七年级第二次月考数学试题
七年级(上)第二次月考数学检测试卷(含答案)
七年级(上)第二次月考数学检测试卷(每小题3分,共30分) .在 8080080008.0 ,8 ,31.0 ,41, ,2 ,14.33--π(每两个8之间依次多1个0)这些数中,无理数的个数为( )A 、1个B 、2个C 、3个D 、4个 ,下列运算正确的是( )A 、2222=-xx B 、 2222555d c dc =+C 、xy xy xy =-45D 、532532m m m =+、将一元一次方程13321=--x 去分母,下列正确的是( )A 、1-(x -3)=1B 、3-2(x -3)=6C 、2-3(x -3)=6D 、3-2(x -3)=1下列近似数中,含有3个有效数字的是 ( ) A.5430 B.5.430×106C.0.5430D.5.43万.下列各式中去括号正确的是( )A 、22(22)22x x y x x y --+=-++B 、()m n mn m n mn -+-=-+-C 、(53)(2)22x x y x y x y --+-=-+D 、(3)3ab ab --+= 下列式子中: 12,b ,y x + ,032=-y ,ts 整式的个数为( )A 、2个B 、3个C 、4个D 、5个.下列说法中正确的是 ( . ) A.有理数与数轴上的点一一对应。
B.无限小数是无理数。
C.23-读作3-的平方 D.5的平方根是5±、哥哥今年15岁,弟弟今年9岁,x 年前哥哥的年龄是弟弟年龄的2倍,则列方程为( ) A、)9(215x x -=- B、)15(29x x -=- C、)9(215x x +=+ D、)15(29x x +=+ 9、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为 A .7B .3C .3-D .2-10,在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(•不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为A ·B 。
北师大版七年级数学(下)第二次月考试卷(含解析)
北师大版七年级数学(下)数学第二次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y62.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4 4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°(5题)(6题)(7题)6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS 7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.368.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()(8题)(10题)A.6B.5C.4D.39.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为米.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m =.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.14题15题16题15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为cm.16.(3分)如图,在△ABC中,AB=AC ,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF=.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y=.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD=;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC=8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列运算中正确的是()A.3a+2b=5ab B.2a2+3a2=5a5C.a10÷a5=a2D.(xy2)3=x3y6【分析】分别根据合并同类项法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.a10÷a5=a5,故本选项不合题意;D.(xy2)3=x3y6,正确.故选:D.【点评】本题主要考查了合并同类项、同底数幂的除法,幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.2.(3分)如下字体的四个汉字中,可以看作是轴对称图形的是()A.中B.国C.加D.油【分析】根据轴对称图形的概念求解.【解答】解:A、“中”可以看作是轴对称图形,故本选项符合题意;B、“国”不是轴对称图形,故本选项不合题意;C、“加”不是轴对称图形,故本选项不合题意;D、“油”不是轴对称图形,故本选项不合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.5,1,3B.2,4,2C.3,3,7D.2,3,4【分析】看哪个选项中两条较小的边的和不大于最大的边即可.【解答】解:A、3+1<5,不能构成三角形,故A错误;B、2+2=4,不能构成三角形,故B错误;C、3+3<7,不能构成三角形,故C错误;D、2+3>4,能构成三角形,故D正确,故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.4.(3分)下列事件中,是必然事件的是()A.同位角相等B.如果a2=b2,那么a=bC.对顶角相等D.两边及其一角分别相等的两个三角形全等【分析】根据平行线的性质、有理数的乘方、对顶角相等、全等三角形的判定定理判断即可.【解答】解:A、两直线平行,同位角相等,∴同位角相等,是随机事件;B、如果a2=b2,那么a=b,是随机事件;C、对顶角相等,是必然事件;D、两边及其一角分别相等的两个三角形全等,是随机事件;故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠C=∠CDE D.∠C+∠CDA=180°【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A、∠1和∠4是AD、BC被BD所截得到的一对内错角,∴当∠1=∠4时,可得AD∥BC,故A不正确;B、∠2和∠3是AB、CD被BD所截得到的一对内错角,∴当∠2=∠3时,可得AB∥CD,故B正确;C、∠C和∠CDE是AD、BC被CD所截得到的一对内错角,∴当∠C=∠CDE时,可得AD∥BC,故C不正确;D、∠C和∠ADC是AD、BC被CD所截得到的一对同旁内角,∴当∠C+∠ADC=180°时,可得AD∥BC,故D不正确;故选:B.【点评】本题主要考查平行线的判定,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.6.(3分)如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是()A.SSS B.SAS C.ASA D.AAS【分析】根据题目所给条件可利用SSS定理判定△ADC≌△ABC,进而得到∠DAC =∠BAC.【解答】解:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPQ的面积是()A.10B.16C.20D.36【分析】易得当R在PN上运动时,面积不断在增大,当到达点P时,面积开始不变,到达Q后面积不断减小,得到PN和QP的长度,相乘即可得所求的面积.【解答】解:∵x=4时,及R从N到达点P时,面积开始不变,∴PN=4,同理可得QP=5,∴矩形的面积为4×5=20.故选:C.【点评】考查动点问题的函数的有关计算;根据所给图形得到矩形的边长是解决本题的关键.8.(3分)如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是()A.6B.5C.4D.3【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ABC =×4×2+AC×2=7,解得AC=3.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.9.(3分)若a+b=3,ab=2,则a﹣b的值为()A.1B.±1C.﹣1D .±【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=9﹣8=1,则a﹣b=±1,故选:B.【点评】此题考查了平方根,以及完全平方公式,熟练掌握平方根定义及公式是解本题的关键.10.(3分)如图,△ACB和△DCE均为等腰直角三角形,且∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM平分∠DCE,连接BE.以下结论:①AD=CE;②CM⊥AE;③AE=BE+2CM;④CM∥BE,正确的有()A.1个B.2个C.3个D.4个【分析】由“SAS”可证△ACD≌△BCE,可得AD=BE,∠ADC=∠BEC,可判断①,由等腰直角三角形的性质可得∠CDE=∠CED=45°.CM⊥AE,可判断②,由全等三角形的性质可求∠AEB=∠CME=90°,可判断④,由线段和差关系可判断③,即可求解.【解答】解:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,故①错误,∵△DCE为等腰直角三角形,CM平分∠DCE,∴∠CDE=∠CED=45°,CM⊥AE,故②正确,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°,∴∠AEB=∠CME=90°,∴CM∥BE,故④正确,∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故③正确,故选:C.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△ACD≌△BCE是本题的关键.二、填空题(每小题3分,共18分)11.(3分)新冠病毒的平均直径为100纳米(1米=109纳米),则100nm可以表示为1×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm可以表示为100×10﹣9=1×10﹣7米.故答案为:1×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)已知一个等腰三角形的一个内角为40°,则它的顶角等于40°或100°.【分析】分两种情况:当40°的内角为顶角时;当40°的角为底角时,利用三角形的内角和结合等腰三角形的性质可计算求解.【解答】解:当40°的内角为顶角时,这个等腰三角形的顶角为40°;当40°的角为底角时,则该等腰三角形的另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,故答案为40°或100°.【点评】本题主要考查等腰三角形的性质,三角形的内角和定理,注意分类讨论.13.(3分)如果x2+2(m﹣1)x+4是一个完全平方式,则m=3或﹣1.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2+2(m﹣1)x+4是完全平方式,∴m﹣1=±2,m=3或﹣1故答案为:3或﹣1【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是.【分析】直接利用轴对称图形的性质结合概率公式得出答案.【解答】解:只有将②③④中的一个小正方形涂黑,图中的阴影部分才构成轴对称图形,故图中的阴影部分构成轴对称图形的概率为:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案以及概率公式,正确掌握轴对称图形的性质是解题关键.15.(3分)如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为24cm,则△ABC的周长为34cm.【分析】根据线段垂直平分线的性质结合△ABD的周长可求AB+BC=24,进而可求解△ABC的周长.【解答】解:∵DE是边AC的垂直平分线,AE=5cm,∴AD=CD,AC=2AE=10,∵△ABD的周长为24cm,∴AB+BD+AD=AB+BD+CD=AB+BC=24(cm),∴C△ABC=AB+BC+AC=24+10=34(cm).故答案为34.【点评】本题主要考查线段垂直平分线的性质,灵活运用线段垂直平分线的性质是解题的关键.16.(3分)如图,在△ABC中,AB=AC,AO平分∠BAC,OD垂直平分AB,将∠C沿着EF折叠,使得点C与点O重合,∠AFO=52°,则∠OEF =104°.【分析】连接OB、OC,根据线段垂直平分线上的点到两端点的距离相等可得OA =OB,再由角平分线条件与等腰三角形的条件证明△OAB≌△OAC,得OA=OB =OC,得∠OBA=∠OAB=∠OAC=∠OCA,根据折叠性质得OF=CF,进而求得∠OCF,再由三角形内角和定理,求得∠OBC+∠OCB,进而由等腰三角形的性质求得∠OCB ,再由折叠性质求得结果.【解答】解:连接OB、OC,∵OD垂直平分AB,∴OA=OB,∴∠OAB=∠OBA,∵AO平分∠BAC,∴∠BAO=∠CAO,∵AB=AC,AO=AO,∴△OAB≌△OAC(SAS),∴OB=OC,∠ABO=∠ACO,∴OA=OB=OC,∴∠OBA=∠OAB=∠OAC=∠OCA,∵∠AFO=52°,∴∠OFC=180°﹣∠AFO=128°,由折叠知,OF=CF,∴∠OCF=∠COF=,∴∠OBA=∠OAB=∠OAC=∠OCA=26°,∴∠OBC+∠OCB=180°﹣4×26°=76°,∵OB=OC,∴∠OBC=∠OCB=38°,由折叠知,OE=CE,∠OEF=∠CEF,∴∠COE=∠OCE=38°,∴∠OEC=180°﹣2×38°=104°.故答案为:104°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,作辅助线,构造出等腰三角形是解题的关键.三、解答题(共52分)17.(12分)计算(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2);(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202);(3)先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y,其中x =﹣l,y =.【分析】(1)先算积的乘方、再算乘法,最后算除法即可求解;(2)先根据负整数指数幂、零指数幂,平方差公式计算,再算加减法即可求解;(3)原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘多项式法则化简,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)(﹣2x2yz)2•3x2y÷(﹣15x2y2)=4x4y2z2•3x2y÷(﹣15x2y2)=12x6y3z2÷(﹣15x2y2)=﹣x4yz2;(2)(﹣)﹣2+(3.14﹣π)0﹣(2019×2021﹣20202)=9+1﹣[(2020﹣1)×(2020+1)﹣20202]=9+1﹣(20202﹣1﹣20202)=9+1+1=11;(3)[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷2y=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y=(10xy+8y2)÷2y=5x+4y,当x=﹣l,y =时,原式=﹣5+2=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(5分)尺规作图:已知△ABC,请用尺规在AB上找一点P,使得PB=PC(不写作法,但要保留作图痕迹).【分析】作线段AB的垂直平分线交AB于点P,点P即为所求.【解答】解:如图,点P即为所求.【点评】本题考查作图﹣复杂作图,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(5分)如图,在△ABC中,∠EGF+∠BEC=180°,∠EDF=∠C,试判断DE 与BC的位置关系并说明理由.【分析】本题主要考查平行线的性质与判定,根据同旁内角互补两直线平行可判断DF∥AC,进而可得∠EDF=∠BFD,再利用平行线的判定可求解.【解答】解:DE∥BC.理由如下:∵∠EGF+∠BEC=180°,∴DF∥AC,∴∠BFD=∠C,∵∠EDF=∠C,∴∠EDF=∠BFD,∴DE∥BC.【点评】本题主要考查平行线的性质与判定,掌握平行线的性质与判定定理是解题的关键.20.(6分)小亮和小颖选用同一副扑克牌中花色为红桃的扑克牌做游戏,游戏规则为:小亮先从中任意抽取一张(不放回),所抽到的牌面数字为2,小颖再从剩余的牌中任意抽取一张(A、J、Q、K分别代表1,11,12,13),如果两人抽取的牌面数字之和为3的倍数,则小颖获胜,求小颖获胜的概率.