2014-2020年上海市中考数学试题汇编(含参考答案与解析)
2023年上海市青浦区九年级中考二模数学试卷(含答案解析)
2023年上海市青浦区九年级中考二模数学试卷学校:___________姓名:___________班级:___________考号:___________二、填空题平面直角坐标系xOy 内,点P 在第二象限的概率为____.12.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度.13.已知点2()1,M -和点N 都在抛物线22y x x c =-+上,如果MN x ∥轴,那么点N 的坐标为____.14.已知点G 为ABC 的重心,AB a=,AC b = ,那么= AG __.(用a 、b 表示)15.如图,图中反映轿车剩余油量q (升)与行驶路径s (千米)的函数关系,那么q 与s 的函数解析式为____.16.水平放置的圆柱形油槽的圆形截面如图2所示,如果该截面油的最大深度为2分米,油面宽度为8分米,那么该圆柱形油槽的内半径为____分米.17.如图3,在平面直角坐标系xOy 内,已知点(3,1)G -,(1,3)A -,(4,0)B -,如果C 是以线段AB 为直径的圆,那么点G 与C 的最短距离为____.三、解答题18.如图,在Rt ABC △中,90610C BC AB ∠=︒==,,,点D 是边AB 的中点,点M 在边AC 上,将ADM △沿DM 所在的直线翻折,点A 落在点E 处,如果EC AB ,那么CE =____.111 (1)求边AB的长;(2)已知点D在AB边上,且13ADBD=,连接22.某中学初三年级在“阳光体育”活动中,参加各项球类运动的数据信息制作成了扇形统计图,如图所示.已知参加乒乓球运动的人数有题.(1)求参加篮球和足球运动的总人数;(2)学校为本次活动购买了一些体育器材,数每人一只配备的,购买篮球的费用是单价比足球的单价便宜10元多少人?23.如图,在平行四边形ABCDBD于点F,且2AB BF BD=⋅(1)求证:点F 在边AB 的垂直平分线上;(2)求证:AD AE BE BD = .24.如图,已知抛物线214y x bx c =-++为点A .(1)求抛物线的解析式及点A 的坐标;(2)将该抛物线向右平移m 个单位(0m >求m 的值;(3)在(2)的条件下,设新抛物线的顶点为于点F ,求点C 到直线GF 的距离.25.如图,半圆O 的直径10AB =点D 是弧AC 上一点.(1)若点D 是弧AB 的中点,求tan DOC ∠(2)连接BD 交半径OC 于点E ,交CH 于点①用含m 的代数式表示线段CF 的长;②分别以点O 为圆心OE 为半径、点C m 取值范围.参考答案:故选:C .【点睛】本题考查了菱形的判定方法,熟知菱形的判定方法是解题的关键.6.D【分析】根据所给函数的性质逐一判断即可.【详解】解:A.对于y x =-,当x =-二、四象限;当0x >时,y 随x 的增大而减小.故选项B.对于4y x =+,当2x =-时,2y =三象限;当0x >时,y 随x 的增大而增大.故选项1【点睛】本题考查了中线的性质,15.1508q s =-+【分析】根据图象,通过待定系数法,即可解答.【详解】解:根据图象,可得函数与坐标轴的交点为设函数解析式为q ks b =+,将()050,,()4000,代入函数解析式得:解得1850k b ⎧=-⎪⎨⎪=⎩,故q 与s 的函数解析式为18q =-故答案为:1508q s =-+.【点睛】本题考查了待定系数法求一次函数,熟练运用待定系数法是解题的关键.【点睛】本题考查了垂径定理,勾股定理,掌握垂径定理是解题的关键.17.2【分析】首先根据题意画图,可求得直线据两点间距离公式,即可求解.【详解】解:根据题意画图如下:=设直线AB的解析式为y kx【详解】解:如图,过点D 作EC 的垂线段,交EC 于点F ,过点90610BC AB ︒==,,,226810+=,是边AB 的中点,152AD BD AB ===,ADM 沿DM 所在的直线翻折,点A 落在点E 处,5DA DC ==,在Rt ACH 中,45C ∠=︒.∴45HAC C ∠=∠=︒,即AH CH =.在Rt ABH △中,1tan 2AH B BH ==.∴2BH AH =.设AH x =,那么CH x =,2BH x =.∵AH BC ⊥,∴90DGC AHC ∠=∠=︒.∴DG AH ∥,即BD BG AB BH =.由13AD BD =得34BD AB =.∵8BH =,∴34BG BH =,即6BG =.∴6BG CG ==,即DG 是线段BC 的垂直平分线.∴BD CD =,∴BCD B ∠=∠.原抛物线21(2)44y x =--+向右平移132∴1742G ⎛⎫ ⎪⎝⎭,,2502F ⎛⎫ ⎪⎝⎭,,1702P ⎛⎫ ⎪⎝⎭,.4GP PF ==,∴GPF 是等腰直角三角形,GFP ∠在Rt MOF △中,OMF OFM ∠=∠=∴192CM OM OC =-=.∵点D 是弧AB 的中点,AB 是直径,∴OD AB ⊥.∴90CHB DOB ∠=∠=︒,∴OD CH ∥,∴DOC OCH ∠=∠.过点O 作OM BC ⊥,垂足为点M .由垂径定理,在Rt BOM △中,34BM OM OB ==,,在Rt BCH △中,sin CH BC OBC =⋅∠=)HG OC ∥交BD 于点G .,,HGB OEB GHB EOB =∠∠=∠,HGB OEB ∽1855BH BO ==,1825m =.HG OC∥,,CEF HGF ECF FHG =∠∠=∠,CEF HGF ∽CE GH=,51825CF m CF m -=-.6001201257m m-=-.o OE m ==,6001201257c m r CF m -==-,d OC =当两圆内切时,60012051257m m m --=.【点睛】本题属于圆综合题,考查了圆与圆的位置关系,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,需要利用参数解决问题,属于中考压轴题.答案第17页,共17页。
2014年上海市中考数学试卷及答案(Word版)
2014年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1).;;(C)(D)2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().(A)608×108;(B) 60.8×109;(C) 6.08×1010;(D) 6.08×1011.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是().(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是().(此题图可能有问题)(A) ∠2;(B) ∠3;(C) ∠4;(D) ∠5.5.某事测得一周PM2.5的日均值(单位:)如下:50, 40, 75, 50, 37, 50, 40 ,这组数据的中位数和众数分别是().(A)50和50; (B)50和40; (C)40和50; (D)40和40.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.12二、填空题:(每小题4分,共48分)【请将结果直接填入答题纸的相应位置】7.计算:a (a +1)=____________.8.函数11y x =-的定义域是_______________. 9.不等式组12,28x x ->⎧⎨<⎩的解集是_____________. 10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.11.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.已知传送带与水平面所成斜坡的坡度i =1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是__________. 14.已知反比例函数k y x=(k 是常数,k ≠0),在其图像所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是________________(只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB =3EB .设AB a =,BC b =,那么DE =_______________(结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是___________. 17.一组数:2, 1, 3, x , 7, y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a -b ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为____________.3 18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为________(用含t 的代数式表示)三、解答题:(本题共7题,满分78分)19.(本题满分101382+.20.(本题满分10分)解方程:2121111x x x x +-=--+. 21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y (2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(本题满分10分,每小题满分各5分)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD、CB相交于点H 、E ,AH =2CH .(1)求sinB 的值;(2)如果CD ,求BE 的值.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD 中,AD //BC ,AB =DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE =∠ABD .424.(本题满分12分,每小题满分各4分) 在平面直角坐标系中(如图),已知抛物线223y x bx c =++与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形,求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t , 0),且t >3,如果△BDP 和△CDP 的面积相等,求t 的值.5 25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图1,已知在平行四边形ABCD 中,AB =5,BC =8,cosB =45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP //CG 时,求弦EF 的长;(3)当△AGE 是等腰三角形时,求圆C 的半径长.图1 备用图2014年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、C ;3、C ;4、A ;5、A ;6、B二、 填空题7、2a a +; 8、1x ≠; 9、34x ; 10、352 ; 11、1k ; 12、26 ;13、13; 14、1(0y k x =-即可); 15、23a b - ; 16、乙; 17、-9; 18、. 三、 解答题19、解:原式=20、0;1(x x ==舍)21、(1) 1.2529.75y x =+, (2)37.522、23、(1)求证:四边形ACED 是平行四边形;(2)联结AE,交BD于点G,求证:DG DFGB DB.24、25、6。
上海市松江区2023-2024学年八年级上学期期中数学试题(含答案解析)
上海市松江区2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________二、单选题三、计算题四、解答题23.用配方法解方程:22410-+=.x x24.解方程:2(2)(2)x x x -=-五、计算题六、应用题27.某服装店在销售中发现:衬衫平均每天可售出30件,每件盈利40元.为了迎接“双十一”购物节,该服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出3件.(1)若每件衬衫降价5元,那么平均每天就可售出______件;(2)为保持节后销售价格的稳定性,规定降价不能超过15元.要想平均每天销售这种衬衫盈利1800元,那么每件衬衫应降价多少元?28.定义:对于给定的两个函数,当0x ≥时,它们对应函数值相等;当0x <时,它们对应的函数值互为相反数.我们称这样的两个函数互为相关函数.例如:正比例函数y x =-,它的相关函数为()()00x x y x x ⎧-≥⎪=⎨<⎪⎩(1)已知点()1,M m -在正比例函数y x =-的相关函数的图象上,则m 的值为______;(2)已知正比例函数2y x=①这个函数的相关函数为______;②若点(),3N n 在这个函数的相关函数的图象上,求n 的值.七、问答题29.如图,已知正比例函数y kx =的图像经过点A ,点A 在第四象限,过点A 作AH x ⊥轴,垂足为H ,点A 的横坐标为4,且AOH △的面积为8.(1)求正比例函数的解析式;(2)若点P是该正比例函数倍,求点P的坐标;(3)已知42OA=,在直线形?若存在,直接写出OM参考答案:当4MH AH ==时,∵4OH =,当AM MH =时,∵4AH OH ==,90AHO ∠=︒,综上分析可知,OM的长为424-或424+或22.。
2013-2019年上海市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2019年上海市中考数学试题汇编(含参考答案与解析)1、2013年上海市中考数学试题及参考答案与解析 (2)2、2014年上海市中考数学试题及参考答案与解析 (22)3、2015年上海市中考数学试题及参考答案与解析 (40)4、2016年上海市中考数学试题及参考答案与解析 (58)5、2017年上海市中考数学试题及参考答案与解析 (75)6、2018年上海市中考数学试题及参考答案与解析 (92)7、2019年上海市中考数学试题及参考答案与解析 (113)2013年上海市中考数学试题及参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列式子中,属于最简二次根式的是( )A B C D 2.下列关于x 的一元二次方程有实数根的是( )A .x 2+1=0B .x 2+x+1=0C .x 2﹣x+1=0D .x 2﹣x ﹣1=03.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C .y=x 2+1D .y=x 2+34.数据 0,1,1,3,3,4 的中位数和平均数分别是( )A .2和2.4B .2和2C .1和2D .3和25.如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB=3:5,那么CF :CB 等于( )A .5:8B .3:8C .3:5D .2:56.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中,能判断梯形ABCD 是等腰梯形的是( )A .∠BDC=∠BCDB .∠ABC=∠DABC .∠ADB=∠DACD .∠AOB=∠BOC二、填空题(本大题共12小题,每小题4分,共48分)7.分解因式:a 2﹣1= .8.不等式组1023x x x-⎧⎨+⎩>>的解集是 .9.计算:23b a a b⨯= . 10.计算:()23a b b -+= .11.已知函数()231f x x =+,那么f = .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为 .13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .14.在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.15.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.18.如图,在△ABC中,AB=AC,BC=8,tanC=32,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.三、解答题(本大题共7小题,满分78分)19.(101011|2π-⎛⎫-+ ⎪⎝⎭. 20.(10分)解方程组:22220x y x xy y -=-⎧⎨--=⎩.21.(10分)已知平面直角坐标系xOy (如图),直线12y x b =+经过第一、二、三象限,与y 轴交于点B ,点A (2,t )在这条直线上,联结AO ,△AOB 的面积等于1.(1)求b 的值;(2)如果反比例函数k y x=(k 是常量,k≠0)的图象经过点A ,求这个反比例函数的解析式.22.(10分)某地下车库出口处“两段式栏杆”如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图2所示,其示意图如图3所示,其中AB ⊥BC ,EF ∥BC ,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)23.(12分)如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F .(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.24.(12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.25.(14分)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC 于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列式子中,属于最简二次根式的是()A B C D【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.=,故A选项错误;【解答过程】解:A3B是最简二次根式,故B选项正确;C=C选项错误;D=D选项错误;故选:B.【总结归纳】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0【知识考点】根的判别式.【思路分析】计算出各项中方程根的判别式的值,找出根的判别式的值大于等于0的方程即可.【解答过程】解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,。
2020年上海市中考数学试卷(含答案)
2020年上海市中考数学试卷(含答案)一、选择题1. 下列二次根式中,与√3是同类二次根式的是()A.√6B.√9C.√12D.√182. 用换元法解方程x+1x2+x2x+1=2时,若设x+1x2=y,则原方程可化为关于y的方程是()A.y2−2y+1=0B.y2+2y+1=0C.y2+y+2=0D.y2+y−2=03. 我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图4. 已知反比例函数的图象经过点(2, −4),那么这个反比例函数的解析式是()A.y=2x B.y=−2xC.y=8xD.y=−8x5. 下列命题中,真命题是()A.对角线互相垂直的梯形是等腰梯形B.对角线互相垂直的平行四边形是正方形C.对角线平分一组对角的平行四边形是菱形D.对角线平分一组对角的梯形是直角梯形6. 如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆二、填空题7.计算:2a⋅3ab=________.8.已知f(x)=2x−1,那么f(3)的值是________.9.已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而________.(填“增大”或“减小”)10.如果关于x的方程x2−4x+m=0有两个相等的实数根,那么m的值是________.11.如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是________.12.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是________.13.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为________.14.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水面C 处,视线DC 与井口的直径AB 交于点E ,如果测得AB =1.6米,BD =1米,BE =0.2米,那么井深AC 为________.15.如图,AC ,BD 是平行四边形ABCD 的对角线,设BC →=a →,CA →=b →,那么向量BD →用向量a →,b →表示为________.16.小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行________米.17.如图,在△ABC 中,AB =4,BC =7,∠B =60∘,点D 在边BC 上,CD =3,联结AD .如果将△ACD 沿直线AD 翻折后,点C 的对应点为点E ,那么点E 到直线BD 的距离为________.18.在矩形ABCD 中,AB =6,BC =8,点O 在对角线AC 上,圆O 的半径为2,如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是________.三、解答题19.计算:2713+√5+2−(12)−2+|3−√5|.20.解不等式组:{10x>7x+6, x−1<x+73.21.如图,在直角梯形ABCD中,AB // DC,∠DAB=90∘,AB=8,CD=5,BC=3√5.(1)求梯形ABCD的面积;(2)联结BD,求∠DBC的正切值.22.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.23.已知:如图,在菱形ABCD中,点E,F分别在边AB,AD上,BE=DF,CE的延长线交DA 的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∼△BCH;(2)如果BE2=AB⋅AE,求证:AG=DF.x+5与x轴、y轴分别交于点A,B(如图).抛24.在平面直角坐标系xOy中,直线y=−12物线y=ax2+bx(a≠0)经过点A.(1)求线段AB的长;(2)如果抛物线y=ax2+bx经过线段AB上的另一点C,且BC=√5,求这条抛物线的表达式;(3)如果抛物线y=ax2+bx的顶点D位于△AOB内,求a的取值范围.25.如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.参考答案:一、1-6 CABDCA 二、7.6a2b8.19.减小10.411.1512.y=x2+313.3150名14.7米15.2a→+b→16.35017.3√3218.103<AO<203三、19.解:原式=(33)13+√5−2−4+3−√5=3+√5−2−4+3−√5 =0.20.解:{10x>7x+6①, x−1<x+73②,解不等式①得x>2,解不等式①得x<5,故原不等式组的解集是2<x<5.21.解:(1)过C作CE⊥AB于E,如图,① AB // DC,∠DAB=90∘,① ∠D=90∘,① ∠A=∠D=∠AEC=90∘,① 四边形ADCE是矩形,① AD=CE,AE=CD=5,① BE=AB−AE=3.① BC=3√5,① CE=√BC2−BE2=6,① 梯形ABCD的面积=12×(5+8)×6=39.(2)过C作CH⊥BD于H,如图,① CD // AB,① ∠CDB=∠ABD,① ∠CHD=∠A=90∘.① △CDH∼△DBA,① CHAD =CDBD.① BD=√AB2+AD2=√82+62=10,① CH6=510,① CH=3,① BH=√BC2−CH2=√(3√5)2−32=6,① ∠DBC的正切值=CHBH =36=12.22.解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.23.证明:(1)① 四边形ABCD是菱形,① CD=CB,∠D=∠B,CD // AB.① DF=BE,① △CDF≅CBE(SAS),① ∠DCF=∠BCE.① CD // BH,① ∠H=∠DCF,① ∠BCE=∠H.① ∠B=∠B,① △BEC∼△BCH.(2)① BE2=AB⋅AE,① BEAB =AEEB.① AG // BC,① AEBE =AGBC,① BEAB =AGBC.① DF=BE,BC=AB,① BE=AG=DF,即AG=DF.24.解:(1)对于直线y=−12x+5,令x=0,则y=5,① B(0, 5),令y =0,则−12x +5=0,① x =10,① A(10, 0),① AB =√52+102=5√5.(2)设点C(m, −12m +5),① B(0, 5),① BC =√m 2+(−12m +5−5)2=√52|m|. ① BC =√5,① √52|m|=√5,① m =±2.① 点C 在线段AB 上,① m =2,① C(2, 4).将点A(10, 0),C(2, 4)代入抛物线y =ax 2+bx(a ≠0)中, 得{100a +10b =0,4a +2b =4,① {a =−14,b =52,① 抛物线y =−14x 2+52x .(3)① 点A(10, 0)在抛物线y =ax 2+bx 上,得100a +10b =0, ① b =−10a ,① 抛物线的解析式为y =ax 2−10ax =a(x −5)2−25a , ① 抛物线的顶点D 坐标为(5, −25a),将x =5代入y =−12x +5中,得y =−12×5+5=52,① 顶点D 位于△AOB 内,① 0<−25a <52,① −110<a <0.25.(1)证明:连接OA.① AB=AC,① AB̂=AĈ,① OA⊥BC,① ∠BAO=∠CAO.① OA=OB,① ∠ABD=∠BAO,① ∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.① AB=AC,① ∠ABC=∠C,① ∠DBC=2∠ABD.① ∠DBC+∠C+∠BDC=180∘,① 8∠ABD=180∘,① ∠ABD=22.5∘,① ∠C=3∠ABD=67.5∘.①若CD=CB,则∠CBD=∠CDB=3∠ABD,① ∠C=4∠ABD.① ∠DBC+∠C+∠CDB=180∘,① 10∠ABD=180∘,① ∠ABD=18∘,① ∠BCD=4∠ABD=72∘.①若DB=DC,则D与A重合,这种情形不存在.综上所述,∠C的值为67.5∘或72∘.(3)解:如图3中,作AE // BC交BD的延长线于E.则AEBC =ADDC=23,① AOOH =AEBH=43,设OB=OA=4a,OH=3a,① BH2=AB2−AH2=OB2−OH2,① 25−49a2=16a2−9a2,① a2=2556,① BH=5√24,① BC=2BH=5√22.。
2022年上海嘉定中考数学试题及答案
