初中数学动点问题及练习题附参考答案
初中数学数轴动点问题含答案
初中数学数轴动点问题含答案一.选择题(共10小题)1.如图,点A,P,Q,B在一条不完整的数轴上,点A表示数﹣3,点B表示数3.若动点P从点A出发以每秒1个单位长度向终点B匀速运动,同时动点Q从点B出发以每秒2个单位长度向终点A匀速运动,其中一点到达终点时,另一个点也随之停止运动.当BP =3AQ时,点P在数轴上表示的数是()A.2.4B.﹣1.8C.0.6D.﹣0.62.在数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q 分别从A、B同时出发,以每秒3个单位,每秒1个单位的速度向右运动.在运动过程中,线段PQ的长度始终是另一线段长的整数倍,这条线段是()A.PB B.OP C.OQ D.QB3.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发).经过几秒,点M、点N分别到原点O的距离相等?()A.2秒B.10秒C.2秒或10秒D.以上答案都不对4.如图,点A在数轴上表示的数是﹣16,点B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.4秒C.2秒或4秒D.2秒或6秒5.如图,点A在数轴上表示的数是﹣8,点B在数轴上表示的数是16.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒6.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有()A.2种B.3种C.4种D.5种7.分别表示数a和数b的点在数轴上的位置如图所示,下面4个结论中正确的个数为()①|a﹣b|=|a|+|b|②a向右运动时,|a﹣b|的值增大③当a向右运动时,|a﹣b|的值减小.④当a向右运动时,|a﹣b|的值先减小后增大.A.1个B.2个C.3个D.4个8.如图,数轴上点A,B表示的数分别为﹣40,50.现有一动点P以2个单位每秒的速度从点A向B运动,另一动点Q以3个单位每秒的速度从点B向A运动.当AQ=3PQ时,运动的时间为()A.15秒B.20秒C.15秒或25秒D.15秒或20秒9.如图,数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),则质点的不同运动方案共有()A.2种B.3种C.4种D.5种10.现有一只机器狗从数轴的原点出发,沿数轴正方向运动,这只机器狗每前进6步后,将倒退2步,设该机器狗每秒前进或后退2步,并且每步的距离是1个单位长度,x n表示第n秒时机器狗在数轴上的位置所对应的数,下列结论:①x4=4;②x7=10;③x108<x107;④x2014<x2013,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.已知,如图所示,A、B是数轴上的两个点,点A所表示的数为﹣5,点B表示的数为7,动点P以每秒4个单位长度的速度从点B向左运动,同时,动点Q、M从点A向右运动,且点M的速度是点Q速度的,当运动时间为4秒时,点M和点P之间的距离是6个单位长度,则当点P运动到点A时,动点Q所表示的数为______.12.如图,已知A,B两点在数轴上,点A表示的数为﹣10,点B表示的数为30,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N同时出发,经过______秒,点M、点N分别到原点O的距离相等.13.动点A,B分别从数轴上表示10和﹣2的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,______秒后,点A,B间的距离为3个单位长度.14.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过______秒后,M、N两点间的距离为12个单位长度.15.数轴上两点A、B所表示的数分别为a和b,且满足|a+2|+(b﹣8)2020=0.点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒7个单位的速度向左运动,点N从点B出发,以每秒10个单位的速度向右运动,P、Q分别为ME、ON 的中点.思考,在运动过程中,的值______.16.如图,已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,则t的值为______.17.已知M,N为数轴上从原点O出发的两个动点,点M每秒1个单位,点N的速度为点M的2倍,则当运动时间为4秒时,OM和ON两条线段的中点相距______个单位.18.在数轴上,点A,O,B分别表示﹣15,0,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t 秒.在运动过程中,若点P,Q,O三点其中一个点恰好是另外两点为端点的线段的一个三等分点,则运动时间为______秒.19.如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A从原点运动至数轴上的点B,则点B表示的数是______.20.数轴上有A、B两点,点A表示5的相反数,点B表示绝对值最小的数,一动点P从点B出发,沿数轴以1单位长度/秒的速度运动,3秒后,点P到点A的距离为______单位长度.三.解答题(共10小题)21.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离______.数轴上表示﹣12和﹣6的两点之间的距离是______.(2)数轴上表示x和﹣4的两点之间的距离表示为______.(3)|x﹣2|+|x+4|的最小值为______时,能使|x﹣2|+|x+4|取最小值的所有整数x的和是______.(4)若数轴上两点A、B对应的数分别是﹣1、3,现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?22.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C 在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M对应的数.23.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)当x=______时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是______;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动______秒时,点P到点E,点F的距离相等.24.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)当x=______时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是______;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.25.一个动点M从一水平数轴上距离原点4个单位长度的位置向右运动2s,到达A后立即返回,向左运动7s到达点B,若动点M的运动速度为2.5个单位长度,求此时点B在数轴上所表示的数的相反数.26.数轴上点A对应的数是﹣1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再立即返回到A点,共用了4秒钟.(1)求点C对应的数;(2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位,…依次规律爬下去,求它第10次爬行所停下的点所对应的数;(3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设甲小虫对应的点为E点,乙小虫对应的点为F点,设点A、E、F、B所对应的数分别是x A、x E、x F、x B,当运动时间t不超过1秒时.求|x A﹣x E|﹣|x E﹣x F|+|x F﹣x B|的值.27.已知数轴有A、B两点,分别表示的数为a、b,且|a+12|+|b﹣18|=0.(1)a=______,b=______,点A和点B之间的距离为______;(2)如图1,动点P沿线段AB自点A向点B以2个单位长度/秒的速度运动,同时动点Q沿线段BA自点B向点A以4个单位/秒的速度运动,经过______秒,动点P,Q两点能相遇;(3)如图1,点P沿线段AB自点A向点B以2个单位/秒的速度运动,点P出发3秒后,点Q沿线段BA自点B向A以4个单位/秒的速度运动,问再经过几秒P,Q两点相距6个单位长度;(4)如图2,AO=4厘米,PO=2厘米,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自点B向点A运动,假若点P,Q两点能相遇,直接写出点Q运动的速度.28.“阳光向上,跑动青春”,为营造阳光运动的校园氛围,培养学生热爱体育、崇尚运动的健康观念和良好习惯,学校利用课间进行趣味跑操活动,其中有两名学生课间在操场上沿着直线进行折返跑,往返一次;将这条直线看成数轴,起点记为M,折返点记为N,主席台记为点O,两位同学分别记为点P,Q;若动点P、Q从M点同时出发向N点运动,到达N点后折返到M点;已知:数轴上点M、N对应的数分别为m、n,且满足|m+20|+(n﹣40)2=0,点O对应的数为k,k的相反数等于本身.(1)直接写出m、n、k的值;(2)设点P在数轴上对应的数为x,那么当x为多少时能使得PO+PN=50?(3)已知点P的速度为3个单位长度/秒,点Q的速度为2个单位长度/秒,当动点P到达点N后,点Q开始改变速度,以a个单位长度/秒继续折返跑,4秒后,P、Q两点相距2个单位长度,求a的值.29.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q 到点C的距离相等.30.已知,如图A,B分别为数轴上的两点,点A对应的数是﹣20,点B对应的数为80.(1)请直接写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:①试求出点C在数轴上所对应的数;②何时两只电子蚂蚁在数轴上相距15个单位长度?初中数学数轴动点问题含答案参考答案与试题解析一.选择题(共10小题)1.解:设运动的时间为t秒,则点Q所表示的数为3﹣2t,点P所表示的数为﹣3+t,∴BP=3﹣(﹣3+t)=6﹣t,AQ=3﹣2t﹣(﹣3)=6﹣2t,∵BP=3AQ,∴6﹣t=3(6﹣2t),解得,t=2.4,∴点P所表示的数为﹣3+2.4=﹣0.6,故选:D.2.解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|;OQ=|﹣2+t﹣0|=|t﹣2|,故选:C.3.解:∵点A表示的数为﹣10,OB=3OA,∴OB=3OA=30.则B对应的数是30,设经过x秒,点M、点N分别到原点O的距离相等,①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.故选:C.4.解:设当AB=8时,运动时间为t秒,由题意得6t+2t+8=8﹣(﹣16)或6t+2t=8﹣(﹣16)+8,解得:t=2或t=4.故选:C.5.解:设当AB=8时,运动时间为t秒,由题意得,6t+2t+8=16﹣(﹣8)或6t+2t=16﹣(﹣8)+8,解得:t=2或t=4,故选:C.6.解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→﹣1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3.故选:D.7.解:由数a和数b在数轴上的位置可知:a<0,b>0,且|a|>|b|,|a﹣b|表示a与b两点之间的距离,由于a<0,b>0,因此|a﹣b|=|a|+|b|,故①正确,根据①的结论,当a在b的左侧向右运动时,|a﹣b|的值逐渐减小,当a在b的右侧向右运动时,|a﹣b|逐渐增大,因此②③均不正确,而④则正确,故选:B.8.解:设运动的时间为t秒,P、Q相遇前,依题意有50﹣(﹣40)﹣3t=3[50﹣(﹣40)﹣2t﹣3t],解得t=15;P、Q相遇后,依题意有50﹣(﹣40)﹣3t=3[2t+3t﹣50+(﹣40)],解得t=20.故运动的时间为15秒或20秒.故选:D.9.解:∵数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),∴质点的不同运动方案为:方案一:0→﹣1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3.故选项A错误,选项B错误,选项C错误,选项D正确.故选:D.10.解:根据题意得:x1=2,x2=4,x3=6,x4=4,x5=6,x6=8,x7=10,x8=8,根据此规律可推导出,x108=7×15+3=108,x107=7×15+5=110,2014=7×287+5,故x2014=287×4+6=1154.x2013=287×4+4=1152故①x4=4,②x7=10;③正确,④错误.故选:C.二.填空题(共10小题)11.解:由题意得,点M的速度是点Q速度的,设点Q的速度为x,则点M的速度为,∵运动时间为4秒时,点M和点P之间的距离是6个单位长度,∴,解得,x=2,即Q点的速度是每秒2个单位长度,又A、B两点间的距离为:7﹣(﹣5)=12,12÷4=3(秒),故点P从点B到点A需要3秒,点Q运动的距离为:2×3=6,∴点Q表示的数为:7﹣6=1,故答案为:1.12.解:设经过t秒,点M、点N分别到原点O的距离相等,则点M所表示的数为(﹣10+3t),点N所表示的数为2t,①当点O是MN的中点时,有2t=0﹣(﹣10+3t),解得,t=2,②当点M与点N重合时,有2t=﹣10+3t,解得,t=10,因此,t=2或t=10,故答案为:2或10.13.解:设运动的时间为t秒,则运动后A所表示的数为(10﹣7t),B所表示的数为(﹣2﹣4t),由题意得,|10﹣7t﹣(﹣2﹣4t)|=3,解得,t=3或t=5.故答案为:3或5.14.解:分两种情况,①当点N沿着数轴向右移动,则点M表示的数为(﹣2+5t),点N表示的数为(4+4t),由MN=12得,|(﹣2+5t)﹣(4+4t)|=12,解得,t=﹣6(舍去),或t=18;②当点N沿着数轴向左移动,则点M表示的数为(﹣2+5t),点N表示的数为(4﹣4t),由MN=12得,|(﹣2+5t)﹣(4﹣4t)|=12,解得,t=﹣(舍去),或t=2;故答案为:2或18.15.解:∵|a+2|+(b﹣8)2020=0∴a=﹣2,b=8,∴A表示﹣2,B表示8;设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣7t,点N对应的数是8+10t.∵P是ME的中点,∴P点对应的数是=﹣1﹣3t,又∵Q是ON的中点,∴Q点对应的数是=4+5t,∴MN=(8+10t)﹣(﹣2﹣7t)=10+17t,OE=t,PQ=(4+5t)﹣(﹣1﹣3t)=5+8t,∴==2(定值).故答案为:2.16.解:设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.故答案为:或4.17.解:设线段OM的中点为G,线段ON的中点为H,分两种情况:①M,N同向时,如图1,H与M重合,当t=4时,ON=8,OM=4,∵H是ON的中点,G是OM的中点,∴OH=4,OG=2,∴GH=OH﹣OG=4﹣2=2;②M,N反向时,如图2,当t=4时,ON=8,OM=4,∵H是ON的中点,G是OM的中点,∴OH=4,OG=2,∴GH=OH+OG=4+2=6;综上,当运动时间为4秒时,OM和ON两条线段的中点相距2或6个单位.故答案为:2或6.18.解:当点O在PQ之间,则3(15﹣3t)=9+t﹣(﹣15+3t)解得:t=3当P在OB之间,则3(3t﹣15)=9+t解得:t=或3t﹣15=(9+t)解得:t=9当Q在OP之间,则(3t﹣15)=9+t,方程无解或(3t﹣15)=9+t解得:t=19故答案为:3或9或或19秒19.解:∵将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,∴圆滚动的距离为:π,∵点A从原点运动至数轴上的点B,∴点B表示的数是:﹣π.故答案为:﹣π.20.解:∵点A表示5的相反数,点B表示绝对值最小的数,∴点A表示的数是﹣5,点B表示的数是0,点P移动的距离为1×3=3(单位长度),①若点P从点B向右移动,则点P所表示的数为3,此时P A=|﹣5﹣3|=8,②若点P从点B向左移动,则点P所表示的数为﹣3,此时P A=|﹣5+3|=2,故答案为:2或8.三.解答题(共10小题)21.解:(1)1和3两点之间的距离3﹣1=2,数轴上表示﹣12和﹣6的两点之间的距离是﹣6﹣(﹣12)=6;故答案为:2,6;(2)x与﹣4之间的距离表示为|x﹣(﹣4)|=|x+4|;故答案为:|x+4|;(3)当x≥2,原式=x﹣2+x+4=2x+2;最小值为2×2+2=6;当﹣4<x<2,原式=2﹣x+x+4=6;当x≤﹣4,原式=2﹣x﹣x﹣4=﹣2x﹣2,最小值为﹣2×(﹣4)﹣2=6;∴|x﹣2|+|x+4|最小值为6;∵要使代数式|x﹣2|+|x+4|取最小值时,相应的x的取值范围是﹣4≤x≤2,∴能使|x﹣2|+|x+4|取最小值的所有整数x的值为:﹣4,﹣3,﹣2,﹣1,0,1,2,它们的和为:﹣4﹣3﹣2﹣1+0+1+2=﹣7;故答案为:6,﹣7;(4)点A在点B的左边,(4﹣3)÷(2﹣0.5)×2+(﹣1)=.点A所对应的数是点A在点B的右边,(4+3)÷(2﹣0.5)×2+(﹣1)=8.点A所对应的数是8.故点A所对应的数是或8.22.解:(1)a是最大的负整数,即a=﹣1;b是﹣5的相反数,即b=5,c=﹣|﹣2|=﹣2,所以点A、B、C在数轴上位置如图所示:(2)设运动t秒后,点P可以追上点Q,则点P表示数﹣1+3t,点Q表示5+t,依题意得:﹣1+3t=5+t,解得:t=3.答:运动3秒后,点P可以追上点Q;(3)存在点M,使M到A、B、C三点的距离之和等于12,当M在C点左侧,则M对应的数是:﹣3;当M在AB之间,则M对应的数是4.故使点M到A、B、C三点的距离之和等于12,点M对应的数是﹣3或4.23.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.24.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.25.解:①点M距原点4个单位长度,且位于原点的右侧,∴M=4,∴B=4+2.5×2﹣2.5×7=﹣8.5,∴此时点B在数轴上所表示的数的相反数是8.5,②点M距原点4个单位长度,且位于原点的左侧,∴M=﹣4,∴B=﹣4+2.5×2﹣2.5×7=﹣16.5,∴此时点B在数轴上所表示的数的相反数是16.5.26.解:(1)设C点表示的数为x,根据题意得x﹣1+x+1=4×4,解得x=8,所以C点表示的数为8;(2)﹣1+2﹣4+6﹣8+10﹣12+14﹣16+18﹣20=﹣11,所以它第10次爬行所停下的点所对应的数为﹣9;(3)因为t<1,所以点E在A点左侧,F点在A、B之间,所以|x A﹣x E|﹣|x E﹣x F|+|x F﹣x B|=x A﹣x E﹣x E﹣x F+x F﹣x B=x A﹣x B=﹣1﹣1=﹣2.27.解:(1)∵|a+12|+|b﹣18|=0,∴a+12=0,b﹣18=0,解得,a=﹣12,b=18,∴AB=|﹣12﹣18|=30,故答案为:﹣12,18,30;(2)30÷(2+4)=5(秒),故答案为:5;(3)设再经过x秒后点P、点Q相距6个单位长度,当P点在Q点左边时,2(x+3)+4x+6=30,解得,x=3;当点P在点Q右边时,2(x+3)+4x﹣6=30,解得,x=5;所以,再经过3或5秒后,点P、Q两点相距6个单位长度;(4)设点Q的运动速度为xcm,当P、Q两点在点O左边相遇时,120÷60x=30﹣6,解得,x=14;当P、Q两点在点O右边相遇时,240÷60x=30﹣2,解得,x=6;所以,点P,Q两点能相遇,则点Q的运动速度为每秒14cm或6cm.28.解:(1)∵|m+20|+(n﹣40)2=0,且|m+20|≥0,(n﹣40)2≥0,∴|m+20|=0,(n﹣40)2=0,∴m=﹣20,n=40.∵k的相反数等于本身,∴k=0.∴m=﹣20,n=40,k=0;(2)∵点P在数轴上对应的数为x,点N对应的数为40,∴PO=|x|,PN=40﹣x,∴PO+PN=|x|+40﹣x=50,解得:x=﹣5;(3)设动点P到达点N所用的时间为t1,∵点P的起始点位于数轴上的﹣20处,点N位于数轴上的40处,∴PN=60,∴t1===20(秒),∵动点P、Q从M点同时出发向N点运动,∴在t1=20(秒)时,Q运动的距离为20×2=40个单位长度,4秒后,点P运动的距离为3×4=12个单位长度,点Q运动的距离为4a个单位长度,∴点P共运动了60+12=72个单位长度,点Q共运动了(40+4a)个单位长度,∵P、Q两点相距2个单位长度,∴PQ=|72﹣(40+4a)|=2,解得:a=或a=.29.解:(1)∵|a+12|+(b﹣6)2=0.∴a+12=0,b﹣6=0,即:a=﹣12,b=6;∴AB=6﹣(﹣12)=18;(2)点C、D在线段AB上,∵AB=18,AC=14,BD=8,∴BC=18﹣14=4,CD=BD﹣BC=8﹣4=4;(3)设经过t秒,点P、Q到点C的距离相等,AD=AB﹣BD=18﹣8=10,AP=3t,DQ=2t,①当点P、Q重合时,AP﹣DQ=AD,即:3t﹣2t=10,解得,t=10,②当点C是PQ的中点时,有CP=CQ,即,AC﹣AP=DQ﹣DC,14﹣3t=2t﹣4,解得,t=,答:经过或10秒,点P、点Q到点C的距离相等.30.解:(1)AB的中点M所对应的数为=30(2)①如图1,设点C所表示的数为x,则AC=x+20,BC=80﹣x,由题意得,=,解得,x=40,答:点C在数轴上所表示的数为40;②分两种情况进行解答,设运动的时间为t秒Ⅰ)如图2,相遇前相距15个单位长度,则3t+2t=80﹣(﹣20)﹣15,解得,t=17(秒),Ⅱ)如图3,相遇后相距15个单位长度则3t+2t=80﹣(﹣20)+15,解得,t=23(秒)答:当两只蚂蚁运动17秒或23秒时,两只电子蚂蚁在数轴上相距15个单位长度.。