【分析】用列表法列举出所有可能出现的结果,从中找出“两人抽取的牌面数字之和为3的倍数”的结果数,进而求出概率.【解答】解:用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中“两人抽取的牌面数字之和为3的倍数”的有5种,∴P(两人抽取的牌面数字之和为3的倍数)=,即小颖获胜的概率为.【点评】本题考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.21.(6分)“五一”期间,小华约同学一起开车到距家48千米的景点旅游,出发前,汽车油箱内储油55升,行驶过程中汽车的平均耗油量为0.6升/千米.(1)写出剩余油量y(升)与行驶路程x(千米)的关系式(不要求写出x的取值范围);(2)如果往返途中不加油,他们能否回到家?请说明理由.【分析】(1)由剩余油量=55升﹣耗油量,可求解析式;(2)先求出55升油能行驶的路程,与往返的总路程比较,可求解.【解答】解:(1)由题意可得:y=55﹣0.6x;(2)当y=0时,0=55﹣0.6x,∴x =,∵<48×2,∴往返途中不加油,他们不能回到家.【点评】本题考查了一次函数关系式,根据数量关系列出函数关系式是解题的关键.22.(8分)小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?【分析】(1)大正方形的面积减去4个小正方形的面积的差,即为无盖纸盒的表面展开图的面积S1;(2)利用矩形的面积公式即可计算该长方形的面积S2;(3)根据(1)(2)表示的面积相等即可得到结论.【解答】解:(1)无盖纸盒的表面展开图的面积S1=32﹣4n2=9﹣4n2;(2)长方形的长是:3+2n,宽是:3﹣2n,∴长方形的面积S2=(3+2n)(3﹣2n);(3)由题可得,9﹣4n2=(3+2n)(3﹣2n).【点评】本题主要考查了平方差公式的几何背景,表示出图形阴影部分面积是解题的关键.立体图形的侧面展开图体现了平面图形与立体图形的联系,立体图形问题可以转化为平面图形问题解决.23.(10分)(1)问题提出:如图(1),将长方形ABCD的一个角沿AE折叠,使点B落在对角线AC上的点B'处,若∠ACB=36°,则∠EAD =63°;(2)问题探究:如图(2),将长方形ABCD的两个角分别沿AE、CF折叠,使点B、D分别落在对角线AC上的B'、D'处.试说明:D'F=B'E.(3)问题解决:如图(3),长方形ABCD中,AB=6,BC =8,对角线AC=10,点E在AC上,CE=CB,连接BE,将∠EBC折叠,折痕过BE的中点M,交BC 于点N,点B对应点B'落在对角线AC上,求四边形BMB'N的面积.【分析】(1)依据三角形内角和定理以及折叠的性质,即可得到∠BAE的度数,进而得出∠DAE的度数;(2)依据平行线的性质以及折叠的性质,即可得到△CB'E≌△AD'F,依据全等三角形的性质即可得出D'F=B'E;(3)连接BB',依据折叠的性质以及三角形内角和定理,即可得到BB'⊥AC,N 是BC的中点,进而得出S四边形BMB'N=S△BCE,求得△BCE的面积,即可得出结论.【解答】解:(1)∵∠B=90°,∠ACB=36°,∴Rt△ABC中,∠BAC=54°,由折叠可得,∠BAE=∠BAC=27°,∵∠BAD=90°,∴∠DAE=90°﹣27°=63°,故答案为:63°;(2)证明:∵AD∥BC,∴∠ECB'=∠F AD',由折叠可得,∠B=∠AB'E=90°,∠D=∠CD'F=90°,AB=AB'=CD=CD',∴∠CB'E=∠AD'F=90°,CB'=AD',在△CB'E和△AD'F中,,∴△CB'E≌△AD'F(ASA),∴D'F=B'E;(3)如图3,连接BB',由折叠可得,BM=B'M,∴∠MBB'=∠MB'B,∵M是BE的中点,∴BM=ME,∴ME=MB',∴∠MEB'=∠MB'E,又∵∠MEB'+∠MB'E+∠MB'B+∠MBB'=180°,∴∠MB'E+∠MB'B=90°,即BB'⊥AC,∴∠BB'C=90°,∴∠BB'N+∠CB'N=90°,∠B'BN+∠B'CN=90°,由折叠可得,BN=B'N,∴∠BB'N=∠B'BN,∴∠CB'N=∠B'CN,∴NC=NB',∴BN=CN,即N是BC的中点,∴S△BB'N =S△BB'C,∵M是BE的中点,∴S△BB'M =S△BB'E,∴S四边形BMB'N =S△BCE,∵长方形ABCD中,AB=6,BC=8,对角线AC=10,∴AB×BC =AC×BB',即BB'===4.8,又∵CE=CB=8,BB'⊥AC,∴S△BCE =CE×BB'=×8×4.8=19.2,∴S四边形BMB'N =×19.2=9.6.【点评】本题主要考查了折叠问题,平行线的性质以及三角形内角和定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。
七年级数学上册第二次月考测试题(04)
七年级数学上册第二次月考测试题(04)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数中,2的相反数是()A.2B.﹣2C.D.﹣2.(3分)据猫眼专业版显示,今年国庆档的献礼片《我和我的祖国》已经跻身中国电影票房榜前五名,自上映以来票房累计突破29.9亿元,将29.9亿用科学记数法可以表示为()A.0.299×1010B.2.99×109C.29.9×108D.2.99×1010 3.(3分)实数a,b,c在数轴上的位置如图所示,化简|﹣a﹣b|﹣|c|的结果是()A.﹣a﹣b+c B.﹣a﹣b﹣c C.a+b﹣c D.a+b+c4.(3分)下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为5.(3分)下列叙述中正确的是()A.若ac=bc,则a=b B.若=,则a=bC.若a2=b2,则a=b D.若﹣,则x=﹣26.(3分)若|b﹣2|+(a+3)2=0,则(a+b)2019的值为()A.2019B.﹣1C.﹣2019D.17.(3分)已知无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,则m+n等于()A.5B.﹣5C.1D.﹣18.(3分)笔记本比水性笔的单价多2元,小刚买了5本笔记本和3支水性笔正好用去18元.如果设水性笔的单价为x元,那么下面所列方程正确的是()A.5x+3(x﹣2)=18B.5(x﹣2)+3x=18C.5x+3(x+2)=18D.5(x+2)+3x=189.(3分)已知关于x的方程2(x﹣1)+3k=4x+6的解为x=﹣1,则k的值为()A.1B.2C.3D.410.(3分)如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确二.填空题(共5小题,满分15分,每小题3分)11.(3分)阅读理解:①根据幂的意义,a n表示n个a相乘;则a m+n=a m•a n;②a n=m,知道a和n可以求m,我们不妨思考;如果知道a,m,能否求n呢?对于a n=m,规定[a,m]=n,例如:62=36,所以[6,36]=2.记[5,x]=4m,[5,y﹣3]=4m+2;y与x之间的关系式为.12.(3分)方程3x2n﹣3+2=0是关于x的一元一次方程,则n=.13.(3分)若关于x的方程3x﹣7=2x+a的解与方程4x+3=﹣5的解互为倒数,则a的值为.14.(3分)2022年冬奥会将在北京召开,某场馆建设由甲乙两个工程队完成,甲单独做要30个月完成,乙单独做要60个月完成,则甲乙两队合作个月完成这项工程.15.(3分)在如图所示的运算流程中,若输入的数为8,则输出的数为.三.解答题(共8小题,满分75分)16.(16分)若规定这样一种新运算法则:a*b=a2﹣2ab.如3*(﹣2)=32﹣2×3×(﹣2)=21.(1)求2*(﹣3)的值;(2)若(﹣4)*x=﹣2﹣x,求x的值.17.(6分)代数式求值:x2y﹣xy﹣0.5x2y+0.5xy,其中x=3,y=﹣2.18.(6分)计算下列各题:(1)(﹣24)×();(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.19.(8分)定义:若整数k的值使关于x的方程+1=kx的解为整数,则称k为此方程的“友好系数”.(1)判断k1=0,k2=1是否为方程+1=kx的“友好系数”,写出判断过程;(2)方程+1=k“友好系数”的个数是有限个,还是无穷多?如果是有限个,求出此方程的所有“友好系数“;如果是无穷多,说明理由.20.(9分)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)公式①:(a+b+c)d=ad+bd+cd.公式②:(a+b)(c+d)=ac+ad+bc+bd.公式③:(a﹣b)2=a2﹣2ab+b2.公式④:(a+b)2=a2+2ab+b2.图1对应公式,图2对应公式,图3对应公式,图4对应公式.(2)《几何原本》中记载了一种利用几何图形验证平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出验证过程;(已知图中各四边形均为长方形)21.(9分)如图是一个数表,现用一个长方形在数表中任意框出4个数.(1)a,c的关系是:;(2)当a+b+c+d=32时,a=.(3)a,b,c,d的关系是:.22.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米小时,设客车行驶时间为t小时.(1)当t=5时,客车与乙城的距离为千米(用含a的代数式表示);(2)已知a=70,求客车与出租车首次相距100千米时客车的行驶时间(列方程解答).23.(11分)已知:数轴上A、B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣c2﹣3(a﹣c2)的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?。
人教版七年级数学下学期第二次数学月考试卷【含答题卡】
人教版七年级数学下学期第二次数学月考试卷(总分:150分,考试时间:120分钟)一、精心选一选(每小题4分,共40分)1.下列方程中,是二元一次方程的是( )A. B.C. D . 02=-y x 21=-y x 12=-y x 01=-xy 2.“与3的和不大于6”用不等式表示为( )a A. B. C. D .63<+a 63≤+a 63>+a 63≥+a 3.若,则下列不等式不成立的是( )b a <A . B . C . D .11+<+b a b a 22<b a -<-33b a <4.已知单项式 与是同类项,那么的值分别是( )322y xm -m n y x -,m n A . B . C . D .⎩⎨⎧-==13n m ⎩⎨⎧==13n m ⎩⎨⎧=-=13n m ⎩⎨⎧-=-=13n m 5.若,则的值分别为( )0)3(12=--+-+y x y x y x ,A . B . C . D .⎩⎨⎧-==12y x ⎩⎨⎧==12y x ⎩⎨⎧==21y x ⎩⎨⎧==03y x 6.二元一次方程的正整数解有( )个72=+y x A .1 B .2 C .3 D .47.若关于的不等式的解集是,则的取值范围是( )x 1)1(->-a x a 1>x a A . B . C . D .0<a 0>a 1<a 1>a 8.不等式的非负整数解有( )个x x -≤-5)1(3A .1 B .2 C .3 D .49.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买( )支笔A .3B .4C .5D .610.已知三年前,A 的年龄是B 的年龄的5倍,现在A 的年龄是B 的年龄的4倍,则A 现在的年龄是( ) 岁.A .48B .45C .12D .9二、认真填一填(每小题4分,共24分)11.把方程化为用含的代数式来表示:= .42=-y x x y y 12.写出一个解为的二元一次方程组: .⎩⎨⎧=-=21y x13.若关于的方程的解为负数,则的取值范围是 .x 23+=+x mx m 14.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对 道题.15.在实数范围内定义新运算“△”,其规则是:△=a b ba -2已知不等式△的解集为,则 .x 1≥m 1-≥x =m 16.已知为整数且关于、的二元一次方程组有整数解,m x y ⎩⎨⎧=+=-7422y x my x 则= .m 三、耐心做一做(共86分)17.(12分)解方程组:(1) (2)⎩⎨⎧=--=533y x x y 233511x y x y +=⎧⎨-=⎩18.(8分)解不等式并在数轴上表示出其解集:63)2(2<-+x x 19.(8分)已知:且当时,;当时,;b kx y +=1-=x 2=y 2=x 7-=y 求:当时,的值;2-=x y 20.(8分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?21.(8分)当为何正整数时代数式的值不小于的值?x 41+x 1312--x 22.(8分)某物流公司要将300吨货物运往某地,现有A 、B 两种型号的车可供调用,已知A型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨货物一次性装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?23.(10分)若关于、的二元一次方程组的解满足,x y ⎩⎨⎧=++=-my x m x y 52322>+y x 求的取值范围m 24.(10分)若关于、的二元一次方程组与有相同的解,x y ⎩⎨⎧=+=+822by ax y x ⎩⎨⎧-=-=-41023ay bx y x 求的值2017)2(b a +25.(14分)某商场销售A、B两种型号的计算器,A型的计算器进价为30元/台,B型的计算器进价为40元/台,商场销售3台A型的计算器和2台B型的计算器,可获利润68元;销售2台A型的计算器和3台B型的计算器,可获利润72元;(1)求A、B两种型号的计算器在该商场的售价分别是多少元/台?(2)某天商场只有2120元的进货资金,王经理又想购进这两种型号的计算器共70台,请问:①王经理有哪几种进货方案?②王经理怎样进货可使商场销售完这70台计算器获得的利润最大?最大利润为多少?并说明理由。
2022-2023学年江苏省盐城市盐都区第一共同体七年级第二学期第二次月考数学试卷
盐城市盐都区第一共同体七年级第二学期5月份数学试题时间:100分钟分值:120分一、选择题(本大题共8小题,每小题3分,共24分)1.化简(a4)3的结果为····························································()A.a7B.a12C.a11D.a82. 下列各式从左到右的变形不属于...因式分解的是·····································()A.a2+2ab+b2=(a+b)2B.xy−4x+y−4=(x+1)(y−4)C.x2+6x−9=(x+3)(x−3)+6xD.x2+3x−10=(x+5)(x−2)3.已知某三角形三边长分别为4,x,11,其中x为正整数,则满足条件的x值的个数是····()A.6B.7C.8D.94.一块含45°角的直角三角板与一把直尺如图放置,若∠1=60°,则∠2度数是··········()A.85°B.75°C.60°D.45°第4题第5题第8题5.如图,下列结论不正确...的是······················································()A.若AD∥BC,则∠1=∠BB.若∠1=∠2,则AD∥BCC.若∠2=∠C,则AE∥CDD.若AE∥CD,则∠1+∠3=180°6.已知二元一次方程x+y=1,下列说法正确..的是····································()A.它有一组正整数解B.它只有有限组解C.它只有一组非负整数解D.它的整数解有无穷多组7.在△ABC中,∠A+∠B=141°,∠C+∠B=165°,则△ABC的形状是·····················()A.锐角三角形B.直角三角形C.钝角三角形D.不存在这样的三角形8. 如图,∠A0B=70°,点M,N分别在OA,OB上运动(不与点O重合〉,ME平分∠AMN,ME的反向延长线与∠MNO的平分线交于点F,在M, N的运动过程中,∠F的度数·······························()A.变大B.变小C.等于55°D.等于35°二、填空题(本大题共10小题,每小题2分,共20分)9.新冠病毒“奥密克戎”的直径约为0.00000011m,用科学记数法可表示为m.10.六边形的内角和是°.11.使等式a 0 = 1成立的条件是.12.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上).若∠B=55°,∠C=100°,则∠AB′A′的度数为 .13.已知a =−(0.2)2,b =−2−2,c =(−12)−2,则a ,b ,c 从小到大....的排序是 . 14.关于x 的不等式2ax+3x >2a+3的解集为x <1,则a 的取值范围是 . 15.已知 ax +by =16bx −ay =−12的一组解为 x =2y =4,则a 、b 分别为 .16.已知关于x 的不等式组 x −a >0 3−2x ≥−11 的整数解共有5个,则a 的取值范围是 .17.