 0 5.09541442947090 00 0 0 12.13382202426704Wc =6.920584967017158e-0045.5 豪斯霍尔德(Householder)方法及其MATLAB程序5.5.1 豪斯霍尔德方法及其MATLAB程序求初等反射矩阵P,使得PX的第一个分量以外的其余的分量都为零的MATLAB主程序function [xigema,rou,miou,P,PX]=Householder(X)n=size(X);nX=norm(X,2);xigema=nX*sign(X(1));rou=xigema*(xigema+X(1));miou=[xigema,zeros(1,n-1)]'+X,E=eye(n,n); C=2*miou*(miou)';P=E-C/(norm(miou,2)^2); PX=P*X;例5.5.1设向量=X()T1,2,2,确定一个初等反射矩阵P,使得PX的后两个分量为零.解输入MATLAB程序>> X=[2 2 1]'; [xigema,rou,miou,P,PX]=Householder(X)运行后屏幕显示结果P = PX =-0.6667 -0.6667 -0.3333 -3.0000-0.6667 0.7333 -0.1333 0.0000-0.3333 -0.1333 0.9333 0.00005.5.2 矩阵约化为上豪斯霍尔德矩阵及其MATLAB程序用豪斯霍尔德变换将n阶矩阵A规约成上豪斯霍尔德矩阵的MATLAB主程序function [k,Sk,uk,ck,Pk,Uk,Ak]=Householdrer1(A)n=size(A); Ak=A;for k=1:n-2k,Sk=norm(Ak(k+1:n,k))*sign(Ak(k+1,k)),uk= Ak(k+1:n,k)+ Sk*eye(n-k,1),ck=(norm(uk,2)^2)/2,Pk= eye(n-k,n-k)-uk*uk'/ck,Uk=[eye(k,k),zeros(k,n-k);zeros(n-k, k),Pk],A1=Uk*Ak;Ak=A1,end例5.5.3 用初等反射矩阵正交相似约化实矩阵A 为上豪斯霍尔德矩阵.其中⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=34 19- 37 78- 41- 31 11 72- 98 10.2- 78- 32-94- 21 12 1 0 1- 63- 72 1 5 2 3 17- 32 02 7 56- 51- 17 12- 34 52- 12A . 解 输入MATLAB 程序>> A=[12 -52 34 -12 17 -51;-56 7 2 0 32 -17;3 2 5 1 72 -63;-1 0 1 12 21 -94;-32 -78 -10.2 98 -72 11;31 -41 -78 37 -19 34];[k,Sk,uk,ck,Pk,Uk,Ak]=Householdrer1(A)运行后屏幕显示结果k = Sk = ck =1 -71.6310 9.1423e+003uk = Pk =-127.6310 -0.7818 0.0419 -0.0140 -0.4467 0.43283.0000 0.0419 0.9990 0.0003 0.0105 -0.0102-1.0000 -0.0140 0.0003 0.9999 -0.0035 0.0034-32.0000 -0.4467 0.0105 -0.0035 0.8880 0.108531.0000 0.4328 -0.0102 0.0034 0.1085 0.8949Uk =1.0000 0 0 0 0 00 -0.7818 0.0419 -0.0140 -0.4467 0.43280 0.0419 0.9990 0.0003 0.0105 -0.01020 -0.0140 0.0003 0.9999 -0.0035 0.00340 -0.4467 0.0105 -0.0035 0.8880 0.10850 0.4328 -0.0102 0.0034 0.1085 0.8949Ak =12.0000 -52.0000 34.0000 -12.0000 17.0000 -51.000071.6310 11.7128 -30.5678 -27.8930 1.6473 21.76430.0000 1.8892 5.7655 1.6556 72.7134 -63.9112-0.0000 0.0369 0.7448 11.7815 20.7622 -93.6963-0.0000 -76.8184 -18.3655 91.0066 -79.6101 20.71910.0000 -42.1447 -70.0897 43.7749 -11.6277 24.5846k = Sk = ck =2 87.6402 7.8464e+003uk = Pk =89.5295 -0.0216 -0.0004 0.8765 0.48090.0369 -0.0004 1.0000 0.0004 0.0002-76.8184 0.8765 0.0004 0.2479 -0.4126-42.1447 0.4809 0.0002 -0.4126 0.7736Uk =1.0000 0 0 0 0 00 1.0000 0 0 0 00 0 -0.0216 -0.0004 0.8765 