(完整word版)初中数学动点问题专题复习及答案
初中数学动点问题练习题1、佇夏回族自治区)已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B 时运动终止),过点M、N分别作AB边的垂线,与△ ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.1、线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t .求四边形MNQP的面C积S随运动时间t变化的函数关系式,并写岀自变量t的取值范围.QPAM N B2、如图,在梯形ABCD中,AD // BC,AD 3,DC 5,AB 4. 2,Z B 45 .动点M 从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD 以每秒1个单位长度的速度向终点D运动•设运动的时间为t秒.(1)求BC的长.(2)当MN // AB时,求t的值.(3)试探究:t为何值时,△ MNC为等腰三角形.3、如图,在平面直角坐标系中,四边形OABC是梯形,OA// BC,点A的坐标为(6,0),点B 的坐标为(4,3),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长;当t为何值时,MN // OC?⑵设△ CMN的面积为S,求S与t之间的函数解析式, 并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?x(3)连接AC,那么是否存在这样的 t ,使MN 与AC 互相垂直? 若存在,求出这时的t 值;若不存在,请说明理由.4、(河北卷)如图,在 Rt A ABC 中,/ C = 90°, AC = 12, BC = 16,动点P 从点A 出发沿 AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P, Q 分别从点A , C 同时出发,当其中一点到达端点时,另一点也随之 停止运动.在运动过程中,△ PCQ 关于直线PQ 对称的图形是△ PDQ.设运动时间为t (秒). (1 )设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2) t 为何值时,四边形 PQBA 是梯形?(3) 是否存在时刻t ,使得PD // AB ?若存在,求出t 的值;若不存在,请说明理由; (4) 通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD 丄AB ?若存在,请估计t 的值在括号中的哪个时间段内( O W t < 1 ; 1 v t w 2 ; 2v t w 3; 3 v t < 4);若不存在,请简要说明理由.5、(山东济宁)如图, A 、B 分别为x 轴和y 轴正半轴上的点。
初中数学几何的动点问题专题练习附答案版(供参考)
动点问题专题训练一、如图,已知ABC==厘米,8BC=厘米,点D为AB的中点.AB AC△中,10(1)若是点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①假设点Q的运动速度与点P的运动速度相等,通过1秒后,BPD△与CQP△是不是全等,请说明理由;②假设点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与△全等?CQP(2)假设点Q以②中的运动速度从点C动身,点P以原先的运动速度从点B同时动身,都逆时针沿ABC△三边运动,求通过量长时刻点P与点Q第一次在ABC△的哪条边Array上相遇?P二、直线364y x =-+与坐标轴别离交于A B 、两点,动点P Q 、同时从O 点动身,同时抵达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿线路O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时刻为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为极点的平行四边形的第四个极点M 的坐标.3、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,现在AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,现在AD 的长为 ; (2)当90α=°时,判定四边形EDBC 是不是为菱形,并说明理由.xAO QPBy O E CDA α lOCA(备用图)4、如图,在平面直角坐标系中,直线l:y=-2x-8别离与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结P A,假设P A=PB,试判定⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为极点的三角形是正三角形?五、如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点动身沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点动身沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时刻为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探讨:t 为何值时,MNC △为等腰三角形.六、如图①,正方形 ABCD 中,点A 、B 的坐标别离为(0,10),(8,4),点C 在第一象限.动点PC在正方形 ABCD 的边上,从点A 动身沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点抵达D 点时,两点同时停止运动,设运动的时刻为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时刻t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及极点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求现在P 点的坐标;(4)若是点P 、Q 维持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 可否相等,假设能,写出所有符合条件的t 的值;假设不能,请说明理由.7、数学课上,张教师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .通过试探,小明展现了一种正确的解题思路:取AB 的中点M ,连接ME ,那么AM =EC ,易证AME ECF △≌△,因此AE EF =.在此基础上,同窗们作了进一步的研究:(1)小颖提出:如图2,若是把“点E 是边BC 的中点”改成“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你以为小颖的观点正确吗?若是正确,写出证明进程;若是不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你以为小华的观点正确吗?若是正确,写出证明进程;若是不正确,请说明理由.八、已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)假设折叠后使点B 与点A 重合,求点C 的坐标;ADFC GE B图1ADF C GE B 图2 ADFGB图3(Ⅱ)假设折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确信y 的取值范围;(Ⅲ)假设折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求现在点C 的坐标.1.解:(1)①∵1t =秒,∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米,∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,那么45BP PC CQ BD ====,, ∴点P ,点Q 运动的时刻433BP t ==秒, ∴515443Q CQ v t ===厘米/秒. ·································································· (7分) (2)设通过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇, ∴通过803秒点P 与点Q 第一次在边AB 上相遇. ········································· (12分) 2.解(1)A (8,0)B (0,6) ·············· 1分 (2)86OA OB ==, 10AB ∴=点Q 由O 到A 的时刻是881=(秒) ∴点P 的速度是61028+=(单位/秒) ·· 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = ········································································································· 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ····························· 1分 21324255S OQ PD t t ∴=⨯=-+ ······································································ 1分(自变量取值范围写对给1分,不然不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ···························································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ···················································· 3分3.解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P在线段OB 上时,作PE ⊥CD 于E .∵△PCD 为正三角形,∴DE =12CD =32,PD =3, ∴PE 33. ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE , ∴△AOB ∽△PEB ,∴332,45AO PE AB PB PB =即, ∴315PB =∴3158PO BO PB =-= ∴3158)P -, ∴3158k =. 当圆心P 在线段OB 延长线上时,同理可得P (0,315-8), ∴k =315-8,∴当k=315-8或k=-315-8时,以⊙P与直线l的两个交点和圆心P为极点的三角形是正三角形.4.5.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 现在∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.现在∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 通过点C .连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 通过点C ,如图7. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6.解(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC ∴AO =12AC ……………………8分P图4图5在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7.解:(1)如图①,过A 、D 别离作AK BC ⊥于K ,DH BC ⊥于H ,那么四边形ADHK 是矩形∴3KH AD ==. ················································································ 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒== ·························································· 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ················································· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,那么四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ············································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ··················································································· 5分 即10257t t -= 解得,5017t = ···················································································· 6分(3)分三种情形讨论:①当NC MC =时,如图③,即102t t =- ∴103t =·························································································· 7分 (图①) A D C B K H (图②) A D C B G MNADNAD N②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ······················································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t = ·························································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方式同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC = 即1102235tt -= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ··············· 9分(图⑤)A DCBH N MF8.解(1)如图1,过点E 作EG BC ⊥于点G . ··················· 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ··········· 2分∴112BG BE EG ====, 即点E 到BC····································· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ······································ 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,那么MR NR =.类似①,32MR =. ∴23MN MR ==.··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.现在,6132x EP GM BC BG MC ===--=--=. ··································· 8分当MP MN=时,如图4,这时MC MN MP ===现在,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG图1A D E BF CG图2A D EBF CPNMG H则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=.现在,6114x EP GM ===--=.综上所述,当2x =或4或(5-时,PMN △为等腰三角形. ···················· 10分 9解:(1)Q (1,0) ····················································································· 1分 点P 运动速度每秒钟1个单位长度. ································································ 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,那么BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB == 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF ==. 1068t AM MP∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==.