定义:对于任何数a ,符号[a ]表示不大于a 的最大整数.例:[5.7]=5,[5]=5,[﹣1.5]=﹣2.如果[554-x ]=﹣5,满足条件的所有整数x 是 . 18.如图,AB//CD ,则∠1+∠2+∠3+……+∠n-1+∠n= .三、解答题(本大题共10小题,共76分)19.(本题满分6分)计算: (1)()()11322π--+-- (2)()326323a a a a a -⋅+÷20.(本题满分6分)因式分解:(1)2436x - (2)x 3−2x 2y +xy 221.(本题满分6分)解不等式组()211113x x x x ⎧--≤⎪⎨+>-⎪⎩,并把解集在数轴上表示出来第12题第18题22.(本题满分6分)解方程组:(1)213417x yx y=-⎧⎨+=⎩(2)20325x yx y-=⎧⎨-=⎩23.(本题满分6分)先化简,再求值:(a−1)2−a(a+3)+2(a+2)(a−2),其中a=−2.24.(本题满分6分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫做格点. (1)画出△ABC先向右平移4个单位,再向上平移两个单位后得到的△A1B1C1;(2)画出△A1B1C1的高C1H;(3)连结AA1 、CC1,求四边形ACC1A1 的面积.25.(本题满分8分)如图,△ABC中,AD⊥BC于点D,EF⊥BC于点F,EF交AB于点G,交CA延长线于点E,AD平分∠BAC.求证:∠E=∠BGF.26.(本题满分10分)某电器超巿销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:((1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.27.(本题满分10分)【项目学习】“我们把多项式a2+2ab+b2及a2―2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解: a2+6a+8=a2+6a+32—32+8=(a+3 )2—1因为(a+3)2≥0,所以a2+6a+8≥—1,因此,当a=―3时,代数式α2+6a+8有最小值,最小值是-1.【问题解决】利用配方法解决下列问题:(1))当x= 时,代数式x2—2x一1有最小值,最小值为.(2)当x取何值时,代数式2x2+8x+12有最小值?最小值是多少?【拓展提高】(3)当x,y何值时,代数式5x2—4xy+y2+6x+25取得最小值,最小值为多少?(4)如图所示的第一个长方形边长分别是2α十5、3α十2,面积为S1;如图所示的第二个长方形边长分别是5a、a+5,面积为S2.试比较S1与S2的大小,并说明理由.28.(本题满分12分)已知∠MON=40°,0E平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C 不与点O重合),连接AB,连AC交射线OE于点D,设∠BAC=α.(1)如图1,若AB∥ON,①∠ABO的度数是° ;②当∠BAD=∠ABD时,∠0AC的度数是°;当∠BAD=∠BDA时,∠0AC的度数是°;( 2 )在一个四边形中,若存在一个内角是它的对角的2倍,我们称这样的四边形为“完美四边形”,如图2,若AB⊥OM,延长AB交射线ON于点F,当四边形DCFB为“完美四边形”时,求α的值.图1 图2 备用图。
初一数学第二次月考试卷
七 年 级 数 学 第 二 次 月 考 测 试 题 一、选择题(每题3分共30分) 1、 下列各数中,负数是 ( ) A —(—3) B —3- C (—3)2 D —(—3)3 2、单项式342h r π 的 ( ) A 系数是4, 次数是2 B 系数是3,次数是3 C 系数是34π,次数是3 D 系数是34,次数是4 3、在(—1)2,(—1)3,(—1)2007,(—1)2008中,值为1的有( ) A 1 个 B 2个 C 3个 D 4个 4、冬季某天我国三个城市的最高气温分别是—10 0C ,1 0C ,—7 0C 它们从高到低排列,正确的是( ) A —10 0C ,—7 0C ,1 0C B —7 0C , —10 0C ,1 0C C 1 0C ,—10 0C ,—7 0C D 1 0C , —7 0C , —10 0C 5、已知51=-a , 则a 的值为( ) A 6 B —4 C 6或—4 D —6或4 6、如图,数轴上A 、B 两点所表示的两数的( ) A 和为正数 B 积为正数 C 和为负数 D 积为负数 7、若-4a 2b 与3a m b n 是同类项,则( ) A m=2 n=0 B m=0 n=2 C m=2 n=1 D m=1 n=2 8、若a 2=(—2)2 则a 等于( ) A 2 B —2 C 4 D 2或—2 9某种细菌在培养过程中,每半小时分裂一次(由1个分裂为2个),那么这种细菌由1个分裂为32个要经过( ) A 2小时 B 3小时 C 2.5小时 D 5小时 10、有下列各组数:(1)—52与(—5)2 (2)—33与(—3)3 (3)—(—2)5与25 (4)0100与0200 (5)(—1)2008与(—1)2009其中相等的共有 ( ) A 1对 B 2对 C 3对 D 4对 二、填空题(每题3分共30分) 1、112-的相反数是________,112-的倒数是________ 112-的绝对值是________ 2、某天早晨气温为a 摄氏度,中午上升了b 摄氏度,晚上又下降了c 摄氏度,则晚上的气温是_____________摄氏度(上升记为+)。
福建省莆田市涵江区莆田锦江中学2023-2024学年七年级上册第二次月考数学试题(含解析)
A.402B.403C.404D.405(1)的值能否为79?若能,求a 的值;若不能,说明理由;(2)值能否为51,若能,求a 的值;若不能,说明理由;(3)若,求的最小值为 (直接写结果)22.列一元一次方程解决实际问题(两问均需用方程求解)第19届亚洲夏季运动会于2023年9月23日在杭州举行,通过不同色彩、不同纹饰向世界讲述“江南忆”的美丽故事.现有工厂生产吉祥物的盲盒,分为1S 12S S +12187S S =+12S S -【简单应用】如图1,点A 在数轴上所对应的数为,点B 表示的数为)则A 、B 两点间的距离________, A 、B 两点的中点M 5-AB =∴甲捐书本,乙捐书本,丙捐书为本.21.(1)不能,理由见解析;(2)能,的值为或;(3)【分析】本题考查了一元一次方程的应用,理解、的实际意义是解题关键.(1)设“T ”型阴影覆盖的最小数字为,则其他数字分别为、、,根据的值为79列方程,求出的值,再根据的实际意义分析,即可得到答案;(2)根据题意,将其他数字用、表示出来,然后根据值为51列方程,得到,再根据、的实际意义分析,即可得到答案;(3)根据,得到,再根据、的实际意义,找出满足条件的、的值,然后得出,即可求出最小值.【详解】(1)解:不能,理由如下:设“T ”型阴影覆盖的最小数字为,则其他数字分别为、、,,解得:,由月历可知,时,不能构成“T ”型阴影,即的值不能为79;(2)解:能,的值为或,理由如下:设“T ”型阴影覆盖的最小数字为,则“T ”型阴影覆盖的其他数字分别为、、,,设“田”型阴影覆盖的最小数字为b , “田”型阴影覆盖的其他数字分别为、、,,,整理得:,、都是正整数,当时,,满足条件;当时,,“田”型阴影条件不满足;当时,,满足条件;值能为51,此时的值为或;(3)解:由(2)可知,、、,585x =8136x =9153x =a 1513-a b a 1a +2a +8a +1S a a a b 12S S +6a b +=a b 12187S S =+40a b +=a b a b ()1245S S a b -=--a 1a +2a +8a +()()()112841179S a a a a a ∴=++++++=+=17a =17a =1S a 15a 1a +2a +8a +()()()1128411S a a a a a ∴=++++++=+1b +7b +8b +()()()2178416S b b b b b ∴=++++++=+12442751S S a b ∴+=++=6a b +=a b 1a =5b =2a =4b =5a =1b =12S S ∴+a 151411S a =+2416S b =+124427S S a b +=++,,,、都是正整数,满足条件的、的值为或或,,即当的值最小时,最小,当,时,有最小值,为,故答案为:22.(1)生产盲盒的工人人数为600人(2)该工厂应该安排250名工人生产,750名工人生产才能使每天生产的盲盒正好配套【分析】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.(1)设生产盲盒B 的工人人数为x 人,则生产盲盒A 的工人人数为人,根据该工厂共有1000名工人,列出一元一次方程,解方程即可;(2)设安排m 人生产盲盒A ,则安排人生产盲盒B ,根据盲盒大礼包由2个盲盒A 和3个盲盒B 组成.列出一元一次方程,解方程即可.【详解】(1)设生产的人数为人,则生产的人数为人,于是解得:(人)答:生产盲盒的工人人数为600人.(2)设安排人生产,则安排人生产于是解得:(人)答:该工厂应该安排250名工人生产,750名工人生产才能使每天生产的盲盒正好配套.23.(1)选择类卡(2)类卡通话200分钟,类卡通话350分钟12187S S =+ 4427187a b ∴++=40a b ∴+=a b ∴a b 1921a b =⎧⎨=⎩2020a b =⎧⎨=⎩2119a b =⎧⎨=⎩()()1241141644545S S a b a b a b -=+-+=--=-- a b -12S S -∴19=a 21b =12S S -()41921513⨯--=-13-A A B ()2200x -()1000m -B x A ()2200x -()22001000x x -+=400x =22002400200600x ∴-=⨯-=A m A ()1000m -B()3202101000m m ⨯=⨯-250m =10001000250750m ∴-=-=A B B A B(3)当通话时长小于50分钟时,选类卡;当通话时长等于50分钟时,选类卡或类卡皆可;当通话时长大于50分钟时,选类卡【分析】此题主要考查了一元一次方程的应用,根据题意分别表示出两种卡的费用是解题关键.(1)根据付费标准分别得出通话费用即可求解;(2)根据付费标准分别得出通话时间即可求解;(3)设他一个月通话时长为分钟,根据付费标准列出方程,求解即可.【详解】(1)解:由题意可得:类卡:(元),类卡:(元),∴他应该选择类卡.(2)由题意可得:类卡通话时间为:(分钟),类卡通话时间为:(分钟)答:类卡通话200分钟,类卡通话350分钟;(3)设他一个月通话时长为分钟,类卡付费关系式为:元,设通话分钟,类卡付费关系式为:元,则,解得:.所以,当通话时长小于50分钟时,选类卡;当通话时长等于50分钟时,选类卡或类卡皆可;当通话时长大于50分钟时,选类卡.24.(1)5;(2)35分;(3) 3场.【详解】解:(1)设这个球队胜x 场,则平(8-1-x )场,依题意可得3x+(8-1-x=17解得x=5;(2)打满14场最高得分17+(14-8)×3=35(分);(3)由题意可知,在以后的6场比赛中,只要得分不低于(12分)即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:(1)这支球队共胜了5场;(2)最高能得35分;(3)至少胜3场.【点睛】本题考查了一元一次不等式的运用,此类试题难度很大,考生解答此类问题时要求熟练把握一元一次不等式的基本性质运算.25.【小问1】9, 【小问2】或2A AB B x 0.6150.3x x =+A 1000.660⨯=B 1000.31545⨯+=B A 1200.6200÷=B ()120150.3350-÷=A B x A 0.6x x B ()150.3x +0.6150.3x x =+50x =A A B B 0.5-12-。
人教版七年级下学期第二次月考数学试卷(含答案解析)
人教版七年级下学期第二次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.下列计算正确的是()A.x2+x2=x4B.(2x)3=6x3C.(﹣2a﹣3)(2a﹣3)=9﹣4a2D.(2a﹣b)2=4a2﹣2ab+b22.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°3.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨4.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使点A、C、E在同一条直线上(如图),可以说明△ABC≌△EDC,得AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是()A.SAS B.HL C.SSS D.ASA5.某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,如图,l1、l2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数图象,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地6.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为()A.30°B.45°C.60°D.90°7.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B 恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°8.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点。
七年级上学期第二次月考数学 试卷及答案
七年级上学期第二次月考数学试卷一、精心选一选,相信自己的判断!(每小题3分,共计36分)1.(3分)3的相反数的倒数是()A.﹣3 B.+3 C.﹣D.2.(3分)用四舍五入法对0.03957(保留到千分位)取近似值为()A.0.039 B.0.040 C.0.0395 D.0.039473.(3分)在﹣(﹣3),﹣|﹣3|,(﹣3)2,﹣32这4个数中,属于负数的个数是()A.1B.2C.3D.44.(3分)0.1252008×(﹣8)2007的结果是()A.0.125 B.﹣0.125 C.1D.﹣15.(3分)方程x﹣=4的解题步骤如下:第一步:3x﹣x﹣4=12;第二步:3x﹣x=12+4;第三步:2x=16;第四步:x=8.错误开始于()A.第一步B.第二步C.第三步D.第四步6.(3分)西瓜每千克1元,买50千克以上按8折优惠,甲、乙两人所买西瓜的重量不同可付的钱相同,若甲买48千克,则乙买的西瓜重量是()A.48千克B.84千克C.64千克D.60千克7.(3分)正方体的棱长为a,当棱长增加x时,体积增加了()A.a3﹣x3B.x3C.(a+x)3﹣a3D.(a+x)3﹣x38.(3分)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.59.(3分)如图,在数轴上有a,b两个实数,则下列结论中,正确的是()A.a>﹣b B.|a|<|b| C.﹣ab>0 D.a+b>010.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米211.(3分)若xy>0,则+的值为()A.﹣2 B.2或﹣2 C.2D.0或212.(3分)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是()A.﹣2 B.0C.2D.不能确定二、细心填一填,试试自己的身手!(每小题3分,共计18分)13.(3分)若|x﹣2|+(y﹣3)2=0,则x y+(y﹣2x)2007的值是.14.(3分)如图,该图形是立体图形的展开图.15.(3分)某商品原来价格为m元,先降价20%再提价a元后的价格为元.16.(3分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,列车提速后的速度为.17.(3分)我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要分钟就能追上乌龟.18.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.三、用心做一做,显显自己的能力!(本大题共7小题,共计46分)19.(6分)计算:(1)﹣32÷3+(﹣)÷×(﹣4)+|﹣2|;(2)(+﹣)×(﹣60).20.(5分)解方程:=﹣1.21.(5分)若x=是方程=的解,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.22.(6分)如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图.23.(6分)在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.24.(8分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?25.