2022年上海嘉定中考数学试题及答案一.选择题(本大题共6题,每题4分,满分24分) 1. 8的相反数为( )A .8B . -8C .18D .-182.下列运算正确的是…… ( )A .a ²+a ³=a 6B . (ab )2 =ab 2C . (a +b )²=a ²+b ²D . (a +b )(a -b )=a ² -b 23.已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能 经过这个函数为( )A . (2,3)B . (-2,3)C . (3,0)D . (-3,0)4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算 外卖费的总额的数据,则两种情况计算出的数据一样的是( )A .平均数B .中位数C .众数D .方差5.下列说法正确的是( )A .命题一定有逆命题B .所有的定理一定有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题6.有一个正n 边形旋转90°后与自身重合,则n 为( )A .6B .9C .12D .15二.填空题(本大题共12题,每题4分,满分48分) 7.计算:3a -2a =_____. 8.已知f (x )=3x ,则f (1)=_____.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____.10.已知x -+m =0有两个不相等的实数根,则m 的取值范围是_____. 11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同, 则增长率为_____.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的 频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人1-2小时10人2-3小时14人3-4小时16人4-5小时6人),若共有200名学生,则该学校六年级 学生阅读时间不低于3小时的人数是_____.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直 线:_____.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b ==则DC =_____. 16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13, 则这个花坛的面积为_____.(结果保留π)17. 如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DEAB BC=,则AEAC=_____.18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把 这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时, 这个圆的半径为_____.三.解答题(本大题共7题,满分78分) 19.(本大题满分10分)计算:11221312.331-⎛⎫--- ⎪-⎝⎭20.(本大题满分10份)解关于x的不等式组3442 3x xxx>-⎧⎪+⎨>+⎪⎩21.(本大题满分10分)一个一次函数的截距为-l,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值。
2020年上海市静安区中考数学二模试卷(解析版)
2020年上海市静安区中考数学二模试卷一.选择题(共6小题)1.下列二次根式中,是最简二次根式的为()A.B.C.D.2.一天时间为86400秒,用科学记数法表示这一数字是()A.864×102B.86.4×103C.8.64×104D.0.864×105 3.如果关于x的方程x2+2x+m=0有实数根,那么m的取值范围是()A.m<1B.m≤1C.m>1D.m≥14.体育课上,甲同学练习双手头上前掷实心球,测得他5次投掷的成绩为:8,8.5,9.2,8.5,8.8(单位:米),那么这组数据的平均数、中位数分别是()A.8.5,8.6B.8.5,8.5C.8.6,9.2D.8.6,8.55.如图,▱ABCD的对角线AC、BD相交于点O,那么下列条件中,能判断▱ABCD是菱形的为()A.AO=CO B.AO=BO C.∠AOB=∠BOC D.∠BAD=∠ABC 6.如图,将△ABC绕点A逆时针旋转得到△ADE,其中点B、C分别与点D、E对应,如果B、D、C三点恰好在同一直线上,那么下列结论错误的是()A.∠ACB=∠AED B.∠BAD=∠CAE C.∠ADE=∠ACE D.∠DAC=∠CDE 二.填空题(共12小题)7.计算:a11÷a7=.8.因式分解:x2﹣9=.9.不等式组的解集是.10.方程=0的根为.11.如果反比例函数y=(k是常数,k≠0)的图象经过点(﹣5,﹣1),那么在这个函数图象所在的每个象限内,y的值随x的值增大而(填“增大”或“减小”).12.在四张完全相同的卡片上,分别画有:正三角形、正八边形、圆和矩形.如果从中任意抽取1张卡片,那么这张卡片上所画图形既是轴对称图形又是中心对称图形的概率是.13.为了解某区24000名初中生平均每天的体锻时间,随机调查了该区300名初中生.如图是根据调查结果绘制成的频数分布直方图(每小组数据含最小值,不含最大值),由此可估计该区初中生平均每天的体锻时间不少于1.5小时的人数大约为人.14.运输两批救援物资:第一批220吨,用4节火车皮和5辆货车正好装完;第二批158吨,用3节火车皮和2辆货车正好装完.如果每节火车皮的运载量相同,每辆货车的运载量相同,那么一节火车皮和一辆货车共装救援物资吨.15.如图,在△ABC中,点D在边AB上,AB=4AD,设=,=,那么向量用向量、表示为.16.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.17.已知矩形ABCD,对角线AC与BD相交于点O,AB=6,BC=8,分别以点O、D为圆心画圆,如果⊙O与直线AD相交、与直线CD相离,且⊙D与⊙O内切,那么⊙D的半径长r的取值范围是.18.如果一条直线把一个四边形分成两部分,这两部分图形的周长相等,那么这条直线称为这个四边形的“等分周长线”.在直角梯形ABCD中,AB∥CD,∠A=90°,DC=AD,∠B是锐角,cot B=,AB=17.如果点E在梯形的边上,CE是梯形ABCD的“等分周长线”,那么△BCE的周长为.三.解答题(共7小题)19.计算:.20.解方程:=1.21.已知:如图,在Rt△ABC中,∠ACB=90°,BC=12,cos B=,D、E分别是AB、BC边上的中点,AE与CD相交于点G.(1)求CG的长;(2)求tan∠BAE的值.22.疫情期间,甲厂欲购买某种无纺布生产口罩,A、B两家无纺布公司各自给出了该种无纺布的销售方案.A公司方案:无纺布的价格y(万元)与其重量x(吨)是如图所示的函数关系;B公司方案:无纺布不超过30吨时,每吨收费2万元;超过30吨时,超过的部分每吨收费1.9万元.(1)求如图所示的y与x的函数解析式;(不要求写出定义域)(2)如果甲厂所需购买的无纺布是40吨,试通过计算说明选择哪家公司费用较少.23.已知:如图,四边形ABCD是平行四边形,延长BA至点E,使得AE=AB,联结DE、AC.点F在线段DE上,联结BF,分别交AC、AD于点G、H.(1)求证:BG=GF;(2)如果AC=2AB,点F是DE的中点,求证:AH2=GH•BH.24.在平面直角坐标系xOy中(如图),已知抛物线y=﹣+bx+c(其中b、c是常数)经过点A(﹣2,﹣2)与点B(0,4),顶点为M.(1)求该抛物线的表达式与点M的坐标;(2)平移这条抛物线,得到的新抛物线与y轴交于点C(点C在点B的下方),且△BCM 的面积为3.新抛物线的对称轴l经过点A,直线l与x轴交于点D.①求点A随抛物线平移后的对应点坐标;②点E、G在新抛物线上,且关于直线l对称,如果正方形DEFG的顶点F在第二象限内,求点F的坐标.25.在Rt△ABC中,∠ACB=90°,AC=15,sin∠BAC=.点D在边AB上(不与点A、B重合),以AD为半径的⊙A与射线AC相交于点E,射线DE与射线BC相交于点F,射线AF与⊙A交于点G.(1)如图,设AD=x,用x的代数式表示DE的长;(2)如果点E是的中点,求∠DF A的余切值;(3)如果△AFD为直角三角形,求DE的长.参考答案与试题解析一.选择题(共6小题)1.下列二次根式中,是最简二次根式的为()A.B.C.D.【分析】根据最简二次根式的概念进行分析即可.【解答】解:A、是最简二次根式,故此选项符合题意;B、=a,故不是最简二次根式,故此选项不符合题意;C、=3,故不是最简二次根式,故此选项不符合题意;D、=,故不是最简二次根式,故此选项不符合题意;故选:A.2.一天时间为86400秒,用科学记数法表示这一数字是()A.864×102B.86.4×103C.8.64×104D.0.864×105【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:86400=8.64×104.故选:C.3.如果关于x的方程x2+2x+m=0有实数根,那么m的取值范围是()A.m<1B.m≤1C.m>1D.m≥1【分析】由关于x的方程x2+2x+m=0有实数根知△=b2﹣4ac≥0,据此求解可得.【解答】解:根据题意知△=22﹣4m≥0,解得m≤1,故选:B.4.体育课上,甲同学练习双手头上前掷实心球,测得他5次投掷的成绩为:8,8.5,9.2,8.5,8.8(单位:米),那么这组数据的平均数、中位数分别是()A.8.5,8.6B.8.5,8.5C.8.6,9.2D.8.6,8.5【分析】直接根据平均数和中位数的概念求解可得.【解答】解:这组数据的平均数为×(8+8.5+9.2+8.5+8.8)=8.6,将数据重新排列为8、8.5、8.5、8.8、9.2,所以这组数据的中位数为8.5,故选:D.5.如图,▱ABCD的对角线AC、BD相交于点O,那么下列条件中,能判断▱ABCD是菱形的为()A.AO=CO B.AO=BO C.∠AOB=∠BOC D.∠BAD=∠ABC 【分析】在平行四边形基础上,菱形的判定方法有:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形.据此逐个选项分析即可.【解答】解:选项A,由平行四边形的性质可知,对角线互相平分,故A不符合题意;选项B,由▱ABCD中AO=BO可推得AC=BD,可以证明▱ABCD为矩形,但不能判定▱ABCD为菱形,故B不符合题意;选项C,当∠AOB=∠BOC时,由于∠AOB+∠BOC=180°,故∠AOB=∠BOC=90°,而对角线互相垂直的平行四边形是菱形,故C符合题意;选项D,由平行四边形的性质可知,∠BAD+∠ABC=180°,故当∠BAD=∠ABC时,∠BAD=∠ABC=90°,从而可判定▱ABCD为矩形,故D不符合题意.综上,只有选项C可以判定▱ABCD是菱形.故选:C.6.如图,将△ABC绕点A逆时针旋转得到△ADE,其中点B、C分别与点D、E对应,如果B、D、C三点恰好在同一直线上,那么下列结论错误的是()A.∠ACB=∠AED B.∠BAD=∠CAE C.∠ADE=∠ACE D.∠DAC=∠CDE【分析】利用旋转的性质直接对A选项进行判断;利用旋转的性质得∠BAC=∠DAE,再利用三角形外角性质得∠BAD=∠CAE,则可对B选项进行判断;利用旋转的性质得∠ADE=∠B,AB=AD,AC=AE,然后根据等腰三角形顶角相等时底角相等得到∠B=∠ACE,则∠ADE=∠ACE,于是可对C选项进行判断;先判断∠EDC=∠BAD,而∠BAD不能确定等于∠DAC,则可对D选项进行判断.【解答】解:∵△ABC绕点A逆时针旋转得到△ADE,∴∠ACB=∠AED,所以A选项的结论正确;∠BAC=∠DAE,即∠BAD+∠DAC=∠DAC+∠CAE,∴∠BAD=∠CAE,所以B选项的结论正确;∵△ABC绕点A逆时针旋转得到△ADE,∴∠ADE=∠B,AB=AD,AC=AE,∵∠BAD=∠CAE,∴∠B=∠ACE,∴∠ADE=∠ACE,所以C选项的结论正确;∵∠ADC=∠B+∠BAD,而∠ADE=∠B,∴∠EDC=∠BAD,而AD不能确定平分∠BAC,∴∠BAD不能确定等于∠DAC,∴∠EDC不能确定等于∠DAC,所以D选项的结论错误.故选:D.二.填空题(共12小题)7.计算:a11÷a7=a4.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:a11÷a7=a4.故答案为:a4.8.因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).9.不等式组的解集是﹣1<x<1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+2>x,得:x>﹣1,解不等式x﹣1<0,得:x<1,则不等式组的解集为﹣1<x<1,故答案为:﹣1<x<1.10.方程=0的根为x=4.【分析】利用有理数积的乘法得到x﹣4=0或x+2=0,然后解一元一次方程后进行检验确定原方程的解.【解答】解:根据题意得x﹣4=0或x+2=0,解得x=4或x=﹣2,经检验x=4为原方程的解.故答案为x=4.11.如果反比例函数y=(k是常数,k≠0)的图象经过点(﹣5,﹣1),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小(填“增大”或“减小”).【分析】利用待定系数法求出k=5,再根据k值的正负确定函数值的增减性.【解答】解:反比例函数y=(k是常数,k≠0)的图象经过点(﹣5,﹣1),所以k=﹣5×(﹣1)=5>0,所以这个函数图象所在的每个象限内,y的值随自变量x值的增大而减小.故答案为:减小.12.在四张完全相同的卡片上,分别画有:正三角形、正八边形、圆和矩形.如果从中任意抽取1张卡片,那么这张卡片上所画图形既是轴对称图形又是中心对称图形的概率是.【分析】直接利用轴对称图形和中心对称图形的定义得出符合题意的图形个数,进而得出概率.【解答】解:正三角形、正八边形、圆和矩形中既是轴对称图形又是中心对称图形是正八边形、圆和矩形.故这张卡片上所画图形既是轴对称图形又是中心对称图形的概率是:.故答案为:.13.为了解某区24000名初中生平均每天的体锻时间,随机调查了该区300名初中生.如图是根据调查结果绘制成的频数分布直方图(每小组数据含最小值,不含最大值),由此可估计该区初中生平均每天的体锻时间不少于1.5小时的人数大约为4800人.【分析】用总人数乘以样本中每天的体锻时间不少于1.5小时的人数占被调查人数的比例即可得.【解答】解:估计该区初中生平均每天的体锻时间不少于1.5小时的人数大约为24000×=4800(人),故答案为:4800.14.运输两批救援物资:第一批220吨,用4节火车皮和5辆货车正好装完;第二批158吨,用3节火车皮和2辆货车正好装完.如果每节火车皮的运载量相同,每辆货车的运载量相同,那么一节火车皮和一辆货车共装救援物资54吨.【分析】设一节火车皮装救援物资x吨,一辆货车装救援物资y吨,由题意得等量关系:4节火车皮运载量+5辆货车运载量=220吨,3节火车皮运载量+2辆货车运载量=158吨,根据等量关系列出方程组,再解即可.【解答】解:设一节火车皮装救援物资x吨,一辆货车装救援物资y吨,由题意得:,解得:,则一节火车皮和一辆货车共装救援物资:50+4=54(吨),故答案为:54.15.如图,在△ABC中,点D在边AB上,AB=4AD,设=,=,那么向量用向量、表示为.【分析】利用三角形法则:=+求解即可.【解答】解:∵AB=4AD,∴AD=AB,∴=,∵=+,∴=﹣+,故答案为:.16.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.【分析】根据AB是⊙O的直径,OF⊥CD,和垂径定理可得CF=DF,再根据30度角所对直角边等于斜边一半,和勾股定理即可求出EF的长,进而可得CD的长.【解答】解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.17.已知矩形ABCD,对角线AC与BD相交于点O,AB=6,BC=8,分别以点O、D为圆心画圆,如果⊙O与直线AD相交、与直线CD相离,且⊙D与⊙O内切,那么⊙D的半径长r的取值范围是8<r<9.【分析】根据圆与圆的位置关系即可求出答案.【解答】解:设⊙O的半径为r1,⊙D半径为r,由⊙O与直线AD相交、与直线CD相离可知:3<r1<4,由题意可知:r>r1,否则⊙D与⊙O不能内切,∵OD=AC=5,∴圆心距d=5,∴d=r﹣r1,∴r=5+r1,∴8<r<9,故答案为:8<r<9.18.如果一条直线把一个四边形分成两部分,这两部分图形的周长相等,那么这条直线称为这个四边形的“等分周长线”.在直角梯形ABCD中,AB∥CD,∠A=90°,DC=AD,∠B是锐角,cot B=,AB=17.如果点E在梯形的边上,CE是梯形ABCD的“等分周长线”,那么△BCE的周长为42.【分析】作CH⊥AB于H,设BH=5a,证明四边形ADCH为矩形,得到AD=CH=12a,根据题意求出a,根据勾股定理求出BC,根据“等分周长线”计算,得到答案.【解答】解:作CH⊥AB于H,设BH=5a,∵cot B=,∴=,∴CH=12a,∵AB∥CD,∴∠D=∠A=90°,又CH⊥AB,∴四边形ADCH为矩形,∴AD=CH=12a,CD=AH,∵DC=AD,∴AH=CD=12a,由题意得,12a+5a=17,解得,a=1,∴AD=CD=AH=12,BH=5,在Rt△CHB中,BC==13,∴四边形ABCD的周长=12+12+17+13=54,∵CE是梯形ABCD的“等分周长线”,∴点E在AB上,∴AE=17+13﹣27=3,∴EH=12﹣3=9,由勾股定理得,EC==15,∴△BCE的周长=14+13+15=42,故答案为:42.三.解答题(共7小题)19.计算:.【分析】直接利用二次根式的性质以及分数指数幂的性质分别化简得出答案.【解答】解:原式==3﹣2+4+﹣1﹣2=.20.解方程:=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1+2=x2﹣1,整理得:x2﹣x﹣2=0,解得x1=﹣1,x2=2,经检验:x1=﹣1是增根,舍去;x2=2是原方程的根,∴原方程的根是x=2.21.已知:如图,在Rt△ABC中,∠ACB=90°,BC=12,cos B=,D、E分别是AB、BC边上的中点,AE与CD相交于点G.(1)求CG的长;(2)求tan∠BAE的值.【分析】(1)根据在Rt△ABC中,∠ACB=90°,BC=12,cos B=,可以求得AB的长,然后根据点D为AB的中点,可以得到C的长,再根据点G是△ABC中点的交点,可以得到CG=CD,从而可以求得CG的长;(2)作EF⊥AB于点G,然后根据题意,可以求得EF和AF的长,从而可以得到tan∠BAE的值.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,BC=12,cos B=,∴,∵D是边上的中点,∴,又∵点E是BC边上的中点,∴点G是△ABC的重心,∴;(2)∵点E是BC边上的中点,∴,过点E作EF⊥AB,垂足为F,∵在Rt△BEF中,cos B=,BF=BE•cos B=,∴,∵AF=AB﹣BF=18﹣4=14,∴tan∠BAE=.22.疫情期间,甲厂欲购买某种无纺布生产口罩,A、B两家无纺布公司各自给出了该种无纺布的销售方案.A公司方案:无纺布的价格y(万元)与其重量x(吨)是如图所示的函数关系;B公司方案:无纺布不超过30吨时,每吨收费2万元;超过30吨时,超过的部分每吨收费1.9万元.(1)求如图所示的y与x的函数解析式;(不要求写出定义域)(2)如果甲厂所需购买的无纺布是40吨,试通过计算说明选择哪家公司费用较少.【分析】(1)运用待定系数法解答即可;(2)把x=40代入(1)的结论以及公司方案,分别求出每家公司所需的费用,再进行比较即可.【解答】解:(1)设一次函数的解析式为y=kx+b(k、b为常数,k≠0),由一次函数的图象可知,其经过点(0,0.8)、(10,20.3),代入得,解得,∴这个一次函数的解析式为y=1.95x+0.8.(2)如果在A公司购买,所需的费用为:y=1.95×40+0.8=78.8万元;如果在B公司购买,所需的费用为:2×30+1.9×(40﹣30)=79万元;∵78.8<79,∴在A公司购买费用较少.23.已知:如图,四边形ABCD是平行四边形,延长BA至点E,使得AE=AB,联结DE、AC.点F在线段DE上,联结BF,分别交AC、AD于点G、H.(1)求证:BG=GF;(2)如果AC=2AB,点F是DE的中点,求证:AH2=GH•BH.【分析】(1)由平行四边形的性质可得AB=CD=AE,AB∥CD,可证四边形ACDE是平行四边形,可得,可得结论;(2)由“SAS”可证△BEF≌△DEA,可得∠EBF=∠EDA,通过证明△AHG∽△BHA,可得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AB=AE,∴AE=CD,∴四边形ACDE是平行四边形,∴AC∥DE,∴,∴BG=GF;(2)∵AB=AE,∴BE=2AE,∵AC=2AB,∴BE=AC,∵四边形ACDE是平行四边形,∴AC=DE,∴DE=BE,∵点F是DE的中点,∴DE=2EF,∴AE=EF,∵DE=BE,∠E=∠E,AE=EF,∴△BEF≌△DEA(SAS),∴∠EBF=∠EDA,∵AC∥DE,∴∠GAH=∠EDA.∴∠EBF=∠GAH.∵∠AHG=∠BHA,∴△AHG∽△BHA,∴.∴AH2=GH•BH.24.在平面直角坐标系xOy中(如图),已知抛物线y=﹣+bx+c(其中b、c是常数)经过点A(﹣2,﹣2)与点B(0,4),顶点为M.(1)求该抛物线的表达式与点M的坐标;(2)平移这条抛物线,得到的新抛物线与y轴交于点C(点C在点B的下方),且△BCM 的面积为3.新抛物线的对称轴l经过点A,直线l与x轴交于点D.①求点A随抛物线平移后的对应点坐标;②点E、G在新抛物线上,且关于直线l对称,如果正方形DEFG的顶点F在第二象限内,求点F的坐标.【分析】(1)根据抛物线y=﹣+bx+c(其中b、c是常数)经过点A(﹣2,﹣2)与点B(0,4),从而可以求得抛物线的解析式,然后将解析式化为顶点式,即可得到顶点M的坐标;(2)①根据题意,可以求得平移后新抛物线的解析式,从而可以得到点A随抛物线平移后的对应点坐标;②根据题意和正方形的性质,可以求得点F的坐标.【解答】解:(1)将A(﹣2,﹣2)、B(0,4)代入中,解得∴该抛物线的表达式为:;∵y=x2+2x+4=﹣(x﹣2)2+6,∴顶点M的坐标是:(2,6);(2)①∵平移后抛物线的对称轴经过点A(﹣2,﹣2),∴可设平移后的抛物线表达式为:,∴C(0,﹣2+k).∴,解得,k=3.∴,即原抛物线向左平移4个单位,向下平移3个单位可以得到新的抛物线.∴点A对应点的坐标为(﹣6,﹣5);②设EG与DF的交点为H.在正方形DEFG中,EG⊥DF,EG=DF=2EH=2DH.∵点E、G是这条抛物线上的一对对称点,∴EG∥x轴.∴DF⊥x轴,设F(﹣2,2a).∵点F在第二象限内,∴a>0.∴EG=DF=2EH=2DH=2a.不妨设点E在点G的右侧,那么E(﹣2+a,a).将点E代入,得,解得,,(不合题意,舍去).∴F(﹣2,).25.在Rt△ABC中,∠ACB=90°,AC=15,sin∠BAC=.点D在边AB上(不与点A、B重合),以AD为半径的⊙A与射线AC相交于点E,射线DE与射线BC相交于点F,射线AF与⊙A交于点G.(1)如图,设AD=x,用x的代数式表示DE的长;(2)如果点E是的中点,求∠DF A的余切值;(3)如果△AFD为直角三角形,求DE的长.【分析】(1)过点D作DH⊥AC,垂足为H.根据锐角三角函数和勾股定理即可用x的代数式表示DE的长;(2)根据题意可设BC=4k(k>0),AB=5k,则AC==3k.过点A作AM ⊥DE,垂足为M,再根据锐角三角函数和勾股定理即可表示∠DF A的余切值;(3)分两种情况讨论:当点E在AC上时,只有可能∠F AD=90°;当点E在AC的延长线上时,只有可能∠AFD=90°,此时∠AFC=∠AEF.根据锐角三角函数和勾股定理即可求DE的长.【解答】解:(1)如图,过点D作DH⊥AC,垂足为H.在Rt△AEH中,,.在⊙A中,AE=AD=x,∴,∴;(2)∵,∴可设BC=4k(k>0),AB=5k,则AC==3k.∵AC=15,∴3k=15,∴k=5.∴BC=20,AB=25.∵点E是的中点,由题意可知此时点E在边AC上,点F在BC的延长线上,∴∠F AC=∠BAC.∵∠FCA=∠BCA=90°,AC=AC,∴△FCA≌△BCA(ASA),∴FC=BC=20.∵,又∵∠AED=∠FEC,且∠AED、∠FEC都为锐角,∴tan∠FEC=2.∴.∴AE=AC﹣EC=20﹣10=5.过点A作AM⊥DE,垂足为M,则.∵,∴.在Rt△EFC中,.∴在Rt△AFM中,.答:∠DF A的余切值为;(3)当点E在AC上时,只有可能∠F AD=90°.∵FC=CE•tan∠FEC=2(15﹣x),∴.∴.∵,又∵∠AED=∠ADE,且∠AED、∠ADE都为锐角,∴.∴.∴AD=x=.∴.当点E在AC的延长线上时,只有可能∠AFD=90°,此时∠AFC=∠AEF.∵∠AFC、∠AEF都为锐角,∴tan∠AEF=tan∠AFC=2.∵CE=AE﹣AC=x﹣15,∴CF=CE•tan∠AEF=2(x﹣15).∴.∴AD=x=.∴.综上所述,△AFD为直角三角形时,DE的长为或.。
2022年上海市中考数学试题(含答案解析)
2022年上海市初中学业水平考试数学试卷考生注意:1.本试卷共25题,试卷满分150分,考试时间100分钟。
2.答题时,考生务必按要求在答题纸上作答,在草稿纸、本试卷上答题一律无效。