设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) ················································ 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ························· 6分 现在P 的坐标为(9415,5310) . ····································································· 7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ················································ 9分10.解:(1)正确. ················································ (1分) 证明:在AB 上取一点M ,使AM EC =,连接ME . (2分) BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线, 45DCF ∴∠=°, 135ECF ∴∠=°. AME ECF ∴∠=∠.A DF CGEBM90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ··································································· (5分) AE EF ∴=. ························································································· (6分) (2)正确. ····················································· (7分)证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ·································· (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠.NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ·································································· (10分) AE EF ∴=. (11分)11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ·················································································· 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,A D F GB Ny ∴的取值范围为322y ≤≤. ····································································· 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,得2OC OB ''=. ·································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,那么02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ···································································· 10分。
(完整word版)初中数学几何的动点问题专题练习-附答案版
动点问题专题训练1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD△与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?2、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M 的坐标.5、在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE 经过点C 时,请直接..写出t 的值.6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ; A C BQED图16OE CDAα lOCA (备用图)②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.7如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中C点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;ADFCGB图1ADF C GB 图2ADFC GE B图3(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.12如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD=时,求AM BN的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN的值等于 ;方法指导:为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2图(1)ABCD EFMN若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN 的值等于 .(用含m n ,的式子表示)12..如图所示,在直角梯形ABCD 中,AD//BC ,∠A =90°,AB =12,BC =21,AD=16。
完整版)七年级上期末动点问题专题(附答案)
完整版)七年级上期末动点问题专题(附答案)1.已知数轴上点A对应的数为a,点B对应的数为b,且满足|2b-6|+(a+1)^2=0,定义AB的长度为|a-b|。
1) 求线段AB的长度。
解:由定义可得,AB的长度为|a-b|。
2) 设点P在数轴上的坐标为x,且满足PA-PB=2,求x的值。
解:由题意得,PA-PB=|a-x|-|b-x|=2,分成两种情况讨论:当a>b时,有a-x-b+x=2,即a-b=2,解得x=a-1.当a<b时,有b-x-a+x=2,即b-a=2,解得x=b-1.综上所述,x的取值为a-1或b-1.3) 设M、N分别为PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM-PN|的值不变。
解:由题意得,M、N的坐标分别为[(a+x)/2,0]和[(b+x)/2,0],则① PM÷PN的值不变时,有|a-x|/|b-x|=|a-x0|/|b-x0|,其中x0是PM÷PN的值不变时的一个定值,化简得(a-x0)(b-x)=(b-x0)(a-x),即ax0-bx0=ax-bx0,解得x=(ax0-bx0+bx0)/2=a/2+b/2-x0/2.② |PM-PN|的值不变时,有[(a-x)/2-(b-x)/2]^2=K,其中K 是|PM-PN|的值不变时的一个定值,化简得(x-a+b)^2=4K,解得x=(a+b±2√K)/2.综上所述,当①成立时,x的取值为a/2+b/2-x0/2;当②成立时,x的取值为(a+b±2√K)/2.2.如图1,已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上的动点,其对应的数为x。
1) PA=|x-(-1)|=|x+1|,PB=|x-3|。
2) 若PA+PB=5,则有|x+1|+|x-3|=5,分成四种情况讨论:当x≤-1时,有-(x+1)-(x-3)=5,解得x=-2.当-1<x<3时,有-(x+1)+(x-3)=5,无解。
初一数学动点问题20题及答案
初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。
(中考数学)动点问题专题训练(含答案)
中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。
(完整版)初二动点问题(含答案)
动态问题一、所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想类型:1。
利用图形想到三角形全等,相似及三角函数2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)3.结合图形和题目,得出已知或能间接求出的数据4。
分情况讨论,把每种可能情况列出来,不要漏5.动点一般在中考都是压轴题,步骤不重要,重要的是思路6。
动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论二、例题:1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;当t= 时,四边形是等腰梯形.2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.的长为 ;的长为 ;4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BCEFCF于点F,求证:AE=EF.AB的中点M,连接ME,则AM=EC在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点"改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ACBAED图1NMA BCDEMN图2ACBEDNM图36、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值(1)如果点P在线段BC上以3cm/s的速度由B点向CCA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能(2)若点Q以②中的运动速度从点C来的运动速度从点B边运动,求经过多长时间点P与点Q第一次哪条边上相遇?A DFC GEB图1A DFC GEB图3A DFC GEB图2。
初一数学动点问题答案与解析
动点问题答案与解析一、单点移动问题1.【解答】(1)-21(2)14.5秒(3)37-2t(4)BC:2t-29当A在C的左边:AC:52-2t当A在C的右边:AC:2t-522.【解答】解:(1)点P表示的有理数为﹣4+2×2=0;(2)6﹣(﹣4)=10,10÷2=5,5÷2=2.5,(10+5)÷2=7.5.故点P是AB的中点时t=2.5 或7.5;(3)在点P由点A到点B的运动过程中,点P与点A的距离为2t;(4)在点P由点B到点A的返回过程中,点P表示的有理数是6﹣2(t﹣5)=16﹣2t.3.【解答】解:(1)①点P在点B的左边时∵PB=2,4﹣2=2,∴点P表示的是2.②点P在点B的右边时,∵PB=2,4+2=6,∴点P表示的是6.综上,可得点P表示的是2或6;(2)∵4﹣(﹣2)=6,∴线段AB的长度是6.①AP=AB=2时,点P表示的是﹣2+2=0.②BP=AB=2时,点P表示的是4﹣2=2.综上,可得点P表示的是0或2;(3)①点P在点B的左边时,∵AP=6﹣2=4,4÷2=2,∴线段AM的长是2.②点P在点B的右边时,∵AP=6+2=8,8÷2=4,∴线段AM的长是4.综上,可得线段AM的长是2或4.(4)根据图示,可得当点P在A、B两点之间时,PA+PB的值最小,此时,PA+PB=AB=6,所以PA+PB 的最小值是6.二、两点移动问题4.【解答】解:(1)①∵点A表示的数为8,B在A点左边,AB=12,∴点B表示的数是8﹣12=﹣4,∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,∴点P表示的数是8﹣3×1=5.②设点P运动x秒时,与Q相距3个单位长度,则AP=3x,BQ=2x,∵AP+BQ=AB﹣3,∴3x+2x=9,解得:x=1.8,∵AP+BQ=AB+3,∴3x+2x=15解得:x=3.∴点P运动1.8秒或3秒时与点Q相距3个单位长度.(2)2MN+PQ=12或2MN﹣PQ=12;理由如下:P在Q右侧时有:MN=MQ+NP﹣PQ=AQ+BP﹣PQ=(AQ+BP﹣PQ)﹣PQ= AB﹣PQ=(12﹣PQ),即2MN+PQ=12.同理P在Q左侧时有:2MN﹣PQ=12.5.【解答】解:(1)点B表示的数是﹣4;(2)﹣4+2×2=﹣4+4=0.故2秒后点B表示的数是0,(3)由题意可知:①O为BA的中点,(﹣4+2t)+(2+2t)=0,解得t=;②B为OA的中点,2+2t=2(﹣4+2t),解得t=5.故答案为:﹣4;0.6.【解答】解:(1)设A点运动速度为x单位长度/秒,则B点运动速度为4x单位长度/秒.由题意得:3x+3×4x=15解得:x=1∴A点的运动速度是1单位长度/秒,B点的速度是4单位长度/秒;(2)设y秒后,原点恰好处在A、B的正中间.由题意得:y+3=12﹣4y解得:答:经过秒后,原点恰处在A、B的正中间;(3)设B追上A需时间z秒,则:4×z﹣1×z=2×(+3)解得:,=64.答:C点行驶的路程是64长度单位.7.【解答】解:(1)∵1﹣(﹣1)=2,2的绝对值是2,1﹣3=﹣2,﹣2的绝对值是2,∴点P对应的数是1.(2)当P在AB之间,PA+PB=4(不可能有)当P在A的左侧,PA+PB=﹣1﹣x+3﹣x=6,得x=﹣2当P在B的右侧,PA+PB=x﹣(﹣1)+x﹣3=6,得x=4故点P对应的数为﹣2或4;(3)解:设经过x分钟点A与点B重合,根据题意得:2x=4+x,解得x=4.∴6x=24.答:点P所经过的总路程是24个单位长度.8.【解答】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.9.【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.如图2,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.三、多点移动问题10.【解答】解:(1)A表示的数是﹣6,点A先沿着数轴向右移动8个单位长度,再向左移动5个单位长度后所对应的数字是:﹣6+8﹣5=﹣3,故答案为:﹣3;(2)∵A,B对应的数分别为﹣6,2,点C到点A,点B的距离相等,∴AB=8,x的值是﹣2.故答案为:﹣2;(3)根据题意得:|x﹣(﹣6)|+|x﹣2|=10,解得:x=﹣7或3;故答案为:﹣7或3;(4)当点A、B重合时,﹣6+4t=2﹣2t,解得t=;当点C为A、B中点且点C在点A的右侧时,﹣t﹣(﹣6+4t)=(2﹣2t)﹣(﹣t),解得t=1;当点C为A、B中点且点C在点A的左侧时,(﹣6﹣4t)﹣(﹣t)=(﹣t)﹣(2﹣2t)m解得t=1(舍去).综上所述,当t=或1,点C到点A、B 的距离相等.11.【解答】解:(1)设B点的运动速度为x,A、B两点同时出发相向而行,则他们的时间相等,有:=,解得x=1,所以B点的运动速度为1;(2)设经过时间为t.则B在A的前方,B点经过的路程﹣A点经过的路程=6,则2t﹣t=6,解得t=6.A在B的前方,A点经过的路程﹣B点经过的路程=6,则2t﹣t=12+6,解得t=18.(3)设点C的速度为y,始终有CB:CA=1:2,即:=,解得y=,当C停留在﹣10处,所用时间为:=秒,B的位置为=﹣.12.【解答】解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)QC﹣AM的值不发生变化.理由如下:设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.四、线段移动问题13.【解答】解:(1)由题意得:11﹣(b+3)=b,解得:b=4.答:线段AC=OB,此时b的值是4.(2)由题意得:①11﹣(b+3)﹣b=(11﹣b),解得:b=.②11﹣(b+3)+b=(11﹣b),解得:b=﹣5.答:若AC﹣0B=AB,满足条件的b值是或﹣5.14.【解答】解:(1)∵点A、M、N对应的数字分别为﹣1、0、2,线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒,∴移动后M表示的数为t,N表示的数为t+2,∴AM=t﹣(﹣1)=t+1.故答案为:t+1.(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,∵AM+BN=11,∴t+1+|9﹣t|=11,解得:t=.故答案为:.(3)假设能相等,则点A表示的数为2t﹣1,M表示的数为t,N表示的数为t+2,B表示的数为11﹣t,∴AM=|2t﹣1﹣t|=|t﹣1|,BN=|t+2﹣(11﹣t)|=|2t﹣9|,∵AM=BN,∴|t﹣1|=|2t﹣9|,解得:t1=,t2=8.故在运动的过程中AM和BN能相等,此时运动的时间为秒和8秒.15.【解答】解:(1)由数轴观察知三根木棒长是20﹣5=15,则此木棒长为:15÷3=5,故答案为:5.(2)如图,点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.由题意可知,当点N移动到点A时,点M所对应的数为﹣40,当点M移动到点B时,点N所对应的数为116.可求MN=52.所以点A所对应的数为12,点B所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.五、图形动点问题16.【解答】【考点】8A:一元一次方程的应用.【专题】25 :动点型;2A :规律型.【分析】此题利用行程问题中的相遇问题,设出正方形的边长,乙的速度是甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:设正方形的边长为a,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×=,乙行的路程为2a×=,在AB边相遇;②第二次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在CB边相遇;③第三次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在DC边相遇;④第四次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在AB边相遇;⑤第五次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在AD边相遇;…因为2008=502×4,所以它们第2008次相遇在边AB上.故答案为:AB.【点评】本题主要考查行程问题中的相遇问题及按比例分配的运用,难度较大,注意先通过计算发现规律然后再解决问题.。
初中数学动点题百题训练专题练习(含答案解析)