(10分)某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元.(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共计36分)1.(3分)3的相反数的倒数是()A.﹣3 B.+3 C.﹣D.考点:倒数;相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:3的相反数是﹣3,3的相反数的倒数是﹣,故选:C.点评:本题考查了倒数,先求相反数再求倒数.2.(3分)用四舍五入法对0.03957(保留到千分位)取近似值为()A.0.039 B.0.040 C.0.0395 D.0.03947考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:0.03957≈0.040(保留到千分位).故选B.点评:本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.3.(3分)在﹣(﹣3),﹣|﹣3|,(﹣3)2,﹣32这4个数中,属于负数的个数是()A.1B.2C.3D.4考点:正数和负数.分析:先把各式化简,然后根据负数的定义判断即可.解答:解:﹣(﹣3)=3,﹣|﹣3|﹣3,(﹣3)2=9,﹣32=﹣9;所以属于负数的有﹣|﹣3|,﹣32;故选B.点评:判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(3分)0.1252008×(﹣8)2007的结果是()A.0.125 B.﹣0.125 C.1D.﹣1考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的法则求解.解答:解:0.1252008×(﹣8)2007=0.125×[0.125×(﹣8)]2007=﹣0.125.故选B.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.5.(3分)方程x﹣=4的解题步骤如下:第一步:3x﹣x﹣4=12;第二步:3x﹣x=12+4;第三步:2x=16;第四步:x=8.错误开始于()A.第一步B.第二步C.第三步D.第四步考点:解一元一次方程.专题:计算题.分析:方程两边乘以3去分母,去括号,移项合并,把x系数化为1,求出解,错误不为始于第一步.解答:解:错误始于第一步,原因为:去括号错误,正确步骤为:3﹣(x﹣4)=12,即3﹣x+4=12,故选A点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)西瓜每千克1元,买50千克以上按8折优惠,甲、乙两人所买西瓜的重量不同可付的钱相同,若甲买48千克,则乙买的西瓜重量是()A.48千克B.84千克C.64千克D.60千克考点:一元一次方程的应用.分析:设乙买了x千克西瓜,先求出甲买西瓜的花费,然后根据题意列出买50kg以上西瓜所需花费的代数式,根据所付钱数相等,列方程求解.解答:解:设乙买了x千克西瓜,由题意得,48×1=1×0.8x,解得:x=60,即乙买了60千克西瓜.故选D.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.7.(3分)正方体的棱长为a,当棱长增加x时,体积增加了()A.a3﹣x3B.x3C.(a+x)3﹣a3D.(a+x)3﹣x3考点:列代数式.分析:根据正方体的体积公式,用变化后的正方体体积减去原来的正方体体积即得答案.解答:解:根据题意,正方体的体积增加了(a+x)3﹣a3.故选C.点评:本题考查正方体的体积公式,是一道简单的基础题.8.(3分)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5考点:等式的性质.专题:应用题.分析:根据等式的性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立,可得答案.解答:解:一个球等于2.5个长方体,三个球等于个长方体;一个长方体等于正方体,个长方体等于5个正方体,即三个球体的重量等于5个正方体的重量,故选:D.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.9.(3分)如图,在数轴上有a,b两个实数,则下列结论中,正确的是()A.a>﹣b B.|a|<|b| C.﹣ab>0 D.a+b>0考点:实数大小比较;数轴.分析:由数轴上的数右边的数总是大于左边的数可以知道:a<0,0<b,|a|>|b|,利用a 到原点距离大于b到原点距离,再根据有理数的运算法则即可判断.解答:解:由图示知,a<0,0<b,|a|>b.A、根据a到原点距离大于b到原点距离得到:a<﹣b,故该选项错误;B、根据a到原点距离大于b到原点距离得到:|a|>|b|,故该选项错误;C、根据a<0,0<b得到:﹣ab>0,故该选项正确;D、根据a<0,0<b,得到:a﹣b<0,故该选项错误;故选:C.点评:此题主要考查的是利用在数轴上数比较大小,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.10.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米2考点:列代数式.分析:横档的长度为x米,则竖档的长度=(12﹣3x)÷2=6﹣1.5x,根据窗框的面积=长×宽求出答案.解答:解:竖档的长度=(12﹣3x)÷2=6﹣1.5x,∴窗框的面积=长×宽=x(6﹣1.5x)=x(6﹣x)米2.故选D.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.需注意,用字母表示数时,数字通常写在字母的前面,带分数的要写成假分数的形式.11.(3分)若xy>0,则+的值为()A.﹣2 B.2或﹣2 C.2D.0或2考点:绝对值.分析:由于xy>0,分x<0,y<0;x>0,y>0;两种情况讨论计算即可求解.解答:解:∵xy>0,∴x<0,y<0时,+=﹣1﹣1=﹣2;x>0,y>0时,+=1+1=2.∴+的值为2或﹣2.故选:B.点评:考查了绝对值,本题需要分情况讨论,难度中等.12.(3分)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是()A.﹣2 B.0C.2D.不能确定考点:有理数的乘方.分析:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.解答:解:(﹣1)2n+1+(﹣1)2n=﹣1+1=0.故选B.点评:本题考查了有理数的乘方,涉及知识点是:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.二、细心填一填,试试自己的身手!(每小题3分,共计18分)13.(3分)若|x﹣2|+(y﹣3)2=0,则x y+(y﹣2x)2007的值是7.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解答:解:∵|x﹣2|+(y﹣3)2=0,∴x﹣2=0,y﹣3=0,解得:x=2,y=3,则原式=8﹣1=7.故答案为:7点评:此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.14.(3分)如图,该图形是立体图形三棱柱的展开图.考点:几何体的展开图.分析:利用立体图形的展开图特征求解即可.解答:解:该图形是立体图形三棱柱的展开图.故答案为:三棱柱.点评:本题主要考查了几何体的展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.15.(3分)某商品原来价格为m元,先降价20%再提价a元后的价格为(0.8m+a)元.考点:列代数式.分析:降价后的价格是原价×(1﹣20%),即0.8m,再加上提价的a元即可求解.解答:解:(1﹣20%)m+a=0.8m+a(元).答:先降价20%再提价a元后的价格为(0.8m+a)元.故答案为:(0.8m+a).点评:考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.注意降价的基数是多少.16.(3分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,列车提速后的速度为256千米/小时.考点:一元一次方程的应用.分析:设列车提速前的速度是x千米/时,则提速后为(x+176)千米/时,根据提速前的时间与提速后的时间之间的等量关系建立方程求出其解就可以求出提速后的速度.解答:解:设列车提速前的速度是x千米/时,则提速后为(x+176)千米/时,由题意,得16x=(16﹣11)(x+176),x=80,提速后的速度为:x+176=256.答:列车提速后的速度为256千米/小时.故答案为:256千米/小时.点评:本题考查了路程=速度×时间的运用,列一元一次方程解实际问题的运用,设间接未知数的运用,在解答时根据时间之间的数量关系建立方程是解答本题的关键.17.(3分)我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要10分钟就能追上乌龟.考点:一元一次方程的应用.专题:行程问题.分析:在追及路程问题中,注意等量关系:小白兔追上乌龟所走的路程=乌龟所走的路程+落后的路程.解答:解:设小白兔大概需要x分钟就能追上乌龟,根据题意可得101x=x+1000解得x=10那么小白兔大概需要10分钟就能追上乌龟.点评:在此题中注意单位要统一.18.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.考点:规律型:数字的变化类.专题:压轴题.分析:根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n个数为解答:解:∵n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;n=3时,分子:8=(﹣1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(﹣1)5•24,分母:9=2×4+1;…,∴第n个数为:故答案为:点评:本题主要考查通过分析数的变化总结归纳规律,解题的关键在于求出分子、分母与n的关系.三、用心做一做,显显自己的能力!(本大题共7小题,共计46分)19.(6分)计算:(1)﹣32÷3+(﹣)÷×(﹣4)+|﹣2|;(2)(+﹣)×(﹣60).考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果.解答:解:(1)原式=﹣9×+×4×4+2=﹣3+8+2=7;(2)原式=﹣45﹣35+70=﹣10.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(5分)解方程:=﹣1.考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号,移项合并,把y系数化为1,即可求出解.解答:解:去分母得:8(y﹣1)=3(y+2)﹣12,去括号得:8y﹣8=3y+6﹣12,移项合并得:5y=2,解得:y=0.4.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.(5分)若x=是方程=的解,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.考点:解一元一次方程;代数式求值.专题:计算题.分析:由方程解的定义将x=代入方程求出m的值,原式去括号合并得到最简结果,将m的值代入计算即可求出值.解答:解:根据题意将x=代入方程得:=,去分母得:3﹣3m=2﹣4m,解得:m=﹣1,原式=﹣m2+m﹣2﹣m+1=﹣m2﹣1,当m=﹣1时,原式=﹣1﹣1=﹣2.点评:此题考查了解一元一次方程,以及代数式求值,求出m的值是解本题的关键.22.(6分)如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图.考点:作图-三视图.分析:主视图有3列,每列小正方形数目分别为2,1,1;左视图有2列,每列小正方形数目分别为1,2;俯视图有3列,每行小正方形数目分别为2,1,1.解答:解:如图所示:.点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.(6分)在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.考点:扇形统计图;条形统计图.专题:压轴题;图表型.分析:(1)扇形统计图中,各部分的数量=总体×所占百分比,据此求得各中型号的数量;(2)由题意得,,求解即可.解答:解:(1)240×55%=132,240×(1﹣55%﹣25%)=48,240×25%=60.(2)由题意得,,16(2a﹣2)=12×8解之,得a=4,经检验a=4是原分式方程的解.2a﹣2=2×4﹣2=6.点评:命题立意:考查扇形统计图及综合应用能力.24.(8分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?考点:一元一次方程的应用.分析:(1)设小玲每月上网x小时,利用A:费用=每分钟的费用×时间;B:费用=包月费+通信费,根据两种计费方式的收费相同列出方程,解方程即可;(2)如果一个月内上网的时间为65小时,根据两种收费方式分别计算费用,比较后即可回答问题.解答:解:(1)设小玲每月上网x小时,根据题意得(0.05+0.02)×60x=50+0.02×60x,解得x=.答:小玲每月上网小时;(2)如果一个月内上网的时间为65小时,选择A、计时制费用:(0.05+0.02)×60×65=273(元),选择B、月租制费用:50+0.02×60×65=128(元).所以一个月内上网的时间为65小时,采用月租制较为合算.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.(10分)某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元.(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.考点:一元一次方程的应用.分析:(1)设这个公司要加工x件新产品,则红星厂单独加工这批产品需天,巨星厂单独加工这批产品需要天,根据题意找出等量关系:红星厂单独加工这批产品需要的天数﹣巨星厂单独加工这批产品需要的天数=20,根据此等量关系列出方程求解即可.(2)应分为三种情况讨论:①由红星厂单独加工;②由巨星厂单独加工;③由两场厂共同加工,分别比较三种情况下,所耗时间和花费金额,求出即省钱,又省时间的加工方案.解答:解:(1)设这个公司要加工x件新产品,由题意得:﹣=20,解得:x=960.答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×(120+5)=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+120+5)=4920元.所以,由两厂合作同时完成时,即省钱,又省时间.点评:本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系列出方程.对于要求最符合要求类型的题目,应将所有方案,列出来求出符合题意的那一个即可.。
2024年粤人版七年级数学下册月考试卷465
2024年粤人版七年级数学下册月考试卷465考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏一、选择题(共7题,共14分)1、用一个平面去截一个正方体,截面不可能是()A. 四边形B. 五边形C. 六边形D. 七边形2、为了奖励学习有进步的学生,老师请小杰帮忙到文具店买了20本练习簿和10支水笔,共花了36元.已知每支水笔的价格比每本练习簿的价格贵1.2元,如果设练习簿每本为x元,水笔每支为y元,那么下面列出的方程组中正确的是()A. {20x+10y=36x−y=1.2B. {20x+10y=36y−x=1.2C. {10x+20y=36x−y=1.2D. {10x+20y=36y−x=1.23、两条直线相交构成四个角;给出下列条件:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等;其中能判定这两条直线垂直的有()A. 4个B. 3个C. 2个D. 1个4、函数y=x−1+3中自变量x的取值范围是()A. x>1B. x≥1C. x≤1D. x≠15、下列命题是真命题的有()①若a2=b2则a=b②内错角相等;两直线平行.③若ab是有理数,则|a+b|=|a|+|b|④如果∠A=∠B那么∠A与∠B是对顶角.A. 1个B. 2个C. 3个D. 4个6、已知4a5b2和是同类项.则代数式12m-24的值是()A. -3B. -4C. -5D. -67、据杭州市统计局公布的第六次人口普查数据,本市常住人口870.04万人,其中870.04万人用科学记数法表示为()A. 8.7004×105人B. 8.7004×106人C. 8.7004×107人D. 0.87004×107人评卷人得分二、填空题(共7题,共14分)8、在函数y=中,自变量x的取值范围是____.9、已知-x m+3y6与3x5y2n是同类项,则m n的值是 ______ .10、某一电子昆虫落在数轴上的某点K0,从K0点开始跳动,第1次向左跳1个单位长度到K1,第2次由K1向右跳2个单位长度到K2,第3次由K2向左跳3个单位长度到K3,第4次由K3向右跳4个单位长度到K4依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点K100表示的数恰好是2013,则电子昆虫的初始位置K0所表示的数是 ______ .11、已知和互为相反数,且x-y+4的平方根是它本身,则x=____,y=____.12、(2014秋•达州月考)使图中平面展开图折叠成正方体后,相对面上两个数互为相反数,则x=____,y=____.13、(2013春•西昌市校级月考)如图:想在河堤两岸搭建一座桥,图中搭建方式中,最短的是____,理由____.14、写出一个点的坐标,其积为-10,且在第二象限为______。