0.48090 0 -0.0004 1.0000 0.0004 0.00020 0 0.8765 0.0004 0.2479 -0.41260 0 0.4809 0.0002 -0.4126 0.7736Ak =12.0000 -52.0000 34.0000 -12.0000 17.0000 -51.000071.6310 11.7128 -30.5678 -27.8930 1.6473 21.7643-0.0000 -87.6402 -49.9272 100.7790 -76.9476 31.4002-0.0000 -0.0000 0.7219 11.8223 20.7005 -93.6570-0.0000 0.0000 29.4202 5.9564 48.8026 -61.06030.0000 0.0000 -43.8731 -2.8860 58.8230 -20.2818…………………………………………………………………………k = Sk = ck =4 -12.2088 195.0398uk = Pk =-15.9753 -0.3085 0.951211.6133 0.9512 0.3085Uk =1.0000 0 0 0 0 00 1.0000 0 0 0 00 0 1.0000 0 0 00 0 0 1.0000 0 00 0 0 0 -0.3085 0.95120 0 0 0 0.9512 0.3085Ak =12.0000 -52.0000 34.0000 -12.0000 17.0000 -51.000071.6310 11.7128 -30.5678 -27.8930 1.6473 21.7643-0.0000 -87.6402 -49.9272 100.7790 -76.9476 31.40020.0000 -0.0000 -52.8292 -5.8754 21.3902 18.44030.0000 0.0000 0.0000 12.2088 40.2435 -106.81340.0000 0.0000 -0.0000 0.0000 64.7555 -34.09095.5.3 实对称矩阵的三对角化及其MATLAB程序将n阶实对称矩阵A规约成三对角形式的MATLAB主程序function T=house(A)[n,n]=size(A);for k=1:n-2s=norm(A(k+1:n,k),2);if (A(k+1,k)<0)s=-s;endr=sqrt(2*s*(A(k+1,k)+s));U(1:k)=zeros(1,k);U(k+1)=(A(k+1,k)+s)/r;U(k+2:n)=A(k+2:n,k)'/r;V(1:k)=zeros(1,k);V(k+1:n)=A(k+1:n,k+1:n)*U(k+1:n)';C=U(k+1:n)*V(k+1:n)';P(1:k)=zeros(1,k);P(k+1:n)=V(k+1:n)-C*U(k+1:n);A(k+2:n,k)=zeros(n-k-1,1);A(k,k+2:n)=zeros(1,n-k-1);A(k+1,k)=-s; A(k,k+1)=-s;A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-2*U(k+1:n)'*P(k+1:n)-2*P( k+1:n)'*U(k+1:n);endT=A;例5.5.4 用初等反射矩阵正交相似约化实对称矩阵A为三对角矩阵.其中⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------------=5261215121416134237299021237312611451721253233219612371564901435612A 解 输入MATLAB 程序>> A=[12 -56 3 -14 -90 -4;-56 71 23 61 -9 -21;3 23 53 12 -72 51;-14 61 12 73 23 21;-90 -9 -72 23 -34 -61;-41 -21 51 21 -61 -52];T=house(A)运行后屏幕显示结果T =12.0000 114.5513 0 0 0 0114.5513 -43.2395 -108.2763 0 0 00 -108.2763 49.7411 -22.7766 0 00 0 -22.7766 40.2476 -89.1355 00 0 0 -89.1355 44.9606 39.30900 0 0 0 39.3090 19.29025.6 QR 方法及其MATLAB 程序5.6.5 最末元位移QR 法计算实对称矩阵特征值及其MATLAB 程序用最末元位移QR 方法求实对称矩阵A 全部特征值的MATLAB 主程序function tzg=qr4(A,t,max1)[n,n]=size(A); k=0;Ak=A;tzg=zeros(n); state=1;for i=1:n;while ((k<=max1)&(state==1)&(n>1))b1=abs(Ak(n,n-1)); b2=abs(Ak(n,n));b3=abs(Ak(n-1,n-1));b4=min(b2, b3); jd=10^(-t); jd1=jd*b4;if (b1>=jd1)sk=Ak(n,n); Bk=Ak-sk*eye(n); [Qk,Rk]=qr(Bk);At=Rk*Qk+sk*eye(n); k=k+1;tzgk=Ak(n,n);disp('请注意:下面的i 