初中数学动点题百题训练专题练习1.如图,P是直线m上一动点,A、B是直线n上的两个定点,且直线m//n;对于下列各值:①点P到直线n的距离;②△PAB的周长;③△PAB的面积;④∠APB的大小.其中会随点P的移动而变化的是()A. ①②B. ①③C. ②④D. ③④2.直线AB上有一点O,OM⊥AB于O,另有直角∠COD在平角∠AOB内绕O点左右摆动(OC与OA、OD与OB不重合),在摆动时,始终与∠MOD保持相等的角是()A. ∠BODB. ∠AOCC. ∠COMD. 没有3.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60∘为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A. (2017,0)B. (201712,√32) C. (2018,√3) D. (2018,0)4.如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(−1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,−2),……,按这样的运动规律,动点P第2018次运动到点()A. (2018,0)B. (2017,0)C. (2018,1)D. (2017,−2)5.如图,等腰ΔABC中,AB=AC,MN是边BC上一条运动的线段(点M不与点B重合,点N不与点C重合),且MN=12BC,MD⊥BC交AB于点D,NE⊥BC交AC于点E,在MN从左至右的运动过程中,ΔBMD和ΔCNE的面积之和A. 保持不变B. 先变小后变大C. 先变大后变小D. 一直变大6.如图,矩形ABCD中,点R沿CD边从点C向点D运动,点M在BC边上运动,E、F分别是AM、MR的中点,则EF的长度随着点M、点R的运动()A. 变短B. 变长C. 不变D. 无法确定7.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A. 6B. 8C. 9D. 108.如图,已知,,,点是线段上的一个动点,连接,动点始终与点关于直线对称,当点由点位置向右运动至点位置时,相应的点所经过的路程为()A.B.C.D.9.如图,在△ABC中,∠ACB=90∘,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A. √5B. √6C. 1+√2D. 310.如图,在▱ABCD中,对角线AC、BD交于点O,并且∠DAC=60∘,∠ADB=15∘.点E是AD边上一动点,延长EO交BC于点F.当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是()A. 平行四边形→矩形→平行四边形→菱形→平行四边形B. 平行四边形→菱形→平行四边形→矩形→平行四边形C. 平行四边形→矩形→平行四边形→正方形→平行四边形D. 平行四边形→矩形→菱形→正方形→平行四边形11.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC边上的中点,则MP+NP的最小值是()A. 2B. 1C.D.12.如图,在Rt△ABC中,∠C=90∘,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A. B. C. D.13.如图,在△ABC中,∠B=90∘,tan∠C=34,AB=6cm.动点P从点A开始沿边AB向点B 以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A. 18cm2B. 12cm2C. 9cm2D. 3cm214.抛物线y=x2−2x−15,y=4x−23,交于A、B点(A在B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E再到达x轴上的某点F,最后运动到点B.若使点P动的总路径最短,则点P运动的总路径的长为( )A. 10√5B. 7√10C. 5√21D. 8√1015.如图,抛物线y=x2−12x−32与直线y=x−2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点P运动的总路径的长为()A. √292B. √293C. 52D. 5316.如图,在△ABC中,∠C=90∘,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A. 19cm2B. 16cm2C. 15cm2D. 12cm217.如图,抛物线y=x2−2x−3与x轴交于A,B两点,过点B的直线与抛物线在第二象限交于点C,且tan∠CBA=43,点D为线段BC上一点(不含端点).现有一动点P从点A出发,沿线段AD以每秒1个单位长度的速度运动到D点,再沿线段DC以每秒54个单位长度的速度运动到C点,则动点P运动到C点的最短时间需()秒.A. 7B. 649C. 10 D. 75818.如图,在△ABC中,∠B=90∘,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A. 1B. 2C. 3D. 419.如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是()A. 4或4.8B. 3或4.8C. 2或4D. 1或620.如图,矩形ABCD中,AB=4,BC=10,点P为BC边上一动点,AP交BD于点Q.点P从B点出发沿BC边以每秒1个单位长度的速度向C点移动,移动时间为x秒.设S△AQD+S△PQB=y,写出y与x之间的函数关系式,并探究P点运动到第几秒与第几秒之间时,y取得最小值.()A. 3到4B. 4到5C. 5到6D. 6到721.在矩形ABCD中,BC=10cm、DC=6cm,点E、F分别为边AB、BC上的两个动点,E从点A出发以每秒5cm的速度向B运动,F从点B出发以每秒3cm的速度向C运动,设运动时间为t秒.若∠AFD=∠AED,则t的值为()A. √2−1B. 0.5C. 23D. 122.如图,△ABC内接于⊙O,∠A=60∘,BC=4√3,当点P在B^C上由B点运动到C点时,弦AP的中点E运动的路径长为()A. 4√33πB. 43πC. 83πD. 2√323.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(12,1),(3,1),(3,0),点A 为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A. −14≤b≤1 B. −54≤b≤1 C. −94≤b≤12D. −94≤b≤124.如图,在△ABC中,∠ACB=90∘,∠A=30∘,BC=1.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,阴影部分面积S1+S2的大小变化情况是()A. 一直不变B. 一直减小C. 一直增大D. 先减小后增大25.如图,在反比例函数y=32x的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=kx的图象上运动,若tan∠CAB=2,则k的值为()A. −3B. −6C. −9D. −1226.如图,在点O处测得远处动点P作匀速直线运动,开始位置在A点,一分钟后到达B点,再过一分钟到达C点,测得∠AOB=90∘,∠BOC=30∘,则tan∠OAB=()A. 32B. √32C. 2√33D. 2327.如图,四边形ABCD和四边形BEFG均为正方形,且A、B、E三点共线,正方形ABCD的边长为4,则S△ACF的面积为______ .28.20.如图,矩形ABCD中,点M是CD的中点,点P是AB上的一动点,若AD=1,AB=2,则PA+PB+PM的最小值是.29.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2017次运动后,动点P的坐标是______,经过第2018次运动后,动点P的坐标是______.30.15.如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,若y与x的关系图象如图2所示,则AB的长为_______,梯形ABCD的面积为__________.31.18、正方形中,为上一动点,连接交于,过点作交于,。
初中数学相交与平行-动点问题含答案
相交与平行-动点问题一.解答题(共20小题)1.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.2.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ ∥EC交射线CD于点Q,连结CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ 的度数;若不存在,请说明理由.3.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2°,灯B转动的速度是每秒1°.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=______°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C,且∠ACB=120°,则在灯B射线到达BQ之前,转动的时间为______秒.4.如图1,已知直线EF分别与直线AB,CD相交于点E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN平分∠MFD交EM的延长线于点N,且∠BEN与∠EFN的比为4:3,求∠N的度数.(3)如图3,若点H是射线EA之间一动点,FG平分∠HFE,过点G作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.5.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.6.已知:∠MON=48°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°(1)如图1,若AB∥ON,则:①∠ABO的度数是______°;②当∠BAD=∠ABD时,x=______°;③当∠BAD=∠BDA时,x=______°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.7.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A =∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.(1)求∠ABC的度数.(2)请在图中找出与∠ABC相等的角,并说明理由.(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.8.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.9.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?10.如图①,已知直线l1、l2,直线l3和直线l1、l2交于点C和D,在直线l3上有动点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.(1)问题发现:如果点P在C、D之间运动时,且满足∠1+∠3=∠2,请写出l1与l2之间的位置关系______;(2)拓展探究:如图②如果l1∥l2,点P在直线l1的上方运动时,试猜想∠1+∠2与∠3之间关系并给予证明;(3)问题解决:如果l1∥l2,点P在直线l2的下方运动时,请直接写出∠P AC、∠PBD、∠APB之间的关系.11.已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=______.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.12.如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.13.如图,是我们生活中经常接触的小刀,由刀片和刀柄组成,在刀柄ABCD中,∠A和∠B都是直角,在刀片EFGH中,EF∥GH.转动刀片时会形成∠1、∠2,试判断∠1与∠2的度数和是一个定值吗?若是,请求出∠1与∠2的度数和;若不是,请说明理由14.已知直线a∥b,点A在直线a上,点B、C直线b上,点D在线段BC上.(1)如图,AB平分∠MAD,AC平分∠NAD,DE⊥AC于E,求证:∠1=∠2;(2)若点F为线段AB上不与A、B重合的一动点,点H在AC上,FQ平分∠AFD交AC于Q,设∠HFQ=x°,(此时点D为线段BC上不与点B、C重合的任一点),问当α、β,x之间满足怎样的等量关系时,FH∥a?并以此为条件证明FH∥a.15.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM 时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过______秒后边OC与边ON互相垂直.(直接写出答案)16.将一副三角板如图所示位置摆放.(1)直接写出∠AOC与∠BOD的大小关系,不需证明;(2)图1中的三角板AOB不动,将三角板COD绕点O旋转至CO∥AB(如图2),判断DO与AB的位置关系,并证明.(3)在(2)的条件下,三角板COD绕点O旋转的过程中,能否使CD⊥AB?若能,求出此时∠AOC的度数;若不能,请说明理由.17.如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?解:由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为______,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为______.(2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=______.②猜想∠EPF与∠EQF的数量关系,并说明理由;③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2,与∠DFQ2的角平分线交于点Q3;此次类推,则∠EPF与∠EQ2018F 满足怎样的数量关系?(直接写出结果)18.如图,已知OM⊥ON,垂足为O,点A、B分别是射线OM、ON上的一点(O点除外).(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,求∠ACB的度数;若不存在,请说明理由;(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE 位置关系.19.已知直线AB和CD交于点O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=19°48′,求∠EOC与∠FOD的度数.(2)当x=60°,射线OE、OF分别以10°/s,4°/s的速度同时绕点O顺时针转动,求当射线OE与射线OF重合时至少需要多少时间?(3)当x=60°,射线OE以10°/s的速度绕点O顺时针转动,同时射线OF也以4°/s的速度绕点O逆时针转动,当射线OE转动一周时射线OF也停止转动.射线OE在转动一周的过程中当∠EOF=90°时,求射线OE转动的时间.20.已知直线AB和CD交于O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x=20°时,则∠EOC=______度;∠FOD=______度.(2)当x=60°时,射线OE′从OE开始以10°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求至少经过多少秒射线OE′与射线OF′重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间.相交与平行-动点问题参考答案与试题解析一.解答题(共20小题)1.解:(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵MG⊥NG,∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=30°,∴∠MGK=∠BMG=30°,∵MG平分∠BMP,ND平分∠GNP,∴∠GMP=∠BMG=30°,∴∠BMP=60°,∵PQ∥AB,∴∠MPQ=∠BMP=60°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=30°+α,∠MPN=60°﹣α,∴∠MGN+∠MPN=30°+α+60°﹣α=90°;(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x,∵GK∥AB,∴∠MGK=∠BMG=x,∵ET∥AB,∴∠TEM=∠EMA=2x,∵CD∥AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y,∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE=∠CNG=90°﹣y,∵ET∥AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90°﹣y,∴∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,∵2∠MEN+∠G=105°,∴2(90°﹣y﹣2x)+x+y=105°,∴x=25°,∴∠AME=2x=50°.2.解:(1)①∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴=∠ECQ=40°;②∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°又∵∠EGC﹣∠ECG=40°,∴∠EGC=60°,∠ECG=20°∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(80°﹣40°)=20°,∵PQ∥CE,∴∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x﹣2x=x,①当点G、F在点E的右侧时,则∠ECG=∠PCF=∠PCD=x,∵∠ECD=80°,∴4x=80°,解得x=20°,∴∠CPQ=3x=60°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°﹣3x,∠GCQ=80°+x,∴180°﹣3x=80°+x,解得x=25°,∴∠FCQ=∠ECF+∠ECQ=50°+80°=130°,∴,∴∠CPQ=∠ECP=65°﹣50°=15°.3.解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠CBP=t,又∵∠ACB=120°∴∠ACB=∠CAN+∠CBP=120°=180°﹣2t+t,解得:t=60,此时AC与BC共线,不符合题意,或120=2t﹣180+t,解得t=100,如图4中,当∠ACB=120°时,∵∠ACB=∠MAC+∠QBC,∴120°=360°﹣2t+180°﹣t,∴t=140,综上所述,满足条件的t的值为140或100.故答案为:140或100.4.解:(1)如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EM平分∠BEF,FM平分∠EFD,∴∠FEM=∠BEF,∠EFM=∠DFE,∴∠FEM+∠EFM=×180°=90°,∴∠EMF=90°.(2)如图2中,由题意可以假设:∠BEN=4x,∠EFN=3x,∵∠EMF=90°,∠FEM=∠MEB=4x,∴∠EFM=90°﹣4x,∴NFM=∠NFD=3x﹣(90°﹣4x)=7x﹣90°,∵∠MFE=∠MFD,∴90°﹣4x=2(7x﹣90°),∴x=15°,∴∠MFN=15°,∴∠N=90°﹣15°=75°(3)如图3,∵GQ⊥FM,∴∠GFQ+∠FGQ=180°﹣90°=90°(三角形的内角和等于180°).∴∠GFQ=90°﹣∠FGQ.∵FG平分∠HFE,FM平分∠EFD,又∵∠GFQ=∠GFE+∠QFE=(∠HFE+∠EFD)=∠HFD,∴∠HFD=2∠GFQ.又∵AB∥CD,∴∠EHF+∠HFD=180°,∴∠EHF=180°﹣∠HFD=180°﹣2∠GFQ=180°﹣2(90°﹣∠FGQ)=2∠FGQ,即无论点H在何处都有∠EHF=2∠FGQ.5.解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.6.解:(1)如图1,①∵∠MON=48°,OE平分∠MON,∴∠AOB=∠BON=24°,∵AB∥ON,∴∠ABO=24°;②当∠BAD=∠ABD时,∠BAD=24°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣24°×3=108°;当∠BAD=∠BDA时,∵∠ABO=24°,∴∠BAD=78°,∠AOB=24°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°﹣24°﹣24°﹣78°=54°,故答案为:①24°;②108,54;(2)如图2,存在这样的x的值,使得△ADB中有两个相等的角.∵AB⊥OM,∠MON=48°,OE平分∠MON,∴∠AOB=24°,∠ABO=66°,①当AC在AB左侧时:若∠BAD=∠ABD=66°,则∠OAC=90°﹣66°=24°;若∠BAD=∠BDA=(180°﹣66°)=57°,则∠OAC=90°﹣57°=33°;若∠ADB=∠ABD=66°,则∠BAD=48°,故∠OAC=90°﹣48°=42°;②当AC在AB右侧时:∵∠ABE=114°,且三角形的内角和为180°,∴只有∠BAD=∠BDA=(180°﹣114°)=33°,则∠OAC=90°+33°=123°.