陕西省西安市西北工业大学附属中学2023-2024学年七年级上学期第二次月考数学试题(有答案)
陕西省西安市西北工业大学附属中学2023-2024学年七年级上学期第二次月考数学试题一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)﹣|﹣5|=( )A.5B.﹣C.﹣5D.2.(3分)如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状图为( )A.B.C.D.3.(3分)2019年长沙市地区生产总值约为11500亿元,数据11500用科学记数法表示为( )A.0.115×105B.11.5×103C.1.15×104D.1.15×103 4.(3分)下列调查,适合用普查方式的是( )A.了解西安市居民的年人均消费B.了解某一天西安市的人口流量C.了解西安电视台《百家碎戏》栏目的收视率D.了解西安翱翔中学七年级某班同学100米短跑成绩5.(3分)在一个半径为2cm的圆内,有一个圆心角为60°的扇形,这个扇形的面积为( )A.B.2πcm2C.D.4πcm26.(3分)如图,两艘轮船A,B分别在海岛O的北偏东40°方向和东南方向上,则两船A,B与海岛O形成的夹角∠AOB的度数为( )A.85°B.80°C.90°D.95°7.(3分)下列说法:①若一个数的相反数等于它本身,则这个数是0;②若线段AC=BC,则点C为线段AB的中点;③若,则a=b;④经过一点,有且只有一条直线.正确的有( )A.1个B.2个C.3个D.4个8.(3分)按一定规律排列的单项式:2x,4x3,8x5,16x7,32x9,64x11,…,则第n个单项式是( )A.2n x n+1B.2n x n﹣1C.2n x2n﹣1D.2n x2n+19.(3分)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是( )A.8(x﹣3)=7(x+4)B.8x+3=7x﹣4C.=D.=10.(3分)已知:线段AB,点P是直线AB上一点,直线上共有3条线段:AB,PA和PB,若其中有一条线段的长度是另一条线段长度的两倍,则称点P是线段AB的“中南点”,线段AB的“中南点”的个数是( )A.9B.6C.8D.3二、填空题(共5小题,每小题3分,计15分)11.(3分)单项式﹣5a2b m+2与3a n+5b是同类项,那么m﹣n= .12.(3分)指针式钟表上,9:40时分针与时针形成角的度数为 .13.(3分)不超过(﹣)3的最大整数是 .14.(3分)如果x=5时,代数式ax5+bx﹣7的值为9,那么x=﹣5时,代数式的值为 .15.(3分)已知∠MON=70°,OA为∠MON所在平面内的一条射线,若OB平分∠AOM,OC平分∠AON,则∠BOC的度数为 .三、解答题(共8小题,计55分,解答应写出过程)16.(8分)计算:(1)()×(﹣8);(2)﹣14﹣(﹣32)÷×|(﹣2)2﹣7|.17.(8分)解方程:(1)﹣2(3x﹣4)=8﹣3(x﹣5);(2).18.(5分)先化简,再求值:2a﹣4b﹣[3abc﹣2(2b﹣a)]÷2abc,其中.19.(5分)如图,已知线段a,线段b,请用尺规作图的方法作一条线段MN,使MN=2a ﹣b.(不写作法,保留作图痕迹)20.(5分)如图,点B在线段AC上,O是线段AC的中点,且AB=24cm,.求线段OB的长.21.(6分)某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?22.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a+1 0,2﹣b a﹣c;(2)|b﹣c|= ;(3)化简:|c﹣3|+|c﹣b|﹣|b+1|.23.(10分)探索并解决下列问题:.(1)如图1,长方形ABCD的边AB=6cm,BC=4cm,点P从点B出发,沿BC→CD→DA的路径以每秒2cm的速度运动,到达点A时停止运动.设运动时间为t(s).①用含t的代数式表示三角形APB的面积;②当三角形APB的面积为6时,求t的值.(2)如图2,已知长方形ABCD,以它的对角线AC为边作另一个长方形AEFC,其中EF 经过点B.现有一点P在长方形ABCD内随意运动,连接AP和PC.若三角形ACD的面积为24cm2,AE=4.8cm,那么随着点P的运动,封闭图形PAEFC的周长是否有最小值?如果有,请求出这个最小值;如果没有,请说明理由.参考答案一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.C;2.C;3.C;4.D;5.A;6.D;7.B;8.C;9.D;10.A;二、填空题(共5小题,每小题3分,计15分)11.2;12.50°;13.﹣5;14.﹣1;15.35°;三、解答题(共8小题,计55分,解答应写出过程)16.(1)5;(2)80.;17.(1)x=﹣5;18.﹣.;19.解:如图,作一条射线OM,在射线OM上截取OA=2a,再在线段OA上截取OB=b,则线段BA即为所求.;20.8cm.;21.解:设分配x人生产甲种零件,则共生产甲零件24x个和乙零件12(60-x),解得x=15,60-15=45(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.22.<;>;c﹣b;23.(1)①;②t=1或t=6;(2)29.6 cm;。
天津市和平区2022-2023学年七年级数学上册第二次月考测试题(附答案)
2022-2023学年七年级数学上册第二次月考测试题(附答案)一、单选题(共36分)1.下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.上升10米和下降7米C.超过0.05mm与不足0.03mD.增大2岁与减少2升2.如图所示的几何体是由六个相同的小正方体组合而成的,从它左面看到的形状图是()A.B.C.D.3.下列叙述中,正确的是()A.有理数分正有理数和负有理数B.绝对值等于本身数是0和1 C.互为相反数的两个数的三次方仍是互为相反数D.是分数4.单项式的系数和次数分别是()A.和6B.和6C.﹣2和6D.和45.如果k(k﹣2)x3﹣(k﹣2)x2﹣9是关于x的二次多项式,则k的值是()A.0B.2C.0或2D.不能确定6.若干人做某项工作,每个人的工作效率相同,m个人做n天可完成,如果增加a人,则完成这项工作所需天数为()A.n﹣a B.C.D.n+a7.在方程①3x+y=4,②2x﹣=5,③3y+2=2﹣y,④2x2﹣5x+6=2(x2+3x)中,是一元一次方程的个数为()A.1个B.2个C.3个D.4个8.下列等式变形中正确的是()A.若x=y,则=B.若a=b,则a﹣3=3﹣bC.若2πr1=2πr2,则r1=r2D.若=,则a=c9.一船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm,则下列方程正确的是()A.(20+4)x+(20﹣4)x=15B.20x+4x=5C.D.10.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元11.下列说法:①|a|=﹣a,则a为负数;②若|a|﹣|b|=a+b,则a≥0≥b;③若a>0,a+b >0,ab≤0,则|a|>|b|;④若|a+b|=|a|﹣|b|,则ab≤0,其中正确的有()个.A.1 个B.2个C.3个D.4个12.已知a,b,c,x为实数,且c<a<b,代数式|x﹣|+|x﹣|+|x﹣|的最小值是()A.B.C.D.二、填空题(共18分)13.已知a2+5ab=76,3b2+2ab=51,则a2+11ab+9b2=.14.用小立方块搭一个几何体,如图所示,这样的几何体最少需要个小立方块,最多需要个小立方块.15.有一数值转换器,原理如图所示,如果开始输入x的值是4.则第一次输出的结果是5,第二次输出的结果是8,……那么第2022次输出的结果是.16.数轴上A、B、C、D四点对应的数都是整数,若点A对应的数为a,点B对应的数为b,且b﹣2a=7,则数轴上的原点应是点.17.设有理数a,b,c满足a+b+c=0及abc>0,若x=,y=|b+c|﹣|a|﹣3,则x2﹣y3的值为.18.【阅读】计算1+3+32+33+……+3100的值.令S=1+3+32+33+……+3100,则3S=3+32+33+……+3101,因此3S﹣S=3101﹣1,所以S=,即S=1+3+32+33+……+3100=.依照以上推理,计算:1﹣5+52﹣53+54﹣55+……+52018﹣52019+=.三、解答题(共66分)19.计算:(1)3.587﹣(﹣5)+(﹣5)+(+7)﹣(+3)﹣(+1.587)(2)(﹣1)5×{[﹣4÷(﹣2)2+(﹣1.25)×(﹣0.4)]÷(﹣)﹣32}20.解下列方程:(1)=(2)=(3)278(x﹣3)﹣463(6﹣2x)﹣888(7x﹣21)=0(4){()﹣3]﹣3}﹣3=021.一般情况下+=不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得+=成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)写出一个“相伴数对”(a,b),其中a,b为整数且a≠0;(3)若(m,n)是“相伴数对”,求代数式m﹣n﹣[4m﹣2(3n﹣1)]的值.22.有理数a,b在数轴上的对应点位置如图所示:(1)化简:|a|+|a+b|﹣2|a﹣b|;(2)若a与﹣的距离等于b与﹣的距离,求﹣3(a+b)+5的值.23.把四张形状大小相同的小长方形卡片如图①不重叠的放在一个长为m,宽为n的长方形内.该长方形内部未被卡片覆盖的部分用阴影表示.(1)能否用只含n的式子表示出图中两块阴影部分的周长和?(填“能”或“不能”)(2)若能,请你用只含n的式子表示出图中两块到阴影部分的周长和;若不能,请说明理由.24.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?25.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+3|+(c﹣9)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动,假设t秒钟过后,A、B、C三点中恰有一点为另外两点的中点,求t的值;(4)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小聪同学发现:当点C在B点右侧时,m•BC+3AB的值是个定值,求此时m的值.参考答案一、单选题(共36分)1.解:增大2岁与减少2升不是互为相反意义的量.故选:D.2.解:观察几何体,从左面看到的图形有两列,从左到右每列正方形的个数分别为2,1.故选:C.3.解:A、有理数分为正有理数和负有理数和0,故本选项错误;B、绝对值等于其本身的数是0和正数,故本选项错误;C、互为相反数的两个数的三次方仍是互为相反数,故本选项正确;D、不是分数,是无理数,故本选项错误.故选:C.4.解:单项式的系数和次数分别是:﹣,6.故选:A.5.解:∵多项式k(k﹣2)x3+kx2﹣2x﹣6是关于x的二次多项式,∴不含x3项,即k(k﹣2)=0,且﹣(k﹣2)≠0,解得k=0;故k的值是0.故选:A.6.解:∵工作总量为mn,增加a人后人数为m+a,完成这项工作所需天数为,故选:B.7.解:①3x+y=4中含有2个未知数,属于二元一次方程,不符合题意,②2x﹣=5是分式方程,不符合题意;③3y+2=2﹣y符合一元一次方程的定义,符合题意;④由2x2﹣5x+6=2(x2+3x)得到:﹣11x+6=0符合一元一次方程的定义,符合题意;故选:B.8.解:∵若x=y,a=2时,则=不成立,∴选项A不符合题意;∵若a=b,则a﹣3=b﹣3,∴选项B不符合题意;∵若2πr1=2πr2,则r1=r2,∴选项C符合题意;∵若=,b、d的大小关系不知道,则a=c不一定成立,∴选项D不符合题意.故选:C.9.解:若设甲、乙两码头的距离为xkm,由题意得:+=5,故选:D.10.解:设这种衬衫的原价是x元,依题意,得:0.6x+40=0.9x﹣20,解得:x=200.故选:C.11.解:①a为非正数时,|a|=﹣a,①错误;②若|a|﹣|b|=a+b,则|a|﹣|b|=a﹣(﹣b)则a≥0,b≤0,所以a≥0≥b,②正确;③ab≤0,则说明a,b异号,a>0,a+b>0,说明|a|>|b|;③正确;④若|a+b|=|a|﹣|b|,说明ab异号,所以ab≤0,若ab同号,则|a+b|=|a|+|b|,④正确;所以②③④正确;故选:C.12.解:∵c<a<b,∴a+b>b+c>a+c,∴当x=时,|x﹣|+|x﹣|+|x﹣|的最小值,即|x﹣|+|x﹣|+|x﹣|=﹣=,故选:C.二、填空题(共18分)13.解:∵a2+5ab=76,3b2+2ab=51,∴a2+11ab+9b2=a2+5ab+3(3b2+2ab)=76+3×51=229.故答案为:229.14.解:综合正视图和俯视图,这个几何体的底层最少要6个小立方块,最多也需要6个小立方块.第二层最少要2个小立方块,最多要4个,第三层最少要1个,最多要3个,因此这样的几何体最少要6+2+1=9个,最多要6+4+3=13个.故答案为9,1315.解:开始输入x的值是4.则第一次输出的结果是5,第二次输出的结果是8,第三次输出的结果是7,第四次输出的结果是10,第五次输出的结果是8,发现规律:从第二次输出的结果开始,每三个结果为一组循环,……那么第2022次输出的结果是:(2022﹣1)÷3=673 (2)∴第2022次输出的结果是7.故答案为7.16.解:根据题意得:,解得:.则原点是C.故答案为:C.17.解:∵有理数a,b,c满足a+b+c=0及abc>0,∴b+c=﹣a,∴假设a>0,b<0,c<0,即|a|=|b|+|c|,∴y=|b+c|﹣a﹣3=﹣3,x=1﹣1﹣1=﹣1则x2﹣y3=(﹣1)2﹣(﹣3)3=1+27=28.则x2﹣y3的值为28.故答案为28.18.解:令S=1﹣5+52﹣53+54﹣55+……+52018﹣52019,则5S=5﹣52+53﹣54+55+……﹣52018+52019﹣52020,因此5S+S=1﹣52020,所以S=所以1﹣5+52﹣53+54﹣55+……+52018﹣52019+=+=.故答案为.三、解答题19.解:(1)原式=(3.587﹣1.587)+(5+7)+(﹣5﹣3)=2+12﹣8=5;(2)原式=﹣1×[(﹣4×+0.5)×(﹣9)﹣9]=﹣1×(6﹣9)=3.20.解:(1)=去分母得,2(x﹣1)﹣(x+2)=3(4﹣x),去括号,可得:2x﹣2﹣x﹣2=12﹣3x,移项合并同类项得,4x=16,系数化为1得,x=4.(2)原方程可变形为:0.8+1.8﹣=去分母,得15.6﹣6﹣4x=3x﹣15,移项合并同类项,得7x=24.6,系数化为1得,x=3.(3)278(x﹣3)﹣463(6﹣2x)﹣888(7x﹣21)=0去括号得,278x﹣834﹣2778+926x﹣6216x+18648=0,移项、合并同类项得,﹣5012x=﹣15036,系数化为1得,x=3.(4){()﹣3]﹣3}﹣3=0移项,得{()﹣3]﹣3}=3,方程的两边都乘以2,得()﹣3]=9,方程的两边都乘以2,得()=21,方程的两边都乘以2,得x=45,方程的两边都乘以2,得x=90.21.解:(1)根据题中的新定义得:+=,去分母得:15+10b=6+6b,解得:b=﹣;(2)(4,﹣9)答案不唯一;(3)由题意得:+=,整理得:9m+4n=0,则原式=m﹣n﹣4m+6n﹣2=﹣3m﹣n﹣2=﹣(9m+4n)﹣2=﹣2.22.解:(1)由数轴可得:﹣2<a<﹣1,0<b<1,则a+b<0,a﹣b<0,故原式=﹣a﹣(a+b)+2(a﹣b)=﹣a﹣a﹣b+2a﹣2b=﹣3b;(2)∵a与﹣的距离等于b与﹣的距离,∴b﹣(﹣)=﹣﹣a,则a+b=﹣,∴﹣3(a+b)+5=2+5=7.23.解:(1)能用只含n的式子表示出图中两块阴影部分的周长和;(2)设小长方形的长为a,宽为b,上面的长方形周长:2(m﹣a+n﹣a),下面的长方形周长:2(m﹣2b+n﹣2b),两式联立,总周长为:2(m﹣a+n﹣a)+2(m﹣2b+n﹣2b)=4m+4n﹣4(a+2b),∵a+2b=m(由图可得),∴阴影部分总周长为4m+4n﹣4(a+2b)=4m+4n﹣4m=4n.故答案是:设小长方形的长为a,宽为b,上面的长方形周长:2(m﹣a+n﹣a),下面的长方形周长:2(m﹣2b+n﹣2b),两式联立,总周长为:2(m﹣a+n﹣a)+2(m﹣2b+n﹣2b)=4m+4n﹣4(a+2b),∵a+2b=m(由图可得),∴阴影部分总周长为4m+4n﹣4(a+2b)=4m+4n﹣4m=4n.故答案为:能.24.解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算25.解:(1)∵|a+3|+(c﹣9)2=0,∴a+3=0,c﹣9=0,解得a=﹣3,c=9,∵b是最小的正整数,∴b=1;故答案为:﹣3,1,9.(2)点A与点C的中点对应的数为:=3,点B到3的距离为2,所以与点B重合的数是:3+2=5.故答案为:5.(2)t秒后,点A、B、C的表示的数分别为:﹣3﹣2t,1﹣t,9﹣4t,由中点公式得:AB、AC、BC的中点分别为:,,,由题意得:=9﹣4t,则t=4,=1﹣t,则t=1,=﹣3﹣2t,则t=16,故:t的值为4或1或16;(3)m•BC+3AB=m(9﹣4t﹣1+t)+3(1﹣t+3+2t)=8m+12+3t(1﹣m),故:当m=1时,m•BC+3AB为定值20.。