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一、选择题(本大题共6题,每题4分,满分24分)1.8的相反数是A. 8-B. 8C. 18D.18-2.下列运算正确的是A. a²+a³=a6B. (ab)2 =ab2C. (a+b)²=a²+b²D. (a+b)(a-b)=a² -b23.已知反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为A. (2,3)B. (-2,3)C. (3,0)D. (-3,0)4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是A. 平均数B. 中位数C. 众数D. 方差5.下列说法正确的是A. 命题一定有逆命题B. 所有的定理一定有逆定理C. 真命题的逆命题一定是真命题D. 假命题的逆命题一定是假命题6.有一个正n边形旋转90后与自身重合,则n为A. 6B. 9C. 12D. 15二、填空题(本大题共12题,每题4分,满分48分)7.计算:3a-2a=__________.8.已知f(x)=3x,则f(1)=_____.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 10.已知x -23x +m =0有两个不相等的实数根,则m 的取值范围是_____. 11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.12.公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数 据含最小值,不含最大值)(0-1小时4人,1-2小时10人, 2-3小时14人,3-4小时16人,4-5小时6人),若共有200名 学生,则该学校六年级学生阅读时间不低于3小时的人数是 _____.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直线:_____.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b ==则DC =_____.16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛面积为_____.(结果保留π) 17.如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC上,AD DE AB BC=,则AEAC =_____. 18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大 时,这个圆的半径为_____.三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:11221|()123--+-20.(本题满分10分)解关于x 的不等式组34423x x xx >-⎧⎪+⎨>+⎪⎩21.(本题满分10分,每小题满分各5分)一个一次函数的截距为1,且经过点A (2,3). (1)求这个一次函数的解析式;(2)点A ,B 在某个反比例函数上,点B 横坐标为6,将点B 向上平移2个单位得到点C ,求cos ∠ABC 的值.22.(本题满分10分,每小题满分各5分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB 底部a 米的点D 处,测角仪高为b米,从C 点测得A 点的仰角为α,求灯杆AB 的高度.(用含a ,b ,a的代数式表 示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG 放在灯杆AB 前,测得其影长CH 为1米,再将木 杆沿着BC 方向移动1.8米至DE 的位置,此时测得其影长DF 为3米,求灯杆AB 的高度23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,AE ²=AQ ·AB 求证: (1)∠CAE =∠BAF ; (2)CF ·FQ =AF ·BQ24.(本题满分12分,第(1)小题满分4分,第(2)小题①满分4分,第(2)小题②满分4分) 已知:212y x bx c =++经过点()21A --,,()03B -,. (1)求函数解析式;(2)平移抛物线使得新顶点为(),P m n (m >0).①倘若3OPB S =△,且在x k =的右侧,两抛物线都上升,求k 的取值范围; ②P 在原抛物线上,新抛物线与y 轴交于Q ,120BPQ ∠=时,求P 点坐标.25.(本题满分14分,第(1)小题①满分4分,第(1)小题②满分4分,第(2)小题满分6分)平行四边形ABCD ,若P 为BC 中点,AP 交BD 于点E ,连接CE . (1)若AE CE =,①证明ABCD 为菱形;②若5AB =,3AE =,求BD 的长.(2)以A 为圆心,AE 为半径,B 为圆心,BE 为半径作圆,两圆另一交点记为点F ,且2CE AE =.若F 在直线CE 上,求ABBC的值.2022年上海初中学业水平考试数学试题参考答案一、选择题(本大题共6题,每题4分,满分24分) 1.A2.D3.B4.D5.A6.C二、填空题(本大题共12题,每题4分,满分48分)7.a 8.39.21x y =⎧⎨=-⎩10.m <3 11.1312.20% 13.88 14.2y x =-+(答案不唯一) 15.2a b -+16.400π17.12或1418.22三、解答题(本大题共7题,满分78分) 19.解:11221|()123--+--=1 20.解:34423x x x x >-⎧⎪⎨+>+⎪⎩①②,解①得:x >-2, 解②得:x <-1, ∴-2<x <-1.21.(1)解:设这个一次函数的解析式y =kx +1,把A (2,3)代入,得3=2k +1, 解得:k =1,∴这个一次函数的解析式为y =x +1;(2)解:如图,设反比例函数解析式为y =m x, 把A (2,3)代入,得3=2m , 解得:m =6,∴反比例函数解析式为y =6x, 当x =6时,则y =66=1,∴B (6,1),∴AB =22(62)(13)25-+-=, ∵将点B 向上平移2个单位得到点C , ∴C (6,3),BC =2, ∵A (2,3),C (6,3), ∴AC ∥x 轴,∵B (6,1),C (6,3), ∴BC ⊥x 轴, ∴AC ⊥BC , ∴∠ACB =90°,∴△ABC 是直角三角形, ∴cos ∠ABC =25525BC AB ==. 22.(1)解:如图由题意得BD =a ,CD =b ,∠ACE =α ∠B =∠D =∠CEB =90° ∠四边形CDBE 为矩形, 则BE =CD =b ,BD =CE =a , 在Rt ∆ACE 中,tan α=AECE, 得AE =CE =CE ×tan α=a tan α 而AB =AE +BE ,故AB = a tan α+b答:灯杆AB 的高度为a tan α+b 米 (2)解:由题意可得,AB ∥GC ∥ED ,GC =ED =2,CH =1,DF =3,CD =1.8 由于AB ∥ED , ∠∆ABF ~∆EDF ,此时ED ABDF BF = 即2=3 1.83ABBC ++∠, ∠AB ∠GC ∠∆ABH ~∆GCH , 此时AB GCBH CH=, 211AB BC =+ ∠ 联立∠∠得24.8321AB BC AB BC ⎧=⎪⎪+⎨⎪=⎪+⎩, 解得: 3.80.9AB BC =⎧⎨=⎩答:灯杆AB 的高度为3.8米23.(1)证明:∵AB =AC ,∴∠B =∠C , ∵CF =BE , ∴CE =BF ,在△ACE 和△ABF 中,AC ABC B CE BF =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△ABF (SAS ), ∴∠CAE =∠BAF ;(2)证明:∵△ACE ≌△ABF ,∴AE =AF ,∠CAE =∠BAF , ∵AE ²=AQ ·AB ,AC =AB ,∴AE AB AQ AE =,即AE ACAQ AF =, ∴△ACE ∽△AFQ , ∴∠AEC =∠AQF , ∴∠AEF =∠BQF , ∵AE =AF , ∴∠AEF =∠AFE , ∴∠BQF =∠AFE , ∵∠B =∠C , ∴△CAF ∽△BFQ , ∴CF AFBQ FQ=,即CF ·FQ =AF ·BQ . 24.(1)解:把()21A --,,()03B -,代入212y x bx c =++,得 1223b c c -=-+⎧⎨-=⎩,解得:03b c =⎧⎨=-⎩, ∠函数解析式为:2132y x =-; (2)解:∠∠2132y x =-, ∠ 顶点坐标为(0,-3),即点B 是原抛物线的顶点, ∠ 平移抛物线使得新顶点为(),P m n (m >0). ∠ 抛物线向右平移了m 个单位, ∠ 1332OPB S m =⨯=△, ∠ m =2,∠ 平移抛物线对称轴为直线x =2,开口向上, ∠ 在x k =的右侧,两抛物线都上升, 又∠ 原抛物线对称轴为y 轴,开口向上,∠ k ≥2,∠ 把P (m ,n )代入2132y x =-,得n =2132m -, ∠ P (m ,2132m -) 根据题意,得新抛物线解析式为:y =12(x -m )2+n =12x 2-mx +m 2-3, ∠ Q (0,m 2-3), ∠ B (0,-3), ∠ BQ =m 2,BP 2=2222411(33)24m m m m +-+=+,PQ 2=22222411[(3)(3)]24m m m m m +---=+,∠ BP =PQ ,如图,过点P 作PC ∠y 轴于C ,则PC =|m |,∠ BP =PQ ,PC ∠BQ ,∠ BC =12BQ =12m 2,∠BPC =12∠BPQ =12×120°=60°,∠ tan∠BPC = tan 60°=2123||mBC PC m ==,解得:m =±23,∠ n =2132m -=3,故P 的坐标为(23,3)或(-23,3)25.(1)①证明:如图,连接AC 交BD 于O ,∵平行四边形ABCD , ∴OA =OC , ∵AE =CE ,OE =OE , ∴△AOE ≌△COE (SSS), ∴∠AOE =∠COE ,∵∠AOE +∠COE =180°, ∴∠COE =90°, ∴AC ⊥BD ,∵平行四边形ABCD , ∴四边形ABCD 是菱形; (1)②∵OA =OC ,∴OB 是△ABC 的中线, ∵P 为BC 中点, ∴AP 是△ABC 的中线, ∴点E 是△ABC 的重心, ∴BE =2OE , 设OE =x ,则BE =2x ,在Rt △AOE 中,由勾股定理,得OA 2=AE 2-OE 2=32-x 2=9-x 2, 在Rt △AOB 中,由勾股定理,得OA 2=AB 2-OB 2=52-(3x )2=25-9x 2, ∴9-x 2=25-9x 2,解得:x ,∴OB =3x , ∵平行四边形ABCD ,∴BD =2OB ; (2)解:如图,∵⊙A 与⊙B 相交于E 、F , ∴AB ⊥EF ,由(1)②知点E 是△ABC 的重心, 又F 在直线CE 上, ∴CG 是△ABC 的中线, ∴AG =BG =12AB ,GE =12CE ,∵CE AE ,∴GE =2AE ,CG =CE +GE =2AE , 在Rt △AGE 中,由勾股定理,得AG2=AE2-GE E=AE2-(22AE)2=12AE2,∴AG=22AE,∴AB=2AG=2AE,在Rt△BGC中,由勾股定理,得BC2=BG2+CG2=12AE2+(322AE)2=5AE2,∴BC=5AE,∴21055AB AEBC AE.2022年初中学业水平考试数学试卷第11页(共11页)。
2019-2020上海市数学中考试卷含答案
2019-2020上海市数学中考试卷含答案一、选择题1.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°2.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.3.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个4.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是25.-2的相反数是()A.2B.12C.-12D.不存在6.下列命题中,真命题的是()A .对角线互相垂直的四边形是菱形B .对角线互相垂直平分的四边形是正方形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形7.不等式x+1≥2的解集在数轴上表示正确的是( )A .B .C .D .8.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .92 9.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x ++=在同一坐标系内的图象大致为( )A .B .C .D . 10.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°11.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠12.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____. 15.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.16.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°;(2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.13≈1.73).17.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.18.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.19.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.20.分解因式:2x2﹣18=_____.三、解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.23.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 24.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.25.材料:解形如(x+a )4+(x+b )4=c 的一元四次方程时,可以先求常数a 和b 的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=706【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质4.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.5.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.6.D解析:D【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C 是假命题;对角线互相平分的四边形是平行四边形,故D 是真命题.故选D .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.A解析:A【解析】试题解析:∵x+1≥2,∴x ≥1.故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.8.B解析:B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=,DBC BDF ADB 20∠∠∠∴===,又ABD 48∠=,ABD ∴中,A 1802048112∠=--=,E A 112∠∠∴==,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.9.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a=->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.10.D解析:D【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.12.A解析:A【解析】【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=,1a ,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>,∴方程由两个不相等的实数根.故选:A .【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故 解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.16.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.17.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.18.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.19.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 20.2(x+3)(x ﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x ﹣3)故答案为:2(x+3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x +3)(x ﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x 2﹣9)=2(x +3)(x ﹣3),故答案为:2(x +3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 22.(1)证明见解析;(2)BH =. 【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC ∥BD ,即可得出结论;(2)先利用相似三角形求出BF ,进而利用勾股定理求出AF ,最后利用面积即可得出结论.【详解】(1)连接OC ,∵AB 是⊙O 的直径,点C 是的中点,∴∠AOC =90°,∵OA =OB ,CD =AC ,∴OC 是△ABD 是中位线,∴OC ∥BD ,∴∠ABD =∠AOC =90°,∴AB ⊥BD ,∵点B 在⊙O 上,∴BD 是⊙O 的切线;(2)由(1)知,OC ∥BD ,∴△OCE ∽△BFE ,∴, ∵OB =2,∴OC =OB =2,AB =4,, ∴, ∴BF =3,在Rt △ABF 中,∠ABF =90°,根据勾股定理得,AF =5,∵S △ABF =AB•BF =AF•BH ,∴AB•BF =AF•BH ,∴4×3=5BH , ∴BH =.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵23(3)a b m n +=+,∴223323a b m n mn +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 24.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)25.(1)4,4,1,1;(2)x=2或x=﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.【详解】(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),解得:y2=16或y2=﹣22(舍去)所以y=±4,即x+2=±4.所以x=2或x=﹣6.【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.。
2020年中考数学模拟试卷(含详细参考答案解析)万唯中考数学电子版
22年中考数学模拟试卷一.选择题(共1小题,满分3分,每小题3分) 1.若a=﹣.32,b=(﹣3)﹣2,c=(﹣)﹣2,d=(﹣),则() A.a<b<c<d B.a<b<d <c C.a<d<c<b D.c<a<d<b 2.下图中是中心对称图形而不是轴对称图形的共有()A.1个 B.2个 C.3个 D.4个 3.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为() A.2° B.3° C.4° D.7° 4.下列运算正确的是() A.x2+x2=x4 B. a2a3=a5 C.(3x)2 =6x2 D.(mn)5÷(mn)=mn4 5.不解方程,判别方程2x2﹣3x=3的根的情况() A.有两个相等的实数根 B.有两个不相等的实数根 C.有一个实数根 D.无实数根 6.在反比例函数y=的图象的每一支位上,y随x的增大而减小,则m的取值范围是() A.m>7 B.m<7 C.m=7 D.m≠7 7.⊙O的半径是13,弦AB ∥CD,AB=24,CD=1,则AB与CD的距离是() A.7 B.17 C.7或17 D.34 8.如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于() A.5 B.5 C.6 D.9 9.如图,已知直线y1=k1x+m和直线y2=k2x+n交于点P(﹣1,2),则关于x的不等式(k1﹣k2)x>﹣m+n的解是() A.x >2 B.x>﹣1 C.﹣1<x<2 D.x<﹣1 1.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有①甲队挖掘3m时,用了3h;②挖掘6h时甲队比乙队多挖了1m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有() A.1个B.2个 C.3个 D.4个二.填空题(共8小题,满分32分,每小题4分) 11.若使代数式有意义,则x的取值范围是. 12.把多项式3a3b﹣27ab3分解因式的结果是. 13.已知菱形的周长为2cm,一条对角线长为6cm,则这个菱形的面积是cm2. 14.如图,在Rt△ABC中,∠ACB=9°,∠A=56°,以BC为直径的⊙O交AB于点D,E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为. 15.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队又共同工作了半个月.总工程全部完成,设乙队单独施1个月能完成总工程的,根据题意,得方程. 16.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=的解为. 17.如果点(m,﹣2m)在双曲线上,那么双曲线在象限. 18.一组按规律排列的式子,﹣,,﹣,…(a≠),其中第1个式子是.三.解答题(共5小题,满分38分) 19.计算4sin6°﹣|﹣1|+(﹣1)+ 2.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣1)、B(﹣3,3)、C (﹣4,1)(1)画出△ABC关于y轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)画出△ABC绕点A按顺时针旋转9°后的△AB2C2,并写出点C的对应点C2的坐标. 21.为了测量白塔的高度AB,在D处用高为5米的测角仪 CD,测得塔顶A的仰角为42°,再向白塔方向前进12米,又测得白塔的顶端A的仰角为61°,求白塔的高度AB.(参考数据sin42°≈.67,tan42°≈.9,sin61°≈.87,tan61°≈8,结果保留整数) 22.为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率. 23.某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋15个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?四.解答题(共5小题,满分5分) 24.如图,一次函数y1=k1x+b与反比例函数的图象相交于A,B两点,且与坐标轴的交点为(﹣6,),(,6),点B的横坐标为﹣4.(1)试确定反比例函数的解析式;(2)求△AOB的面积;(3)直接写出不等式的解. 25.如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证CD与⊙O相切;(2)若菱形ABCD的边长为2,∠ABC=6°,求⊙O的半径. 26.某商场一种商品的进价为每件3元,售价为每件4元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件34元,求两次下降的百分率;(2)经调查,若该商品每降价.5元,每天可多销售4件,那么每天要想获得51元的利润,每件应降价多少元? 27.如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A 出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证△ADE≌△CDF;(2)填空①当t为s时,以A、F、C、E为顶点的四边形是平行四边形;②当t为s时,四边形ACFE是菱形. 28.已知,抛物线y=ax2+ax+b(a≠)与直线y=2x+m有一个公共点M(1,),且a<b.(1)求b与a的关系式和抛物线的顶点D 坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共1小题,满分3分,每小题3分)1.【分析】根据乘方的运算法则、负整数指数幂、零指数幂分别计算,再比较大小可得.【解答】解∵a=﹣.32=﹣.9, b=(﹣3)﹣2=, c=(﹣)﹣2=9, d=(﹣)=1,∴a <b<d<c,故选B.【点评】本题主要考查有理数的大小比较,解题的关键是掌握乘方的运算法则、负整数指数幂、零指数幂. 2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选B.【点评】掌握好中心对称与轴对称的概念轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转18度后与原图重合. 3.【分析】延长ED交BC于F,根据平行线的性质求出∠MFC=∠B =75°,求出∠FDC=35°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解延长ED交BC于F,如图所示∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=18°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=4°,故选C.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意两直线平行,同位角相等. 4.【分析】根据合并同类项、同底数幂的乘法、除法和幂的乘方计算判断即可.【解答】解A、x2+x2=2x2,错误;B、a2a3=a5 ,正确;C、(3x)2 =9x2,错误;D、(mn)5÷(mn)=(mn)4,错误;故选B.【点评】此题考查同底数幂的乘法、除法,关键是根据合并同类项、同底数幂的乘法、除法和幂的乘方法则解答. 5.【分析】先把方程化为一般式得到2x2﹣3x﹣3=,再计算△=(﹣3)2﹣4×2×(﹣3)=18+24>,然后根据△的意义判断方程根的情况.【解答】解方程整理得2x2﹣3x﹣3=,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>,∴方程有两个不相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=(a≠)的根的判别式△=b2﹣4ac当△>,方程有两个不相等的实数根;当△=,方程有两个相等的实数根;当△<,方程没有实数根. 6.【分析】根据反比例函数图象的性质得到m﹣7>,由此求得m的取值范围.【解答】解∵在反比例函数y=的图象的每一支位上,y随x的增大而减小,∴m﹣7>,解得m>7.故选A.【点评】本题主要考查反比例函数的性质,当k >,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小. 7.【分析】先作出图象根据勾股定理分别求出弦AB、CD的弦心距OE、OF,再根据两弦在圆心同侧和在圆心异侧两种情况讨论.【解答】解如图,AE=AB=×24=12, CF=CD=×1=5, OE===5, OF===12,①当两弦在圆心同侧时,距离=OF﹣OE=12﹣5=7;②当两弦在圆心异侧时,距离=OE+OF=12+5=17.所以距离为7或17.故选C.【点评】先构造半径、弦心距、半弦长为边长的直角三角形,再利用勾股定理求弦心距,本题要注意分两种情况讨论. 8.【分析】可先求得AB的长,再根据三角形中位线定理可求得OH 的长.【解答】解∵四边形ABCD为菱形,且周长为36,∴AB=BC=CD=AD=9,又∵O 为BD中点,H为AD的中点,∴OH为△ABD的中位线,∴OH=AB=5,故选A.【点评】本题主要考查菱形的性质,掌握菱形的四边相等、对角线互相垂直平分是解题的关键. 9.【分析】根据图形,找出直线l1在直线l2上方部分的x的取值范围即可.【解答】解由图形可知,当x>﹣1时,k1x+m>k2x+n,即(k1﹣k2)x>﹣m+n,所以,关于x的不等式(k1﹣k2)x>﹣m+n的解集是x>﹣1.故选B.【点评】本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键. 1.【分析】根据函数图象可以判断题目中的各个小题是否正确,从而可以解答本题.【解答】解由图象可得,甲队挖掘3m时,用的时间为3÷(6÷6)=3h,故①正确,挖掘6h 时甲队比乙队多挖了6﹣5=1m,故②正确,前两个小时乙队挖得快,在2小时到6小时之间,甲队挖的快,故③错误,设≤x≤6时,甲对应的函数解析式为y=kx,则6=6k,得k =1,即≤x≤6时,甲对应的函数解析式为y=1x,当2≤x≤6时,乙对应的函数解析式为y=ax+b,,得,即2≤x≤6时,乙对应的函数解析式为y=5x+2,则,得,即开挖后甲、乙两队所挖河渠长度相等时,x=4,故④正确,由上可得,一定正确的是①②④,故选C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利【分用函数的思想和数形结合的思想解答.二.填空题(共8小题,满分32分,每小题4分) 11.析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解∵分式有意义,∴x 的取值范围是x+2≠,解得x≠﹣2.故答案是x≠﹣2.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键. 12.【分析】先提出公因式3ab,再利用平方差公式进行因式分解.