综上所述,当x=24、33、42、123时,△ADB中有两个相等的角.7.解:(1)∵AM∥BN,∴∠A+∠ABC=180°.∴∠ABC=180°﹣∠A=180°﹣108°=72°.(2)与∠ABC相等的角是∠ADC、∠DCN.∵AM∥BN,∴∠ADC=∠DCN,∠ADC+∠BCD=180°.∴∠ADC=180°﹣∠BCD=180°﹣108°=72°.∴∠DCN=72°.∴∠ADC=∠DCN=∠ABC.(3)不发生变化.∵AM∥BN,∴∠AEB=∠EBC,∠ADB=∠DBC.∵BD平分∠EBC,∴∠DBC=∠EBC,∴∠ADB=∠AEB,∴=.8.解:(1)∵AM∥BN,∴∠ABN=180°﹣∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°.(2)不变.理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.(3)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=∠ABN=30°.9.解:(1)证明:如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2,即∠CPD=∠PCA+∠PDB;(2)∠CPD=∠PCA﹣∠PDB.理由:如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠EPC,∵∠3=∠EPC﹣∠EPD,∴∠3=∠1﹣∠2,即∠CPD=∠PCA﹣∠PDB;(3)∠CPD=∠PDB﹣∠PCA.证明:如图3,设直线AC与DP交于点F,∵∠PF A是△PCF的外角,∴∠PF A=∠1+∠3,∵a∥b,∴∠2=∠PF A,∴∠2=∠1+∠3,∴∠3=∠2﹣∠1,即∠CPD=∠PDB﹣∠PCA.10.证明:(1)如图①,延长BP交AC于E,∵∠2=∠1+∠3,∠2=∠1+∠AEP,∴∠3=∠AEP,∴l1∥l2,故答案为:l1∥l2;(2)如图②所示,当点P在线段DC的延长线上时,∠1+∠2=∠3,理由是:∵l1∥l2,∴∠CEP=∠3∵∠CEP=∠1+∠2,∴∠1+∠2=∠3;(3)如图③所示,当点P在直线l2的下方运动时,∠APB+∠PBD=∠P AC.理由:过点P作PF∥l1,∠FP A=∠1.∵l1∥l2,∴PF∥l2,∴∠FPB=∠3,∴∠FP A=∠2+∠FPB=∠2+∠3;即∠APB+∠PBD=∠P AC.11.解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.故答案为:40°.12.解:(1)∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB﹣∠BOC=90°﹣60°=30°.又∵∠COD=90°,∴∠AOD=∠AOC+∠COD=30°+90°=120°.(2)∵∠AOB+∠COD+∠BOC+∠AOD=360°,∠AOB=90°,∠COD=90°,∠BOC=70°,∴∠AOD=360°﹣∠AOB﹣∠COD﹣∠BOC=360°﹣90°﹣90°﹣70°=110°.(3)猜想:∠AOD+∠BOC=180°.理由:如图①∵∠AOD=∠AOC+∠COD=∠AOC+90°,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∠AOC=∠BOD,∴∠AOD+∠BOC=180°.13.解:∠1与∠2的度数和是一个定值,∠1+∠2=90°.如图,过点B作BP∥EF,则∠1=∠ABP.∵EF∥GH,∴BP∥GH,∴∠2=∠PBC,∵∠ABP+∠PBC=90°,∴∠1+∠2=90°.14.(1)证明:∵a∥b,∴∠2=∠ABD.∵AB平分∠MAD,AC平分∠NAD,∴∠BAC=90°.∵DE⊥AC,∴∠DEC=90°,∴AB∥DE,∴∠ABD=∠1,∴∠2=∠1;(2)解:当β﹣α=4x时,FH∥a.理由:∵a∥b,∴∠α=∠ABD.∵∠AFD是△BDF的外角,∴∠ABD+∠β=∠AFD,即α+β=∠AFD.∵FQ平分∠AFD交AC于Q,∴∠AFQ=∠DFQ=(α+β).∵∠AFQ=∠AFH+x=∠DFH﹣x,∴∠DFQ﹣∠AFH=2x.∵β﹣α=4x,∴α+β﹣∠AFH=β﹣α,∴∠AFH=α,∴FH∥a.15.解:(1)在△CEN中,∠CEN=180°﹣30°﹣45°=105°;(2)如图②,∵∠CON=5∠DOM∴180°﹣∠DOM=5∠DOM,∴∠DOM=30°∵∠OMN=60°,∴MN⊥OD,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(3)如图③,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷5°=15秒,或t=255°÷5°=51秒;所以,在旋转的过程中,三角板MON运动15秒或51秒后直线MN恰好与直线CD平行.(4)MN⊥CD时,旋转角的角度差上90°,所以90°÷(20°﹣10°)=9秒,故答案为:9.16.(1)解:如图1,∠AOC=∠BOD,理由是:∵∠DOC=∠AOB=90°,∴∠DOC﹣∠AOD=∠AOB﹣∠AOD,∴∠AOC=∠BOD;(2)如图2,DO⊥AB,证明:∵CO∥AB,∠COD=90°,∴∠NMD=∠COD=90°,∴DO⊥AB;(3)如图3,解:能使CD⊥AB,理由是:∵CD⊥AB,∴∠ANQ=90°,∵∠A=30°,∴∠AQN=180°﹣90°﹣30°=60°,∴∠CQO=∠AQN=60°,∵∠C=45°,∴∠AOC=180°﹣∠CQO﹣∠C=180°﹣60°﹣45°=75°.17.解:(1)如图1,过点P作PH∥AB,则∠EPF=∠EPH+∠FPH=∠AEP+∠CFP,故答案为:∠EPF=∠AEP+∠PFC;同理可得:∠AEP+∠EPF+∠PFC=360°,故答案为:∠AEP+∠EPF+∠PFC=360°;(2)①∠EPF=60°,则∠EQF=150°,由(1)知∠PEA+∠PFC=∠P=60°,而∠PFC+2β=180°,∠PEA+2α=180°,故α+β=150°=∠EQF,故答案为150°;②如图3,QE,QF分别平分∠PEB和∠PFD,设:∠BEQ=∠QEP=α,∠QFD=∠PFQ=β,则∠P=180°﹣2α+180°﹣2β=360°﹣2(α+β),∠Q=α+β,即:∠EPF+2∠EQF=360°;③同理可得:∠Q1=(α+β),∠Q2=(α+β),∠Q2018=()2018(α+β),故:∠EPF+22019•∠EQ2018F=360°.18.解:(1)存在,有两种情况:①当BC平分∠ABO时,如图1,∵∠AOB=90°,∴∠BAO+∠ABO=90°,∵AC平分∠BAO,BC平分∠ABO,∴∠BAC=,∠ABC=∠ABO,∴∠BAC+∠ABC=(∠BAO+∠ABO)=45°,∴∠ACB=180°﹣45°=135°;②如下图,当CB平分∠ABN时,∵∠ABN=90°+∠BAO,∵AC平分∠BAO,∴2∠ABE=90°+2∠CAB,∴∠ABE=45°+∠CAB,∴∠ACB=∠ABE﹣∠CAB=45°,综上,∠ACB的度数为45°或135°;(2)如图②,∵∠AOB=∠P=90°,∴∠OAP+∠OBP=180°,∴∠OAP+∠OBP=90°,∵AD平分∠OAP,BE平分∠OBP,∴∠OAD=∠OAP=90°﹣,∠OBE=∠OBP,∵∠OBE+∠OEB=90°,∴∠OEB=90°﹣∠OBE=90°﹣∠OBP,∴∠OAD=∠OEB,∴AD∥BE;(3)∵∠AOB=∠APB=90°,∴点P一直在以AB为直径的圆上,当P在直径AB的上方时,如图2,有AD∥BE,当P在直径AB的下方时,如图3,有AD⊥BE,理由是:∵∠OAP=∠OBP,∵AD平分∠OAP,BE平分∠OBP,∴∠P AD=∠OAP,∠DBE=∠OBP,∴∠P AD=∠DBE,∵∠ADP=∠BDG,∴∠APB=∠AGB,∴AD⊥BE.19.解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=19°48′,∴∠EOC=90°﹣19°48′=89°60°﹣19°48′=70°12′,∠AOD=180°﹣19°48′=160°12′,∵OF平分∠AOD,∴∠FOD=∠AOD=×160°12′=80°6′;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE与射线OF重合时至少需要t秒,10t﹣4t=360﹣150,t=35,答:当射线OE与射线OF重合时至少需要35秒;(3)设射线OE转动的时间为t秒,由题意得:10t+90+4t=360﹣150或10t﹣(360﹣150)+4t=90或360﹣10t=4t﹣120,t=或或.答:射线OE转动的时间为t=秒或秒或秒.20.解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=x=20°,∴∠EOC=90°﹣20°=70°,∠AOD=180°﹣20°=160°,∵OF平分∠AOD,∴∠FOD=∠AOD==80°;故答案为:70,80;(2)当x=60°,∠EOF=90°+60°=150°设当射线OE'与射线OF'重合时至少需要t秒,10t+8t=150,t=,答:当射线OE'与射线OF'重合时至少需要秒;(3)设射线OE'转动的时间为t秒,由题意得:10t+90+8t=150或10t+8t=150+90或360﹣10t=8t﹣150+90或360﹣10t+360﹣8t+90=360﹣150,t=或或或.答:射线OE'转动的时间为秒或秒或秒或秒.。
动点综合问题(共32题)(解析版)--2023年中考数学真题分项汇编(全国通用)
专题动点综合问题(32题)1(2023·四川遂宁·统考中考真题)如图,在△ABC 中,AB =10,BC =6,AC =8,点P 为线段AB 上的动点,以每秒1个单位长度的速度从点A 向点B 移动,到达点B 时停止.过点P 作PM ⊥AC 于点M 、作PN ⊥BC 于点N ,连接MN ,线段MN 的长度y 与点P 的运动时间t (秒)的函数关系如图所示,则函数图象最低点E 的坐标为()A.5,5B.6,245C.325,245D.325,5【答案】C【分析】如图所示,过点C 作CD ⊥AB 于D ,连接CP ,先利用勾股定理的逆定理证明△ABC 是直角三角形,即∠C =90°,进而利用等面积法求出CD =245,则可利用勾股定理求出AD =325;再证明四边形CMPN 是矩形,得到MN =CP ,故当点P 与点D 重合时,CP 最小,即MN 最小,此时MN 最小值为245,AP =325,则点E 的坐标为325,245.【详解】解:如图所示,过点C 作CD ⊥AB 于D ,连接CP ,∵在△ABC 中,AB =10,BC =6,AC =8,∴AC 2+BC 2=62+82=100=102=AB 2,∴△ABC 是直角三角形,即∠C =90°,∴S △ABC =12AC ⋅BC =12AB ⋅CD ,∴CD =AC ⋅BC AB=245,∴AD =AC 2-CD 2=325;∵PM ⊥AC ,PN ⊥BC ,∠C =90°,∴四边形CMPN 是矩形,∴MN =CP ,∴当MN 最小时,即CP 最小,∴当点P 与点D 重合时,CP 最小,即MN 最小,此时MN 最小值为245,AP =AD =325,∴点E 的坐标为325,245,故选:C .【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.2(2023·广东深圳·统考中考真题)如图1,在Rt △ABC 中,动点P 从A 点运动到B 点再到C 点后停止,速度为2单位/s ,其中BP 长与运动时间t (单位:s )的关系如图2,则AC 的长为()B.427C.17D.53A.1552【答案】C【分析】根据图象可知t=0时,点P与点A重合,得到AB=15,进而求出点P从点A运动到点B所需的时间,进而得到点P从点B运动到点C的时间,求出BC的长,再利用勾股定理求出AC即可.【详解】解:由图象可知:t=0时,点P与点A重合,∴AB=15,∴点P从点A运动到点B所需的时间为15÷2=7.5s;∴点P从点B运动到点C的时间为11.5-7.5=4s,∴BC=2×4=8;在Rt△ABC中:AC=AB2+BC2=17;故选:C.【点睛】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出AB,BC的长,是解题的关键.3(2023·黑龙江绥化·统考中考真题)如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A 点出发,点M以每秒2个单位长度沿折线A-B-C向终点C运动;点N以每秒1个单位长度沿线段AD 向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y 个平方单位,则下列正确表示y与x函数关系的图象是()A. B.C. D.【答案】A【分析】连接BD ,过点B 作BE ⊥AD 于点E ,根据已知条件得出△ABD 是等边三角形,进而证明△AMN ∽ABE 得出∠ANM =∠AEB =90°,当0<t <4时,M 在AB 上,当4≤t <8时,M 在BC 上,根据三角形的面积公式得到函数关系式,【详解】解:如图所示,连接BD ,过点B 作BE ⊥AD 于点E ,当0<t <4时,M 在AB 上,菱形ABCD 中,∠A =60°,AB =4,∴AB =AD ,则△ABD 是等边三角形,∴AE =ED =12AD =2,BE =3AE =23∵AM =2x ,AN =x ,∴AM AN =AB AE =2,又∠A =∠A ∴△AMN ∽ABE∴∠ANM =∠AEB =90°∴MN =AM 2-AN 2=3x ,∴y =12x ×3x =32x2当4≤t <8时,M 在BC 上,∴y =12AN ×BE =12x ×23=3x ,综上所述,0<t <4时的函数图象是开口向上的抛物线的一部分,当4≤t <8时,函数图象是直线的一部分,故选:A .【点睛】本题考查了动点问题的函数图象,二次函数图象的性质,一次函数图象的性质,菱形的性质,勾股定理,等边三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.4(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中,AB =4,动点M ,N 分别从点A ,B 同时出发,沿射线AB ,射线BC 的方向匀速运动,且速度的大小相等,连接DM ,MN ,ND .设点M 运动的路程为x 0≤x ≤4 ,△DMN 的面积为S ,下列图像中能反映S 与x 之间函数关系的是()A. B.C. D.【答案】A【分析】先根据S =S 正方形ABCD -S △ADM -S △DCN -S △BMN ,求出S 与x 之间函数关系式,再判断即可得出结论.【详解】解:S =S 正方形ABCD -S △ADM -S △DCN -S △BMN ,=4×4-12×4x -12×4(4-x )-12x (4-x ),=12x 2-2x +8,=12(x -2)2+6,故S 与x 之间函数关系为二次函数,图像开口向上,x =2时,函数有最小值6,故选:A .【点睛】本题考查了正方形的性质,二次函数的图像与性质,本题的关键是求出S 与x 之间函数关系式,再判断S 与x 之间函数类型.5(2023·河南·统考中考真题)如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PBPC=y ,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为()A.6B.3C.43D.23【答案】A【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB =PC ,AO =23,易知∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为43,可知AO =OB =23,过点O 作OD ⊥AB ,解直角三角形可得AD =AO ⋅cos30°=3,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PBPC=1,∴PB =PC ,AO =23,又∵△ABC 为等边三角形,∴∠BAC =60°,AB =AC ,∴△APB ≌△APC SSS ,∴∠BAO =∠CAO ,∴∠BAO =∠CAO =30°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为43,∴OB =23,即AO =OB =23,∴∠BAO =∠ABO =30°,过点O 作OD ⊥AB ,∴AD =BD ,则AD =AO ⋅cos30°=3,∴AB =AD +BD =6,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.6(2023·四川乐山·统考中考真题)如图,在平面直角坐标系xOy 中,直线y =-x -2与x 轴、y 轴分别交于A 、B 两点,C 、D 是半径为1的⊙O 上两动点,且CD =2,P 为弦CD 的中点.当C 、D 两点在圆上运动时,△PAB 面积的最大值是()A.8B.6C.4D.3【答案】D【分析】根据一次函数与坐标轴的交点得出OA =OB =2,确定AB =22,再由题意得出当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,利用勾股定理求解即可.【详解】解:∵直线y =-x -2与x 轴、y 轴分别交于A 、B 两点,∴当x =0时,y =-2,当y =0时,x =-2,∴A -2,0 ,B 0,-2 ,∴OA =OB =2,∴AB =OA 2+OB 2=22,∵△PAB 的底边AB =22为定值,∴使得△PAB 底边上的高最大时,面积最大,点P 为CD 的中点,当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,∵CD =2,⊙O 的半径为1,∴DP=22∴OP=OD2-DP2=22,∵OE⊥AB,∴OE=12AB=2,∴PE=OE+OP=322,∴S△PAB=12×22×322=3,故选:D.【点睛】题目主要考查一次函数的应用及勾股定理解三角形,垂径定理的应用,理解题意,确定出高的最大值是解题关键.7(2023·河北·统考中考真题)如图是一种轨道示意图,其中ADC和ABC均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y,则y与x关系的图象大致是()A. B.C. D.【答案】D【分析】设圆的半径为R,根据机器人移动时最开始的距离为AM+CN+2R,之后同时到达点A,C,两个机器人之间的距离y越来越小,当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是直径2R,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M,N两点同时出发,设圆的半径为R,∴两个机器人最初的距离是AM+CN+2R,∵两个人机器人速度相同,∴分别同时到达点A,C,∴两个机器人之间的距离y越来越小,故排除A,C;当两个机器人分别沿A→D→C和C→B→A移动时,此时两个机器人之间的距离是直径2R,保持不变,当机器人分别沿C→N和A→M移动时,此时两个机器人之间的距离越来越大,故排除C,故选:D.【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.8(2023·江苏苏州·统考中考真题)如图,在平面直角坐标系中,点A的坐标为9,0,点C的坐标为0,3,以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,AC⋅EF的值为()A.10B.910C.15D.30【答案】D【分析】根据题意,得出E4,0,勾股定理求得EF=10,AC=310,即可求解.,F5,3【详解】解:连接AC、EF∵点A的坐标为9,0,以OA,OC为边作矩形OABC.,点C的坐标为0,3∴B9,3,AC=32+92=310则OA=9,BC=OA=9依题意,OE=4×1=4,BF=4×1=4∴AE=9-4=5,则E4,0,∴CF=BC-BF=9-4=5∴F5,3,∴EF=5-42+32=10,∵C0,3,∴AC⋅EF=310×10=30故选:D.