最新2022-2022年七年级下第二次月考数学试卷含答案
七年级(下)第二次月考数学试卷一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个角不是(bù shi)对顶角,则这两个角不相等D.所有(suǒyǒu)的对顶角相等2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2 5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y27.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.8.(3分)计算(jì suàn)的结果(jiē guǒ)是()A.﹣B.C.﹣D.9.(3分)在同一平面内,有8条互不重合(chónghé)的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推(yǐ cǐ lèi tuī),则l1和l8的位置(wèi zhi)关系是()A.平行B.垂直C.平行或垂直D.无法确定10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为米(精确到米).12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP5cm(填写<或>或=或≤或≥)14.(3分)若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.15.(3分)若一个角是34°,则这个角的余角是°.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作(cāozuò),分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点(jiāodiǎn)为E n.若∠E n=1度,那∠BEC等于(děngyú)度三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数(jiā shù)起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择(xuǎnzé)若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到(dá dào)预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样(zhèyàng)的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.21.问题(wèntí)再现:数形结合是解决数学问题的一种(yī zhǒnɡ)重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形(túxíng)的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成(xíngchéng)两个矩形和两个正方形,如图1:这个图形的面积可以(kěyǐ)表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面(shàng miɑn)的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接(zhíjiē)写出结论即可,不必写出解题过程)22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.23.已知,AB∥CD,点E为射线(shèxiàn)FG上一点.(1)如图1,直接(zhíjiē)写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案与试题(shìtí)解析一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个(liǎnɡ ɡè)角不是对顶角,则这两个角不相等D.所有的对顶角相等【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∴选项A、C错误;根据对顶角的性质:对顶角相等;∴选项D错误;故选:B.2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【解答】解:A、∵a∥b,b∥c,∴a∥c,故本选项符合(fúhé)题意;B、在同一(tóngyī)平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合(fúhé)题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合(fúhé)题意;D、当a∥b,b∥c时,a∥c,故本选项不符合(fúhé)题意;故选:A.4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2【解答】解:∵(a4)3=a12,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵(ab)3=a3b3,∴选项C符合题意;∵(a+b)2=a2+b2+2ab,∴选项D不符合题意.故选:C.5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y2【解答(jiědá)】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解(fēnjiě)正确;B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;故选:A.7.(3分)下列图形中,线段(xiànduàn)AD的长表示点A到直线BC距离的是()A.B.C.D.【解答(jiědá)】解:线段AD的长表示点A到直线(zhíxiàn)BC距离的是图D,故选:D.8.(3分)计算的结果是()A.﹣B.C.﹣D.【解答】解:原式=(﹣×1.5)2021×(﹣1.5)=﹣1.5=﹣,故选:A.9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法(wúfǎ)确定【解答(jiědá)】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.10.(3分)算式(suànshì)(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6【解答(jiědá)】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1=(24﹣1)×(24+1)×…×(232+1)+1=(232﹣1)×(232+1)+1=264﹣1+1=264,因为(yīn wèi)21=2,22=4,23=8,24=16,25=32,所以底数为2的正整数次幂的个位数是2、4、8、6的循环,所以264的个位数是6.故选:D.二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为106米(精确到米).【解答】解:在图形上测量知B,C两楼之间的距离为106米.12.(3分)如图,已知AB∥CD,F为CD上一点(yī diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数(dù shu)为整数,则∠C的度数(dù shu)为36°或37°.【解答(jiědá)】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角(wài jiǎo),∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.13.(3分)直线a外有一定点A,A到直线a的距离(jùlí)是5cm,P是直线a 上的任意一点,则AP≥5cm(填写(tiánxiě)<或>或=或≤或≥)【解答(jiědá)】解:根据题意,得A到直线(zhíxiàn)a的垂线段的长是5cm,由垂线(chuí xiàn)段最短,得AP≥5cm.故填:≥.14.(3分)若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.15.(3分)若一个角是34°,则这个角的余角是56°.【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,故答案为:56.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于2n 度【解答(jiědá)】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点(jiāodiǎn)为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点(jiāodiǎn)为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点(jiāodiǎn)为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推(yǐ cǐ lèi tuī),∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现(fāxiàn):从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后(ránhòu)在①式的两边(liǎngbiān)都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.【解答(jiědá)】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093;(2)1+a+a2+a3+…+a2021(a≠0且a≠1)═[(1+a+a2+a3+…+a2021)×a﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=[(a+a2+a3+…+a2021+a2021)﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=(a2021﹣1)÷(a﹣1)=.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据两直线平行,同位角相等得∠1=∠A=67°所以,∠CBD=23°+67°=90°;根据(gēnjù)同旁内角(tónɡ pánɡ nèi jiǎo)互补,两直线平行当∠ECB+∠CBD=180°时,可得CE∥AB.所以(suǒyǐ)∠ECB=90°此时CE与BC的位置(wèi zhi)关系为垂直(chuízhí).【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.【解答(jiědá)】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置(zhuāngzhì)安装在这4个小正方形对角线的交点处,此时(cǐ shí),每个小正方形的对角线长为,每个转发装置都能完全覆盖一个(yī ɡè)小正方形区域,故安装(ānzhuāng)4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段(xiànduàn)CB 上,OB平分∠AOF,OE平分(píngfēn)∠COF.(1)请在图中找出与∠AOC相等的角,并说明(shuōmíng)理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时(cǐ shí),∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合(chónghé),所以(suǒyǐ),不存在.21.问题(wèntí)再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数(dàishù)公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试(chángshì)解决:(2)请你类比上述推导(tuīdǎo)过程,利用图形的几何意义确定:13+23+33= 62.(要求写出结论(jiélùn)并构造图形写出推证过程).(3)问题(wèntí)拓广:请用上面的表示几何图形面积(miàn jī)的方法探究:13+23+33+…+n3=[n (n+1)]2.(直接写出结论即可,不必写出解题过程)【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案(dá àn)为:62;(3)由上面表示几何图形的面积(miàn jī)探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案(dá àn)为:[n(n+1)]2.22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.【解答(jiědá)】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.23.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分(píngfēn)∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数(dù shu).【解答(jiědá)】解:(1)∠AED=∠EAF+∠EDG.理由(lǐyóu):如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明(zhèngmíng):如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分(píngfēn)∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°﹣20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角(wài jiǎo),∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.内容总结(1)+a2021(a≠0且a≠1)的值.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093。
七年级下第二次月考数学试题及答案