【解答】解原式=3ab(a2﹣9b2)=3ab(a+3b)(a﹣3b).故答案是3ab(a+3b)(a﹣3b).【点评】本题考查了提公因式法和公式法进行分解因式,解决本题的关键是熟记提公因式法和公式法. 13.【分析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【解答】解如图,在菱形ABCD中,BD=6.∵菱形的周长为2,BD=6,∴AB=5,BO=3,∴AO==4,AC=8.∴面积S=×6×8=24.故答案为 24.【点评】此题考查了菱形的性质及面积求法,难度不大. 14.【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解∵∠ACB=9°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=9°,∴∠F=36°﹣9°﹣9°﹣68°=112°.故答案为112°.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键. 15.【分析】设乙队单独施1个月能完成总工程的,根据甲队完成的任务量+乙队完成的任务量=总工程量(单位一),即可得出关于x的分式方程,此题得解.【解答】解设乙队单独施1个月能完成总工程的,根据题意得+×+=1.故答案为+×+=1.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 16.【分析】直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=的解.【解答】解观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,),对称轴为x=﹣1,∴抛物线与x轴的另一交点坐标为(﹣3,),∴一元二次方程2x2﹣4x+m=的解为x1=1,x2=﹣3.故本题答案为x1=1,x2=﹣3.【点评】本题考查了用函数观点解一元二次方程的方法.一元二次方程﹣x2+bx+c=的解实质上是抛物线y =﹣x2+bx+c与x轴交点的横坐标的值. 17.【分析】根据反比例函数图象上的点的坐标特征图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得k=﹣2m2<,根据反比例函数的性质可得答案.【解答】解∵点(m,﹣2m)在双曲线(k≠)上,∴m(﹣2m)=k,解得k=﹣2m2,∵﹣2m2<,∴双曲线在第二、四象限.故答案为第二、四.【点评】此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k. 18.【分析】式子的符号第奇数个是正号.偶数个是负号,分子等于序号的平方,分母中a的指数是序号的3倍减去1,据此即可求解.【解答】解∵=(﹣1)1+1,﹣=(﹣1)2+1,=(﹣1)3+1,…第1个式子是(﹣1)1+1=.故答案是.【点评】本题主要考查了式子的特征,正确理解式子的规律是解题的关键.三.解答题(共5小题,满分38分) 19.【分析】将特殊锐角三角函数值代入、计算绝对值、零指数幂、化简二次根式,再进一步计算可得.【解答】解原式=4×﹣1+1+4 =2+4 =6.【点评】本题主要考查实数的运算,解题的关键是掌握特殊锐角三角函数值、绝对值性质、零指数幂、二次根式性质. 2.【分析】(1)分别作出点A,B,C关于y 轴的对称点,再首尾顺次连接即可得;(2)分别作出点B,C绕点A按顺时针旋转9°后所得对应点,再首尾顺次连接可得.【解答】解(1)如图(1)所示,△A1B1C1即为所求,其中B1的坐标为(3,3).(2)如图(2)所示,△AB2C2即为所求,C2的坐标为(1,2).【点评】本题主要考查作图﹣旋转变换和轴对称变换,解题的关键是熟练掌握轴对称变换与旋转变换的定义和性质,并据此得出变换后的对应点. 21.【分析】设AE=x,在Rt△ACE中表示出CE,在Rt△AFE中表示出FE,再由DH=CF=12米,可得出关于x的方程,解出即可得出答案.【解答】解设AE=x,在Rt△ACE中,CE==1x,在Rt△AFE中,FE==.55x,由题意得,CF=CE﹣FE=1x﹣.55x =12,解得x=,故AB=AE+BE=+5≈23米.答这个电视塔的高度AB为23米.【点评】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形,难度一般. 22.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率. 23.【分析】(1)用C品牌的数量除以所占的百分比,计算机求出鸡蛋的总量,再用A品牌的百分比乘以36°计算即可求出圆心角的度数;(2)求出B品牌鸡蛋的数量,然后条形补全统计图即可;(3)用B品牌所占的百分比乘以15,计算即可得解.【解答】解(1)共销售绿色鸡蛋12÷5%=24个, A品牌所占的圆心角×36°=6°;故答案为24,6;(2)B品牌鸡蛋的数量为24﹣4﹣12=8个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为×15=5个.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;【分扇形统计图直接反映部分占总体的百分比大小.四.解答题(共5小题,满分5分) 24.析】(1)根据待定系数法就可以求出函数的解析式;(2)求△AOB的面积就是求A,B两点的坐标,将一次函数与反比例函数的解析式组成方程即可求得;(3)观察图象即可求得一次函数比反比例函数大的区间.【解答】解(1)设一次函数解析式为y=kx+b,∵一次函数与坐标轴的交点为(﹣6,),(,6),∴∴,∴一次函数关系式为y=x+6,∴B(﹣4,2),∴反比例函数关系式为;(2)∵点A与点B是反比例函数与一次函数的交点,∴可得x+6=﹣,解得x=﹣2或x=﹣4,∴A(﹣2,4),∴S△AOB=6×6÷2﹣6×2=6;(3)观察图象,易知的解集为﹣4<x<﹣2.【点评】此题主要考查了待定系数法求反比例函数与一次函数的解析式.此题综合性较强,注意数形结合思想的应用. 25.【分析】(1)连接OM,过点O作ON⊥CD于N.只要证明OM=ON即可解决问题;(2)设半径为r.则OC=2﹣r,OM=r,利用勾股定理构建方程即可解决问题;【解答】解(1)连接OM,过点O作ON⊥CD于N.∵⊙O与BC相切于点M,∴OM⊥BC,OM是⊙O的半径,∵AC是菱形ABCD的对角线,∴AC平分∠BCD,∵ON⊥CD,OM⊥BC,∴ON=OM=r,∴CD与⊙O相切;(2)∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=6°,∴△ACB是等边三角形,∴AC=AB=2,设半径为r.则OC=2﹣r,OM=r,∵∠ACB=6°,∠OMC=9°,∴∠COM=3°,MC=,在Rt△OMC中,∠OMC=9°∵OM2+CM2=OC2 ∴r2+()2=(2﹣r)2,解得r=﹣6+4或﹣6﹣4(舍弃),∴⊙O的半径为﹣6+4.【点评】本题考查切线的判定,菱形的性质等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题,属于中考常考题型. 26.【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,4降至34就是方程的平衡条件,列出方程求解即可;(2)设每天要想获得51元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可.【解答】解(1)设每次降价的百分率为x. 4×(1﹣x)2=34 x=1%或19%(19%不符合题意,舍去)答该商品连续两次下调相同的百分率后售价降至每件34元,两次下降的百分率啊1%;(2)设每天要想获得51元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(4﹣3﹣y)(4×+48)=51,解得y1=5,y2=5,∵有利于减少库存,∴y=5.答要使商场每月销售这种商品的利润达到51元,且更有利于减少库存,则每件商品应降价5元.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可. 27.【分析】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)①分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案;②若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【解答】(1)证明∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,∵在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解①当点F在C的左侧时,根据题意得AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=8﹣2t,解得t=;当点F在C的右侧时,根据题意得AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣8(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣8,解得t=8;综上可得当t=或8s时,以A、C、E、F为顶点四边形是平行四边形.②若四边形ACFE 是菱形,则有CF=AC=AE=8,则此时的时间t=8÷1=8(s);故答案是或8;8.【点评】此题考查了平行四边形的判定,菱形的判定,全等三角形的判定与性质,等边三角形的性质,解题的关键是理解题意,学会用分类讨论的思想思考问题. 28.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得线段GH 与抛物线有两个不同的公共点时t的取值范围.【解答】解(1)∵抛物线y=ax2+ax+b有一个公共点M(1,),∴a+a+b=,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,),∴=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=,∴(x﹣1)(ax+2a﹣2)=,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1||﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为y=﹣2x+t,﹣x2﹣x+2=﹣2x+t, x2﹣x﹣2+t=,△=1﹣4(t﹣2)=, t=,当点H平移后落在抛物线上时,坐标为(1,),把(1,)代入y=﹣2x+t, t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
2014年中考数学专题复习第20讲:多边形与平行四边形(含详细参考答案)
2014年中考数学专题复习第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和事外角和是正几边形的每个外角的度数是,每个内角的度数是3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从几边形的一个顶点出发有条对角线,将多边形分成个三角形,一个几边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间地铺成一起,这就是平面图形的密铺,称作平面图形的2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两正多边形密铺,组合方式有:和、和、和合等几种【名师提醒:密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD可写成2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对它的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形两个命题都不被保证是平行四边形】4、平行四边形的面积:计算公式X同底(等底)同边(等边)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2012•南京)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= .思路分析:根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.解:由题意得,∠5=180°-∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠5=300°.故答案为:300°.点评:本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.对应训练1.(2012•广安)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 度.1.240考点:多边形内角与外角.专题:数形结合.分析:利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.解:∵四边形的内角和为(4-2)×180°=360°,∴∠B+∠C+∠D=360°-60°=300°,∵五边形的内角和为(5-2)×180°=540°,∴∠1+∠2=540°-300°=240°,故答案为240.点评:考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.考点二:平面图形的密铺例 2 (2012•贵港)如果仅用一种正多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是()A.正三角形B.正四边形C.正六边形D.正八边形思路分析:分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360°即可作出判断.解:A、正三角形的一个内角度数为180°-360°÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正四边形的一个内角度数为180°-360°÷4=90°,是360°的约数,能镶嵌平面,不符合题意;C、正六边形的一个内角度数为180°-360°÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D、正八边形的一个内角度数为180°-360°÷8=135°,不是360°的约数,不能镶嵌平面,符合题意;故选D.点评:本题考查平面密铺的问题,用到的知识点为:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.对应训练考点三:平行四边形的性质例3 (2012•阜新)如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EF=14AD,那么平行四边形ABCD应满足的条件是()A.∠ABC=60°B.AB:BC=1:4 C.AB:BC=5:2 D.AB:BC=5:8思路分析:根据四边形ABCD是平行四边形,利用平行四边形的性质得到对边平行且相等,然后根据两直线平行内错角相等,得到∠AEB=∠EBC,再由BE平分∠ABC得到∠ABE=∠EBC,等量代换后根据等角对等边得到AB=AE,同理可得DC=DF,再由AB=DC得到AE=DF,根据等式的基本性质在等式两边都减去EF得到AF=DE,当EF=14AD时,设EF=x,则AD=BC=4x,然后根据设出的量再表示出AF,进而根据AB=AF+EF用含x的式子表示出AB即可得到AB与BC的比值.解答:解:∵四边形ABCD是平行四边形,∴AD ∥BC ,AB=CD ,AD=BC ,∴∠AEB=∠EBC ,又BE 平分∠ABC ,∴∠ABE=∠EBC ,∴∠ABE=∠AEB ,∴AB=AE ,同理可得:DC=DF ,∴AE=DF ,∴AE-EF=DE-EF ,即AF=DE ,当EF=14AD 时,设EF=x ,则AD=BC=4x , ∴AF=DE=12(AD-EF )=1.5x , ∴AE=AB=AF+EF=2.5x ,∴AB :BC=2.5:4=5:8.故选D .点评:此题考查了平行四边形的性质,等腰三角形的性质,角平分性的定义以及等式的基本性质,利用了等量代换的数学思想,要求学生把所学的知识融汇贯穿,灵活运用.例4 (2012•广安)如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,且BE=AD ,点F 在AD 上,AF=AB ,求证:△AEF ≌△DFC .思路分析:由四边形ABCD 是平行四边形,利用平行四边形的性质,即可得AB=CD ,AB ∥CD ,又由平行线的性质,即可得∠D=∠EAF ,然后由BE=AD ,AF=AB ,求得AF=CD ,DF=AE ,继而利用SAS 证得:△AEF ≌△DFC .证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠D=∠EAF ,∵AF=AB ,BE=AD ,∴AF=CD ,AD-AF=BE-AB ,即DF=AE ,在△AEF 和△DFC 中,AE DF EAF D AF DC =⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△DFC(SAS).点评:此题考查了平行四边形的性质与全等三角的判定.此题难度不大,注意数形结合思想的应用.对应训练3.(2012•永州)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD 交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为.3.20考点:平行四边形的性质;线段垂直平分线的性质.分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OE⊥BD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,又由△CDE的周长为10,即可求得平行四边形ABCD的周长.解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,即CD+DE+EC=10,∴平行四边形ABCD的周长为:AB+BC+CD+AD=2(BC+CD)=2(BE+EC+CD)=2(DE+EC+CD)=2×10=20.故答案为:20.点评:此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.4.(2012•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.4.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据ED=BF,可得出AE=CF,结合平行线的性质,可得出∠AEO=∠CFO,∠FCO=∠EAO,继而可判定△AEO≌△CFO,即可得出结论.证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD-ED=BC-BF,即AE=CF,在△AEO和△CFO中,AE CFAEO CFOFCO EAO=⎧⎪∠=∠⎨⎪∠=∠⎩,∴△AEO≌△CFO,∴OA=OC.点评:此题考查了平行四边形的性质,根据平行四边形的性质得出ED=BF及∠AEO=∠CFO,∠FCO=∠EAO是解答本题的关键.考点四:平行四边形的判定例5 (2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的四边形是矩形思路分析:已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形,根据全等三角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可.解:A.一组对边平行,另一组对边相等的四边形是平行四边形,根据等腰梯形符合要求,得出故此选项错误;B.有一组对边平行的四边形是梯形,若另一组对边也平行,则此四边形是平行四边形,故此选项错误;C.一组对边相等,一组对角相等的四边形是平行四边形,∵△ABC是等腰三角形,∴AB=AC,∠B=∠C,∵DE=AC,AD=AD,∠ADE=∠DAC,即DE ACADE DAC AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△DAC,∴∠E=∠C,∴∠B=∠E,AB=DE,但是四边形ABDE不是平行四边形,故一组对边相等,一组对角相等的四边形不是平行四边形,因此C符合题意,故此选项正确;D.对角线相等的四边形是矩形,根据等腰梯形符合要求,得出故此选项错误;故选:C.点评:此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形是解题关键.例6 (2012•湛江)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.思路分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB CDA C AE CF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD-AE=BC-CF,即DE=BF,∴四边形BFDE是平行四边形.点评:此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.对应训练5.(2012•泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.1个B.2个C.3个D.4个考点:平行四边形的判定;三角形中位线定理;菱形的判定;正方形的判定;命题与定理;轴对称图形;中心对称图形.分析:根据平行四边形的各种判定方法、正方形的各种判定方法、菱形的各种判定方法以及正多边形的轴对称性逐项分析即可.解:①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如筝形,如图所示),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④正五边形只是轴对称图形不是中心对称图形,故该命题错误;所以正确的命题个数为2个,故选B.点评:本题考查菱形的判定,平行四边形的判定以及正方形的判定定理以及真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(2012•沈阳)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)先根据平行四边形的性质可得出AD ∥BC ,∠DAB=∠BCD ,再根据平行线的性质及补角的性质得出∠E=∠F ,∠EAM=∠FCN ,从而利用ASA 可作出证明;(2)根据平行四边形的性质及(1)的结论可得BM ∥DN ,则由有一组对边平行且相等的四边形是平行四边形即可证明.证明:(1)四边形ABCD 是平行四边形,∴∠DAB=∠BCD ,∴∠EAM=∠FCN ,又∵AD ∥BC ,∴∠E=∠F .在△AEM 与△CFN 中,EAM FCN AE CF E F ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEM ≌△CFN ;(2)∵四边形ABCD 是平行四边形,∴AB ∥= CD ,又由(1)得AM=CN ,∴BM ∥DN ,∴四边形BMDN 是平行四边形.点评:本题考查了平行四边形的判定及性质,全等三角形的判定,属于基础题,比较简单.【聚焦山东中考】1.(2012•烟台)如图为2012年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为 度(不取近似值)。
2019-2021年上海市数学中考题分类汇编——解答题(含答案)