【点睛】本题考查了坐标与图形,勾股定理求两点坐标距离,矩形的性质,求得E,F的坐标是解题的关键.9(2023·山东滨州·统考中考真题)已知点P 是等边△ABC 的边BC 上的一点,若∠APC =104°,则在以线段AP ,BP ,CP 为边的三角形中,最小内角的大小为()A.14°B.16°C.24°D.26°【答案】B【分析】将△ABP 绕点A 逆时针旋转60°得到△ACQ ,可得以线段AP ,BP ,CP 为边的三角形,即△PCQ ,最小的锐角为∠PQC ,根据邻补角以及旋转的性质得出∠AQC =∠APB =76°,进而即可求解.【详解】解:如图所示,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,∴AP =AQ ,∠PAQ =60°,BP =CQ ,∠AQC =∠APB ,∴△APQ 是等边三角形,∴PQ =AP ,∴以线段AP ,BP ,CP 为边的三角形,即△PCQ ,最小的锐角为∠PQC ,∵∠APC =104°,∴∠APB =76°∴∠AQC =∠APB =76°∴∠PQC =76°-60°=16°,故选:B .【点睛】本题考查了旋转的性质,等边三角形的性质与判定,熟练掌握旋转的性质是解题的关键.10(2023·甘肃武威·统考中考真题)如图1,正方形ABCD 的边长为4,E 为CD 边的中点.动点P 从点A 出发沿AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,线段PE 的长为y ,y 与x 的函数图象如图2所示,则点M 的坐标为()A.4,23B.4,4C.4,25D.4,5【答案】C【分析】证明AB =BC =CD =AD =4,∠C =∠D =90°,CE =DE =2,则当P 与A ,B 重合时,PE 最长,此时PE =22+42=25,而运动路程为0或4,从而可得答案.【详解】解:∵正方形ABCD 的边长为4,E 为CD 边的中点,∴AB =BC =CD =AD =4,∠C =∠D =90°,CE =DE =2,当P 与A ,B 重合时,PE 最长,此时PE =22+42=25,运动路程为0或4,结合函数图象可得M 4,25 ,故选:C .【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.11(2023·浙江绍兴·统考中考真题)如图,在△ABC 中,D 是边BC 上的点(不与点B ,C 重合).过点D作DE ∥AB 交AC 于点E ;过点D 作DF ∥AC 交AB 于点F .N 是线段BF 上的点,BN =2NF ;M 是线段DE 上的点,DM =2ME .若已知△CMN 的面积,则一定能求出()A.△AFE 的面积B.△BDF 的面积C.△BCN 的面积D.△DCE 的面积【答案】D【分析】如图所示,连接ND ,证明△FBD ∽△EDC ,得出FB ED =FD EC ,由已知得出NF ME =BF DE ,则FDEC=NFME,又∠NFD =∠MEC ,则△NFD ∽△MEC ,进而得出∠MCD =∠NDB ,可得MC ∥ND ,结合题意得出S △EMC =12S △DMC =12S △MNC ,即可求解.【详解】解:如图所示,连接ND ,∵DE ∥AB ,DF ∥AC ,∴∠ECD =∠FDB ,∠FBD =∠EDC ,∠BFD =∠A ,∠A =DEC .∴△FBD ∽△EDC ,∠NFD =∠MEC .∴FB ED =FD EC .∵DM =2ME ,BN =2NF ,∴NF =13BF ,ME =13DE ,∴NF ME =BF DE .∴FD EC=NF ME .又∵∠NFD =∠MEC ,∴△NFD ∽△MEC .∴∠ECM =∠FDN .∵∠FDB =∠ECD ∴∠MCD =∠NDB .∴MC ∥ND .∴S △MNC =S △MDC .∵DM =2ME ,∴S △EMC =12S △DMC =12S △MNC .故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ∥ND 是解题的关键.12(2023·安徽·统考中考真题)如图,E 是线段AB 上一点,△ADE 和△BCE 是位于直线AB 同侧的两个等边三角形,点P ,F 分别是CD ,AB 的中点.若AB =4,则下列结论错误的是()A.PA +PB 的最小值为33B.PE +PF 的最小值为23C.△CDE 周长的最小值为6D.四边形ABCD 面积的最小值为33【答案】A【分析】延长AD ,BC ,则△ABQ 是等边三角形,观察选项都是求最小时,进而得出当E 点与F 重合时,则Q ,P ,F 三点共线,各项都取得最小值,得出B ,C ,D 选项正确,即可求解.【详解】解:如图所示,延长AD ,BC ,依题意∠QAD =∠QBA =60°∴△ABQ 是等边三角形,∵P 是CD 的中点,∴PD =PC ,∵∠DEA =∠CBA ,∴ED ∥CQ∴∠PQC =∠PED ,∠PCQ =∠PDE ,∴△PDE ≌△PCQ ∴PQ =PE ,∴四边形DECQ 是平行四边形,则P 为EQ 的中点如图所示,设AQ ,BQ 的中点分别为G ,H ,则GP =12AE ,PH =12EB∴当E 点在AB 上运动时,P 在GH 上运动,当E 点与F 重合时,即AE =EB ,则Q ,P ,F 三点共线,PF 取得最小值,此时AE =EB =12AE +EB =2,则△ADE ≌△ECB ,∴C ,D 到AB 的距离相等,则CD ∥AB ,此时PF =32AD =3此时△ADE 和△BCE 的边长都为2,则AP ,PB 最小,∴PF =32×2=3,∴PA =PB =22+3 2=7∴PA +PB =27,或者如图所示,作点B 关于GH 对称点B ,则PB =PB ,则当A ,P ,B 三点共线时,AP +PB =AB此时AB =AB 2+BB =42+23 2=27故A 选项错误,根据题意可得P ,Q ,F 三点共线时,PF 最小,此时PE =PF =3,则PE +PF =23,故B 选项正确;△CDE 周长等于CD +DE +CE =CD +AE +EB =CD +AB =CD +4,即当CD 最小时,△CDE 周长最小,如图所示,作平行四边形GDMH ,连接CM ,∵∠GHQ =60°,∠GHM =∠GDM =60°,则∠CHM =120°如图,延长DE ,HG ,交于点N ,则∠NGD =∠QGH =60°,∠NDG =∠ADE =60°∴△NGD 是等边三角形,∴ND =GD =HM ,在△NPD 与△HPC 中,∠NPD =∠HPC∠N =∠CHP =60°PD =PC∴△NPD ≌△HPC∴ND =CH∴CH =MH∴∠HCM =∠HMC =30°∴CM ∥QF ,则CM ⊥DM ,∴△DMC 是直角三角形,在△DCM 中,DC >DM∴当DC =DM 时,DC 最短,DC =GH =12AB =2∵CD =PC +2PC∴△CDE 周长的最小值为2+2+2=6,故C 选项正确;∵△NPD ≌△HPC∴四边形ABCD 面积等于S △ADE +S △EBC+S △DEC =S △ADE +S 平行四边NEBH∴当△BGD的面积为0时,取得最小值,此时,D,G重合,C,H重合∴四边形ABCD面积的最小值为3×34×22=33,故D选项正确,故选:A.【点睛】本题考查了解直角三角形,等边三角形的性质,勾股定理,熟练掌握等边三角形的性质,得出当E点与F重合时得出最小值是解题的关键.二、填空题13(2023·四川达州·统考中考真题)在△ABC中,AB=43,∠C=60°,在边BC上有一点P,且BP= 12AC,连接AP,则AP的最小值为.【答案】213-2【分析】如图,作△ABC的外接圆,圆心为M,连接AM、BM、CM,过M作MD⊥AB于D,过B作BN⊥AB,交BP的垂直平分线于N,连接AN、BN、PN,以N为圆心,BN PN为半径作圆;结合圆周角定理及垂径定理易得AM=BM=CM=4,再通过圆周角定理、垂直及垂直平分线的性质、三角形内角和定理易得∠AMC=∠PNB,从而易证△AMC∼△PNB可得CMPN=ACPB=21即PN=12CM=2勾股定理即可求得AN=213在△APN中由三角形三边关系AP≥AN-PN即可求解.【详解】解:如图,作△ABC的外接圆,圆心为M,连接AM、BM、CM,过M作MD⊥AB于D,过B作BN ⊥AB,交BP的垂直平分线于N,连接AN、BN、PN,以N为圆心,BN PN为半径作圆;∵∠C=60°,M为△ABC的外接圆的圆心,∴∠AMB=120°,AM=BM,∴∠MAB=∠MBA=30°,∴MD=12AM,∵MD⊥AB,∴AD=12AB=23,在Rt△ADM中,∵AM2=MD2+AD2,∴AM2=12AM2+232,∴AM=4,即AM=BM=CM=4,由作图可知BN⊥AB,N在BP的垂直平分线上,∴∠PBN=∠BPN=90°-∠ABC,∴∠PNB=180°-∠PBN+∠BPN=2∠ABC,又∵M为△ABC的外接圆的圆心,∴∠AMC=2∠ABC,∴∠AMC=∠PNB,∵CM PN =AMBN,∴△AMC∼△PNB,∴CM PN =ACPB,∵BP=12AC,∴CM PN =ACPB=21,即PN=12CM=2,∴PN=BN=2,在Rt△ABN中,AN=AB2+BN2=432+22=213,在△APN中,AP≥AN-PN=213-2,即AP最小值为213-2,故答案为:213-2.【点睛】本题考查了圆周角定理,垂径定理,勾股定理解直角三角形,相似三角形的判定和性质,垂直平分线的性质,30°角所对的直角边等于斜边的一半,三角形三边之间的关系;解题的关键是结合△ABC的外接圆构造相似三角形.14(2023·浙江宁波·统考中考真题)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连接AD,BE=3,BD=35.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为.【答案】230或6【分析】连接OD,勾股定理求出半径,平行线分线段成比例,求出CD的长,勾股定理求出AC和AD的长,分AP=AD和AP=PD两种情况进行求解即可.【详解】解:连接OD,∵以AE为直径的半圆O与BC相切于点D,∴OD⊥BC,OA=OE=OD,∴∠ODB=90°设OA=OE=OD=r,则OB=OE+BE=3+r,在Rt△ODB中:OD2+BD2=OB2,即:r2+352=3+r2,解得:r=6,∴OA=OE=OD=6,∴OB=9,AB=15,AE=12,∵∠C=∠ODB=90°,∴OD∥AC,∴OB OA =DBDC=96=32,∵DB=35,∴CD=25,∴BC=DB+CD=55,∴AC=AB2-BC2=10,∴AD=AC2+CD2=230;∵△ADP为等腰三角形,当AD=AP时,AP=230,当PA=PD时,∵OA=OD,∴点P与点O重合,∴AP=OA=6,不存在PD=AD的情况;综上:AP的长为230或6.故答案为:230或6.【点睛】本题考查切线的性质,平行线分线段成比例,勾股定理,等腰三角形的定义.熟练掌握切线的性质,等腰三角形的定义,确定点P的位置,是解题的关键.15(2023·四川凉山·统考中考真题)如图,边长为2的等边△ABC的两个顶点A、B分别在两条射线OM、ON上滑动,若OM⊥ON,则OC的最大值是.【答案】1+3【分析】如图所示,取AB的中点D,连接OD,CD,先根据等边三角形的性质和勾股定理求出CD=3,再根据直角三角形的性质得到OD=12AB=1,再由OC≤OD+CD可得当O、C、D三点共线时,OC有最大值,最大值为1+3.【详解】解:如图所示,取AB的中点D,连接OD,CD,∵△ABC是边长为2的等边三角形,∴CD⊥AB,BC=AB=2,∴BD=AD=1,∴CD=BC2-BD2=3,∵OM⊥ON,即∠AOB=90°,∴OD =12AB =1,∵OC ≤OD +CD ,∴当O 、C 、D 三点共线时,OC 有最大值,最大值为1+3,故答案为:1+3.【点睛】本题主要考查了等边三角形的性质,勾股定理,直角三角形斜边上的中线的性质等等,正确作出辅助线确定当O 、C 、D 三点共线时,OC 有最大值是解题的关键.16(2023·四川泸州·统考中考真题)如图,E ,F 是正方形ABCD 的边AB 的三等分点,P 是对角线AC 上的动点,当PE +PF 取得最小值时,AP PC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP =27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.17(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A=90°,则BN=AB2+AN2=2,∴BN=ND=2∴AD=AN+ND=2+1,综上,AD的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.18(2023·湖南·统考中考真题)如图,在矩形ABCD中,AB=2,AD=7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A、B重合时,将△ABP沿AP对折,得到△AB P,连接CB ,则在点P的运动过程中,线段CB 的最小值为.【答案】11-2【分析】根据折叠的性质得出B 在A为圆心,2为半径的弧上运动,进而分类讨论当点P在BC上时,当点P在DC上时,当P在AD上时,即可求解.【详解】解:∵在矩形ABCD中,AB=2,AD=7,∴BC=AD=7,AC=BC2+AB2=7+4=11,如图所示,当点P在BC上时,∵AB =AB=2∴B 在A为圆心,2为半径的弧上运动,当A,B ,C三点共线时,CB 最短,此时CB =AC-AB =11-2,当点P在DC上时,如图所示,此时CB >11-2当P 在AD 上时,如图所示,此时CB >11-2综上所述,CB 的最小值为11-2,故答案为:11-2.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.19(2023·广西·统考中考真题)如图,在边长为2的正方形ABCD 中,E ,F 分别是BC ,CD 上的动点,M ,N 分别是EF ,AF 的中点,则MN 的最大值为.【答案】2【分析】首先证明出MN 是△AEF 的中位线,得到MN =12AE ,然后由正方形的性质和勾股定理得到AE =AB 2+BE 2=4+BE 2,证明出当BE 最大时,AE 最大,此时MN 最大,进而得到当点E 和点C 重合时,BE 最大,即BC 的长度,最后代入求解即可.【详解】如图所示,连接AE ,∵M ,N 分别是EF ,AF 的中点,∴MN 是△AEF 的中位线,∴MN =12AE ,∵四边形ABCD 是正方形,∴∠B =90°,∴AE =AB 2+BE 2=4+BE 2,∴当BE 最大时,AE 最大,此时MN 最大,∵点E 是BC 上的动点,∴当点E 和点C 重合时,BE 最大,即BC 的长度,∴此时AE =4+22=22,∴MN =12AE =2,∴MN 的最大值为2.故答案为:2.【点睛】此题考查了正方形的性质,三角形中位线的性质,勾股定理等知识,解题的关键是熟练掌握以上知识点.20(2023·山东·统考中考真题)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD <BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.【答案】29-2【分析】设AD的中点为O,以AD为直径画圆,连接OB,设OB与⊙O的交点为点F ,证明∠DFA=90°,可知点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O的交点F 时,线段BF有最小值,据此求解即可.【详解】解:设AD的中点为O,以AD为直径画圆,连接OB,设OB与⊙O的交点为点F ,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DFA=∠ABE=90°,∴点F在以AD为直径的半圆上运动,∴当点F运动到OB与⊙O的交点F 时,线段BF有最小值,∵AD=4,AD=2,,∴AO=OF =12∴BO=52+22=29,BF的最小值为29-2,故答案为:29-2.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F的运动轨迹是解题的关键.21(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形ABCD中,AB=5,AD=12,对角线AC与BD交于点O,点E为BC边上的一个动点,EF⊥AC,EG⊥BD,垂足分别为点F,G,则EF+EG=.【答案】6013【分析】连接OE ,根据矩形的性质得到BC =AD =12,AO =CO =BO =DO ,∠ABC =90°,根据勾股定理得到AC =AB 2+BC 2=13,求得OB =OC =132,根据三角形的面积公式即可得到结论.【详解】解:连接OE ,∵四边形ABCD 是矩形,∴∠ABC =90°,BC =AD =12,AO =CO =BO =DO ,∵AB =5,BC =12,∴AC =AB 2+BC 2=13,∴OB =OC =132,∴S △BOC =S △BOE +S △COE =12×OB ⋅EG +12OC ⋅EF =12S △ABC =12×12×5×12=15,∴12×132EG +12×132EF =12×132(EG +EF )=15,∴EG +EF =6013,故答案为:6013.【点睛】此题考查了矩形的性质、勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.22(2023·山东烟台·统考中考真题)如图1,在△ABC 中,动点P 从点A 出发沿折线AB →BC →CA 匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则△ABC 的高CG 的长为.【答案】732【分析】过点A 作AQ ⊥BC 于点Q ,当点P 与Q 重合时,在图2中F 点表示当AB +BQ =12时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ ⊥BC 于点Q ,当点P 与Q 重合时,在图2中F 点表示当AB +BQ =12时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴BC =7,BQ =4,QC =3在Rt △ABQ 中,AB =8,BQ =4∴AQ =AB 2-BQ 2=82-42=43∵S △ABC =12AB ×CG =12AQ ×BC ,∴CG =BC ×AQ AB=7×438=732,故答案为:732.【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.23(2023·新疆·统考中考真题)如图,在▱ABCD 中,AB =6,BC =8,∠ABC =120°,点E 是AD 上一动点,将△ABE 沿BE 折叠得到△A BE ,当点A 恰好落在EC 上时,DE 的长为.【答案】37-3【分析】过点C作CH⊥AD交AD的延长线于点H,根据平行四边形的性质以及已知条件得出∠ADC=∠ABC=120°,∠HDC=60°,进而求得DH,HC,根据折叠的性质得出CB=CE,进而在Rt△ECH中,勾股定理即可求解.【详解】解:如图所示,过点C作CH⊥AD交AD的延长线于点H,∵在▱ABCD中,AB=6,BC=8,∠ABC=120°,∴∠ADC=∠ABC=120°,∠HDC=60°,CD=AB=6,AD=CB=8,DC=3,∴DH=DC×cos∠HDC=12在Rt△ECH中,HC=CD2-DH2=62-32=33∵将△ABE沿BE折叠得到△A BE,当点A 恰好落在EC上时,∴∠AEB=∠CEB又AD∥BC∴∠EBC=∠AEB∴∠EBC=∠CEB∴CE=BC=8设ED=x,∴EH=x+3在Rt△ECH中,EC2=EH2+HC2∴82=x+322+33解得:x=37-3(负整数)故答案为:37-3.【点睛】本题考查了折叠的性质,平行四边形的性质,解直角三角形,熟练掌握折叠的性质是解题的关键.24(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为【答案】M-8,6或M-8,2 3【分析】如图,由△AMN是以点N为直角顶点的等腰直角三角形,可得N在以AM为直径的圆H上,MN= AN,可得N是圆H与直线y=-2x-6的交点,当M,B重合时,符合题意,可得M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK=AB=8,证明△MNK≌△NAJ,设N x,-2x-6,可得MK=NJ=-x,KN=AJ=-2x-6-6=-2x-12,而KJ=AB =8,则-2x-12-x=8,再解方程可得答案.