表示求第i 个特征值,k 是迭代次数,sk 是原点位移量,')disp(' Bk=Ak-sk*eye(n),Qk 和Rk 是Bk 的QR 分解,At=Rk*Qk+sk*eye(n)迭代矩阵:')i,state=1;k,sk,Bk,Qk,Rk,At,Ak=At;elsedisp('请注意:i 表示求第i 个特征值,tzgk 是矩阵A 的特征值的近似值,k 是迭代次数,')disp(' 下面的矩阵B 是m 阶矩阵At 的(m-1)阶主子矩阵,即At 降一阶.')i,tzgk=Ak(n,n),tzg(n,1)=tzgk;k=k,sk,Ak;B=Ak(1:n-1,1:n-1),Ak=B;n=n-1;state==1; i=i+1;endendendtzg(1,1)=Ak;tzg=sort(tzg(:,1));tzgk=Akdisp('请注意:n 阶实对称矩阵A 的全部真特征值lamoda 和至少含t个有效数字的近似特征值tzg 如下:')lamoda=sort(eig(A))例5.6.5 用最末元位移QR 方法求下列实对称矩阵的全部近似特征值,并将计算结果与A 全部真特征值比较.其中,2 1 1 1 1 3 1 21 1 4- 21 2 2 5)1(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 精度为=ε510-; ,52612151214161342372990212373126114517212532332196123715641901435612)2(⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------------=A 精度为=ε410-.解 (1)首先保存用最末元位移QR 方法求实对称矩阵A 全部特征值的MATLAB 主程序为M 文件,取名为qr4.m.在MATLAB 工作窗口输入程序>> A=[5 2 2 1;2 -4 1 1;2 1 3 1;1 1 1 2]; tzg=qr4(A,5,100) 运行后屏幕显示结果请注意:下面的i 表示求第i 个特征值,k 是迭代次数,sk 是原点位移量,Bk=Ak-sk*eye(n),Qk 和Rk 是Bk 的QR 分解,At=Rk*Qk+sk*eye(n)迭代矩阵:i =1k =1sk =2Bk =3 2 2 12 -6 1 12 1 1 11 1 1 0Qk =-0.70710678118655 0.38807526285317 0.12674485010490 -0.57735026918963-0.47140452079103 -0.87963726246718 0.06337242505245 0-0.47140452079103 0.20697347352169 -0.63372425052448 0.57735026918963-0.23570226039552 0.18110178933148 0.76046910062937 0.57735026918963 Rk =-4.24264068711929 0.70710678118655 -2.59272486435067 -1.649915822768610 6.44204936336256 0.28458852609232 -0.284588526092320 0 0.44360697536713 -0.443606975367130 0 0 0.00000000000000At =6.27777777777778 -3.10388935193069 -0.10455916682125 0.00000000000000-3.10388935193069 -3.65930388219545 0.01147685957127 0.00000000000000-0.10455916682125 0.01147685957127 1.38152610441767 0.00000000000000 -0.00000000000000 0.00000000000000 0.00000000000000 2.00000000000000 请注意:i 表示求第i 个特征值,tzgk 是矩阵A 的特征值的近似值,k 是迭代次数,下面的矩阵B 是m 阶矩阵At 的(m-1)阶主子矩阵,即At 降一阶.i =1tzgk =2.00000000000000k =1sk =2B =6.27777777777778 -3.10388935193069 -0.10455916682125-3.10388935193069 -3.65930388219545 0.01147685957127-0.10455916682125 0.01147685957127 1.38152610441767请注意:下面的i 表示求第i 个特征值,k 是迭代次数,sk 是原点位移量,Bk=Ak-sk*eye(n),Qk和Rk是Bk的QR分解,At=Rk*Qk+sk*eye(n)迭代矩阵:i =2k =2sk =1.38152610441767Bk =4.89625167336011 -3.10388935193069 -0.10455916682125-3.10388935193069 -5.04082998661312 0.01147685957127-0.10455916682125 