2019-2021年上海市数学中考题分类汇编——解答题一、解答题1.(上海市2021年中考数学真题)计算:&#ξΦ020;1129|12-+-2.(上海市2021年中考数学真题)解方程组:22340x y x y +=⎧⎨-=⎩3.(上海市2021年中考数学真题)已知在ABD △中,,8,4AC BD BC CD ⊥==,4cos 5ABC ∠=,BF 为AD 边上的中线.(1)求AC 的长;(2)求tan FBD ∠的值.4.(上海市2021年中考数学真题)现在5G 手机非常流行,某公司第一季度总共生产80万部5G 手机,三个月生产情况如下图.(1)求三月份共生产了多少部手机?(2)5G 手机速度很快,比4G 下载速度每秒多95MB ,下载一部1000MB 的电影,5G 比4G 要快190秒,求5G 手机的下载速度.5.(上海市2021年中考数学真题)已知:在圆O 内,弦AD 与弦BC 交于点,,,G AD CB M N =分别是CB 和AD 的中点,联结,MN OG .(1)求证:OG MN ⊥;(2)联结,,AC AM CN ,当//CN OG 时,求证:四边形ACNM 为矩形.6.(上海市2021年中考数学真题)已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q .(1)求抛物线的解析式; (2)点A 在直线PQ 上且在第一象限内,过A 作AB x ⊥轴于B ,以AB 为斜边在其左侧作等腰直角ABC . ①若A 与Q 重合,求C 到抛物线对称轴的距离;①若C 落在抛物线上,求C 的坐标.7.(上海市2021年中考数学真题)如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;①若BE CD ⊥,求AD BC的值; (2)若2,3DE OE ==,求CD 的长.8.(上海市2020年中考数学试题)计算:1327(12)﹣2+|3. 9.(上海市2020年中考数学试题)解不等式组:1076713x x x x >+⎧⎪+⎨-<⎪⎩10.(上海市2020年中考数学试题)如图,在直角梯形ABCD 中,//AB DC ,①DAB =90°,AB =8,CD =5,BC(1)求梯形ABCD 的面积;(2)联结BD ,求①DBC 的正切值.11.(上海市2020年中考数学试题)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.12.(上海市2020年中考数学试题)已知:如图,在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:①BEC ①①BCH ;(2)如果BE 2=AB •AE ,求证:AG =DF .13.(上海市2020年中考数学试题)在平面直角坐标系xOy 中,直线y =﹣12x +5与x 轴、y 轴分别交于点A 、B (如图).抛物线y =ax 2+bx (a ≠0)经过点A .(1)求线段AB 的长;(2)如果抛物线y =ax 2+bx 经过线段AB 上的另一点C ,且BC (3)如果抛物线y =ax 2+bx 的顶点D 位于①AOB 内,求a 的取值范围.14.(上海市2020年中考数学试题)如图,①ABC 中,AB =AC ,①O 是①ABC 的外接圆,BO 的延长交边AC 于点D .(1)求证:①BAC =2①ABD ;(2)当①BCD 是等腰三角形时,求①BCD 的大小;(3)当AD =2,CD =3时,求边BC 的长.15.(上海市20192318- 16.(上海市2019年中考数学试题)解分式方程:228122-=--x x x x. 17.(上海市2019年中考数学试题)在平面直角坐标系xoy 中(如图),已知一次函数的图像平行于直线12y x =,且经过点A (2,3),与x 轴交于点B . (1)求这个一次函数的解析式;(2)设点C 在y 轴上,当AC =BC 时,求点C 的坐标.18.(上海市2019年中考数学试题)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D 到BC 的距离;(2)求E 、E '两点的距离.19.(上海市2019年中考数学试题)已知:如图,AB 、AC 是①O 的两条弦,且AB =AC ,D 是AO 延长线上一点,联结BD 并延长交①O 于点E ,联结CD 并延长交①O 于点F.(1)求证:BD =CD :(2)如果AB 2=AO·AD ,求证:四边形ABDC 是菱形.20.(上海市2019年中考数学试题)在平面直角坐标系xOy 中(如图),已知抛物线y =x 2-2x ,其顶点为A .(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”①试求抛物线y =x 2-2x 的“不动点”的坐标;①平移抛物线y =x 2-2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.21.(上海市2019年中考数学试题)如图1,AD 、BD 分别是ABC 的内角①BAC 、①ABC 的平分线,过点A 作AE①AD ,交BD 的延长线于点E .(1)求证:12E C ∠=∠; (2)如图2,如果AE=AB ,且BD :DE=2:3,求BC :AB 的值;(3)如果①ABC 是锐角,且ABC 与ADE 相似,求①ABC 的度数,并直接写出ADE ABC SS 的值.参考答案:1.2【分析】根据分指数运算法则,绝对值化简,负整指数运算法则,化最简二次根式,合并同类二次根式以及同类项即可.【详解】 解:1129|12-+-(112-⨯=31=2.【点睛】本题考查实数混合运算,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项,掌握实数混合运算法则与运算顺序,分指数运算法则,绝对值符号化简,负整指数运算法则,化最简二次根式,合并同类二次根式与同类项是解题关键.2.21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩ 【分析】由第一个方程得到3x y =-,再代入第二个方程中,解一元二次方程方程即可求出y ,再回代第一个方程中即可求出x .【详解】解:由题意:223(1)40(2)x y x y +=⎧⎨-=⎩, 由方程(1)得到:3x y =-,再代入方程(2)中:得到:22(3)40y y ,进一步整理为:32y y 或32y y , 解得11y =,23y =-,再回代方程(1)中,解得对应的12x =,26x =,故方程组的解为:21x y =⎧⎨=⎩和63x y =⎧⎨=-⎩.【点睛】本题考查了代入消元法解方程及一元二次方程的解法,熟练掌握代入消元法,运算过程中细心即可. 3.(1)6AC =;(2)310 【分析】(1)在Rt ①ABC 中,利用三角函数即可求出AB ,故可得到AC 的长;(2)过点F 作FG ①BD ,利用中位线的性质得到FG ,CG ,再根据正切的定义即可求解.【详解】(1)①AC BD ⊥,4cos 5ABC ∠=①cos 45ABC BC AB ∠== ①AB =10①AC 6;(2)过点F 作FG ①BD ,①BF 为AD 边上的中线.①F 是AD 中点①FG ①BD ,AC BD ⊥①//FG AC①FG 是①ACD 的中位线①FG =1=2AC 3 CG=1=22CD ①在Rt ①BFG 中,tan FBD ∠=338210FG BG ==+.【点睛】此题主要考查解直角三角形,解题的关键是熟知三角函数的定义.4.(1)36万部;(2)100MB /秒【分析】(1)根据扇形统计图求出3月份的百分比,再利用80万×3月份的百分比求出三月份共生产的手机数; (2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒,根据下载一部1000MB 的电影,5G 比4G 要快190秒列方程求解.【详解】(1)3月份的百分比=130%25%45%--=三月份共生产的手机数=8045%=36⨯(万部)答:三月份共生产了36万部手机.(2)设5G 手机的下载速度为x MB /秒,则4G 下载速度为()95x -MB /秒, 由题意可知:1000100019095x x-=- 解得:100x =检验:当100x =时,()950x x ⋅-≠①100x =是原分式方程的解.答:5G 手机的下载速度为100MB /秒.【点睛】本题考查实际问题与分式方程.求解分式方程时,需要检验最简公分母是否为0.5.(1)见解析;(2)见解析【分析】(1)连结,OM ON ,由M 、N 分别是CB 和AD 的中点,可得OM ①BC ,ON ①AD ,由AB CD =,可得OM ON =,可证()Rt EOP Rt FOP HL ∆∆≌,MG NG MGO NGO =∠=∠,,根据等腰三角形三线合一性质OG MN ⊥; (2)设OG 交MN 于E ,由Rt EOP Rt FOP ∆∆≌,可得MG NG =,可得CMN ANM ∠=∠,1122CM CB AD AN ===,可证CMN ANM ≌可得AM CN =,由CN∥OG ,可得90AMN CNM ∠=∠=︒,由+=180AMN CNM ∠∠︒可得AM∥CN ,可证ACNM 是平行四边形,再由90AMN∠=︒可证四边形ACNM是矩形.【详解】证明:(1)连结,OM ON ,①M 、N 分别是CB 和AD 的中点,①OM ,ON 为弦心距,①OM ①BC ,ON ①AD , 90GMO GNO ∴∠=∠=︒, 在O 中,AB CD =, OM ON ∴=,在Rt △OMG 和Rt △ONG 中, OM ONOG OG =⎧⎨=⎩, ()Rt GOM Rt GON HL ∴∆∆≌, ①MG NG MGO NGO =∠=∠,, OG MN ∴⊥;(2)设OG 交MN 于E , ()Rt GOM Rt GON HL ∆∆≌, ①MG NG =,①GMN GNM ∠=∠,即CMN ANM ∠=∠, 1122CM CB AD AN ===,在①CMN 和①ANM 中 CM ANCMN ANM MN NM=⎧⎪∠=∠⎨⎪=⎩, CMN ANM ∴≌,,AM CN AMN CNM ∴=∠=∠, ①CN∥OG,90CNM GEM ∴∠=∠=︒,90AMN CNM ∴∠=∠=︒,+90+90=180AMN CNM ∴∠∠=︒︒︒,①AM∥CN ,ACNM ∴是平行四边形,90AMN ∠=︒,①四边形ACNM 是矩形.【点睛】本题考查垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定,掌握垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定是解题关键.6.(1)21922y x =-+;(2)①1;①点C 的坐标是52,2⎛⎫- ⎪⎝⎭ 【分析】(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩,解方程组即可; (2)①根据AB =4,斜边上的高为2,Q 的横坐标为1,计算点C 的横坐标为-1,即到y 轴的距离为1;①根据直线PQ 的解析式,设点A (m ,-2m +6),三角形ABC 是等腰直角三角形,用含有m 的代数式表示点C 的坐标,代入抛物线解析式求解即可.【详解】解:(1)将(3,0)(1,4)P Q 、两点分别代入2y ax c =+,得90,4,a c a c +=⎧⎨+=⎩ 解得19,22a c =-=. 所以抛物线的解析式是21922y x =-+. (2)①如图2,抛物线的对称轴是y 轴,当点A 与点(1,4)Q 重合时,4AB =,作CH AB ⊥于H .①ABC 是等腰直角三角形,①CBH 和CAH 也是等腰直角三角形,①2CH AH BH ===,①点C 到抛物线的对称轴的距离等于1.①如图3,设直线PQ 的解析式为y =kx +b ,由(3,0)(1,4)P Q 、,得30,4,k b k b +=⎧⎨+=⎩解得2,6,k b =-⎧⎨=⎩ ①直线PQ 的解析式为26y x =-+,设(,26)A m m -+,①26AB m =-+,所以3CH BH AH m ===-+.所以3,(3)23C C y m x m m m =-+=--+-=-.将点(23,3)C m m --+代入21922y x =-+, 得2193(23)22m m -+=--+. 整理,得22730m m -+=.因式分解,得(21)(3)0m m --=. 解得12m =,或3m =(与点P 重合,舍去). 当12m =时,1523132,3322m m -=-=--+=-+=. 所以点C 的坐标是52,2⎛⎫- ⎪⎝⎭. 【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键.7.(1)①见解析;①23;(2)13【分析】(1)①根据已知条件、平行线性质以及直角三角形斜边上的中线等于斜边的一半可推导,DAC DCA OBC OCB ∠=∠=∠=∠,由此可得DAC OBC ∽;①若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒,作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.根据30所对直角边是斜边的一半可知CH m =,由此可得AD BC 的值. (2)①当点E 在AD 上时,可得四边形ABCE 是矩形,设AD CD x ==,在Rt ACE 和Rt DCE 中,根据22CE CE =,列方程22226(2)2x x --=-求解即可.①当点E 在CD 上时,设AD CD x ==,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m =;由EOC ECB ∽得EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+,解出x 的值即可. 【详解】(1)①由AD CD =,得12∠=∠.由//AD BC ,得13∠=∠. 因为BO 是Rt ABC △斜边上的中线,所以OB OC =.所以34∠=∠.所以1234∠=∠=∠=∠.所以DAC OBC ∽.①若BE CD ⊥,那么在Rt BCE 中,由234∠=∠=∠.可得23430∠=∠=∠=︒.作DH BC ⊥于H .设2AD CD m ==,那么2BH AD m ==.在Rt DCH △中,60,2DCH DC m ∠=︒=,所以CH m =.所以3BC BH CH m =+=. 所以2233AD m BC m ==. (2)①如图5,当点E 在AD 上时,由//,AD BC O 是AC 的中点,可得OB OE =,所以四边形ABCE 是平行四边形.又因为90ABC ∠=︒,所以四边形ABCE 是矩形,设AD CD x ==,已知2DE =,所以2AE x .已知3OE =,所以6AC =.在Rt ACE 和Rt DCE 中,根据22CE CE =,列方程22226(2)2x x --=-.解得1x =+1x = 舍去负值).①如图6,当点E 在CD 上时,设AD CD x ==,已知2DE =,所以2CE x =-.设OB OC m ==,已知3OE =,那么3EB m =+.一方面,由DAC OBC ∽,得DC AC OC BC =,所以2x OC m BC =,所以2OC x BC m=, 另一方面,由24BEC ∠=∠∠,是公共角,得EOC ECB ∽. 所以EO EC OC EC EB CB ==,所以3223x OC x m CB-==-+. 等量代换,得32232x x x m m -==-+.由322x x m =-,得226x x m -=. 将226x x m -=代入3223x x m -=-+,整理,得26100x x --=.解得3x =3x =.【点睛】本题主要考查相似三角形的判定与性质,斜边上的中线,勾股定理等,能够运用相似三角形边的关系列方程是解题的关键.8.0.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【详解】原式=133(3)+2﹣4+32﹣4+3=0.【点睛】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.9.2<x<5.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【详解】解:由题意知:1076713①②>+⎧⎪⎨+-<⎪⎩x xxx,解不等式①,移项得:3x>6,系数化为1得:x>2,解不等式①,去分母得:3x-3<x+7.移项得:2x<10,系数化为1得:x<5,①原不等式组的解集是2<x<5.故答案为:2<x<5.【点睛】本题考查解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10.(1)39;(2)12.【分析】(1)过C作CE①AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到6CE,即可求出梯形的面积;(2) 过C作CH①BD于H,根据相似三角形的性质得到CH CDAD BD=,根据勾股定理得到10,6即可求解.【详解】解:(1)过C作CE①AB于E,如下图所示:①AB//DC,①DAB=90°,①①D=90°,①①A=①D=①AEC=90°,①四边形ADCE是矩形,①AD=CE,AE=CD=5,①BE=AB﹣AE=3.①BC①CE,①梯形ABCD的面积=12×(5+8)×6=39,故答案为:39.(2)过C作CH①BD于H,如下图所示:①CD//AB,①①CDB=①ABD.①①CHD=①A=90°,①①CDH①①DBA,①CH CD AD BD=,①BD,①5610CH=,①CH=3,①BH,①①DBC的正切值=CHBH=36=12.故答案为:12.【点睛】本题考查了直角梯形,解直角三角形,相似三角形的判定和性质,矩形的判定和性质,正确的作出辅助线是解题的关键.11.(1)504万元;(2)20%.【分析】(1)根据“前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%”即可求解;(2)设去年8、9月份营业额的月增长率为x,则十一黄金周的月营业额为350(1+x)2,根据“十一黄金周这七天的总营业额与9月份的营业额相等”即可列方程求解.【详解】解:(1)第七天的营业额是450×12%=54(万元),故这七天的总营业额是450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:350(1+x)2=504,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.【点睛】本题考查了一元二次方程的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键.12.(1)证明见解析;(2)证明见解析.【分析】(1)先证明①CDF①①CBE,进而得到①DCF=①BCE,再由菱形对边CD//BH,得到①H=①DCF,进而①BCE=①H 即可求解.(2)由BE2=AB•AE,得到BEAB=AEEB,再利用AG//BC,平行线分线段成比例定理得到BEAB=AGBC,再结合已知条件即可求解.【详解】解:(1)①四边形ABCD是菱形,①CD=CB,①D=①B,CD//AB.①DF=BE,①①CDF①△CBE(SAS),①①DCF=①BCE.①CD//BH,①①H=①DCF,①①BCE=①H.且①B=①B,①①BEC①①BCH.(2)①BE2=AB•AE,①BEAB=AEEB,①AG//BC,①AEBE=AGBC,①BEAB=AGBC,①DF=BE,BC=AB,①BE=AG=DF,即AG=DF.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(1)(2)y=﹣14x2+52x;(3)﹣110<a<0.【分析】(1)先求出A,B坐标,即可得出结论;(2)设点C(m,-12m+5),则|m,进而求出点C(2,4),最后将点A,C代入抛物线解析式中,即可得出结论;(3)将点A坐标代入抛物线解析式中得出b=-10a,代入抛物线解析式中得出顶点D坐标为(5,-25a),即可得出结论.【详解】(1)针对于直线y=﹣12x+5,令x=0,y=5,①B(0,5),令y=0,则﹣12x+5=0,①x=10,①A(10,0),①AB(2)设点C(m,﹣12m+5).①B(0,5),①BC|m|.①BC|m①m=±2.①点C在线段AB上,①m=2,①C(2,4),将点A(10,0),C(2,4)代入抛物线y=ax2+bx(a≠0)中,得100100 424a ba b+=⎧⎨+=⎩,①1452ab⎧=-⎪⎪⎨⎪=⎪⎩,①抛物线y=﹣14x2+52x;(3)①点A(10,0)在抛物线y=ax2+bx中,得100a+10b=0,①b=﹣10a,①抛物线的解析式为y=ax2﹣10ax=a(x﹣5)2﹣25a,①抛物线的顶点D坐标为(5,﹣25a),将x=5代入y=﹣12x+5中,得y=﹣12×5+5=52,①顶点D位于①AOB内,①0<﹣25a<52,①﹣110<a<0.【点睛】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,抛物线的顶点坐标的求法,求出点D的坐标是解本题的关键.14.(1)证明见解析;(2)①BCD的值为67.5°或72°;(3【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则①C=①BDC=①ABD+①BAC=3①ABD.①若CD=CB,则①CBD=①CDB=3①ABD.①若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3) 如图3中,作AE//BC交BD的延长线于E.则23==AE ADBC DC,进而得到34==AO AEOH BH,设OB=OA=4a,OH=3a,根据BH2=AB2-AH2=OB2-OH2,构建方程求出a即可解决问题.【详解】解:(1)连接OA,如下图1所示:①AB=AC,①AB=AC,①OA①BC,①①BAO=①CAO.①OA=OB,①①ABD=①BAO,①①BAC=2①ABD.(2)如图2中,延长AO交BC于H.①若BD=CB,则①C=①BDC=①ABD+①BAC=3①ABD.①AB=AC,①①ABC=①C,①①DBC=2①ABD.①①DBC+①C+①BDC=180°,①8①ABD=180°,①①C=3①ABD=67.5°.①若CD=CB,则①CBD=①CDB=3①ABD,①①C=4①ABD.①①DBC+①C+①CDB=180°,①10①ABD=180°,①①BCD=4①ABD=72°.①若DB=DC,则D与A重合,这种情形不存在.综上所述:①C的值为67.5°或72°.(3)如图3中,过A点作AE//BC交BD的延长线于E.则AEBC=ADDC=23,且BC=2BH,①AOOH=AEBH=43,设OB=OA=4a,OH=3a.则在Rt①ABH和Rt①OBH中,①BH2=AB2﹣AH2=OB2﹣OH2,①25 - 49a2=16a2﹣9a2,①a2=25 56,①BH①BC=2BH.【点睛】本题属于圆的综合题,考查了垂径定理,等腰三角形的性质,勾股定理解直角三角形,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数构建方程解决问题,属于中考常考题型.15.-3.【分析】首先进行二次根式的化简、去绝对值符号以及二次根式的乘法,然后再合并同类二次根式即可.【详解】2318124-=-3.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.16.x=-4.【分析】首先去分母,化为整式方程,然后合并同类项,把未知数的系数化为1,最后检验求得的结果是否使原分式有意义,即可得到答案.【详解】去分母得2x2-8=x2-2x,移项、整理得x2+2x-8=0,解得:x1=2,x2=-4.经检验:x=2是增根,舍去;x=-4是原方程的根.①原方程的根是x=-4.【点睛】此题考查解分式方程,解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法;注意解分式方程要检验,避免产生增根.17.(1)122y x=+;(2)点C的坐标是(0,12-)【分析】(1)设一次函数解析式为y=kx+b(k=0),把A坐标代入即可解答(2)先求出点B坐标,设点C的坐标为(0,y),由AC=BC利用勾股定理求出y即可解答【详解】(1)设一次函数解析式为y=kx+b(k=0).一次函数的图像平行于直线12y x=,①12k=又①一次函数的图像经过点A(2,3),①1322b=⨯+,解得b=2.所以,所求一次函数的解析式是122y x=+(2)由y=122x+,令y=0,得号122x+=0,解得x=-4.①一次函数的图像与x轴的交点为B(-4,0).①点C在y轴上,.设点C的坐标为(0,y).由AC=BC y=1 2 -经检验:y=12-是原方程的根.①点C的坐标是(0,12 -)【点睛】此题考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,解题关键在于利用勾股定理进行计算18.(1)点D′到BC的距离为()厘米;(2)E、E′两点的距离是【分析】(1)过点D′作D′H①BC,垂足为点H,交AD于点F,利用旋转的性质可得出AD′=AD=90厘米,①DAD′=60°,利用矩形的性质可得出①AFD′=①BHD′=90°,在Rt△AD′F中,通过解直角三角形可求出D′F的长,结合FH=DC=DE+CE及D′H=D′F+FH可求出点D′到BC的距离;(2)连接AE,AE′,EE′,利用旋转的性质可得出AE′=AE,①EAE′=60°,进而可得出△AEE′是等边三角形,利用等边三角形的性质可得出EE′=AE,在Rt△ADE中,利用勾股定理可求出AE的长度,结合EE′=AE 可得出E、E′两点的距离.【详解】解:(1)过点D′作D′H①BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,①DAD′=60°.①四边形ABCD是矩形,①AD①BC,①①AFD′=①BHD′=90°.在Rt△AD′F中,又①CE=40厘米,DE=30厘米,①FH=DC=DE+CE=70厘米,①D′H=D′F+FH=()厘米.答:点D′到BC的距离为()厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,①EAE′=60°,①①AEE′是等边三角形,①EE′=AE.①四边形ABCD是矩形,①①ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,①AE=厘米.答:E、E′两点的距离是【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F的长度;(2)利用勾股定理求出AE的长度.19.(1)见解析;(2)见解析.【分析】(1)连接BC,根据垂直平分线的性质即可解答(2)连接OB,先求出①ABO①①ADB,再利用相似的性质,求出四边形ABDC的四边相等,即可解答【详解】(1)连接BC,在①O中,①AB=AC,①①ABC为等腰三角形又①AD经过圆心O,①AD垂直平分BC①BD=CD.(2)连接OB.①AB2=AO·AD,AB AD AO AB又①①BAO=①DAB,①①ABO①①ADB①①OBA =①BDA ①OA =OB , ①①OBA =①OAB. ①①OAB =①BDA ①AB =BD.又①AB =AC ,BD =CD , ①AB =AC =BD =CD. ①四边形ABDC 是菱形. 【点睛】此题考查垂直平分线的性质,三角形相似的判定与性质,菱形的判定,解题关键在于作辅助线20.(l)抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的;(2)①(0,0)、(3,3); ①新抛物线的表达式是y =(x +1)2-1. 【分析】 (1)10a =>,故该抛物线开口向上,顶点A 的坐标为()1,1-;(2)①设抛物线“不动点”坐标为(),t t ,则22t t t =-,即可求解;①新抛物线顶点B 为“不动点”,则设点(),B m m ,则新抛物线的对称轴为:x m =,与x 轴的交点(),0C m ,四边形OABC 是梯形,则直线x m =在y轴左侧,而点()1,1A -,点(),B m m ,则1m =-,即可求解. 【详解】 (l)10a =>,抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的. (2)①设抛物线y =x 2-2x 的“不动点”坐标为(t ,t). 则t =t 2-2t ,解得t 1=0,t 2=3.所以,抛物线y =x 2-2x 的“不动点”的坐标是(0,0)、(3,3). ①①新抛物线的顶点B 是其“不动点”,①设点B 的坐标为(m ,m) ①新抛物线的对称轴为直线x =m ,与x 轴的交点为C(m ,0) ①四边形OABC 是梯形, ①直线x =m 在y 轴左侧. ①BC 与OA 不平行①OC①AB.又①点A 的坐标为(1,一1),点B 的坐标为(m ,m),∴m =-1.①新抛物线是由抛物线y =x 2-2x 向左平移2个单位得到的, ①新抛物线的表达式是y =(x +1)2-1. 【点睛】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可. 21.(1)详见解析;(2)43;(3)①ABC=30°或者①ABC=45°,2ADE ABCS S =2ADE ABCSS=【分析】(1)先根据题意证明12BAD BAC ∠=∠以及12ABD ABC ∠=∠,再适当变形即可得到答案;(2)先根据角平分线的性质和直线平行的性质证明①BAF①①CAF ,再根据全等三角形的性质得到BF=CF ,再根据BD :DE=2:3,计算即可得到答案;(3)根据①ABC 与①ADE 相似,①DAE=90°,因此①ABC 中必有一个内角为90°,再根据①ABC 是锐角,得到①ABC≠90°,再分情况讨论即可得到答案; 【详解】(1)证明:如图1中,①AE①AD ,①①DAE=90°,①E=90°-①ADE , ①AD 平分①BAC , ①12BAD BAC ∠=∠ ,同理可得:12ABD ABC ∠=∠ ,①180ADE BAD DBA BAC ABC C ∠=∠+∠∠+∠=︒-∠,, 11()9022ADE ABC BAC C ∠=∠+∠=︒-∠ ,11909022E C C ∠=︒-︒-∠=∠().(2)解:延长AD 交BC 于点F .①AD 是①BAC 的平分线, ①①BAD=①CAD , ①AB=AE , ①①ABE=①E , BE 平分①ABC , ①①ABE=①EBC , ①①E=①CBE , ①AE①BC ,①①AFB=①EAD=90°,BF BDAE DE= ①①AFB=①AFC=90°, 在①BAF 和①CAF 中,BAD CAD AD ADAFB AFC ∠=∠⎧⎪=⎨⎪∠=∠⎩①①BAF①①CAF(ASA),①BF=CF (全等三角形对应边相等), ①BD :DE=2:3 ①23BF BD AE DE ==, ①43BC BF CF AE AE +==; (3) ①①ABC 与①ADE 相似,①DAE=90°, ①①ABC 中必有一个内角为90° ①①ABC 是锐角,①①ABC≠90°.①当①BAC=①DAE=90°时, ①12E C ∠=∠(由(1)知), ①①ABC+①C=90°, ①①ABC=30°, ①此时2ADE ABCS S=-①当①C=①DAE=90°时,1452E C ==︒∠∠,①①EDA=45°,①①ABC 与①ADE 相似, ①①ABC=45°,此时2ADE ABCS S=综上,①ABC=30°或者①ABC=45°,2ADE ABCS S=-2ADE ABCS S=【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质、全等三角形的判定与性质,平行线的判定和性质,锐角三角函数等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2020年上海市黄浦区中考数学一模试卷(解析版)