【详解】解:如图,∵△AMN是以点N为直角顶点的等腰直角三角形,∴N在以AM为直径的圆H上,MN=AN,∴N是圆H与直线y=-2x-6的交点,当M,B重合时,∵B-8,6,则H-4,3,∴MH=AH=NH=4,符合题意,∴M-8,6,当N在AM的上方时,如图,过N作NJ⊥y轴于J,延长MB交BJ于K,则∠NJA=∠MKN=90°,JK= AB=8,∴∠NAJ+∠ANJ=90°,∵AN =MN ,∠ANM =90°,∴∠MNK +∠ANJ =90°,∴∠MNK =∠NAJ ,∴△MNK ≌△NAJ ,设N x ,-2x -6 ,∴MK =NJ =-x ,KN =AJ =-2x -6-6=-2x -12,而KJ =AB =8,∴-2x -12-x =8,解得:x =-203,则-2x -6=223,∴CM =CK -MK =223-203=23,∴M -8,23 ;综上:M -8,6 或M -8,23 .故答案为:M -8,6 或M -8,23.【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,本题属于填空题里面的压轴题,难度较大,清晰的分类讨论是解本题的关键.25(2023·四川自贡·统考中考真题)如图,直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,点D 是线段AB 上一动点,点H 是直线y =-43x +2上的一动点,动点E m ,0 ,F m +3,0 ,连接BE ,DF ,HD .当BE +DF 取最小值时,3BH +5DH 的最小值是.【答案】392【分析】作出点C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,此时BE +DF 的最小值为CD 的长,利用解直角三角形求得F 113,0 ,利用待定系数法求得直线CD 的解析式,联立即可求得点D 的坐标,过点D 作DG ⊥y 轴于点G ,此时3BH +5DH 的最小值是5DG 的长,据此求解即可.【详解】解:∵直线y =-13x +2与x 轴,y 轴分别交于A ,B 两点,∴B 0,2 ,A 6,0 ,作点B 关于x 轴的对称点B 0,-2 ,把点B 向右平移3个单位得到C 3,-2 ,作CD ⊥AB 于点D ,交x 轴于点F ,过点B 作B E ∥CD 交x 轴于点E ,则四边形EFCB 是平行四边形,此时,BE =B E =CF ,∴BE +DF =CF +DF =CD 有最小值,作CP ⊥x 轴于点P ,则CP =2,OP =3,∵∠CFP =∠AFD ,∴∠FCP =∠FAD ,∴tan ∠FCP =tan ∠FAD ,∴PF PC =OB OA ,即PF 2=26,∴PF =23,则F 113,0 ,设直线CD 的解析式为y =kx +b ,则3k +b =-2113k +b =0,解得k =3b =-11 ,∴直线CD 的解析式为y =3x -11,联立,y =3x -11y =-13x +2 ,解得x =3910y =710,即D3910,710;过点D 作DG ⊥y 轴于点G ,直线y =-43x +2与x 轴的交点为Q 32,0 ,则BQ =OQ 2+OB 2=52,∴sin ∠OBQ =OQ BQ =3252=35,∴HG =BH sin ∠GBH =35BH ,∴3BH +5DH =535BH +DH =5HG +DH =5DG ,即3BH +5DH 的最小值是5DG =5×3910=392,故答案为:392.【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.三、解答题26(2023·重庆·统考中考真题)如图,△ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.【答案】(1)当0<t≤4时,y=t;当4<t≤6时,y=12-2t(2)图象见解析,当0<t≤4时,y随x的增大而增大(3)t的值为3或4.5【分析】(1)分两种情况:当0<t≤4时,根据等边三角形的性质解答;当4<t≤6时,利用周长减去2AE即可;(2)在直角坐标系中描点连线即可;(3)利用y=3分别求解即可.【详解】(1)解:当0<t≤4时,连接EF,由题意得AE=AF,∠A=60°,∴△AEF是等边三角形,∴y=t;当4<t≤6时,y=12-2t;(2)函数图象如图:。
九年级中考数学动点问题压轴题专题训练(含答案)
九年级中考数学动点问题压轴题专题训练1.如图1, 在平面直角坐标系中, 四边形OABC各顶点的坐标分别为O(0, 0), A(3, 3 ), B(9, 5 ), C(14, 0). 动点P与Q同时从O点出发, 运动时间为t秒, 点P沿OC方向以1单位长度/秒的速度向点C运动, 点Q沿折线OA-AB-BC运动, 在OA, AB, BC上运动的速度分别为3, , (单位长度/秒). 当P, Q中的一点到达C点时, 两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2, 当点Q在AB上运动时, 求△CPQ的面积S关于t的函数表达式及S的最大值.(3)在P, Q的运动过程中, 若线段PQ的垂直平分线经过四边形OABC的顶点, 求相应的t值.图1 图22.如图, 抛物线y=-x2+bx+c与x轴交于A, B两点(A在B的左侧), 与y轴交于点N, 过A点的直线l:y=kx+n与y轴交于点C, 与抛物线y=-x2+bx+c的另一个交点为D, 已知A(-1, 0), D(5, -6), P 点为抛物线y=-x2+bx+c上一动点(不与A, D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时, 过P点作PE∥x轴交直线l于点E, 作PF ∥y轴交直线l于点F, 求PE+PF的最大值;(3)设M为直线l上的点, 探究是否存在点M, 使得以点N, C, M, P为顶点的四边形为平行四边形.若存在, 求出点M的坐标;若不存在, 请说明理由.3.如图, 在平面直角坐标系中, 抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点, 求AM+OM的最小值.4.设直线l1: y=k1x+b1与l2: y=k2x+b2, 若l1⊥l2, 垂足为H, 则称直线l1与l2是点H的直角线.(1)已知直线①;②;③;④和点C(0, 2), 则直线_______和_______是点C的直角线(填序号即可);(2)如图, 在平面直角坐标系中, 直角梯形OABC的顶点A(3, 0)、B(2, 7)、C(0, 7), P为线段OC上一点, 设过B、P两点的直线为l1, 过A、P两点的直线为l2, 若l1与l2是点P的直角线, 求直线l1与l2的解析式.5.如图①, 在平面直角坐标系xOy中, 已知抛物线y=ax2-2ax-8a与x轴相交于A, B两点(点A在点B的左侧), 与y轴交于点C(0, -4).(1)点A的坐标为, 点B的坐标为, 线段AC的长为, 抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q, 使得以点B, C, P, Q为顶点的四边形是平行四边形, 求点Q的坐标.①6.如图, 已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A.B(点A位于点B是左侧), 与y轴的正半轴交于点C.(1)点B的坐标为______, 点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P, 使得四边形PCOB的面积等于2b, 且△PBC是以点P为直角顶点的等腰直角三角形?如果存在, 求出点P的坐标;如果不存在, 请说明理由;(3)请你进一步探索在第一象限内是否存在点Q, 使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在, 求出点Q的坐标;如果不存在, 请说明理由.7.如图, 已知A.B是线段MN上的两点, , , . 以A为中心顺时针旋转点M, 以B为中心逆时针旋转点N, 使M、N两点重合成一点C, 构成△ABC, 设.(1)求x的取值范围;(2)若△ABC为直角三角形, 求x的值;(3)探究: △ABC的最大面积?8.如图, 已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴, 垂足为C, 在对称轴的左侧且平行于y轴的直线交线段AB于点N, 交抛物线于点M, 若四边形MNCB为平行四边形, 求点M的坐标.9.在平面直角坐标系中, 反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时, 求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大, 求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q, 当△ABQ是以AB为斜边的直角三角形时, 求k的值.10.如图, 已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3, 抛物线与x轴相交于A, B两点, 与y轴相交于点C, 已知B点的坐标为(8, 0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点, 点N为线段BC上的一点, 若MN∥y 轴, 求MN的最大值;(3)在抛物线的对称轴上是否存在点Q, 使△ACQ为等腰三角形?若存在, 求出符合条件的Q点坐标;若不存在, 请说明理由.11.如图, 直线y=2x+6与反比例函数y=(k>0)的图象交于点A(m, 8), 与x轴交于点B, 平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M, 交AB于点N, 连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象, 直接写出当x>0时不等式2x+6->0的解集;(3)直线y=n沿y轴方向平移, 当n为何值时, △BMN的面积最大?最大值是多少?12.如图, 在平面直角坐标系xOy中, 顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B, AO=BO=2, ∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM, 求∠AOM的大小;(3)如果点C在x轴上, 且△ABC与△AOM相似, 求点C的坐标.13.在直角梯形OABC中, CB//OA, ∠COA=90°, CB=3, OA=6, BA=. 分别以OA.OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D.E分别为线段OC.OB上的点, OD=5, OE=2EB, 直线DE交x轴于点F. 求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点, 在x轴上方的平面内是否存在另一点N, 使以O、D、M、N为顶点的四边形是菱形?若存在, 请求出点N的坐标;若不存在, 请说明理由.14.如图, 已知一次函数y=-x+7与正比例函数的图象交于点A, 且与x轴交于点B. (1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C, 过点B作直线l//y轴. 动点P从点O出发, 以每秒1个单位长的速度, 沿O—C—A的路线向点A运动;同时直线l从点B出发, 以相同速度向左平移, 在平移过程中, 直线l交x轴于点R, 交线段BA或线段AO于点Q. 当点P到达点A时, 点P和直线l都停止运动. 在运动过程中, 设动点P运动的时间为t秒.①当t为何值时, 以A.P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在, 求t的值;若不存在, 请说明理由.15.如图, 二次函数y=a(x2-2mx-3m2)(其中a、m是常数, 且a>0, m>0)的图像与x轴分别交于A.B(点A位于点B的左侧), 与y轴交于点C(0,-3), 点D在二次函数的图像上, CD//AB, 联结AD. 过点A作射线AE交二次函数的图像于点E, AB平分∠DAE.(1)用含m的式子表示a;(2)求证: 为定值;(3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G, 联结GF, 以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在, 只要找出一个满足要求的点G即可, 并用含m的代数式表示该点的横坐标;如果不存在, 请说明理由.16.如图, 二次函数y=-x2+4x+5的图象的顶点为D, 对称轴是直线l, 一次函数y= x+1的图象与x轴交于点A, 且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C, N是线段DC上一点(不与点D, C重合), 点N的纵坐标为n.过点N作直线与线段DA, DB分别交于点P, Q, 使得△DPQ与△DAB 相似.①当n= 时, 求DP的长;②若对于每一个确定的n的值, 有且只有一个△DPQ与△DAB相似, 请直接写出n的取值范围.17.已知直线y=3x-3分别与x轴、y轴交于点A, B, 抛物线y=ax2+2x+c经过点A, B. (1)求该抛物线的表达式, 并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l, 点B关于直线l的对称点为C, 若点D在y 轴的正半轴上, 且四边形ABCD为梯形.①求点D的坐标;②将此抛物线向右平移, 平移后抛物线的顶点为P, 其对称轴与直线y=3x-3交于点E, 若, 求四边形BDEP的面积.18.如图, 在平面直角坐标系xOy中, 二次函数y=-x2+2x+8的图象与一次函数y=-x+b的图象交于A.B两点, 点A在x轴上, 点B的纵坐标为-7.点P是二次函数图象上A.B两点之间的一个动点(不与点A.B重合), 设点P的横坐标为m, 过点P作x轴的垂线交AB于点C, 作PD ⊥AB于点D.(1)求b及sin∠ACP的值;(2)用含m的代数式表示线段PD的长;(3)连接PB, 线段PC把△PDB分成两个三角形, 是否存在适合的m值, 使这两个三角形的面积之比为1∶2?如果存在, 直接写出m的值;如果不存在, 请说明理由.19.如图, 抛物线与x轴交于A.B两点(点A在点B的左侧), 与y轴交于点C.(1)求点A.B的坐标;(2)设D为已知抛物线的对称轴上的任意一点, 当△ACD的面积等于△ACB 的面积时, 求点D的坐标;(3)若直线l过点E(4, 0), M为直线l上的动点, 当以A、B、M为顶点所作的直角三角形有且只有三个时, 求直线l的解析式.20.已知平面直角坐标系中两定点A(-1, 0)、B(4, 0), 抛物线y=ax2+bx-2(a≠0)过点A.B, 顶点为C, 点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时, 求m的取值范围;(3)若m>, 当∠APB为直角时, 将该抛物线向左或向右平移t(0<t<)个单位, 点C、P平移后对应的点分别记为C′、P′, 是否存在t, 使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在, 求t的值并说明抛物线平移的方向;若不存在, 请说明理由.2021中考数学压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1.【答案】【思维教练】(1)设一次函数解析式, 将已知点A、B的坐标值代入求解即可;(2)S △CPQ=·CP·Qy, CP=14-t, 点Q在AB上, Qy即为当x=t时的y值, 代入化简得出S与t的函数关系式, 化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论, 当Q在OA上时, 过点C;当Q在AB上时, 过点A;当Q在BC上时, 过点C和点B, 再列方程并求解.解图1解: (1)把A(3, 3 ), B(9, 5 )代入y=kx+b,得, 解得,∴y=33x+23;(3分)(2)在△PQC中, PC=14-t,∵OA==6且Q在OA上速度为3单位长度/s,AB==4 且Q点在AB上的速度为单位长度/s,∴Q在OA上时的横坐标为t, Q在AB上时的横坐标为t,PC边上的高线长为33t+2 3.(6分)所以S=(14-t)( t+2 )=-t2+t+14 (2≤t≤6).当t=5时, S有最大值为.(7分)解图2(3)①当0<t ≤2时, 线段PQ 的中垂线经过点C(如解图1). 可得方程(332t )2+(14-32t )2=(14-t )2.解得t1= , t2=0(舍去), 此时t = .(8分)解图3②当2<t ≤6时, 线段PQ 的中垂线经过点A(如解图2).可得方程(33)2+(t -3)2=[3(t -2)]2.解得t1= , ∵t2= (舍去), 此时t = .③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3).可得方程14-t =25- t, 解得t = .(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4).可得方程(53)2+(t -9)2=[52(t -6)]2.解得t1= , t2= (舍去).此时t=38+2027.(11分)综上所述, t的值为, , , .(12分)【难点突破】解决本题的关键点在于对PQ的垂直平分线过四边形顶点的情况进行分类讨论, 在不同阶段列方程求解.2.【答案】[分析] (1)将点A, D的坐标分别代入直线表达式、抛物线的表达式, 即可求解;(2)设出P点坐标, 用参数表示PE, PF的长, 利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况, 分别求解即可.解:(1)将点A, D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A, D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0, -1), 则直线l与x轴的夹角为45°, 即∠OAC=45°,∵PE∥x轴, ∴∠PEF=∠OAC=45°.又∵PF∥y轴, ∴∠EPF=90°, ∴∠EFP=45°.则PE=PF.设点P坐标为(x, -x2+3x+4),则点F(x, -x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0, ∴当x=2时, PE+PF有最大值, 其最大值为18.(3)由题意知N(0, 4), C(0, -1), ∴NC=5,①当NC是平行四边形的一条边时, 有NC∥PM, NC=PM.设点P坐标为(x, -x2+3x+4), 则点M的坐标为(x, -x-1),∴|yM-yP|=5, 即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+ , -3- )或(2- , -3+ )或(4, -5);②当NC是平行四边形的对角线时, 线段NC与PM互相平分.由题意, NC的中点坐标为0, ,设点P坐标为(m, -m2+3m+4),则点M(n', -n'-1),∴0= = ,解得:n'=0或-4(舍去n'=0), 故点M(-4, 3).综上所述, 存在点M, 使得以N, C, M, P为顶点的四边形为平行四边形, 点M的坐标分别为:(2+ , -3- ), (2- , -3+ ), (4, -5), (-4, 3).3.【答案】(1)。
初中八年级下册数学动点问题试题附答案
初中八年级下册数学动点问题试题附答案
本文档为初中八年级下册数学动点问题试题及其答案附录。
以下为试题内容:
试题一
1. 一辆汽车每小时行驶60千米。
已知一条道路上两个小车相距120千米,两车同时从两端开始开过。
在2小时后两车相遇,求另一辆小车时速是多少?
