数学建模排队论模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)服务机构
服务机构主要指服务台的数目,多个服务台 进行服务时,服务方式是并联还是串联;服务 时间服从什么分布等。
(二)排队模型的分类及数量指标
1.排队模型的分类
D.G.Kendall引进了排队模型分类符号,现已广泛 采用,这里仅针对并列的服务台。
记X:顾客到达的时间间隔分布;Y:服务时间的分 布;Z:服务台数。则排队模型:X/Y/Z。
顾客源
到来
排队机构
服务规则
服 离去 务 机 构
排队系统
在排队论中,我们把要求服务的对象称为“顾 客”,而将从事服务的机构或人称为“服务台”。 在顾客到达服务台时,可能立即得到服务,也可 能要等待到可以利用服务台的时候为止。
排队系统中的“顾客”与“服务台”这两个名词 可以从不同的角度去理解。
排队系统
PrT t1 T t0 PrT t1 t0
上式可改写为:对任何 t0 ,0 都有
PrT t0 xT t0 PrT x
如果把T解释为寿命,上式表明:如果已知年龄大
(3)忙期
忙期是指从顾客到达空闲服务机构起到服务机构再 次为空闲为止的这段时间,即服务机构连续繁忙的时 间长度。这是服务机构最关心的数量指标,因为它直 接关系到服务员的工作强度,与忙期相对应的是闲期, 即为服务机构连续保持空闲的时间长度。显然,在排 队系统中,忙期与闲期是交错出现的。
(三)Poisson流与指数分布
发生的时间间隔记为 n tn tn1(n,1其,2,中 ) 。 t0 0
定理2 事件流 x(t) :为t P0oisson流的充要条件是
x(t) :t的 0流 发生时间间隔 相互 n独 立,且服从相同的
负指数分布,即
Pr n
t
1 0
et
t0 t0
3.负指数分布的Markov特性
定理3设T为连续型随机变量,且T≥0,那么,T服从 负指数分布的充要条件是:对任何 t1 t0, 都0 有
常用的记号:M——负指数分布;D——确定型;Ek—— k阶爱尔朗(Erlang)分布;GI——一般相互独立的随 机分布,G——一般随机分布。这里主要讨论M/M/ 1,M/M/C。
2.排队模型的数量指标
(1)队长
队长是指系统中的顾客数(包括排队等候和正在 接受服务的顾客数);等待队长是指系统中等待服务 的顾客数。无论是队长还是等待队长,都是顾客和 服务机构最关心的数量指标,特别是对系统设计者 来说,尤为重要,因为它涉及到系统等待空间的大 小。
排队论模型
朱建青 (苏州科技学院信息与计算科学系)
排队论模型
一、排队论的基本概念 二、单通道等待制排队问题
(M/M/1排队系统) 三、多通道等待制排队问题
(M/M/c排队系统)
一、排队论的基本概念
(一)排队过程 1.排队系统
“排队”是指在服务机构处要求服务对象的一个等 待队列,而“排队论”则是研究各种排队现象的理论。
1.最简单流与Poisson过程
记随机过程{x(t):t≥0}为时间[0,t]内流 (事件)发生的次数,例如对于随机到来某电话交换台 的呼叫,以x(t)表示该交换台在[0,t]这段时间 内收到呼叫的次数;若是服务机构,可以用x(t)表 示该机构在[0,t]时间内来到的顾客数。
最简单流应 x(t) :t 具 0有以下特征称
上、下班的工人乘公共汽车 病人到医院看病 高炮击退敌机
机器发生故障需要维修
顾客
工人 病人 敌机 机器
服务台
公共汽车 医生 高炮 修理工
排队系统队列除了有形的还有无形的。
在上述顾客-服务台组成的排队系统中,顾客到来 的时刻与服务台进行服务的时间一般来说是随不同 的时机与条件而变化的,往往预先无法确定。因此, 系统的状态是随机的,故而排队论也称随机服务系 统。
(2)排队规则
排队规则是指到达的顾客以怎样的规则接受服务。 1)损失制:顾客到达,服务台不空立即离去,另 求服务。 2)等待制:顾客到达,排队等待。对等待制服务 可分为:先到先服务,后到先服务,优先服务,随机 服务,成批服务等。 3)混合制:在现实生活中,很多服务系统介于损 失制和等待制之间,当顾客到达时,服务台不空就排 队,若排队的位置已满就离去。
(2)逗留时间
逗留时间是指一顾客从进入系统起一直到接受服 务后离开系统为止所花费的时间;等待时间是指一 顾客从进入系统起到接受服务时所花费的时间。显 然,一个顾客的逗留时间等于其等待时间与接受服 务的时间之和。逗留时间与等待时间对顾客来说是 最关心的,因为每个顾客都希望自己用于排队等待 的时间愈短愈好。
取a 0 得
Prx(t) k (k)k et
k!
Ex(t) t
(k 0,1,2, )
故参数λ表示单位时间内事件发生次数的平均数。
2.Poisson流的发生时间间隔分布
当流(过程) x(t) :t 构0成Poisson过程时,就称为
Poisson流。设流发生的时刻依次为 t1,t2,,…,,tn
2.排队系统的组成和特征
各式各样的排队现象呈现的基本特征:排队系统由 输入过程、排队规则及服务机构三部分组成。
(1)输入过程
输入过程就是顾客按怎样的规律到达,它首先应包 括顾客总体数,是有限的还是无限的;其次应说明顾 客到达的方式,是成批到达(每批数量是随机的还是确 定性的)还是单个到达;最后应说明相继到达的顾客 (或批或单个)之间的时间间隔的分布是什么。
t
t
即在t时间内,事件发生多于1次的概率为 o(。t)
定理1设 x(t) :t是 0最 简单流,则对任何 和a 0 t 0 都有 Prx(a t) x(a) k (k)k et (k 0,1,2, )
k!
我们把满足这一分布规律的随机过程 x(t) :t 0
称为Poisson过程,最简单流亦称Poisson流,特别
(Hale Waihona Puke Baidu)流具有平衡性
对任何 a 和0 0 t1 t,2 tn x(a ti ) x(a)
的分布只取决于 t1,t2,而,t与n 无关a。
(2)流具有无后效性
(1 i n)
对互不交接的时间区间序列 ai ,bi (1 i, n)
x(bi ) 是x(a一i ) 组相互独立的随机变量。
(3)流具有普通性 lim Prx(a t) x(a) 1 0