2020年上海市黄浦区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)已知线段a=2,b=4,如果线段b是线段a和c的比例中项,那么线段c的长度是()A.8B.6C.D.22.(4分)在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα3.(4分)已知一个单位向量,设、是非零向量,那么下列等式中正确的是()A.B.C.D.4.(4分)已知二次函数y=x2,如果将它的图象向左平移1个单位,再向下平移2个单位,那么所得图象的表达式是()A.y=(x+1)2+2B.y=(x+1)2﹣2C.y=(x﹣1)2+2D.y=(x﹣1)2﹣2 5.(4分)在△ABC与△DEF中,∠A=∠D=60°,,如果∠B=50°,那么∠E 的度数是()A.50°B.60°C.70°D.80°6.(4分)如图,点D、E分别在△ABC的两边BA、CA的延长线上,下列条件能判定ED ∥BC的是()A.B.C.AD•AB=DE•BC D.AD•AC=AB•AE二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:2(3﹣2)+(﹣2)=.8.(4分)如图,在△ABC中,点D、E分别在△ABC的两边AB、AC上,且DE∥BC,如果AE=5,EC=3,DE=4,那么线段BC的长是.9.(4分)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果,DF=15,那么线段DE的长是.10.(4分)如果点P是线段AB的黄金分割点(AP>BP),那么的值是.11.(4分)写出一个对称轴是直线x=1,且经过原点的抛物线的表达式.12.(4分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足为点D,如果BC=4,sin∠DBC=,那么线段AB的长是.13.(4分)如果等腰△ABC中,AB=AC=3,cos∠B=,那么cos∠A=.14.(4分)如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC 上,顶点D、G分别在边AB、AC上.设DE=x,矩形DEFG的面积为y,那么y关于x 的函数关系式是.(不需写出x的取值范围).15.(4分)如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD恰有一半露出水面,那么此时水面高度是厘米.16.(4分)在△ABC中,AB=12,AC=9,点D、E分别在边AB、AC上,且△ADE与△ABC相似,如果AE=6,那么线段AD的长是.17.(4分)如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果AG=5,BF =6,那么线段CE的长是.18.(4分)如图,在△ABC中,AB=AC,点D、E在边BC上,∠DAE=∠B=30°,且,那么的值是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:﹣cot45°.20.(10分)已知,如图,点E在平行四边形ABCD的边CD上,且,设,.(1)用、表示;(直接写出答案)(2)设,在答题卷中所给的图上画出的结果.21.(10分)某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即AD=BE=1米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C(点C与点A、B在同一平面内),A 处测得其仰角为30°,B处测得其仰角为45°.(参考数据:≈1.41,≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为40°,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)22.(10分)在平面直角坐标系xOy中,已知抛物线y=﹣﹣x+2,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)直线BC平行于x轴,交这条抛物线于B、C两点(点B在点C左侧),且cot∠ABC=2,求点B坐标.23.(12分)已知:如图,在平行四边形ABCD中,过点C分别作AD、AB的垂线,交边AD、AB延长线于点E、F.(1)求证:AD•DE=AB•BF;(2)联结AC,如果,求证:.24.(12分)在平面直角坐标系xOy中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y轴,那么新抛物线称为原抛物线的“影子抛物线”.(1)已知原抛物线表达式是y=x2﹣2x+5,求它的“影子抛物线”的表达式;(2)已知原抛物线经过点(1,0),且它的“影子抛物线”的表达式是y=﹣x2+5,求原抛物线的表达式;(3)小明研究后提出:“如果两条不重合的抛物线交y轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y轴对称.”你认为这个结论成立吗?请说明理由.25.(14分)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE 表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.2020年上海市黄浦区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)已知线段a=2,b=4,如果线段b是线段a和c的比例中项,那么线段c的长度是()A.8B.6C.D.2【分析】根据比例中项的定义,若b是a,c的比例中项,即b2=ac.即可求解.【解答】解:若b是a、c的比例中项,即b2=ac.42=2c,解得c=8,故选:A.【点评】本题主要考查了线段的比例中项的定义,注意线段不能为负.2.(4分)在Rt△ABC中,∠C=90°,如果AB=m,∠A=α,那么AC的长为()A.m•sinαB.m•cosαC.m•tanαD.m•cotα【分析】根据余弦函数是邻边比斜边,可得答案.【解答】解:由题意,得cos A=,AC=AB•cos A=m•cosα,故选:B.【点评】本题考查了锐角三角函数的定义,利用余弦函数的定义是解题关键.3.(4分)已知一个单位向量,设、是非零向量,那么下列等式中正确的是()A.B.C.D.【分析】根据平面向量的性质一一判断即可.【解答】解:A、•与的模相等,方向不一定相同.故错误.B、正确.C、|与的模相等,方向不一定相同,故错误.D、•与•的模相等,方向不一定相同,故错误.故选:B.【点评】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(4分)已知二次函数y=x2,如果将它的图象向左平移1个单位,再向下平移2个单位,那么所得图象的表达式是()A.y=(x+1)2+2B.y=(x+1)2﹣2C.y=(x﹣1)2+2D.y=(x﹣1)2﹣2【分析】根据平移的规律即可求得答案.【解答】解:二次函数y=x2,将它的图象向左平移1个单位,再向下平移2个单位后得到的解析式为y=(x+1)2﹣2.故选:B.【点评】本题主要考查二次函数的图象与几何变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.5.(4分)在△ABC与△DEF中,∠A=∠D=60°,,如果∠B=50°,那么∠E 的度数是()A.50°B.60°C.70°D.80°【分析】根据相似三角形的判定和性质解答即可.【解答】解:∵∠A=∠D=60°,,∴△ABC∽△DEF,∴∠B=∠F=50°,∠C=∠E=180°﹣60°﹣50°=70°故选:C.【点评】考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.6.(4分)如图,点D、E分别在△ABC的两边BA、CA的延长线上,下列条件能判定ED ∥BC的是()A.B.C.AD•AB=DE•BC D.AD•AC=AB•AE【分析】根据平行线分线段成比例定理、平行线的判定定理判断即可.【解答】解:∵∠EAD=∠CAB,∴当,即AD•AC=AB•AE,∴ED∥BC,故选:D.【点评】本题考查的是平行线分线段成比例定理、平行线的判定定理,掌握相关的判定定理是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:2(3﹣2)+(﹣2)=﹣3+4.【分析】根据平面向量的加法法则计算即可.【解答】解:2(3﹣2)+(﹣2)=6﹣4+﹣2=﹣3+4,故答案为﹣3+4.【点评】本题考查平面向量的加法法则,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(4分)如图,在△ABC中,点D、E分别在△ABC的两边AB、AC上,且DE∥BC,如果AE=5,EC=3,DE=4,那么线段BC的长是.【分析】证明△ADE∽△ABC,利用相似三角形的性质即可解决问题.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∴=,∴BC=,故答案为.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题.9.(4分)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果,DF=15,那么线段DE的长是6.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AD∥BE∥CF,∴,∵DF=15,∴,解得:DE=6,故答案为:6【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.10.(4分)如果点P是线段AB的黄金分割点(AP>BP),那么的值是.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.【解答】解:∵点P是线段AB的黄金分割点(AP>BP),∴==.故答案为.【点评】本题考查了黄金分割的定义,牢记黄金分割比是解题的关键.11.(4分)写出一个对称轴是直线x=1,且经过原点的抛物线的表达式答案不唯一(如y=x2﹣2x).【分析】此题是一道开放型的题目,答案不唯一,只要写出一个符合的即可.【解答】解:符合的表达式是y=x2﹣2x,故答案为y=x2﹣2x.【点评】本题考查了二次函数的性质,能熟记二次函数的性质的内容是解此题的关键.12.(4分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足为点D,如果BC=4,sin∠DBC=,那么线段AB的长是2.【分析】在Rt△BDC中,根据直角三角形的边角关系求出CD,根据勾股定理求出BD,在在Rt△ABD中,再求出AB即可.【解答】解:在Rt△BDC中,∵BC=4,sin∠DBC=,∴CD=BC×sin∠DBC=4×=,∴BD==,∵∠ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt△ABD中,∴AB==×=2,故答案为:2.【点评】考查直角三角形的边角关系,勾股定理等知识,在不同的直角三角形中利用合适的边角关系式正确解答的关键.13.(4分)如果等腰△ABC中,AB=AC=3,cos∠B=,那么cos∠A=.【分析】过点A作AD⊥BC,垂足为D,过点C作CE⊥AB,垂足为E,根据余弦的定义求得BD,即可求得BC,根据勾股定理求得AD,然后根据三角形面积公式求得CE,进一步求得AE,根据余弦的定义求得cos∠A的值.【解答】解:过点A作AD⊥BC,垂足为D,过点C作CE⊥AB,垂足为E,∴∠ADB=90°∴在△ADC中,cos∠B==,∴BD=AB=1.∵AB=AC,AD⊥BC∴BD=DC,∴BC=2,∴AD===2∵AB•CE=AD,∴CE===,∴AE==∴cos∠A===,故答案为.【点评】本题考查了解直角三角形,属于基础题,关键是掌握等腰三角形的性质、勾股定理,三角形面积公式.14.(4分)如图,在△ABC中,BC=12,BC上的高AH=8,矩形DEFG的边EF在边BC 上,顶点D、G分别在边AB、AC上.设DE=x,矩形DEFG的面积为y,那么y关于x的函数关系式是y=﹣+12x.(不需写出x的取值范围).【分析】根据题意和三角形相似,可以用含x的代数式表示出DG,然后根据矩形面积公式,即可得到y与x的函数关系式.【解答】解:∵四边形DEFG是矩形,BC=12,BC上的高AH=8,DE=x,矩形DEFG 的面积为y,∴DG∥EF,∴△ADG∽△ABC,∴,得DG=,∴y=x=+12x,故答案为:y=+12x.【点评】本题考查根据实际问题列二次函数关系式、相似三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.(4分)如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD恰有一半露出水面,那么此时水面高度是9.6厘米.【分析】直接利用勾股定理得出BF的长,再利用相似三角形的判定与性质得出答案.【解答】解:如图所示:作BE⊥AE于点E,由题意可得,BC=6cm,CF=DC=8cm,故BF===10(cm),可得:∠CFB=∠BAE,∠C=∠AEB,故△BFC∽△BAE,∴=,∴=,解得:BE=9.6.故答案为:9.6.【点评】此题主要考查了勾股定理的应用以及相似三角形的判定与性质,正确把握相关性质是解题关键.16.(4分)在△ABC中,AB=12,AC=9,点D、E分别在边AB、AC上,且△ADE与△ABC相似,如果AE=6,那么线段AD的长是8或.【分析】分类讨论:当△ADE∽△ABC和当△AED∽△ABC,根据相似的性质得出两种比例式进而解答即可.【解答】解:如图∵∠DAE=∠BAC,∴当△ADE∽△ABC,∴,即,解得:AD=8,∴当△AED∽△ABC,∴,即,解得:AD=,故答案为:8或【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.17.(4分)如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果AG=5,BF =6,那么线段CE的长是.【分析】如图,延长AG交BC于K.根据重心的性质以及勾股定理即可解决问题.【解答】解:如图,延长AG交BC于K.∵点G是△ABC的重心,∴AG=2GK,BG=2GF,CG=2EG,∵AG=5,BF=6,∴GK=,BG=4,∵CE⊥BF,∴∠BGC=90°,∴BC=2GK=5,CG===3,∴EG=CG=,∴EC=3+=.故答案为.【点评】本题考查三角形的中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(4分)如图,在△ABC中,AB=AC,点D、E在边BC上,∠DAE=∠B=30°,且,那么的值是﹣1.【分析】证明△ADE∽△BAE,得出AE2=DE×BE,同理△ADE∽△CDA,得出AD2=DE×CD,得出==,设CD=9x,则BE=4x,求出AB=×BE=6x,作AM⊥BC于M,由等腰三角形的性质得出BM=CM=BC,由直角三角形的性质得出AM=AB=3x,BM=AM=3x,得出BC=2BM=6x,求出DE=BE+CD﹣BC =13x﹣6x,即可得出答案.【解答】解:∵AB=AC,∴∠C=∠B=30°,∵∠DAE=∠B=30°,∴∠DAE=∠B=∠C,∵∠AED=∠BEA,∴△ADE∽△BAE,∴==,∴AE2=DE×BE,同理:△ADE∽△CDA,∴=,∴AD2=DE×CD,∴==()2=,设CD=9x,则BE=4x,∵=,∴AB=×BE=×4x=6x,作AM⊥BC于M,如图所示:∵AB=AC,∴BM=CM=BC,∵∠B=30°,∴AM=AB=3x,BM=AM=3x,∴BC=2BM=6x,∴DE=BE+CD﹣BC=13x﹣6x,∴==﹣1;故答案为:﹣1.【点评】本题考查了等腰三角形的性质、相似三角形的判定与性质、直角三角形的性质等知识;证明三角形相似是解题的关键.三、解答题:(本大题共7题,满分78分)19.(10分)计算:﹣cot45°.【分析】代入特殊角的三角函数值求值.【解答】解:原式==0.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.(10分)已知,如图,点E在平行四边形ABCD的边CD上,且,设,.(1)用、表示;(直接写出答案)(2)设,在答题卷中所给的图上画出的结果.【分析】(1)根据平面向量的平行定理即可表示;(2)根据向量定理即可画出.【解答】解:(1)∵=,即DE=CE,DE=DC,=+(2)如图所示:即为的结果.【点评】本题考查了平行四边形的性质、平面向量,解决本题的关键是准确画图.21.(10分)某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即AD=BE=1米),两台测角仪相距50米(即AB=50米).在某一时刻无人机位于点C(点C与点A、B在同一平面内),A 处测得其仰角为30°,B处测得其仰角为45°.(参考数据:≈1.41,≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为40°,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)【分析】(1)如图,过点C作CH⊥AB,垂足为点H,设CH=x,则BH=x.解直角三角形即可得到结论;(2)过点F作FG⊥AB,垂足为点G,解直角三角形即可得到结论.【解答】解:(1)如图,过点C作CH⊥AB,垂足为点H,∵∠CBA=45°,∴BH=CH,设CH=x,则BH=x.∵在Rt△ACH中,∠CAB=30°,∴.∴.解得:,∴18+1=19.答:计算得到的无人机的高约为19m;(2)过点F作FG⊥AB,垂足为点G,在Rt△AGF中,,∴,又.∴,或答:计算得到的无人机的平均速度约为5米/秒或26米/秒.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(10分)在平面直角坐标系xOy中,已知抛物线y=﹣﹣x+2,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)直线BC平行于x轴,交这条抛物线于B、C两点(点B在点C左侧),且cot∠ABC=2,求点B坐标.【分析】(1)由二次函数的性质可求解;(2)如图,设直线BC与对称轴交于点D,则AD⊥BD,设线段AD的长为m,则BD=AD•cot∠ABC=2m,可求点B坐标,代入解析式可求m的值,即可求点B坐标.【解答】解:(1)抛物线=﹣(x+2)2+3的开口方向向下,顶点A的坐标是(﹣2,3),抛物线的变化情况是:在对称轴直线x=﹣2左侧部分是上升的,右侧部分是下降的;(2)如图,设直线BC与对称轴交于点D,则AD⊥BD.设线段AD的长为m,则BD=AD•cot∠ABC=2m,∴点B的坐标可表示为(﹣2m﹣2,3﹣m),代入,得.解得m1=0(舍),m2=1,∴点B的坐标为(﹣4,2).【点评】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用参数求点B坐标是本题的关键.23.(12分)已知:如图,在平行四边形ABCD中,过点C分别作AD、AB的垂线,交边AD、AB延长线于点E、F.(1)求证:AD•DE=AB•BF;(2)联结AC,如果,求证:.【分析】(1)证明想办法证明四边形ABCD是平行四边形即可解决问题.(2)由△ACF∽△CDE,△CDE∽△CBF,推出△ACF∽△CBF,可得,又△ACF与△CBF等高,推出,可得结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,∴∠CDE=∠DAB,∠CBF=∠DAB,∴∠CDE=∠CBF,∵CE⊥AE,CF⊥AF,∴∠CED=∠CFB=90°,∴△CDE∽△CBF,∴,∵四边形ABCD是平行四边形,∴BC=AD,CD=AB,∴,∴AD•DE=AB•BF.(2)∵,∠CED=∠CFB=90°,∴△ACF∽△CDE,又∵△CDE∽△CBF,∴△ACF∽△CBF,∴,∵△ACF与△CBF等高,∴,∴.【点评】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.(12分)在平面直角坐标系xOy中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y轴,那么新抛物线称为原抛物线的“影子抛物线”.(1)已知原抛物线表达式是y=x2﹣2x+5,求它的“影子抛物线”的表达式;(2)已知原抛物线经过点(1,0),且它的“影子抛物线”的表达式是y=﹣x2+5,求原抛物线的表达式;(3)小明研究后提出:“如果两条不重合的抛物线交y轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y轴对称.”你认为这个结论成立吗?请说明理由.【分析】(1)设影子抛物线表达式是y=x2+n,先求出原抛物线的顶点坐标,代入y=x2+n,可求解;(2)设原抛物线表达式是y=﹣(x+m)2+k,用待定系数法可求m,k,即可求解;(3)分别求出两个抛物线的顶点坐标,即可求解.【解答】解:(1)∵原抛物线表达式是y=x2﹣2x+5=(x﹣1)2+4∴原抛物线顶点是(1,4),设影子抛物线表达式是y=x2+n,将(1,4)代入y=x2+n,解得n=3,所以“影子抛物线”的表达式是y=x2+3;(2)设原抛物线表达式是y=﹣(x+m)2+k,则原抛物线顶点是(﹣m,k),将(﹣m,k)代入y=﹣x2+5,得﹣(﹣m)2+5=k①,将(1,0)代入y=﹣(x+m)2+k,0=﹣(1+m)2+k②,由①、②解得,.所以,原抛物线表达式是y=﹣(x+1)2+4或y=﹣(x﹣2)2+1;(3)结论成立.设影子抛物线表达式是y=ax2+n.原抛物线于y轴交点坐标为(0,c)则两条原抛物线可表示为与抛物线(其中a、b1、b2、c是常数,且a≠0,b1≠b2)由题意,可知两个抛物线的顶点分别是、将P1、P2分别代入y=ax2+n,得消去n得,∵b1≠b2,∴b1=﹣b2∴,,∴P1、P2关于y轴对称.【点评】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,理解“影子抛物线”的定义并能运用是本题的关键.25.(14分)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE 表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG 构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.【点评】本题属于三角形综合题,考查了等边三角形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.。
2018-2020年上海市中考数学各地区模拟试题分类——《三角形》(含解析)
2018-2020年上海市中考数学各地区模拟试题分类——《三角形》一.选择题1.(2020•青浦区二模)如图,点G是△ABC的重心,联结AG并延长交BC边于点D.设,,那么向量用向量、表示为()A.B.C.D.2.(2020•松江区二模)如图,已知△ABC中,AC=2,AB=3,BC=4,点G是△ABC的重心.将△ABC平移,使得顶点A与点G重合.那么平移后的三角形与原三角形重叠部分的周长为()A.2 B.3 C.4 D.4.5 3.(2020•奉贤区二模)如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN 4.(2020•虹口区二模)已知在△ABC中,小明按照下列作图步骤进行尺规作图(示意图与作图步骤如表),那么交点O是△ABC的()示意图作图步骤(1)分别以点B、C为圆心,大于BC长为半径作圆弧,两弧分别交于点M、N,联结MN交BC于点D;(2)分别以点A、C为圆心,大于AC长为半径作圆弧,两弧分别交于点P、Q,联结PQ交AC于点E;(3)联结AD、BE,相交于点OA.外心B.内切圆的圆心C.重心D.中心5.(2020•黄浦区二模)在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)6.(2020•嘉定区一模)三角形的重心是()A.三角形三边的高所在直线的交点B.三角形的三条中线的交点C.三角形的三条内角平分线的交点D.三角形三边中垂线的交点7.(2020•奉贤区一模)在Rt△ABC中,∠C=90°,如果∠A 的正弦值是,那么下列各式正确的是()A.AB=4BC B.AB=4AC C.AC=4BC D.BC=4AC 8.(2020•崇明区一模)在Rt△ABC中,∠C=90°,如果AC=8,BC=6,那么∠B的余切值为()A .B .C .D .9.(2019•杨浦区三模)下列说法中正确的是()A.三角形三条角平分线的交点到三个顶点的距离相等B.三角形三条角平分线的交点到三边的距离相等C.三角形三条中线的交点到三个顶点的距离相等D.三角形三条中线的交点到三边的距离相等10.(2019•奉贤区二模)如图,已知△ABC,点D、E分别在边AC、AB上,∠ABD=∠ACE,下列条件中,不能判定△ABC是等腰三角形的是()A.AE=AD B.BD=CE C.∠ECB=∠DBC D.∠BEC=∠CDB 11.(2018•金山区一模)在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是()A.r<5 B.r>5 C.r<10 D.5<r<10二.填空题12.(2020•浦东新区三模)如图,点G是△ABC的重心,过点G作EF∥BC,分别交AB、AC 于点E、F,如果,那么=.13.(2020•浦东新区三模)如图,已知在△ABC中,∠A=70°,⊙O截△ABC三边所得弦长相等,那么∠BOC=度.14.(2020•杨浦区二模)如图,已知在5×5的正方形网格中,点A、B、C在小正方形的顶点上,如果小正方形的边长都为1,那么点C到线段AB所在直线的距离是.15.(2020•黄浦区二模)已知等边△ABC的重心为G,△DEF与△ABC关于点G成中心对称,将它们重叠部分的面积记作S1,△ABC的面积记作S2,那么的值是16.(2020•松江区二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.17.(2020•崇明区二模)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为16,阴影部分三角形的面积为9.如果AA'=1,那么A'D的长为.18.(2020•闵行区一模)如果三角形的两个内角∠α与∠β满足2α+β=90°,那么,我们将这样的三角形称为“准互余三角形”.在△ABC中,已知∠C=90°,BC=3,AC =4(如图所示),点D在AC边上,联结BD.如果△ABD为“准互余三角形”,那么线段AD的长为(写出一个答案即可).19.(2020•虹口区一模)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角θ的正切为,那么大正方形的面积是.20.(2020•松江区一模)以一个等腰直角三角形的腰为边分别向形外作等边三角形,我们把这两个等边三角形重心之间的距离称作这个等腰直角三角形的“肩心距”,如果一个等腰直角三角形的腰长为2,那么它的“肩心距”为.三.解答题21.(2020•浦东新区三模)已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4.D 是边AB的中点,点E为边AC上的一个动点(与点A、C不重合),过点E作EF∥AB,交边BC于点F.联结DE、DF,设CE=x.(1)当x=1时,求△DEF的面积;(2)如果点D关于EF的对称点为D′,点D′恰好落在边AC上时,求x的值;(3)以点A为圆心,AE长为半径的圆与以点F为圆心,EF长为半径的圆相交,另一个交点H恰好落在线段DE上,求x的值.22.(2020•嘉定区二模)如图所示的方格纸是由9个大小完全一样的小正方形组成的.点A、B、C、D均在方格纸的格点(即图中小正方形的顶点)上,线段AB与线段CD相交于点E.设图中每个小正方形的边长均为1.(1)求证:AB⊥CD;(2)求sin∠BCD的值.23.(2020•闵行区二模)已知:如图,在△ABC中,AB=AC=6,BC=4,AB的垂直平分线交AB于点E,交BC的延长线于点D.(1)求CD的长;(2)求点C到ED的距离.24.(2020•虹口区一模)如图,在Rt△ABC中,∠ABC=90°,点G是Rt△ABC的重心,联结BG并延长交AC于点D,过点G作GE⊥BC交边BC于点E.