答案:另一辆小车的时速是40千米/小时。
试题二
2. 一架直升机从A地出发,向东飞行100千米后转向南飞行,飞行速度为60千米/小时。
飞行2小时后,在B地降落。
求直升机从A地到B地的飞行距离及飞行时间。
答案:直升机从A地到B地的飞行距离为140千米,飞行时间为3小时。
试题三
3. 一列火车以每小时80千米的速度从A地开往B地,一辆汽
车以每小时60千米的速度同时从B地向A地开。
若两车从相距
200千米的时候开始计时,火车到达B地后返回A地的时候,两车
相距250千米。
求两地的距离。
答案:A地和B地的距离为450千米。
试题四
4. 一条有笔直通道,两边都是田地。
东边的直边上有一棵高度
为2米的树,西边的直边上有一棵高度为3米的树。
直道的宽度为
4米,人从田地一头走到另一头的时间为2分钟。
求人的步行速度。
答案:人的步行速度为60米/分钟。
希望上述试题及答案能帮助到您。
如有其他问题或需要进一步帮助,请随时告知。
中考数学动点问题专题练习(含答案)
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
初一数学动点问题答案与解析
动点问题答案与解析一、单点移动问题1.【解答】(1)-21(2)14.5秒(3)37-2t(4)BC:2t-29当A在C的左边:AC:52-2t当A在C的右边:AC:2t-522.【解答】解:(1)点P表示的有理数为﹣4+2×2=0;(2)6﹣(﹣4)=10,10÷2=5,5÷2=2.5,(10+5)÷2=7.5.故点P是AB的中点时t=2.5 或7.5;(3)在点P由点A到点B的运动过程中,点P与点A的距离为2t;(4)在点P由点B到点A的返回过程中,点P表示的有理数是6﹣2(t﹣5)=16﹣2t.3.【解答】解:(1)①点P在点B的左边时∵PB=2,4﹣2=2,∴点P表示的是2.②点P在点B的右边时,∵PB=2,4+2=6,∴点P表示的是6.综上,可得点P表示的是2或6;(2)∵4﹣(﹣2)=6,∴线段AB的长度是6.①AP=AB=2时,点P表示的是﹣2+2=0.②BP=AB=2时,点P表示的是4﹣2=2.综上,可得点P表示的是0或2;(3)①点P在点B的左边时,∵AP=6﹣2=4,4÷2=2,∴线段AM的长是2.②点P在点B的右边时,∵AP=6+2=8,8÷2=4,∴线段AM的长是4.综上,可得线段AM的长是2或4.(4)根据图示,可得当点P在A、B两点之间时,PA+PB的值最小,此时,PA+PB=AB=6,所以PA+PB 的最小值是6.二、两点移动问题4.【解答】解:(1)①∵点A表示的数为8,B在A点左边,AB=12,∴点B表示的数是8﹣12=﹣4,∵动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,∴点P表示的数是8﹣3×1=5.②设点P运动x秒时,与Q相距3个单位长度,则AP=3x,BQ=2x,∵AP+BQ=AB﹣3,∴3x+2x=9,解得:x=1.8,∵AP+BQ=AB+3,∴3x+2x=15解得:x=3.∴点P运动1.8秒或3秒时与点Q相距3个单位长度.(2)2MN+PQ=12或2MN﹣PQ=12;理由如下:P在Q右侧时有:MN=MQ+NP﹣PQ=AQ+BP﹣PQ=(AQ+BP﹣PQ)﹣PQ= AB﹣PQ=(12﹣PQ),即2MN+PQ=12.同理P在Q左侧时有:2MN﹣PQ=12.5.【解答】解:(1)点B表示的数是﹣4;(2)﹣4+2×2=﹣4+4=0.故2秒后点B表示的数是0,(3)由题意可知:①O为BA的中点,(﹣4+2t)+(2+2t)=0,解得t=;②B为OA的中点,2+2t=2(﹣4+2t),解得t=5.故答案为:﹣4;0.6.【解答】解:(1)设A点运动速度为x单位长度/秒,则B点运动速度为4x单位长度/秒.由题意得:3x+3×4x=15解得:x=1∴A点的运动速度是1单位长度/秒,B点的速度是4单位长度/秒;(2)设y秒后,原点恰好处在A、B的正中间.由题意得:y+3=12﹣4y解得:答:经过秒后,原点恰处在A、B的正中间;(3)设B追上A需时间z秒,则:4×z﹣1×z=2×(+3)解得:,=64.答:C点行驶的路程是64长度单位.7.【解答】解:(1)∵1﹣(﹣1)=2,2的绝对值是2,1﹣3=﹣2,﹣2的绝对值是2,∴点P对应的数是1.(2)当P在AB之间,PA+PB=4(不可能有)当P在A的左侧,PA+PB=﹣1﹣x+3﹣x=6,得x=﹣2当P在B的右侧,PA+PB=x﹣(﹣1)+x﹣3=6,得x=4故点P对应的数为﹣2或4;(3)解:设经过x分钟点A与点B重合,根据题意得:2x=4+x,解得x=4.∴6x=24.答:点P所经过的总路程是24个单位长度.8.【解答】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.9.【解答】解:(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得PA=40,OP=60,故点P运动时间为60秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷60=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷60=(cm/s).②点P在线段AB延长线上时,由PA=2PB及AB=60,可求得PA=120,OP=140,故点P运动时间为140秒.若AQ=时,BQ=40,CQ=50,点Q的运动速度为50÷140=(cm/s);若BQ=时,BQ=20,CQ=30,点Q的运动速度为30÷140=(cm/s).(2)设运动时间为t秒,则t+3t=90±70,t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm;(3)如图1,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.如图2,设OP=xcm,点P在线段AB上,20≤x≤80,OB﹣AP=80﹣(x﹣20)=100﹣x,EF=OF﹣OE=(OA+AB)﹣OE=(20+30)﹣=50﹣,∴==2.三、多点移动问题10.【解答】解:(1)A表示的数是﹣6,点A先沿着数轴向右移动8个单位长度,再向左移动5个单位长度后所对应的数字是:﹣6+8﹣5=﹣3,故答案为:﹣3;(2)∵A,B对应的数分别为﹣6,2,点C到点A,点B的距离相等,∴AB=8,x的值是﹣2.故答案为:﹣2;(3)根据题意得:|x﹣(﹣6)|+|x﹣2|=10,解得:x=﹣7或3;故答案为:﹣7或3;(4)当点A、B重合时,﹣6+4t=2﹣2t,解得t=;当点C为A、B中点且点C在点A的右侧时,﹣t﹣(﹣6+4t)=(2﹣2t)﹣(﹣t),解得t=1;当点C为A、B中点且点C在点A的左侧时,(﹣6﹣4t)﹣(﹣t)=(﹣t)﹣(2﹣2t)m解得t=1(舍去).综上所述,当t=或1,点C到点A、B 的距离相等.11.【解答】解:(1)设B点的运动速度为x,A、B两点同时出发相向而行,则他们的时间相等,有:=,解得x=1,所以B点的运动速度为1;(2)设经过时间为t.则B在A的前方,B点经过的路程﹣A点经过的路程=6,则2t﹣t=6,解得t=6.A在B的前方,A点经过的路程﹣B点经过的路程=6,则2t﹣t=12+6,解得t=18.(3)设点C的速度为y,始终有CB:CA=1:2,即:=,解得y=,当C停留在﹣10处,所用时间为:=秒,B的位置为=﹣.12.【解答】解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)QC﹣AM的值不发生变化.理由如下:设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.四、线段移动问题13.【解答】解:(1)由题意得:11﹣(b+3)=b,解得:b=4.答:线段AC=OB,此时b的值是4.(2)由题意得:①11﹣(b+3)﹣b=(11﹣b),解得:b=.②11﹣(b+3)+b=(11﹣b),解得:b=﹣5.答:若AC﹣0B=AB,满足条件的b值是或﹣5.14.【解答】解:(1)∵点A、M、N对应的数字分别为﹣1、0、2,线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒,∴移动后M表示的数为t,N表示的数为t+2,∴AM=t﹣(﹣1)=t+1.故答案为:t+1.(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,∵AM+BN=11,∴t+1+|9﹣t|=11,解得:t=.故答案为:.(3)假设能相等,则点A表示的数为2t﹣1,M表示的数为t,N表示的数为t+2,B表示的数为11﹣t,∴AM=|2t﹣1﹣t|=|t﹣1|,BN=|t+2﹣(11﹣t)|=|2t﹣9|,∵AM=BN,∴|t﹣1|=|2t﹣9|,解得:t1=,t2=8.故在运动的过程中AM和BN能相等,此时运动的时间为秒和8秒.15.【解答】解:(1)由数轴观察知三根木棒长是20﹣5=15,则此木棒长为:15÷3=5,故答案为:5.(2)如图,点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.由题意可知,当点N移动到点A时,点M所对应的数为﹣40,当点M移动到点B时,点N所对应的数为116.可求MN=52.所以点A所对应的数为12,点B所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.五、图形动点问题16.【解答】【考点】8A:一元一次方程的应用.【专题】25 :动点型;2A :规律型.【分析】此题利用行程问题中的相遇问题,设出正方形的边长,乙的速度是甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.【解答】解:设正方形的边长为a,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×=,乙行的路程为2a×=,在AB边相遇;②第二次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在CB边相遇;③第三次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在DC边相遇;④第四次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在AB边相遇;⑤第五次相遇甲乙行的路程和为4a,甲行的路程为4a×=a,乙行的路程为4a×=3a,在AD边相遇;…因为2008=502×4,所以它们第2008次相遇在边AB上.故答案为:AB.【点评】本题主要考查行程问题中的相遇问题及按比例分配的运用,难度较大,注意先通过计算发现规律然后再解决问题.。
初三动点试题及答案
初三动点试题及答案
一、选择题
1. 在平面直角坐标系中,动点P从原点O出发,沿x轴正方向以每秒
2个单位的速度移动,经过5秒后,点P的坐标是()。
A. (0, 0)
B. (10, 0)
C. (5, 0)
D. (0, 5)
答案:B
2. 动点Q从点(1, 2)出发,沿y轴正方向以每秒1个单位的速度移动,经过3秒后,点Q的坐标是()。
A. (1, 5)
B. (1, 2)
C. (4, 5)
D. (4, 2)
答案:A
二、填空题
3. 动点R从点(-3, 4)出发,沿直线y=2x+1以每秒3个单位的速度移动,经过2秒后,点R的坐标是()。
答案:(3, 11)
4. 动点S从点(2, -1)出发,沿直线y=-x+3以每秒2个单位的速度移动,经过4秒后,点S的坐标是()。
答案:(-6, 7)
三、解答题
5. 动点T从点(0, 0)出发,沿直线y=x以每秒1个单位的速度移动,求点T在移动了6秒后的位置。
答案:点T在移动了6秒后的位置为(6, 6)。
6. 动点U从点(-2, 3)出发,沿直线y=-2x+7以每秒1.5个单位的速度移动,求点U在移动了8秒后的位置。
答案:点U在移动了8秒后的位置为(-10, 5)。
最新初中数学动点问题专题(含答案)
数解析式还成立?试说明理由.
A
D
E
B
C
图2
收集于网络,如有侵权请联系管理员删除
__________________________________________________
例 3(2005 年·上海)如图 3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点 O 是边 AC 上的一个动点,以
B
P
D
C
●
A
EO
3(1)
三、应用求图形面积的方法建立函数关系式
例 4(2004 年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC= 2 2 ,⊙A 的半径为 1.若点 O 在 BC 边上
运动(与点 B、C 不重合),设 BO= x ,△AOC 的面积为 y .
(1)求 y 关于 x 的函数解析式,并写出函数的定义域.
物线上,任取一点 Q ,过点 Q 作直线 QA 平行于 y 轴交 x 轴于 A 点,交直线 PC 于 B 点,直线 QA 与直
(C) AC+CB>AD+DB (D) AC+CB 与 AD+DB 的大小关系不确定
E
D
例 5:如图,过两同心圆的小圆上任一点 C 分别作小圆的直径 CA 和
非直径的弦 CD,延长 CA 和 CD 与大圆分别交于点 B、E,则下列结论
中正确的是( * )
(A) DE AB (B) DE AB
C
O
Q
(1)当 t 为何值时,三角形 QAP 为等腰三角形?
(2)求四边形 QAPC 的面积,提出一个与计算结果有关的结论;
A
(3)当 t 为何值时,以点 Q、A、P 为顶点的三角形与△ABC 相似?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1.如图,已知在矩形ABCD 中,AD =8,CD =4,点E 从点D 出发,沿线段DA 以每秒1
个单位长的速度向点A 方向移动,同时点F 从点C 出发,沿射线CD 方向以每秒2个单位长的速度移动,当B ,E ,F 三点共线时,两点同时停止运动.设点E 移动的时间为t (秒). (1)求当t 为何值时,两点同时停止运动;
(2)设四边形BCFE 的面积为S ,求S 与t 之间的函数关系式,并写出t 的取值范围; (3)求当t 为何值时,以E ,F ,C 三点为顶点的三角形是等腰三角形; (4)求当t 为何值时,∠BEC =∠BFC .
例2. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点, 当M 点在
BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt Rt ABM MCN △∽△;
(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;
(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求此时x 的值.
例3.如图,在梯形ABCD
中,3545AD BC AD DC AB B ====︒∥,,,.
动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (09年济南中考) (1)求BC 的长。
(2)当MN AB ∥时,求t 的值.
(3)试探究:t 为何值时,MNC △为等腰三角形.
例1. 解:(1)当B ,E ,F 三点共线时,两点同时停止运动,如图2所示.………(1分) 由题意可知:ED =t ,BC =8,FD = 2t -4,FC = 2t .
∵ED ∥BC ,∴△FED ∽△FBC .∴
FD ED
FC BC
=. ∴
2428
t t
t -=.解得t =4.
A
B
C
D E F
O
C
D
M
A B
C
N
图2
A
B
C
D
E
F
∴当t =4时,两点同时停止运动;……(3分)
(2)∵ED=t ,CF=2t , ∴S =S △BCE + S △BCF =
12×8×4+1
2
×2t ×t =16+ t 2. 即S =16+ t 2.(0 ≤t ≤4);………………………………………………………(6分)
(3)①若EF=EC 时,则点F 只能在CD 的延长线上,
∵EF 2=2
2
2
(24)51616t t t t -+=-+,
EC 2=222416t t +=+,∴251616t t -+=2
16t +.∴t =4或t=0(舍去); ②若EC=FC 时,∵EC 2=222416t t +=+,FC 2=4t 2,∴2
16t +=4t 2
.∴t =; ③若EF=FC 时,∵EF 2=2
2
2
(24)51616t t t t -+=-+,FC 2=4t 2,
∴2
51616t t -+=4t 2.∴t 1
=16+,t 2
=16-.
∴当t 的值为4
16-E ,F ,C 三点为顶点的三角形是等腰三角形;………………………………………………………………………………(9分)
(4)在Rt △BCF 和Rt △CED 中,∵∠BCD =∠CDE =90°,
2BC CF
CD ED
==, ∴Rt △BCF ∽Rt △CED .∴∠BFC =∠CED .………………………………………(10分) ∵AD ∥BC ,∴∠BCE =∠CED .若∠BEC =∠BFC ,则∠BEC =∠BCE .即BE =BC . ∵BE 2=2
1680t t -+,∴2
1680t t -+=64. ∴t 1
=16+,t 2
=16-.
∴当t
=16-BEC =∠BFC .……………………………………………(12分)
例2. 解:(1)在正方形ABCD 中,
490AB BC CD B C ===∠=∠=,°, AM MN Q ⊥, 90AMN ∴∠=°,
90CMN AMB ∴∠+∠=°,
在Rt ABM △中,90MAB AMB ∠+∠=°, CMN MAB ∴∠=∠,
Rt Rt ABM MCN ∴△∽△,
(2)Rt Rt ABM MCN Q △∽△, 44AB BM x MC CN x CN
∴=∴=-,, 244
x x CN -+∴=,
N
D
A
C
B
M
()22
2141144282102422ABCN
x x y S x x x ⎛⎫-+∴==+=-++=--+ ⎪⎝⎭
梯形·, 当2x =时,y 取最大值,最大值为10. (3)90B AMN ∠=∠=Q °,
∴要使ABM AMN △∽△,必须有
AM AB
MN BM
=
, 由(1)知
AM AB
MN MC
=
, BM MC ∴=,
∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =.
例3.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形
∴3KH AD ==.
在Rt ABK △
中,sin 454AK AB =︒==g
cos 4542
BK AB =︒==g g
在Rt CDH △
中,由勾股定理得,3HC ==
∴43310BC BK KH HC =++=++=
(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-=
由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥
∴NMC DGC =∠∠ 又C C =∠∠
∴MNC GDC △∽△
(图①) A D C B K H (图②) A D C B G M
N
∴
CN CM
CD CG =
即10257
t t -= 解得,50
17
t =
(3)分三种情况讨论:
①当NC MC =时,如图③,即102t t =- ∴103
t =
②当MN NC =时,如图④,过N 作NE MC ⊥于E ∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△
∴
NC EC
DC HC =
即553t t -= ∴258
t =
③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122
FC NC t =
=
∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△
∴FC MC
HC DC
= 即1
102235t
t
-=
∴6017
t =
综上所述,当10
3
t =、258t =或6017t =时,MNC △为等腰三角形
A D
C
B M N (图③) (图④) A D C
B M N
H E
(图⑤) A
D
C
B H N M
F。