0.01147685957127 0Qk =-0.84445320114929 -0.53537837009187 0.016394874396770.53532568873289 -0.84460953959679 -0.007818734217300.01803324849744 0.00217404228940 0.99983502413586Rk =-5.79813264571247 -0.07718952005739 0.094439180886190 5.91931326753920 0.046285251232420 0 -0.00180396892170At =6.23815929000691 3.16959512520840 -0.000032531419853.16959512520840 -3.61788172311421 -0.00000392190472-0.00003253141985 -0.00000392190472 1.37972243310730请注意:i表示求第i个特征值,tzgk是矩阵A的特征值的近似值,k是迭代次数,下面的矩阵B是m阶矩阵At的(m-1)阶主子矩阵,即At降一阶.i =2tzgk =1.37972243310730k =2sk =1.38152610441767B =6.23815929000691 3.169595125208403.16959512520840 -3.61788172311421请注意:下面的i表示求第i个特征值,k是迭代次数,sk是原点位移量,Bk=Ak-sk*eye(n),Qk和Rk是Bk的QR分解,At=Rk*Qk+sk*eye(n)迭代矩阵:i =3k =3sk =-3.61788172311421Bk =9.85604101312112 3.169595125208403.16959512520840 0Qk =-0.95198403663348 -0.30614766697629-0.30614766697629 0.95198403663348Rk =-10.35315786173815 -3.017403961789690 -0.97036415284199At =7.16193047323385 0.297074721510000.29707472151000 -4.54165290634115请注意:下面的i表示求第i个特征值,k是迭代次数,sk是原点位移量,Bk=Ak-sk*eye(n),Qk和Rk是Bk的QR分解,At=Rk*Qk+sk*eye(n)迭代矩阵:i =3k =4sk =-4.54165290634115Bk =11.70358337957500 0.297074721510000.29707472151000 0。
幂法反幂法求解矩阵最大最小特征值及其对应的特征向量
幂法反幂法求解矩阵最大最小特征值及其对应的特征向量幂法是一种迭代算法,用于求解矩阵的最大特征值及其对应的特征向量。
反幂法是幂法的一种变体,用于求解矩阵的最小特征值及其对应的特征向量。
两种方法在求解特征值问题时有相似的步骤,但反幂法需要对矩阵进行一定的变换。
幂法的基本思想是通过不断迭代的方式逼近矩阵的最大特征值及其对应的特征向量。
求解的过程如下:1.随机选择一个初始向量x0,并进行归一化,即使其模长为12. 根据公式计算新的向量xk+1 = Axk,其中A为待求解特征值的矩阵。
3. 对xk+1进行归一化。
4. 计算矩阵A关于xk+1的雷神特征值λk+1 = (Axk+1)·xk+1 / xk+1·xk+1,其中·表示向量的内积。
5.重复步骤2至4,直到满足收敛条件。
幂法的收敛条件一般是设置一个精度,当迭代的过程中特征向量的变化小于该精度时,认为结果已经收敛。
最终得到的特征值就是矩阵A的最大特征值,对应的特征向量为收敛时的xk+1反幂法是对幂法的一种改进,用于求解矩阵的最小特征值及其对应的特征向量。
反幂法的基本思想是通过将矩阵A的特征值问题转化为矩阵B=(A-μI)^-1的特征值问题来求解,其中μ为一个非常接近待求解特征值的数。
求解的过程如下:1.随机选择一个初始向量x0,并进行归一化,即使其模长为12. 根据公式求解新的向量xk+1 = (A-μI)^-1xk,其中A为待求解特征值的矩阵,μ为一个非常接近待求解特征值的数。
3. 对xk+1进行归一化。
4. 计算矩阵B关于xk+1的雷神特征值λk+1 = (Bxk+1)·xk+1 / xk+1·xk+1,其中·表示向量的内积。
5.重复步骤2至4,直到满足收敛条件。
反幂法的收敛条件与幂法相似,一般也是设置一个精度。
最终得到的特征值就是矩阵A的最小特征值,对应的特征向量为收敛时的xk+1总结:幂法和反幂法是求解矩阵最大最小特征值的常用迭代算法。
幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量
数值计算解矩阵的按模最大最小特征值及对应的特征向量一.幂法1. 幂法简介:当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。