七年级第二次月水平测试数学试卷时间100分钟 满分120分一、选择题(每题3分,共30分)1.有下列长度的三条线段,能组成三角形的是( )A 、3cm 4cm 8cm 、、 B 、4cm 4cm 8cm 、、 C 、5cm 6cm 10cm 、、 D 、2cm 5cm 10cm 、、 2.已知有长为1、2、3的线段若干条,任取其中三条构造三角形,则最多能构成形状或大小不同的三角形个数是( )A 、5B 、6C 、7D 、83.下列说法①任意一个三角形的三条高至少有一条在此三角形内部;②一个多边形从一个顶点共引出三条对角线,此多边形一定是五边形;③一个三角形中,至少有一个角不小于060;④以a 为底的等腰三角形其腰长一定大于2a ;⑤以cb a ,,为边,且c b a >+能构成一个三角形 ;⑥一个多边形增加一条边,那么它的外角均增加0180.其中正确的是( )A 、①②③④B 、①③④⑤C 、③④⑤⑥D 、①②③⑥4.如图所示,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )5.下列结论错误的是( )A 、等边三角形是轴对称图形B 、轴对称图形的对应边相等,对应角相等C 、成轴对称的两条线段必在对称轴同侧D 、成轴对称的两个图形的对应点的连线被对称轴垂直平分6.两个图形关于某直线对称,对称点一定是( )A 、这条直线的两旁B 、这条直线的同旁C 、这条直线上D 、这条直线两旁或这条直线上7.甲、乙、丙、丁四名同学在讨论数学问题时作了如下发言:甲:因为三角形中最多有一个钝角,因此三角形的外角之中最多只有一个锐角;乙:在求n 个角都相等的n 边形的一个内角的度数时,可用结论: 180°-n 1×360°; 丙:多边形的内角和总比外角和大;丁:n 边形的边数每增加一条,对角线就增加n 条.四位同学的说法正确的是( ).A 、甲、丙B 、乙、丁C 、甲、乙D 、乙、丙8.如果三角形的一个外角与它不相邻的两内角的和为180º,那么与这个外角相邻的内角等于( )A 、30ºB 、60ºC 、90ºD 、120º9.一个多边形的内角和比它的外角和的3倍少0180,这个多边形的边数是( )A 、5条B 、6条C 、 7条D 、8条10.下列正多边形的组合中,能够铺满地面的是( )A 、正八边形和正方形B 、正五边形和正八边形C 、正六边形和正三角形D 、正五边形和正六边形二、填空题(每题3分,共30分)11.把一张正方形纸沿两对角线对折两次,形成了四个同样大小的三角形.12.工人师傅在做完门框后.为防小变形常常像图1中所示的那样上两条斜拉的木条(即图1中的AB ,CD ),这样做根据的数学道理是 .13.如图2 ,⊿ABC 中,AD 是∠BAC 的平分线,AE 是BC 边上的高,已知∠B=47º∠C=73º,则∠DAE= .14.如图3,AD 是△ABC 的外角平分线,∠B=30º,∠DA E=55º,则∠ACD= .15.等腰三角形的周长为12,则腰长a 的取值范围是 .16.一个多边形减少一条边,它的内角和减少 度,如果一个多边形减少一条边后,内角和为1260度,那么原来的多边形的边数为 .17.n边形的内角和等于t边形的外角和的2倍,则n= .18.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是,内角和是.19.一个多边形的每一个内角都相等,并且它的一个外角与一个内角之比为2:3,则这个多边形是边形.20.如图4三、解答题(7个小题,共60分)21.(10分)如图,四边形ABCD中,∠A=∠C=90°,B E平分∠ABC,DF平分∠ADC,试问BE与DF平行吗?为什么?22.(10分)如图,∠ACD是△ABC的一个外角,∠ABC和∠ACD的平分线BE、CE交于一点E,试说明∠A=2∠E.23.(9分)过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求n( 的值.pm)24.(8分)已知等腰三角形的周长为28厘米,①底边长和腰长之比为3:2,求各边长;②底边比腰小2厘米,求各边长.25、(6分)请用1个等腰三角形,2个长方形,3个圆设计一个轴对称图形,并用简炼的文字说明你的创意。
陕西省西安市重点中学2023-2024学年七年级上学期第二次月考数学试卷(含解析)
2023-2024学年陕西省西安市重点中学七年级(上)第二次月考数学试卷一.选择题(共10小题)1.(3分)下列方程为一元一次方程的是( )A.x+2y=3B.y+3=0C.x2﹣2x=0D.+y=02.(3分)我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )A.2.15×107B.0.215×108C.2.15×106D.21.5×1063.(3分)下列变形中,不正确的是( )A.若a﹣c=b﹣c,则a=bB.若,则a=bC.若a=b,则D.若ac=bc,则a=b4.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是( )A.3cm B.3.5cm C.4cm D.4.5cm5.(3分)有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是( )A.a﹣b>0B.a+b>0C.ab>0D.b﹣a=|a|+|b|6.(3分)下列叙述正确的是( )A.a的系数是0,次数为1B.单项式5xy3z4的系数为5,次数是7C.当m=3时,代数式10﹣3m2等于1D.多项式2ab﹣3a﹣5次数为2,常数项为﹣57.(3分)钟表10点30分时,时针与分针所成的角是( )A.120°B.135°C.150°D.225°8.(3分)如图,OC平分∠AOD,OD平分∠BOC,下列等式中不成立的是( )A.∠COA=∠BOC B.∠COD=∠BODC.∠AOC=∠AOD D.∠AOC=∠AOB9.(3分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x10.(3分)观察下列图形:已知图n中有2023有颗星,则n为( )A.644B.654C.664D.674二.填空题(共6小题)11.(3分)若3x4y m与﹣2x4y2是同类项,则m= .12.(3分)90°﹣78°28′56″= .13.(3分)若从n边形的一个顶点出发,最多可以引5条对角线,则n= .14.(3分)已知a、b互为相反数,c、d互为倒数,|m|=1,则的值为 .15.(3分)如果x=3是方程﹣ax﹣b=5﹣2x的解,那么3﹣6a﹣2b= .16.(3分)如图,已知直线l上的三条线段分别为:AB=4,BC=24,CD=8,将线段CD固定不动,线段AB 以每秒4个单位的速度向右运动,M、N分别为AB、CD中点,设线段AB的运动时间为t,当7.5≤t≤9时,MN+AD= .三.解答题(共8小题)17.计算:(1)(﹣2)2+|﹣4|;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b).18.解方程:(1)2x﹣1=5x+2;(2).19.先化简,再求值:已知代数式,其中x=3,y=﹣3.20.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).21.已知,如图B、C两点把线段AD分成2:5:3三部分,M是AD的中点,CM=6cm,则线段AD的长为多少厘米?22.某校准备组织学生参观博物馆,每张门票30元.已知购买团体票有两种优惠方案,方案一:全体人员打7折;方案二:若打8折,有5人可免票.(1)一班有45名学生,选择哪种方案更优惠?(2)二班无论选择哪种方案,需支付购买门票的费用相同,求二班的学生人数.(用一元一次方程求解)23.如图,已知∠AOB=120°,∠COD是∠AOB内的一个角,且∠COD=50°,OE是∠AOC的平分线,OF 是∠BOD的平分线,求∠EOF的度数.24.如图,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O 在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 度.2023-2024学年陕西省西安市重点中学七年级(上)第二次月考数学试卷参考答案与试题解析一.选择题(共10小题)1.(3分)下列方程为一元一次方程的是( )A.x+2y=3B.y+3=0C.x2﹣2x=0D.+y=0【分析】根据一元一次方程的定义即可求出答案.【解答】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,故选:B.【点评】本题考查一元一次方程,解题的关键是正确理解一元一次方程的定义,本题属于基础题型.2.(3分)我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )A.2.15×107B.0.215×108C.2.15×106D.21.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将21500000用科学记数法表示为:2.15×107.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列变形中,不正确的是( )A.若a﹣c=b﹣c,则a=bB.若,则a=bC.若a=b,则D.若ac=bc,则a=b【分析】根据等式的性质逐个判断即可.【解答】解:A.∵a﹣c=b﹣c,∴a﹣c+c=b﹣c+c,即a=b,故本选项不符合题意;B.=,乘c,得a=b,故本选项不符合题意;C.a=b,除以c2+2,得=,故本选项不符合题意;D.当c=0时,由ac=bc不能推出a=b,故本选项符合题意.故选:D.【点评】本题考查了等式的性质,能熟记等式的性质是解此题的关键,①等式的性质1:等式的两边都加(或减)同一个数或式子,等式仍成立,②等式的性质2:等式的两边都乘同一个数,等式仍成立,等式的两边都除以同一个负数,等式仍成立.4.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是( )A.3cm B.3.5cm C.4cm D.4.5cm【分析】根据线段中点的定义求出AC,再根据BC=AB﹣AC计算即可得解.【解答】解:∵点D是AC的中点,∴AC=2CD=2×3=6cm,∴BC=AB﹣AC=10﹣6=4cm.故选:C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念并准确识图是解题的关键.5.(3分)有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是( )A.a﹣b>0B.a+b>0C.ab>0D.b﹣a=|a|+|b|【分析】分别判断即可.【解答】解:(A)∵a<0<b,∴a﹣b<0,∴A不符合题意;(B)∵a<0<b,当|a|=|b|,时a+b=0,当|a|>|b|,时a+b<0,当|a|<|b|,时a+b>0,∴B不符合题意;(C)∵a<0<b,∴ab<0,∴C不符合题意;(D)∵a<0<b,∴﹣a>0,∴|b|=b,|a|=﹣a,∴b﹣a=b+(﹣a)=|a|+|b|,∴D符合题意.故选:D.【点评】本题考查数轴和绝对值,掌握数轴上数的特点是解题的关键.6.(3分)下列叙述正确的是( )A.a的系数是0,次数为1B.单项式5xy3z4的系数为5,次数是7C.当m=3时,代数式10﹣3m2等于1D.多项式2ab﹣3a﹣5次数为2,常数项为﹣5【分析】根据单项式的系数,次数,多项式的次数及常数项,代数式的值逐项判断即可.【解答】解:a的系数是1,次数为1,则A不符合题意;单项式5xy3z4的系数为5,次数是8,则B不符合题意;当m=3时,代数式10﹣3m2=10﹣3×9=﹣17,则C不符合题意;多项式2ab﹣3a﹣5次数为2,常数项为﹣5,则D符合题意;故选:D.【点评】本题考查单项式和多项式,熟练掌握相关定义是解题的关键.7.(3分)钟表10点30分时,时针与分针所成的角是( )A.120°B.135°C.150°D.225°【分析】根据时钟上一大格是30°进行计算即可解答.【解答】解:由题意得:4×30°+×30°=135°,∴钟表10点30分时,时针与分针所成的角是:135°,故选:B.【点评】本题考查了钟面角,熟练掌握时钟上一大格是30°是解题的关键.8.(3分)如图,OC平分∠AOD,OD平分∠BOC,下列等式中不成立的是( )A.∠COA=∠BOC B.∠COD=∠BODC.∠AOC=∠AOD D.∠AOC=∠AOB【分析】根据角平分线的定义进行作答.【解答】解:A、∵OC平分∠AOD,∴∠COA=∠COD,故本选项错误;B、∵OD平分∠BOC,∴∠COD=∠BOD,故本选项正确;C、∵OC平分∠AOD,∴∠COA=∠COD,∴∠AOC=∠AOD,故本选项正确;D、∵OC平分∠AOD,OD平分∠BOC,∴∠AOC=∠COD=∠BOD,∴∠AOC=∠AOB,故本选项正确;故选:A.【点评】本题考查了角平分线的定义.从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.9.(3分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x【分析】题目已经设出分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),故B答案正确,故选:B.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.10.(3分)观察下列图形:已知图n中有2023有颗星,则n为( )A.644B.654C.664D.674【分析】仔细观察图形,找到图形的变化规律,利用规律求解即可.【解答】解:观察图形知:图1中有3×1+1=4颗星,图2中有3×2+1=7颗星,图3中有3×3+1=10颗星,图4中有3×4+1=13颗星,•••,图n中有(3n+1)颗星,当3n+1=2023时,解得:n=674,故选:D.【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形的变化规律,难度不大.二.填空题(共6小题)11.(3分)若3x4y m与﹣2x4y2是同类项,则m= 2 .【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此可得答案.【解答】解:∵若3x4y m与﹣2x4y2是同类项,∴m=2.故答案为:2.【点评】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.12.(3分)90°﹣78°28′56″= 11°31′4″ .【分析】先把90°化成89°59′60″,然后计算即可.【解答】解:90°﹣78°28'56″=89°59′60″﹣78°28′56″=11°31′4″.故答案为:11°31′4″.【点评】本题考查了度分秒的换算,大单位化小单位乘以进率,小单位化大单位除以进率.13.(3分)若从n边形的一个顶点出发,最多可以引5条对角线,则n= 8 .【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,列方程求解.【解答】解:设多边形有n条边,则n﹣3=5,解得n=8,故多边形的边数为8,即它是八边形,故答案为:8.【点评】本题考查了多边形的对角线,明确多边形有n条边,则经过多边形的一个顶点所有的对角线有(n ﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形是解题的关键.14.(3分)已知a、b互为相反数,c、d互为倒数,|m|=1,则的值为 0或﹣2 .【分析】根据a、b互为相反数,c、d互为倒数,|m|=1,可以得到a+b=0,cd=1,m=±1,然后代入所求式子计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|m|=1,∴a+b=0,cd=1,m=±1,当m=1时,=1+﹣12=1+0﹣1=0;当m=﹣1时,=(﹣1)+﹣12=﹣1+0﹣1=﹣2;由上可得,的值为0或﹣2,故答案为:0或﹣2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.15.(3分)如果x=3是方程﹣ax﹣b=5﹣2x的解,那么3﹣6a﹣2b= 1 .【分析】先把x=3代入方程得到﹣3a﹣b=﹣1,再把3﹣6a﹣2b变形为3+2(﹣3a﹣b),然后利用整体代入的方法计算.【解答】解:∵x=3是方程﹣ax﹣b=5﹣2x的解,∴﹣3a﹣b=﹣1,∴3+2(﹣3a﹣b)=3+2×(﹣1)=3﹣2=1.故答案为:1.【点评】本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.也考查了整体代入的方法.16.(3分)如图,已知直线l上的三条线段分别为:AB=4,BC=24,CD=8,将线段CD固定不动,线段AB 以每秒4个单位的速度向右运动,M、N分别为AB、CD中点,设线段AB的运动时间为t,当7.5≤t≤9时,MN+AD= 6 .【分析】运动t秒后,A点表示4t,B点表示4+4t,C点表示28,D点表示36,根据线段中点的定义得到M 点表示4t+2,N点表示32,然后利用线段的和的定义即可得到结论.【解答】解:设运动t秒后,A点表示4t,B点表示4+4t,C点表示28,D点表示36,∵M为AB中点,N为CD中点,∴M点表示4t+2,N点表示32,∴MN=|4t+2﹣32|=|4t﹣30|,AD=|36﹣4t|,∴MN+AD=|4t﹣30|+|36﹣4t|,当≤t≤9时,MN+AD=4t﹣30+36﹣4t=6.故答案为:6.【点评】本题主要考查了两点间的距离,同时也利用了非负数的性质等知识,解答本题的关键是掌握两点间的距离公式.三.解答题(共8小题)17.计算:(1)(﹣2)2+|﹣4|;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b).【分析】(1)先算乘方,绝对值,乘法,再算加减即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(﹣2)2+|﹣4|=4+4+6=14;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b)=6a2b﹣4ab2+4ab2﹣4a2b=2a2b.【点评】本题主要考查整式的混合运算,解答的关键是对相应的运算法则的掌握.18.解方程:(1)2x﹣1=5x+2;(2).【分析】(1)先移项、合并同类项,再系数化为1进行求解;(2)通过去分母、去括号、移项、合并同类项和系数化为1等步骤进行求解.【解答】解:(1)移项,得2x﹣5x=2+1,合并同类项,得﹣3x=3,系数化为1,得x=﹣1;(2)去分母,得2(5x+1)﹣(2x﹣1)=4,去括号,得10x+2﹣2x+1=4,移项并合并,得8x=1,系数化为1,得x=.【点评】此题考查了解一元一次方程的能力,关键是能准确确定运算顺序,并能进行正确求解.19.先化简,再求值:已知代数式,其中x=3,y=﹣3.【分析】先去括号,然后合并同类项,最后代入求值即可.【解答】解:==﹣3x+y2,当x=3,y=﹣3时,原式=﹣3×3+(﹣3)2=﹣9+9=0.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减运算法则是解题的关键.20.