(1)如果=,=,用、表示向量;(2)当AB=12时,求GE的长.25.(2020•虹口区一模)如图,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,点D为射线BC上一点,联结AD,过点B作BE⊥AD分别交射线AD、AC于点E、F,联结DF,过点A作AG∥BD,交直线BE于点G.(1)当点D在BC的延长线上时,如果CD=2,求tan∠FBC;(2)当点D在BC的延长线上时,设AG=x,S=y,求y关于x的函数关系式(不需△DAF要写函数的定义域);(3)如果AG=8,求DE的长.26.(2020•奉贤区一模)如图,已知AB是⊙O的直径,C是⊙O上一点,CD⊥AB,垂足为点D,E是的中点,OE与弦BC交于点F.(1)如果C是的中点,求AD:DB的值;(2)如果⊙O的直径AB=6,FO:EF=1:2,求CD的长.27.(2020•黄浦区一模)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE 表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.28.(2020•崇明区一模)如图,AC是⊙O的直径,弦BD⊥AO于点E,联结BC,过点O作OF⊥BC于点F,BD=8,AE=2.(1)求⊙O的半径;(2)求OF的长度.29.(2020•徐汇区一模)如图,在△ABC中,AB=AC=5,BC=6,点D是边AB上的动点(点D不与点AB重合),点G在边AB的延长线上,∠CDE=∠A,∠GBE=∠ABC,DE与边BC 交于点F.(1)求cos A的值;(2)当∠A=2∠ACD时,求AD的长;(3)点D在边AB上运动的过程中,AD:BE的值是否会发生变化?如果不变化,请求AD:BE的值;如果变化,请说明理由.参考答案一.选择题1.解:∵G是△ABC的重心,∴AG=2DG,∴AD=3DG,∴=3=3,∵=+=﹣+3,DB=BD,∴=2=6﹣2,故选:C.2.解:∵将△ABC平移得到△GEF,∴GE∥AB,GF∥AC,∴∠GMN=∠B,∠GNM=∠C,∴△GMN∽△ABC,∴=,∵点G是△ABC的重心,∴AG=2GD,∴=,∴△GMN的周长=×(2+3+4)=3.故选:B.3.解:∵线段AN是△ABC边BC上的高,∴AN⊥BC,由垂线段最短可知,AM≥AN,故选:B.4.解:由尺规作图可知,MN、PQ分别是线段BC、AC的垂直平分线,∴点D、E分别是BC、AC的中点,∴AD、BE是△ABC的中线,∴点O是△ABC的重心,故选:C.5.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.6.解:∵三角形的重心是三角形三条边中线的交点,∴选项B正确.故选:B.7.解:在Rt△ABC中,∵∠C=90°,∴sin A==,∴AB=4BC,故选:A.8.解:如图,在Rt△ABC中,∵∠C=90°,AC=8,BC=6,∴cot B===,故选:A.9.解:A、三角形三条角平分线的交点到三边的距离相等,故错误;B、三角形三条角平分线的交点到三边的距离相等,故正确;C、三角形三条垂直平分线的交点到三个顶点的距离相等,故错误;D、三角形三条角平分线的交点到三边的距离相等,故错误;故选:B.10.解:A、添加AE=AD,在△ABD和△ACE中,∴△ABD≌△ACE(AAS),∴AB=AC,∴△ABC为等腰三角形,故此选项不合题意;B、添加BD=CE,在△ABD和△ACE中,∴△ABD≌△ACE(AAS),∴AB=AC,∴△ABC为等腰三角形,故此选项不合题意;C、添加∠ECB=∠DBC,又∵∠ABD=∠ACE,∴∠ABC=∠ACB,∴AB=AC,∴△ABC为等腰三角形,故此选项不合题意;D、添加∠BEC=∠CDB,不能证明△ABD≌△ACE,因此也不能证明AB=AC,进而得不到△ABC为等腰三角形,故此选项符合题意;故选:D.11.解:∵Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,∴AB==15,CD=AB=7.5,∵G是△ABC的重心,∴DG=CD=2.5,∴CG=7.5﹣2.5=5,CE=7.5+2.5=10,∵以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,∴r的取值范围是5<r<10,故选:D.二.填空题(共9小题)12.解:如图,连接AG延长AG交BC于T.∵G是△ABC的重心,∴AG=2GF,∵EF∥BC,∴==2,∴=,∴==,∵=,∴=,∴=﹣,故答案为﹣.13.解:过点O作OH⊥DE于H,OK⊥FG于K,OP⊥MN于P,如图,∵DE=FG=MN,∴OH=OK=OP,∴OB平分∠ABC,OC平分∠OCB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣∠A)=90°+∠A=90°+×70°=125°.故答案为125.14.解:连接AD、AC,作CE⊥AD于点E,∵小正方形的边长都为1,∴AD==2,AC==3,CD==,∵(2)2=(3)2+()2,∴△ACD是直角三角形,∠ACD=90°,∴,即,解得,CE=,即点C到线段AB所在直线的距离是,故答案为:.15.解:如图,∵点G是等边△ABC的重心,∴AD垂直平分BC,AD是∠BAC的角平分线,∴AG=2GN,设AB=3a,则AN=×3a=a,∵△DEF与△ABC关于点G成中心对称,∴△DEF≌△ABC,AG=DG,EF∥BC,∴∠AQH=∠ABC=∠AHQ=∠ACB=60°,∴△AQH是等边三角形,∴AQ=HQ=AH=AB=a,∴AP=a,∴它们重叠部分为边长=QH的正六边形,∴S1=6×a2,S2=×(3a)2,∴==,故答案为:.16.解:设直角三角形的最小内角为x,另一个内角为y,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.17.解:如图,∵S△ABC =16、S△A′EF=9,且AD为BC边的中线,∴S△A′DE =S△A′EF=4.5,S△ABD=S△ABC=8,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则,即,解得A′D=3或A′D=﹣(舍),故答案为3.18.解:过点D作DM⊥AB于M.设∠ABD=α,∠A=β.①当2α+β=90°时,∵α+β+∠DBC=90°,∴∠DBC=∠DBA,∵DM⊥AB,DC⊥BC,∴DM=DC,∵∠DMB=∠C=90°,DM=DC,BD=BD,∴Rt△BDC≌Rt△BDM(HL),∴BM=BC=3,∵∠C=90°,BC=3,AC=4,∴AB==5,∴AM=5﹣3=2,设AD=x,则CD=DM=4﹣x,在Rt△ADM中,则有x2=(4﹣x)2+22,解得x=.∴AD=.②当α+2β=90°时,∵α+β+∠DBC=90°,∴∠DBC=β=∠A,∵∠C=∠C,∴△CBD∽△CAB,∴BC2=CD•CA,∴CD=,∴AD=AC﹣CD=4﹣=.故答案为或.19.解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tanθ=短边:长边=a:b=5:12.所以b=a,①又以为b=a+7,②联立①②,得a=5,b=12.所以大正方形的面积是:a2+b2=25+144=169.故答案是:169.20.解:如图,△ABC中,AB=AC=2,∠BAC=90°,△ABD,△ACE都是等边三角形,P,Q 是△ABD,△ACE的重心.取BC的中点H,连接AH.∵AB=AC,BH=CH,∠BAC=90°,∴HA=HB=HC,∵DA=DB,EA=EC,∴DH垂直平分线段AB,EH垂直平分线段AC,∴P,Q分别在DH,EH上,△PQH是等腰直角三角形,∵AB=2,∴DF=BD•sin60°=,∵P是重心,∴PF=,∵FH═AB=1,∴PH=QH=1+,∴PQ=PH=+,故答案为+.三.解答题(共9小题)21.解:(1)如图1,过E作EM⊥AB于M,当x=1时,CE=1,AE=4﹣1=3,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,∴AB=5,sin∠A==,∴,∴EM=,∵EF∥AB,∴,即,∴EF=x=,∴△DEF的面积=•EM==;(2)如图2,过E作EN⊥AB于N,连接DD',交EF于Q,∵点D关于EF的对称点为D′,∴DD'⊥EF,QD=DD',∴∠EQD'=90°,∵EF∥AB,∴∠ADQ=∠EQD'=90°,∵D是AB的中点,∴AD=AB=,tan∠A=,∴DD'==,∴QD=,∵EF∥AB,EN⊥AB,QD⊥AB,∴∠END=∠NDQ=∠EQD=90°,∴四边形ENDQ是矩形,∴EN=QD=,Rt△AEN中,sin∠A=,∴,AE=4﹣x,∴x=;(3)如图3,连接AF,交ED于G,Rt△CEF中,∠ECF=90°,tan∠CEF=tan∠CAB=,∴,CF=x,∴EF=x,∴AF===,∵EF∥AB,∴,即=,∴,∴AG=,∵⊙A与⊙F相交于点E、H,且H在ED上,∴AF⊥DE,∴∠AGE=90°,∴∠AGE=∠ACF=90°,∵∠EAG=∠FAC,∴△AEG∽△AFC,∴,即AG•AF=AC•AE,∴=4(4﹣x),解得:x1=0(舍),x2=.22.(1)证明:如图,∵AG=DF=1,∠G=∠CFD=90°,BG=CF=3,∴△BAG≌△CDF(SAS),∴∠BAG=∠CDF,又∵∠BAG+∠ABG=90°,∴∠CDF+∠ABG=90°,∴∠BED=180°﹣(∠CDF+∠ABG)=90°,∴AB⊥CD;(2)解:在Rt△CFD中,∵DF=1,CF=3,∴,同理,,∵,,∴,解得,∴.23.解:如图,(1)过A点作AF⊥BC于点F.∵AB=AC=6,BC=4,AF⊥BC,∴BF=FC=2,∠BFA=90°,∴在Rt△ABF中,,∵AB的垂直平分线交AB于点E,AB=6,∴AE=BE=3,∠DEB=90°,在Rt△DEB中,,∴BD=9,∴CD=5.(2)过C点作CH⊥ED于点H,∵CH⊥ED,AB⊥ED,∴∠DEB=∠DHC=90°,∴CH∥AB,∴,∵BE=3,BD=9,CD=5,∴.∴点C到ED的距离CH为.24.解:(1)∵=+,∵点G是Rt△ABC的重心,∴AD=AC,∵=,=,∴=,∴=﹣+,∴==(﹣+)=﹣+;(2)过点D作DF⊥BC,∵GE∥DF,∴=,∵DF∥AB,D是AC的中点,∴DF=AB,∵AB=12,∴DF=6,∴GE=4.25.解:(1)∵∠ACB=90°,BC=4,sin∠ABC=,∴设AC=3x,AB=5x,∴(3x)2+16=(5x)2,∴x=1,即AC=3,∵BE⊥AD,∴∠AEF=90°,∵∠AFE=∠CFB,∴∠DAC=∠FBC,∴tan∠FBC=tan∠DAC==;(2)∵AG∥BD,∴∠AGF=∠CBF,∴tan∠AGF=tan∠CBF,∴,,∴,∴.∴=.∵∠EAF=∠CBF,∴,∴,∴S==;△DAF(3)①当点D在BC的延长线上时,如图1,∵AG=8,BC=4,AG∥BD,∴,∴AF=2CF,∵AC=3,∴AF=2,CF=1,∴,∴,设AE=x,GE=4x,∴x2+16x2=82,解得x=,即AE=.同理tan∠DAC=tan∠CBF,∴,∴DC=,∴AD===.∴=.②当点D在BC的边上时,如图2,∵AG∥BD,AG=8,BC=4,∴.∴AF=6,∵∠EAF=∠CBF=∠ABC,∴cos∠EAF=cos∠ABC,∴,∴,同理,∴,∴.∴DE=AE﹣AD=.综合以上可得DE的长为或.26.解:(1)连接OC,∵E是的中点,∴=,OE⊥BC,∵C是的中点,∴=,∴==,∴∠AOC=∠COE=∠EOB=60°,∴∠OCD=30°,在Rt△COD中,∠OCD=30°,∴OD=OC,∴AD:DB=1:3;(2)∵AB=6,FO:EF=1:2,∴OF=1,在Rt△BOF中,BF===2,∴BC=4,∵CD⊥AB,OE⊥BC,∴∠BDC=∠BFO=90°,又∠B=∠B,∴△BFO∽△BDC,∴=,即=,解得,CD=.27.解:(1)∵△ABC是等边三角形,∴AB=BC=AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.28.解:(1)连接OB,设⊙O的半径为x,则OE=x﹣2,∵OA⊥BD,∴BE=ED=BD=4,在Rt△OEB中,OB2=OE2+BE2,即x2=(x﹣2)2+42,解得,x=5,即⊙O的半径为5;(2)在Rt△CEB中,BC===4,∵OF⊥BC,∴BF=BC=2,∴OF==.29.解:(1)作AH⊥BC于H,BM⊥AC于M.∵AB=AC,AH⊥BC,∴BH=CH=3,∴AH===4,=•BC•AH=•AC•BM,∵S△ABC∴BM==,∴AM===,∴cos A==.(2)设AH交CD于K.∵∠BAC=2∠ACD,∠BAH=∠CAH,∴∠CAK=∠ACK,∴CK=AK,设CK=AK=x,在Rt△CKH中,则有x2=(4﹣x)2+32,解得x=,∴AK=CK=,∵∠ADK=∠ADC,∠DAK=∠ACD,∴△ADK∽△CDA,∴====,设AD=m,DK=n,则有,解得m=,n=.∴AD=.(3)结论:AD:BE=5:6值不变.理由:∵∠GBE=∠ABC,∠BAC+2∠ABC=180°,∠GBE+∠EBC+∠ABC=180°,∴∠EBC=∠BAC,∵∠EDC=∠BAC,∴∠EBC=∠EDC,∴D,B,E,C四点共圆,∴∠EDB=∠ECB,∵∠EDB+∠EDC=∠ACD+∠DAC,∠EDC=∠DAC,∴∠EDB=∠ACD,∴∠ECB=∠ACD,∴△ACD∽△BCE,∴==.31 /31。
2020年上海市中考数学一模试卷含答案解析
2020年上海市中考数学一模试卷含答案解析一.选择题(共6小题,每题4分,满分24分)1.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2D.y=﹣2(x+1)2﹣22.在Rt△ABC中,∠C=90°,若BC=3,AC=4,则sin B的值为()A.B.C.D.3.下列说法中,正确的是()A.如果k=0,是非零向量,那么k=0B.如果是单位向量,那么=1C.如果||=||,那么=或=﹣D.已知非零向量,如果向量=﹣5,那么∥4.如图,在6×6的正方形网格中,联结小正方形中两个顶点A、B,如果线段AB与网格线的其中两个交点为M、N,那么AM:MN:NB的值是()A.3:5:4B.3:6:5C.1:3:2D.1:4:25.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A.33°B.36°C.42°D.49°6.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE②△DFP∽△BPH③DP2=PH•PC;④FE:BC=,其中正确的个数为()A.1B.2C.3D.4二.填空题(共12小题,每题4分,满分48分)7.如果tanα=,那么锐角α的度数是.8.已知f(x)=,那么f(3)=.9.已知线段AB=2,如果点P是线段AB的黄金分割点,且AP>BP,那么AP的值为.10.已知点A(x1,y1)、B(x2,y2)为抛物线y=(x﹣2)2上的两点,如果x1<x2<2,那么y1y2.(填“>”“<”或“=”)11.如果点A(﹣3,y1)和点B(﹣2,y2)是抛物线y=x2+a上的两点,那么y1y2.(填“>”、“=”、“<”).12.抛物线y=﹣2(x﹣1)2+3在对称轴右侧的部分是的.(填“上升”或“下降”)13.如图,某小区门口的栏杆从水平位置AB绕固定点O旋转到位置DC,已知栏杆AB的长为3.5米,OA的长为3米,点C到AB的距离为0.3米,支柱OE的高为0.6米,那么栏杆端点D离地面的距离为米.14.如图,在菱形ABCD中,O、E分别是AC、AD的中点,联结OE.如果AB=3,AC=4,那么cot∠AOE=.15.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD=.16.已知在Rt△ABC中,∠C=90°,AC=3,BC=4,⊙C与斜边AB相切,那么⊙C的半径为.17.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请在边长为1个单位的2×3的方格纸中,找出一个格点三角形DEF.如果△DEF 与△ABC相似(相似比不为1),那么△DEF的面积为.18.如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为.三.解答题(共7小题,满分78分)19.计算:3tan30°﹣+cos45°+20.已知:在平行四边形ABCD中,AB:BC=3:2.(1)根据条件画图:作∠BCD的平分线,交边AB于点E,取线段BE的中点F,联结DF交CE于点G.(2)设=,=,那么向量=;(用向量、表示),并在图中画出向量在向量和方向上的分向量.21.如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC、CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,经试验后发现,如图3,当∠BCD=150°时台灯光线最佳.求此时连杆端点D离桌面l的高度比原来降低了多少厘米?22.如图,梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=4,tan B=3.以AB为直径作⊙O,交边DC于E、F两点.(1)求证:DE=CF;(2)求:直径AB的长.23.水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)24.已知:在平面直角坐标系xOy中,对称轴为直线x=﹣2的抛物线经过点C(0,2),与x轴交于A(﹣3,0)、B两点(点A在点B的左侧).(1)求这条抛物线的表达式;(2)联结BC,求∠BCO的余切值;(3)如果过点C的直线,交x轴于点E,交抛物线于点P,且∠CEO=∠BCO,求点P 的坐标.25.如图,在△ABC中,AB=AC=10,BC=16,点D为BC边上的一个动点(点D不与点B、点C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF ⊥AD交射线DE于点F.(1)求证:AB•CE=BD•CD;(2)当DF平分∠ADC时,求AE的长;(3)当△AEF是等腰三角形时,求BD的长.参考答案与试题解析一.选择题(共6小题,每题4分,满分24分)1.【分析】先确定物线y=﹣2x2的顶点坐标为(0,0),再把点(0,0)平移所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.2.【分析】根据三角函数的定义解决问题即可.【解答】解:如图,在Rt△ABC中,∵∠C=90°,BC=3,AC=4,∴AB===5,∴sin B==,故选:A.3.【分析】根据平面向量的性质一一判断即可.【解答】解:A、如果k=0,是非零向量,那么k=0,错误,应该是k=.B、如果是单位向量,那么=1,错误.应该是||=1.C、如果||=||,那么=或=﹣,错误.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正确.故选:D.4.【分析】根据平行线分线段成比例定理得出即可.【解答】解:∵=,=,∴AM:MN:NB=1:3:2,故选:C.5.【分析】根据题意和二次函数的性质,可以确定出对称x的取值范围,从而可以解答本题.【解答】解:由图象可知,物线开口向上,该函数的对称轴x>且x<54,∴36<x<54,即对称轴位于直线x=36与直线x=54之间且靠近直线x=36,故选:C.6.【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故③正确;∵∠ABE=30°,∠A=90°∴AE=AB=BC,∵∠DCF=30°,∴DF=DC=BC,∴EF=AE+DF=﹣BC,∴FE:BC=(2﹣3):3故④正确,故选:D.二.填空题(共12小题,每题4分,满分48分)7.【分析】直接利用特殊角的三角函数值进而代入求出答案.【解答】解:∵tanα=,∴锐角α的度数是:60°.故答案为:60°.8.【分析】将x=3代入f(x)=计算即可.【解答】解:当x=3是,f(3)==,故答案为.9.【分析】直接利用黄金分割的定义计算.【解答】解:∵点P是线段AB的黄金分割点,且AP>BP,∴AP=AB=×2=﹣1.故答案为﹣1.10.【分析】根据二次函数的性质得到抛物线y=(x﹣2)2的开口向上,对称轴为直线x=2,则在对称轴左侧,y随x的增大而减小,所以x1<x2<2时,y1>y2.【解答】解:∵y=(x﹣2)2,∴a=1>0,∴抛物线开口向上,∵抛物线y=(x﹣2)2对称轴为直线x=2,∵x1<x2<2,∴y1>y2.故答案为>.11.【分析】根据二次函数的图象和性质得出抛物线的对称轴是直线x=0,抛物线的开口向上,当x<0时,y随x的增大而减小,再比较即可.【解答】解:∵y=x2+a,∴抛物线的对称轴是直线x=0,抛物线的开口向上,当x<0时,y随x的增大而减小,∵﹣3<﹣2<0,∴y1>y2,故答案为:>.12.【分析】根据a<0,知抛物线开口向下,则在对称轴右侧的部分呈下降趋势.【解答】解:∵a=﹣2<0,∴抛物线开口向下,∴对称轴右侧的部分呈下降趋势.故答案为:下降.13.【分析】过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,根据相似三角形的性质即可得到结论.【解答】解:过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,∴△ODG∽△OCH,∴=,∵栏杆从水平位置AB绕固定点O旋转到位置DC,∴CD=AB=3.5m,OD=OA=3m,CH=0.3m,∴OC=0.5m,∴=,∴DG=1.8m,∵OE=0.6m,∴栏杆D端离地面的距离为1.8+0.6=2.4m.故答案为:2.4.14.【分析】连接OD,根据菱形的性质、勾股定理求出OD,根据三角形中位线定理得到∠AOE=∠ACD,根据余切的定义计算,得到答案.【解答】解:连接OD,∵四边形ABCD为菱形,∴OD⊥AC,OA=OC=AC=2,由勾股定理得,OD===,∵O、E分别是AC、AD的中点,∴OE∥CD,∴∠AOE=∠ACD,∴cot∠AOE=cot∠ACD===,故答案为:.15.【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC 的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【解答】解:延长AD和BC交于点E.∵在直角△ABE中,tan A==,AB=3,∴BE=4,∴EC=BE﹣BC=4﹣2=2,∵△ABE和△CDE中,∠B=∠EDC=90°,∠E=∠E,∴∠DCE=∠A,∴直角△CDE中,tan∠DCE=tan A==,∴设DE=4x,则DC=3x,在直角△CDE中,EC2=DE2+DC2,∴4=16x2+9x2,解得:x=,则CD=.故答案是:.16.【分析】r的长即为斜边AB上的高,由勾股定理易求得AB的长,根据直角三角形面积的不同表示方法,即可求出r的值.【解答】解:Rt△ABC中,∠C=90°,AC=3,BC=4;由勾股定理,得:AB2=32+42=25,∴AB=5;又∵AB是⊙C的切线,∴CD⊥AB,∴CD=r;∵S△ABC=AC•BC=AB•r,∴r=,故答案为:.17.【分析】根据相似三角形的判定定理得到△DEF∽△ABC,根据三角形的面积公式计算,得到答案.【解答】解:如图,在△DEF中,DE=,EF=2,DF=,则=,==,==,∴==,∴△DEF∽△ABC,△DEF的面积=×2×1=1,故答案为:1.18.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,(不用四点共圆,可以先证明△BMA∽△EMD,推出△BME∽AMD,推出∠ADB=∠BEM也可以!)∴=,∴BE==1.故答案为:1.三.解答题(共7小题,满分78分)19.【分析】代入特殊角的三角函数值即可.【解答】解:原式=3×﹣+×+=﹣2+2+﹣1=2﹣1.20.【分析】(1)首先作∠BCD的平分线,然后作BE的垂直平分线即可;(2)首先判定△GEF∽△GCD,然后根据AB:BC=3:2,得==,进而得出EF=CD,CG=CE,最后根据向量运算即可得结论,即可画出分向量.【解答】解:(1)作∠BCD的平分线,交边AB于点E,取线段BE的中点F,联结DF 交CE于点G.作图如下:(2)∵CE为∠BCD的平分线,∴∠BCE=∠DCE又∵AB∥CD∴∠DCE=∠BEC∴△GEF∽△GCD∵AB:BC=3:2∴==∴EF=CD,CG=CE∵=,=,∴==,==∵+=,=﹣﹣∴=﹣(+)=﹣(+)=﹣﹣同理可得,=﹣=(+)=(﹣)=﹣)在向量和方向上的分向量,如图所示:故答案为:=.21.【分析】(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)过C作CG⊥BH,CK⊥DE,由题意得,BC=CD=20m,CG=KH,解直角三角形即可得到结论.【解答】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DE=OD+OE=OD+AB=(20+5)cm;(2)过C作CG⊥BH,CK⊥DE,由题意得,BC=CD=20m,CG=KH,∴在Rt△CGB中,sin∠CBH=,∴CG=10cm,∴KH=10cm,∵∠BCG=90°﹣60°=30°,∴∠DCK=150°﹣90°﹣30°=30°,在Rt△DCK中,sin∠DCK===,∴DK=10cm,∴(20+5)﹣(15+10)=10﹣10,答:比原来降低了(10﹣10)厘米.22.【分析】(1)直接利用垂径定理结合平行线分线段成比例定理得出DH=HC,进而得出答案;(2)过点A作AG⊥BC,垂足为点G,再利用已知结合勾股定理得出答案.【解答】(1)证明:过点O作OH⊥DC,垂足为H.∵AD∥BC,∠ADC=90°,OH⊥DC,∴∠BCN=∠OHC=∠ADC=90°.∴AD∥OH∥BC.又∵OA=OB.∴DH=HC.∵OH⊥DC,OH过圆心,∴EH=HF,∴DH﹣EH=HC﹣HF.即:DE=CF.(2)解:过点A作AG⊥BC,垂足为点G,∠AGB=90°,∵∠AGB=∠BCN=90°,∴AG∥DC.∵AD∥BC,∴AD=CG.∵AD=2,BC=4,∴BG=BC﹣CG=2.在Rt△AGB中,∵tan B=3,∴AG=BG•tan B=2×3=6.在Rt△AGB中,AB2=AG2+BG2∴AB=.23.【分析】在Rt△ABD中可得出BD=,在Rt△ABC中,可得BC=,则可得BD﹣BC=13,求出AB即可.【解答】解:由题意得,∠ABD=90°,∠D=20°,∠ACB=31°,CD=13,在Rt△ABD中,∵tan∠D=,∴BD==,在Rt△ABC中,∵tan∠ACB=,∴BC==,∵CD=BD﹣BC,∴13=,解得AB≈11.7米.答:水城门AB的高为11.7米.24.【分析】(1)设抛物线的表达式为y=ax2+bx+c,将A,B的坐标及对称轴方程代入即可;(2)分别求出点B,C的坐标,直接在Rt△OBC中,根据余切定义即可求出;(3)设点E的坐标是(x,0),求出点E的坐标,再求出CE的解析式,即可求出其与抛物线的交点坐标.【解答】解:(1)设抛物线的表达式为y=ax2+bx+c,将点C(0,2)、A(﹣3,0)、对称轴直线x=﹣2代入,得:,解得:,,∴这条抛物线的表达式为;(2)令y=0,那么,解得x1=﹣3,x2=﹣1,∵点A的坐标是(﹣3,0),∴点B的坐标是(﹣1,0),∵C(0,2),∴OB=1,OC=2,在Rt△OBC中,∠BOC=90°,∴;(3)设点E的坐标是(x,0),得OE=|x|.∵∠CEO=∠BCO,∴cot∠CEO=cot∠BCO,在Rt△EOC中,∴,∴|x|=4,∴点E坐标是(4,0)或(﹣4,0),∵点C坐标是(0,2),∴,∴,或解得和(舍去),或和(舍去);∴点P坐标是(,)或(,).25.【分析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAD =∠CDE,得到△BAD∽△CDE,根据相似三角形的性质证明结论;(2)证明DF∥AB,根据平行线的性质得到=,证明△BDA∽△BAC,根据相似三角形的性质列式计算,得到答案;(3)分点F在DE的延长线上、点F在线段DE上两种情况,根据等腰三角形的性质计算即可.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∠ADC=∠BAD+∠B,∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△BAD∽△CDE,∴=,即AB•CE=BD•CD;(2)解:∵DF平分∠ADC,∵∠CDE=∠BAD,∴∠ADE=∠BAD,∴DF∥AB,∴=,∵∠BAD=∠ADE=∠B,∴∠BAD=∠C,又∠B=∠B,∴△BDA∽△BAC,∴=,即=解得,BD=,∴=,解得,AE=;(3)解:作AH⊥BC于H,∵AB=AC,AH⊥BC,∴BH=HC=BC=8,由勾股定理得,AH===6,∴tan B==,∴tan∠ADF==,设AF=3x,则AD=4x,由勾股定理得,DF==5x,∵△BAD∽△CDE,∴=,当点F在DE的延长线上,F A=FE时,DE=5x﹣3x=2x,∴=,解得,CD=5,当EA=EF时,DE=EF=2.5x,∴=,解得,CD=,∴BD=BC﹣CD=;当AE=AF=3x时,DE=x,∴=,解得,CD=,∴BD=BC﹣CD=;当点F在线段DE上时,∠AFE为钝角,∴只有F A=FE=3x,则DE=8x,∴=,解得,CD=20>16,不合题意,∴△AEF是等腰三角形时,BD的长为11或或.。