矩阵A 需要满足的条件为:(1) 存在n 个线性无关的特征向量,设为n x x x ,...,,211.1计算过程:i n i i i u xx αα,1)0()0(∑==,有对任意向量不全为0,则有 可见,当||12λλ越小时,收敛越快;且当k 充分大时,有1)1111)11111λαλαλ=⇒⎪⎩⎪⎨⎧==+++(k )(k k (k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。
2 算法实现3 matlab 程序代码function [t,y]=lpowerA,*0,eps,N) % t 为所求特征值,y 是对应特征向量k=1;z=0; % z 相当于λy=*0./ma*(abs(*0)); % 规化初始向量*=A*y; % 迭代格式b=ma*(*); % b 相当于 βif abs(z-b)<eps % 判断第一次迭代后是否满足要求t=ma*(*);return ;endwhile abs(z-b)>eps && k<Nk=k+1;z=b;y=*./ma*(abs(*));*=A*y;b=ma*(*);end[m,inde*]=ma*(abs(*)); % 这两步保证取出来的按模最大特征值t=*(inde*); % 是原值,而非其绝对值。
end4 举例验证选取一个矩阵A ,代入程序,得到结果,并与eig(A)的得到结果比拟,再计算A*y-t*y ,验证y 是否是对应的特征向量。
结果如下:结果正确,说明算法和代码正确,然后利用此程序计算15阶Hilb 矩阵,与eig(A)的得到结果比拟,再计算 A*y-t*y ,验证y 是否是对应的特征向量。
设置初始向量为*0=ones(15,1),结果显示如下可见,结果正确。
幂法和反幂法的matlab实现
幂法求矩阵主特征值及对应特征向量摘要矩阵特征值的数值算法,在科学和工程技术中很多问题在数学上都归结为矩阵的特征值问题,所以说研究利用数学软件解决求特征值的问题是非常必要的。
实际问题中,有时需要的并不是所有的特征根,而是最大最小的实特征根。
称模最大的特征根为主特征值。
幂法是一种计算矩阵主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,它最大的优点是方法简单,特别适用于大型稀疏矩阵,但有时收敛速度很慢。
用java来编写算法。
这个程序主要分成了四个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块;第四部分为页面设计及事件处理。
其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。
关键字:主特征值;特征向量;线性方程组;幂法函数块POWER METHOD FOR FINDING THE EIGENVALUES AND CORRESPONDING EIGENVECTORS OF THEMATRIXABSTRACTNumerical algorithm for the eigenvalue of matrix, in science and engineering technology, a lot of problems in mathematics are attributed matrix characteristic value problem, so that studies using mathematical software to solve the eigenvalue problem is very necessary. In practical problems, sometimes need not all eigenvalues, but the maximum and minimum eigenvalue of real. The characteristic value of the largest eigenvalue of the modulus maximum.Power method is a calculation of main features of the matrix values (matrix according to the characteristics of the largest value) and the corresponding eigenvector of iterative method. It is the biggest advantage is simple method, especially for large sparse matrix, but sometimes the convergence speed is very slow.Using java to write algorithms. This program is divided into three parts: the first part is the matrix is transformed into linear equations; the second part for the sake of feature vector of the maximum; the third part is the exponentiation function block. The fourth part is the page design and event processing .The basic process is a power law function block by calling the matrix