上海中考数学试卷含答案版
2014年上海市初中毕业统一学业考试数学试卷
一、选择题:(每小题4分,共24分)
1.计算 的结果是()
. ; . ; . ; . .
2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为().
. ; . ; . ; . .
(3) .
25.(1) 的长为5;
(2) 的长为 ;
(3)圆 的半径长为 .
17.一组数:2,1,3, ,7, ,23,…,满足“从第三个数起,前两个数依次为 、 ,紧随其后的数就是 ”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中 表示的数为__________.
18.如图,已知在矩形 中,点 在边 上, ,将矩形沿着过点 的直线翻折后,点 、 分别落在边 下方的点 、 处,且点 、 、 在同一条直线上,折痕与边 交于点 , 与 交于点 .设 ,那么△ 的周长为(用含 的代数式表示).
4. .
5. .
6.
7. .
8. .
9. .
10.352.
11. .
12.26.
13. .
14. (答案不唯一).
15. .
16.乙.
17.-9.
18. .
19. .
20. .
21.(1) ;
(2)°.
22.(1) ;
(2)3.
23.略.
24.(1)二次函数的解析式为 ,对称轴为直线 ;
(2)点 的坐标为(1,4);
(1)求该抛物线的表达式,并写出其对称轴;
(2)点 为该抛物线的对称轴与 轴的交点,点 在对称轴上,四边形 为梯形,求点 的坐标;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【中考数学真题精析汇编】2014—2020年上海市中考数学试题汇编(含参考答案与解析)1、2014年上海市中考数学试题及参考答案与解析 (2)2、2015年上海市中考数学试题及参考答案与解析 (20)3、2016年上海市中考数学试题及参考答案与解析 (38)4、2017年上海市中考数学试题及参考答案与解析 (55)5、2018年上海市中考数学试题及参考答案与解析 (72)6、2019年上海市中考数学试题及参考答案与解析 (93)7、2020年上海市中考数学试题及参考答案与解析 (114)2014年上海市中考数学试题及参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1)A B C.D.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C. 6.08×1010D.6.08×10113.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)24.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠55.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和406.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍二、填空题(本大题共12小题,每小题4分,共48分)7.计算:a(a+1)=.8.函数11yx=-的定义域是.9.不等式组1228xx-⎧⎨⎩><的解集是.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔支.11.如果关于x 的方程x 2﹣2x+k=0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 . 12.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 . 14.已知反比例函数ky x=(k 是常数,k≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是 (只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB=3EB .设AB a =,BC b =,那么DE = (结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是 .17.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a ﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为 . 18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE=2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C′、D′处,且点C′、D′、B 在同一条直线上,折痕与边AD 交于点F ,D′F 与BE 交于点G .设AB=t ,那么△EFG 的周长为 (用含t 的代数式表示).三、解答题(本题共7题,满分78分)19.(10138|2-+. 20.(10分)解方程:2121111x x x x +-=--+. 21.(10分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(10分)如图,已知Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH=2CH . (1)求sinB 的值;(2)如果BE 的值.23.(12分)已知:如图,梯形ABCD 中,AD ∥BC ,AB=DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE=∠ABD . (1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.24.(12分)在平面直角坐标系中(如图),已知抛物线y=23x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1)A B C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的乘法运算法则进行运算即可.=,故选:B.【总结归纳】本题主要考查二次根式的乘法运算法则,关键在于熟练正确的运用运算法则,比较简单.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C. 6.08×1010D.6.08×1011【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:60 800 000 000=6.08×1010,故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2【知识考点】二次函数图象与几何变换.【思路分析】先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.【解答过程】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选C.【总结归纳】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5【知识考点】同位角、内错角、同旁内角.【思路分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.【解答过程】解:∠1的同位角是∠2,故选:A.【总结归纳】此题主要考查了同位角,关键是掌握同位角的边构成“F“形.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【知识考点】众数;中位数.【思路分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答过程】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第5位是中位数.故选A.【总结归纳】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍【知识考点】菱形的性质.【思路分析】分别利用菱形的性质结合各选项进而求出即可.【解答过程】解:A、∵四边形ABCD是菱形,∴AB=BC=AD,∵AC<BD,∴△ABD与△ABC的周长不相等,故此选项错误;B、∵S△ABD=12S平行四边形ABCD,S△ABC=12S平行四边形ABCD,∴△ABD与△ABC的面积相等,故此选项正确;C、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D、菱形的面积等于两条对角线之积的12,故此选项错误;故选:B.【总结归纳】此题主要考查了菱形的性质应用,正确把握菱形的性质是解题关键.二、填空题(本大题共12小题,每小题4分,共48分)7.计算:a(a+1)=.【知识考点】单项式乘多项式.【思路分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答过程】解:原式=a2+a.故答案为:a2+a【总结归纳】此题考查了单项式乘以多项式,熟练掌握运算法则是解本题的关键.8.函数11yx=-的定义域是.【知识考点】函数自变量的取值范围.【思路分析】根据分母不等于0列式计算即可得解.【解答过程】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.不等式组1228xx-⎧⎨⎩><的解集是.【知识考点】解一元一次不等式组.【思路分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答过程】解:1228xx-⎧⎨⎩>①<②,解①得:x>3,解②得:x<4.则不等式组的解集是:3<x<4.故答案是:3<x<4【总结归纳】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔支.【知识考点】有理数的混合运算.【思路分析】三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.【解答过程】解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.【总结归纳】此题考查有理数的混合运算,理解题意,列出算式解决问题.11.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.【知识考点】根的判别式.【思路分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k >0,然后解不等式即可.【解答过程】解:∵关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.【总结归纳】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.【知识考点】解直角三角形的应用-坡度坡角问题.【思路分析】首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.【解答过程】解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.【总结归纳】此题考查了坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡度的定义.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 . 【知识考点】概率公式.【思路分析】由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.【解答过程】解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛, ∴恰好抽到初三(1)班的概率是:. 故答案为:.【总结归纳】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 14.已知反比例函数ky x=(k 是常数,k≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是 (只需写一个). 【知识考点】反比例函数的性质.【思路分析】首先根据反比例函数的性质可得k <0,再写一个符合条件的数即可. 【解答过程】解:∵反比例函数ky x=(k 是常数,k≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大, ∴k <0, ∴2y x=-, 故答案为:2y x=-. 【总结归纳】此题主要考查了反比例函数的性质,关键是掌握对于反比例函数ky x=,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大.15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB=3EB .设AB a =,BC b =,那么DE = (结果用a 、b 表示).【知识考点】*平面向量.【思路分析】由点E在边AB上,且AB=3EB.设=,可求得,又由在平行四边形ABCD中,=,求得,再利用三角形法则求解即可求得答案.【解答过程】解:∵AB=3EB.=,∴==,∵平行四边形ABCD中,=,∴==,∴=﹣=﹣.故答案为:﹣.【总结归纳】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则与平行四边形法则的应用,注意掌握数形结合思想的应用.16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是.【知识考点】方差;折线统计图.【思路分析】根据方差的意义数据波动越小,数据越稳定即可得出答案.【解答过程】解:根据图形可得:乙的成绩波动最小,数据最稳定,则三人中成绩最稳定的是乙;故答案为:乙.【总结归纳】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为.【知识考点】规律型:数字的变化类.【思路分析】根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.【解答过程】解:∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则7×2﹣y=23解得y=﹣9.故答案为:﹣9.【总结归纳】此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为(用含t的代数式表示).【知识考点】翻折变换(折叠问题).【思路分析】根据翻折的性质可得CE=C′E,再根据直角三角形30°角所对的直角边等于斜边的一半判断出∠EBC′=30°,然后求出∠BGD′=60°,根据对顶角相等可得∠FGE=∠∠BGD′=60°,根据两直线平行,内错角相等可得∠AFG=∠FGE,再求出∠EFG=60°,然后判断出△EFG是等边三角形,根据等边三角形的性质表示出EF,即可得解.【解答过程】解:由翻折的性质得,CE=C′E,∵BE=2CE,∴BE=2C′E,又∵∠C′=∠C=90°,∴∠EBC′=30°,∵∠FD′C′=∠D=90°,∴∠BGD′=60°,∴∠FGE=∠∠BGD′=60°,∵AD∥BC,∴∠AFG=∠FGE=60°,∴∠EFG=(180°﹣∠AFG)=(180°﹣60°)=60°,∴△EFG是等边三角形,∴AB=t,∴EF=t÷=t,∴△EFG的周长=3×t=2t.故答案为:2t .【总结归纳】本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半,等边三角形的判定与性质,熟记性质并判断出△EFG 是等边三角形是解题的关键. 三、解答题(本题共7题,满分78分)19.(10138|2-+. 【知识考点】实数的运算;分数指数幂.【思路分析】本题涉及绝对值、二次根式化简两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答过程】解:原式=2﹣﹣8+2﹣=.【总结归纳】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(10分)解方程:2121111x x x x +-=--+. 【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答过程】解:去分母得:(x+1)2﹣2=x ﹣1, 整理得:x 2+x=0,即x (x+1)=0, 解得:x=0或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=0.【总结归纳】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.【知识考点】一次函数的应用.【思路分析】(1)设y关于x的函数关系式为y=kx+b,由统计表的数据建立方程组求出其解即可;(2)当x=6.2时,代入(1)的解析式就可以求出y的值.【解答过程】解:(1)设y关于x的函数关系式为y=kx+b,由题意,得,解得:,∴y=x+29.75.∴y关于x的函数关系式为:y=+29.75;(2)当x=6.2时,y=×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.【总结归纳】本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.22.(10分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果BE的值.【知识考点】解直角三角形;直角三角形斜边上的中线.【思路分析】(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=2,得AC=2,则CE=1,从而得出BE.【解答过程】解:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,∴∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC=CH,∴CH:AC=1:,∴sinB;(2)∵sinB,∴AC:AB=1:,∵CD=,∴AB=2,由勾股定理得AC=2,则CE=1,在Rt△ABC中,AC2+BC2=AB2,∴BC=4,∴BE=BC﹣CE=3.【总结归纳】本题考查了解直角三角形,以及直角三角形斜边上的中线,注意性质的应用.23.(12分)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)联结AE,交BD于点G,求证:DG DF GB DB.【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的判定.【思路分析】(1)证△△BAD≌≌△CDA,推出∠ABD=∠ACD=∠CDE,推出AC∥DE即可;(2)根据平行得出比例式,再根据比例式的性质进行变形,即可得出答案.【解答过程】证明:(1)∵梯形ABCD,AD∥BC,AB=CD,∴∠BAD=∠CDA,在△BAD和△CDA中∴△BAD≌△CDA(SAS),∴∠ABD=∠ACD,∵∠CDE=∠ABD,∴∠ACD=∠CDE,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵AD∥BC,∴=,=,∴=,∵平行四边形ACED,AD=CE,∴=,∴=,∴=,∴=.【总结归纳】本题考查了比例的性质,平行四边形的判定,平行线的判定的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.24.(12分)在平面直角坐标系中(如图),已知抛物线y=23x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.【知识考点】二次函数综合题.【思路分析】(1)根据待定系数法可求抛物线的表达式,进一步得到对称轴;(2)分两种情况:当AC∥EF时;当AF∥CE时;两种情况讨论得到点F的坐标;(3)△BDP和△CDP的面积相等,可得DP∥BC,根据待定系数法得到直线BC的解析式,根据两条平行的直线k值相同可得直线DP的解析式,进一步即可得到t的值.【解答过程】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣2),∴,解得.故抛物线的表达式为:y=x2﹣x﹣2=(x﹣1)2﹣,对称轴为直线x=1;(2)由(1)可知,点E(1,0),A(﹣1,0),C(0,﹣2),当AC∥EF时,直线AC的解析式为y=﹣2x﹣2,∴直线EF的解析式为y=﹣2x+2,当x=1时,y=0,此时点F与点E重合;当AF∥CE时,直线CE的解析式为y=2x﹣2,∴直线AF的解析式为y=2x+2,当x=1时,y=4,此时点F的坐标为(1,4).综上所述,点P的坐标为(1,4);(3)点B(3,0),点D(1,﹣),若△BDP和△CDP的面积相等,则DP∥BC,则直线BC的解析式为y=x﹣2,∴直线DP的解析式为y=x﹣,当y=0时,x=5,∴t=5.【总结归纳】考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用,综合性较强,有一定的难度.25.(14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.【知识考点】圆的综合题.【思路分析】(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)当∠AEG=∠B时,A、E、G重合,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.【解答过程】解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB•cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∵∠AEG=∠BCG≥∠ACB=∠B,∴当∠AEG=∠B时,A、E、G重合,∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.【总结归纳】此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.2015年上海市中考数学试题及参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列实数中,是有理数的为()A B C.πD.02.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.1221 aa=3.下列y关于x的函数中,是正比例函数的为()A.y=x2B.2yx=C.2xy=D.12xy+=4.如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4 B.5 C.6 D.75.下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率6.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A .AD=BDB .OD=CDC .∠CAD=∠CBD D .∠OCA=∠OCB 二、填空题(本大题共12小题,每小题4分,共48分) 7.计算:|﹣2|+2= .82=的解是 . 9.如果分式23xx +有意义,那么x 的取值范围是 . 10.如果关于x 的一元二次方程x 2+4x ﹣m=0没有实数根,那么m 的取值范围是 . 11.同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y=95x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是 ℉. 12.如果将抛物线y=x 2+2x ﹣1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是 . 13.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是 .14.已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁) 11 12 13 14 15 人数 5 5 16 15 12那么“科技创新社团”成员年龄的中位数是 14 岁.15.如图,已知在△ABC 中,D 、E 分别是边AB 、边AC 的中点,AB m =,AC n =,那么向量DE 用向量m ,n 表示为 .16.已知E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD= 度.17.在矩形ABCD 中,AB=5,BC=12,点A 在⊙B 上,如果⊙D 与⊙B 相交,且点B 在⊙D 内,那么⊙D 的半径长可以等于 .(只需写出一个符合要求的数) 18.已知在△ABC 中,AB=AC=8,∠BAC=30°,将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处,延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于 .三、解答题(本大题共7小题,满分78分)19.(10分)先化简,再求值:2214422x x x x x x x -÷-++++,其中1x =. 20.(10分)解不等式组:4261139x x x x -⎧⎪-+⎨⎪⎩>≤,并把解集在数轴上表示出来.21.(10分)已知:如图,在平面直角坐标系xOy 中,正比例函数43y x =的图象经过点A ,点A 的纵坐标为4,反比例函数my x=的图象也经过点A ,第一象限内的点B 在这个反比例函数的图象上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC=AB .求: (1)这个反比例函数的解析式; (2)直线AB 的表达式.22.(10分)如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼,已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为点H ,如果汽车沿着从M 到N 的方向在MN 上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q 时,它与这一排居民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米))23.(12分)已知,如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE=OB ,连接DE . (1)求证:DE ⊥BE ;(2)如果OE ⊥CD ,求证:BD•CE=CD•DE .。