is transformed into linear equations method, after a series of validation and iteration results.Power method for finding the eigenvalues and corresponding eigenvectors of the matrixKey words: Main eigenvalue; characteristic vector; linear equations; power function block、目录1幂法 (1)1.1幂法的基本理论和推导 (1)1.2幂法算法的迭代向量规范化 (2)2概要设计 (3)2.1设计背景 (3)2.2运行流程 (3)2.3运行环境 (3)3程序详细设计 (4)3.1矩阵转化为线性方程组 (4)3.2特征向量的极大值 (4)3.3求幂法函数块............….....…………...…......…………………………3.4界面设计与事件处理............….....…………...…......…………………………4 运行过程及结果 (6)4.1 运行过程.........................................................………………………………………. .64.2 运行结果 (6)4.3 结果分析 (6)5结论 (7)参考文献 (8)附录 (56)1 幂法设实矩阵n n ij a A ⨯=)(有一个完备的特征向量组,其特征值为n λλλ ,,21,相应的特征向量为n x x x ,,21。
第10章 MATLAB 特征值与特征向量的计算
= Aν =
∑ α i时,
k 消元? ν ( k ) ≈ λ 1 α 1 x 1 + λ k α 2 x 2 , 消元 2 v v v k ν ( k + 1 ) ≈ λ 1 + 1α 1 x 1 + λ k + 1α 2 x 2 , 2 降次? 降次 v (k + 2) v v k+2 k+2 ν ≈ λ1 α 1 x1 + λ 2 α 2 x 2 ,
R(i, j ) =
(4) 以A1代替 ,重复 代替A,重复(1),(2),(3),直至 ij|<ε ,直至|a < (i≠j)时为止.此时 k中对角线元素即为所求 时为止. 时为止 此时A 对角线元素即为所求 的特征值,逐步变换矩阵R 的特征值,逐步变换矩阵 l,R2,…,Rk的乘积 列向量即为所求的特征向量 即为所求的特征向量. Uk=R1R2...Rk 的列向量即为所求的特征向量
v x i( k +2 ) + v x l( k +2 ) +
v v px i( k + 1) + qx i( k ) = 0 其余分量是否也满足 p = −(λ1 + λ2 ) v v q = λ1λ2 关系式? px l( k + 1) + qx l( k ) = 0 关系式 若满足
的两个根: 即, λ1 和λ2是方程λ2 + pλ + q=0 的两个根
ν ( 0) = ∑ α i xi ,
i =1
v
n
v
α1 ≠ 0
v
ν (k )
v
ν
v (1) v (2)
= Aν
matlab幂法求特征值和特征向量方法实现和函数表示
matlab幂法求特征值和特征向量方法实现和函数表示1. 引言在数值分析中,求解特征值和特征向量是一项重要而且经常出现的任务。
特征值和特征向量在矩阵和线性代数中有着广泛的应用,涉及到许多领域,如机器学习、信号处理、结构动力学等。
在matlab中,幂法是一种常用的求解特征值和特征向量的方法,同时也有对应的函数可以实现这一过程。
2. 幂法的原理幂法是一种迭代方法,它利用矩阵的特征值和特征向量的性质,通过不断地迭代计算,逼近矩阵的主特征值和对应的特征向量。
具体来说,假设A是一个n阶矩阵,它的特征值λ1>λ2≥...≥λn,并且对应着线性无关的特征向量v1,v2,...,vn。
如果选择一个任意的非零初始向量x0,并进行以下迭代计算:```x(k+1) = Ax(k) / ||Ax(k)||```其中,||.||表示向量的模长。
不断迭代计算后,x(k)将收敛到矩阵A的主特征向量v1上,并且相应的特征值即为A的主特征值λ1。
3. matlab实现幂法求解特征值和特征向量在matlab中,幂法的实现也非常简单。
可以使用自带的eig函数,该函数可以直接求解矩阵的特征值和特征向量。
使用方法如下:```[V,D] = eig(A)```其中,A为待求解的矩阵,V为特征向量矩阵,D为特征值矩阵。
利用eig函数,即可一步到位地求解矩阵的特征值和特征向量,非常简单方便。
4. 函数表示幂法求解特征值和特征向量的过程可以表示为一个matlab函数。
通过封装相关的迭代算法和收敛判据,可以方便地实现幂法的函数表示。
可以定义一个名为powerMethod的函数:```matlabfunction [lambda, v] = powerMethod(A, x0, maxIter, tol)% 初始化k = 1;x = x0;% 迭代计算while k <= maxItery = A * x;lambda = norm(y, inf);x = y / lambda;% 检查收敛性if norm(A * x - lambda * x) < tolbreak;endk = k + 1;endv = x;end```利用这个函数,就可以自己实现幂法求解特征值和特征向量的过程。
矩阵特征值与特征向量的计算
第九章矩阵特征值与特征向量的计算教学目的与要求:掌握用幂法和反幂法求矩阵特征值与特征向量的方法,了解 Jacobi 方法的适用范围和使用方法。
重点和难点:幂法和反幂法■ 教学内容:§1 幂法和反幂法一、幂法幂法的基本思想是给定初始向量(00≠x , 由迭代公式产生向量序列(1( (0,1, 2, +==L k k x Ax k {}(k x :上述向量称为迭代向量。
(1(0(22(0( (0 ⎧=⎪=⎪⎪⎨⎪=⎪⎪⎩LLLLk k x Ax x A x x A x 于是由上式得(1 ( 1(01111( λ++++k i u ======∑∑nnk k k k i i i i i i x Ax A x A a u a 11121112211[]λλλλλ+++⎛⎞⎛⎞=+++⎜⎟⎜⎟⎝⎠⎝⎠L k k k n n n a u a u a u设 ,由10a ≠1(2,3, , i i n λλ>=L 得 1 1lim 0λλ+→∞⎛⎞=⎜⎟⎝⎠k i i i k a u ,于是 121lim 0λλ+→∞=⎛⎞=⎜⎟⎝⎠∑k ni i i k i a u故只要 k 充分大,就有 (1111111121[]λλλ+++=⎛⎞=+≈⎜⎟⎝⎠∑nk k k i i i i 1λx a u a u a u 因此, 可以近似作为与(1 +k x 1λ相应的特征向量。
下面我们通过特征向量来计算特征值1λ。
用 ( k i x 表示的第 i 个分量,由于( k x (1 1111(111( ( λλ++≈k k i i k k i i x a x a u u ,所以 (11( (1,2, , λ+≈=L k i k ix i n x 上式这种由已知非零向量及矩阵 (0x A 的乘幂构造向量序列 kA {}( k x 用来计算矩阵 A 按模最大的特征值1λ与对应的特征向量的方法称为幂法。
例 1 用幂法的规范运算求矩阵的按模最大的特征值及对应的特征向量。
数值分析课程设计+幂法与反幂法MATLAB
一、问题的描述及算法设计(一)问题的描述本次课程设计我所要做的课题是:对称矩阵的条件数的求解设计 1、求矩阵A 的二条件数问题 A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----210121012 2、设计内容: 1)采用幂法求出A 的. 2)采用反幂法求出A 的.3)计算A 的条件数 ⅡA Ⅱ2* ⅡA -1Ⅱ2=cond2(A )=/.(精度要求为10-6)3、设计要求 1)求出ⅡA Ⅱ2。
2)并进行一定的理论分析。
(二)算法设计1、幂法算法(1)取初始向量u )0((例如取u )0(=(1,1,…1)T ),置精度要求ε,置k=1. (2)计算v )(k =Au )1(-k ,m k =max(v )(k ), u )(k = v )(k / m k(3)若| m k = m 1-k |<ε,则停止计算(m k 作为绝对值最大特征值1λ,u )(k 作为相应的特征向量)否则置k=k+1,转(2) 2、反幂法算法(1)取初始向量u )0((例如取u )0(=(1,1,…1)T ),置精度要求ε,置k=1. (2)对A 作LU 分解,即A=LU(3)解线性方程组 Ly )(k =u )1(-k ,Uv )(k =y )(k (4)计算m k =max(v )(k ), u )(k = v )(k / m k(5)若|m k =m 1-k |<ε,则停止计算(1/m k 作为绝对值最小特征值n λ,u )(k 作为相应的特征向量);否则置k=k+1,转(3).二、算法的流程图(一)幂法算法的流程图(二)反幂法算法的流程图三、算法的理论依据及其推导(一)幂法算法的理论依据及推导幂法是用来确定矩阵的主特征值的一种迭代方法,也即,绝对值最大的特征值。
稍微修改该方法,也可以用来确定其他特征值。
幂法的一个很有用的特性是它不仅可以生成特征值,而且可以生成相应的特征向量。
实际上,幂法经常用来求通过其他方法确定的特征值的特征向量。
幂法和反幂法求矩阵特征值课程
n=length(A);
index=0;
k=0;
m1=0;
m0=0;
I=eye(n);
T=A-m0*I;
while k<=it_max
v=T*u;
[vmax,i]=max(abs(v));
m=v(i);
u=v/m;
if abs(m-m1)<ep;
index=1;
break;
end
m=m+m0;
m1=m;
k=k+1;
end
在matlab输入面板,输入
A=rand(4);%产生一个4维随机矩阵
B=A+A’;
u=[1 1 1 1]’;%设立初始向量
[m,u,index,k]=pow(B,u,ep,it_max)%最多可省略2个参数
程序结束。
在M文件中可以通过改变m0的值改变原点位移,从而达到原点位移加速。
2、对于幂法的定理
按式(1)计算出m 和u 满足
m = , u =
(二)反幂法算法的理论依据及推导
反幂法是用来计算绝对值最小的特征值忽然相应的特征向量的方法。是对幂法的修改,可以给出更快的收敛性。
1、反幂法的迭代格式与收敛性质
设A是非奇异矩阵,则零不是特征值,并设特征值为
| |≥| |≥…≥| |>| |
4.对结果进行解释说明;
采用方法
及结果
说明
对于幂法和反幂法求解矩阵特征值和特征向量的问题将从问题分析,算法设计和流程图,理论依据,程序及结果进行阐述该问题。
一.问题的分析:
求n阶方阵A的特征值和特征向量,是实际计算中常常碰到的问题,如:机械、结构或电磁振动中的固有值问题等。对于n阶矩阵A,若存在数 和n维向量x满足
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值方法课程设计幂法反幂法计算矩阵特征值和特征向量附Matlab程序
矩阵的特征值与特征向量的计算
摘要
物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。
矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。
幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。
其基本思想是任取一个非零的初始向量。
由所求矩阵构造一向量序列。
再经过所构造的向量序列求出特征值和特征向量。
反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。
本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。
计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。
然后经过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。
关键词:矩阵;特征值;特征向量;冥法;反冥法
THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIX
ABSTRACT
Physics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and
theoretical physics in some of the problems. Matrix eigenvalue calculation is a very important part in matrix computation. In this paper, we use the power method and inverse power method to calculate the maximum of the matrix, according to the minimum characteristic vector and the corresponding characteristic value.
Power method is an iterative method to calculate the eigenvalues of a matrix. It has the advantage that the method is simple and suitable for sparse matrices, but sometimes the convergence rate is very slow. The basic idea is to take a non - zero initial vector. Construct a vector sequence from the matrix of the matrix. Then the eigenvalues and eigenvectors are obtained by using the constructed vector sequence.
The inverse power method is used to calculate the minimum feature vectors and their eigenvalues of the matrix, and to calculate the eigenvalues of the matrix. In this paper, we use the inverse power method to calculate the minimum eigenvalue of a matrix and its corresponding eigenvalues. The basic idea of calculating the minimum characteristic vector of a matrix is to transform it to the maximum characteristic vector of the modulus of the inverse matrix. Then, according to the model, the minimum feature vector of the original matrix is
introduced.
Key words: Matrix;Eigenvalue;Eigenvector;Iteration methods;
目录
1 引言............................................................
1
2 相关定理。
(1)
3 符号说明 (2)
4 冥法及反冥法 (2)
4.1冥法 (3)
4.2反冥。