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).【分析】首先作射线,再截取AD=DC=a,进而截取BC=b,即可得出AB=2a﹣b.【解答】解:如图所示:线段AB即为所求.【点评】此题主要考查了复杂作图,正确作出射线进而截取得出是解题关键.21.已知,如图B、C两点把线段AD分成2:5:3三部分,M是AD的中点,CM=6cm,则线段AD的长为多少厘米?【分析】设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=AD=5x,由CM=6cm,可得DM﹣CD=6cm,得到关于x的方程,解方程即可求解.【解答】解:∵B、C两点把线段AD分成2:5:3三部分,∴设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,∵M为AD的中点,∴AM=DM=AD=5x,∵CM=6cm,即:DM﹣CD=6cm,∴5x﹣3x=6,解得x=3,∴AD=10x=30,线段AD的长为30cm.【点评】本题考查了两点间的距离,利用线段的和差,线段中点的性质是解题关键.22.某校准备组织学生参观博物馆,每张门票30元.已知购买团体票有两种优惠方案,方案一:全体人员打7折;方案二:若打8折,有5人可免票.(1)一班有45名学生,选择哪种方案更优惠?(2)二班无论选择哪种方案,需支付购买门票的费用相同,求二班的学生人数.(用一元一次方程求解)【分析】(1)分别计算两种方案的费用,再比较即可得答案;(2)设二班有x人,根据选择哪种方案,需支付购买门票的费用相同列方程30×70%•x=30×80%×(x﹣5),解方程即可解得答案.【解答】解:(1)方案一:30×70%×45=945(元),方案二:30×80%×(45﹣5)=960(元),∵945<960,∴一班选择方案一更优惠;(2)设二班有x人,根据题意得:30×70%•x=30×80%×(x﹣5),解得x=40,答:二班有40人.【点评】本题考查一次方程的应用,解题的关键是读懂题意,找出等量关系列方程.23.如图,已知∠AOB=120°,∠COD是∠AOB内的一个角,且∠COD=50°,OE是∠AOC的平分线,OF 是∠BOD的平分线,求∠EOF的度数.【分析】根据角平分线的定义得出,,再根据∠AOB=120°,∠COD=50°求出∠AOC+∠BOD的度数,从而求出∠EOF的度数.【解答】解:∵OE是∠AOC的平分线,OF是∠BOD的平分线,∴,,∴,∵∠AOB=120°,∠COD=50°,∴∠AOC+∠BOD=∠AOB﹣∠COD=120°﹣50°=70°,∴∠COE+∠DOF=,∴∠EOF=∠COE+∠DOF+∠COD=35°+50°=85°.【点评】本题考查了角平分线的定义和角的计算,主要考查学生的计算和推理能力.24.如图,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O 在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 105或135或75或45 度.【分析】(1)设∠A′OB=∠POB=x,表示∠AOP=2x,∠BOP=x,由∠AOB=60°列方程为:x+2x=60,可得x的值,从而求出结论;(2)分两种情况讨论,①当点O运动到使点A在射线OP的左侧,②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时,分别求的值即可;(3))①如图3,当∠A′OB=150°时,可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°,因为∠AOP =∠A'OP,所以∠AOP=45°,∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,可得:∠A'OA=360°﹣150°﹣60°=150°,因为∠AOP=∠A'OP,所以∠AOP=75,∠BOP=60°+75°=135°;【解答】(本题10分)解:(1)∵OB平分∠A′OP,∴设∠A′OB=∠POB=x,∵∠AOP=∠A′OP,∴∠AOP=2x,∵∠AOB=60°,∴x+2x=60,∴x=20°,∴∠AOP=2x=40°;(2)①当点O运动到使点A在射线OP的左侧,∵∠AOM=3∠A′OB,∴设∠A′OB=x,∠AOM=3x.∵OP⊥MN,∴∠AON=180°﹣3x,∠AOP=90°﹣3x.∴.∵∠AOP=∠A′OP,∴∠AOP=∠A′OP=.∴OP⊥MN.∴.∴.∴.②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时.∵∠AOM=3∠A′OB,设∠A′OB=x,∠AOM=3x,∴∠AOP=∠A′OP=.∴OP⊥MN.∴3x+=90.∴x=24°.∴.(3)①如图3,当∠A′OB=150°时,由图可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°.∵∠AOP=∠A'OP,∴∠AOP=45°.∴∠BOP=60°+45°=105°.②如图4,当∠A′OB=150°时,由图可得:∠A'OA=360°﹣150°﹣60°=150°.∵∠AOP=∠A'OP,∴∠AOP=75°.∴∠BOP=60°+75°=135°.当射线OP在MN下面时,∠BOP=75°或45°.综上所述:∠BOP的度数为105°或135°或75°或45°.故答案为:105或135或75或45.【点评】本题主要考查了角的运算,学会灵活处理问题,注意分类讨论不同的情况.。
北师大版2022-2023学年七年级数学上册第二次月考测试题(附答案)
2022-2023学年七年级数学上册第二次月考测试题(附答案)一.选择题(共30分)1.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()A.+2.4B.﹣0.5C.+0.6D.﹣3.42.目前全球疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约750000个,数据750000用科学记数法表示是()A.7.5×103B.7.5×104C.7.5×105D.7.5×1063.汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()A.点动成线B.线动成面C.面动成体D.以上答案都不对4.下列互为倒数的是()A.3和B.﹣2和2C.3和D.﹣2和5.下列正方体的展开图中,“勤”的对面是“戴”的展开图是()A.B.C.D.6.下列等式正确的是()A.﹣32=9B.5a+2b=7abC.﹣(x+2y)=﹣x﹣2y D.4x2y﹣y=4x27.对如图所示的几何体认识正确的是()A.几何体是四棱柱B.棱柱的侧面是三角形C.棱柱的底面是四边形D.棱柱的底面是三角形8.下列说法中正确的有()①绝对值相等的两个有理数相等;②若a,b互为相反数,则=﹣1;⑧有理数分为正数和负数;④若∠AOC=2∠BOC,则OB是∠AOC的平分线.A.3个B.2个C.1个D.0个9.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,观察后,用你所发现的规律写出22022+1的末位数字是()A.3B.4C.5D.610.某文化商场同时卖出两台电子琴,每台均卖960元.以成本计算,第一台盈利20%,另一台亏本20%.则本次出售中,商场()A.不赚不赔B.赚160元C.赚80元D.赔80元二.填空题(共15分)11.北京市某天的最高气温是10℃,最低气温是﹣5℃,则北京市这一天的温差是℃.12.﹣2.5,0,2,0.7,﹣8,,﹣0.202002002这7个数中非负数的个数为.13.若有理数a、b互为相反数,c、d互为倒数,则(a+b)2022﹣=.14.不超过(﹣)3的最大整数是.15.在同一平面内已知∠AOB=80°,∠BOC=20°,OM、ON分别是∠AOB和∠BOC的平分线,则∠MON的度数是.三、解答题:本大题共3小题,每小题8分,共75分.16.计算:(1)22+(﹣33)﹣4×(﹣11);(2)﹣32+×9﹣(﹣1)3.17.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.18.“双减”政策实施后,同学们作业负担大大减少,小明记录了本周写家庭作业的时间,情况如表(以30分钟为标准,时间多于30分钟用正数表示,时间少于30分钟用负数表示):星期一二三四五六日与标准时间的差(分钟)﹣5﹣6﹣8﹣2﹣9+8+15(1)这一周内写家庭作业用时最多的是星期,用时最少的是星期;(2)求小明这一周每天写家庭作业的平均时间.19.一个几何体由几个大小相同的小立方块搭成,从正面、上面看到这个几何体的形状如图所示,其中从上面看到的形状中,小正方形中字母表示在该位置的小立方块的个数,请解答下列问题:(1)a、b、c各表示几?(2)这个几何体最少由几个小立方体搭成?最多呢?(3)当d=e=1,f=2时,请在下列方格纸中画出这个几何体的从左面看的形状图.20.已知:A=x2﹣2xy+y2,B=x2+2xy+y2.(1)当x=,y=﹣1时,求﹣A+B的值;(2)如果2A﹣3B+C=0,求C的表达式.21.探究归纳题:(1)试验分析:如图1,经过一个顶点(如点A)可以作条对角线,它把四边形ABCD分为个三角形;(2)拓展延伸:运用(1)的分析方法,可得:图2过一个顶点作所有的对角线,把这个多边形分为个三角形;图3过一个顶点作所有的对角线,把这个多边形分为个三角形;(3)探索归纳:对于n边形(n>3),过一个顶点的所有对角线把这个n边形分为个三角形.(用含n的式子表示)(4)特例验证:过一个顶点的所有对角线可把十边形分为个三角形.22.简便运算能使学生思维的灵活性得到充分锻炼,对提高学生的计算能力起到非常大的作用.阅读下列相关材料.材料一,计算:.分析:利用通分计算的结果很麻烦,可以采用以下方法进行计算.解:.∴.材料二,下列算式是一类两个两位数相乘的特殊计算方法.38×32=100×(32+3)+8×2=1216;67×63=100×(62+6)+7×3=4221;根据以上材料,完成问题:(1)请根据材料一的算法,计算:.(2)请根据材料二的算法,计算:(﹣54)×56+(﹣37)×(﹣33).23.如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为﹣2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)当t=0秒时,AC的长为,当t=2秒时,AC的长为.(2)用含有t的代数式表示AC的长为.(3)当t=秒时AC﹣BD=5,当t=秒时AC+BD=15.(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.参考答案一.选择题(共30分)1.解:|﹣0.5|<|+0.6|<|+2.4|<|﹣3.4|,∴|﹣0.5|最接近标准质量,故选:B.2.解:将750000用科学记数法表示为:7.5×105.故选:C.3.解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故选B.4.解:A、∵3×=1,∴3和互为倒数,符合题意;B、∵(﹣2)×2=﹣4,∴﹣2和2不互为倒数,不符合题意;C、∵3×(﹣)=﹣1,∴3和﹣不互为倒数,不符合题意;D、∵(﹣2)×=﹣1,∴﹣2和不互为倒数,不符合题意.故选:A.5.解:正方体展开图对立面常找“一字型”或“Z字型”,A、“勤”与“罩”对面,故A不符合题意;B、“勤”与“口”对面,故B不符合题意;C、“勤”与“手”对面,故C不符合题意;D、“勤”与“戴”对面,故D符合题意.故选:D.6.解:A、﹣32=﹣9,原计算错误,故此选项不符合题意;B、5a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;C、﹣(x+2y)=﹣x﹣2y,原计算正确,故此选项符合题意;D、4x2y与y不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:C.7.解:由图可知,该几何体是三棱柱,∴底面是三角形,侧面是四边形,故选:D.8.解:①绝对值相等的两个有理数不一定相等,故原说法错误;②若a,b互为相反数,a=b=0,则没有意义,故原说法错误;③有理数分为正数、负数和0,故原说法错误;④若∠AOC=2∠BOC,则OB不一定是∠AOC的平分线,故原说法错误.说法中正确的有0个.故选:D.9.解:通过观察给出算式的末尾数可发现,每四个数就会循环一次,∵2021÷4=505……1,∴第23个算式末尾数字和第1个算式的末尾数字一样为2,22022+1的末位数字是3,故选:A.10.解:设两台电子琴的原价分别为x与y,则第一台可列方程(1+20%)•x=960,解得:x=800.比较可知,第一台赚了160元,第二台可列方程(1﹣20%)•y=960,解得:y=1200元,比较可知第二台亏了240元,两台一合则赔了80元.故选:D.二.填空题(共15分)11.解:10﹣(﹣5)=10+5=15(℃).故答案为:1512.解:﹣2.5,0,2,0.7,﹣8,,﹣0.202002002这7个数中非负数是0,2,0.7,,故答案为:4.13.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴(a+b)2022﹣=02022﹣(﹣)2023=0﹣(﹣1)2023=0﹣(﹣1)=0+1,=1,故答案为:1.14.解:∵(﹣)3=﹣4,∴不超过(﹣)3的最大整数是﹣5.故答案为:﹣5.15.解:∠BOC在∠AOB内部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB﹣∠BON=40°﹣10°=30°;∠BOC在∠AOB外部时,∵∠AOB=80°,其角平分线为OM,∴∠MOB=40°,∵∠BOC=20°,其角平分线为ON,∴∠BON=10°,∴∠MON=∠MOB+∠BON=40°+10°=50°,故答案为:30°或50°.三、解答题:共75分.16.解:(1)22+(﹣33)﹣4×(﹣11)=22﹣33+44=33;(2)﹣32+×9﹣(﹣1)3=﹣9+×9﹣(﹣1)=﹣9+4+1=﹣4.17.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.18.解:(1)∵﹣9<﹣8<﹣6<﹣5<﹣2<+8<+15,∴这一周内家庭作业用时最多的是星期日,用时最少的是星期五,故答案为:日,五;(2)30+(﹣5﹣6﹣8﹣2﹣9+8+15)÷7=30+(﹣7)÷7=29(分钟),答:这一周每天写家庭作业的平均时间为29分钟.19.解:(1)a=3,b=1,c=1;(2)这个几何体最少由4+2+3=9个小立方块搭成;这个几何体最多由6+2+3=11个小立方块搭成;(3)如图所示:20.解:(1)∵A=x2﹣2xy+y2,B=x2+2xy+y2,∴﹣A+B=﹣(x2﹣2xy+y2)+x2+2xy+y2=﹣x2+2xy﹣y2+x2+2xy+y2=4xy,∵x=,y=﹣1,∴原式=4×=﹣2;(2)∵A=x2﹣2xy+y2,B=x2+2xy+y2,2A﹣3B+C=0,∴C=3B﹣2A=3(x2+2xy+y2)﹣2(x2﹣2xy+y2)=3x2+6xy+3y2﹣2x2+4xy﹣2y2=x2+10xy+y2,∴C的表达式为x2+10xy+y2.21.解:(1)如图1,经过一个顶点(如点A)可以作1条对角线,它把四边形ABCD分为2个三角形;(2)应用(1)的分析方法,可得:图2过一个顶点作所有的对角线,把这个多边形分为3个三角形;图3过一个顶点作所有的对角线,把这个多边形分为4个三角形;(3)对于n边形(n>3),过一个顶点的所有对角线把这个n边形分为(n﹣2)个三角形.(用含n的式子表示);(4)过一个顶点的所有对角线可把十边形分为8个三角形.故答案为:(1)1,2;(2)3,4;(3)(n﹣2);(4)8.22.解:(1)(﹣++﹣)÷(﹣)=(﹣++﹣)×(﹣48)=﹣×(﹣48)+×(﹣48)+×(﹣48)﹣×(﹣48)=24+(﹣15)+(﹣36)+14=﹣13,∴=﹣;(2)(﹣54)×56+(﹣37)×(﹣33)=﹣54×56+37×33=﹣[100×(52+5)+4×6]+[100×(32+3)+7×3]=﹣[100×(25+5)+24]+[100×(9+3)+21]=﹣(100×30+24)+(100×12+21)=﹣(3000+24)+(1200+21)=﹣3024+1221=﹣1803.23.解:(1)当t=0秒时,AC=|﹣2﹣0|=|﹣2|=2;当t=2秒时,移动后C表示的数为2,∴AC=|﹣2﹣2|=4.故答案为:2;4.(2)点A表示的数为﹣2,点C表示的数为t;∴AC=|﹣2﹣t|=t+2.故答案为t+2.(3)∵t秒后点C运动的距离为t个单位长度,点D运动的距离为t个单位长度,∴C表示的数是t,D表示的数是3+t,∴AC=t+2,BD=|12﹣(3+t)|,∵AC﹣BD=5,∴t+2﹣|12﹣(t+3)|=5.解得:t=6.∴当t=6秒时AC﹣BD=5;∵AC+BD=15,∴t+2+|12﹣(t+3)|=15,t=11;当t=11秒时AC+BD=15,故答案为6,11;(4)假设能相等,则点A表示的数为2t﹣2,C表示的数为t,D表示的数为t+3,B表示的数为12,∴AC=|2t﹣2﹣t|=|t﹣2|,BD=|t+3﹣12|=|t﹣9|,∵AC=2BD,∴|t﹣2|=2|t﹣9|,解得:t1=16,t2=.故在运动的过程中使得AC=2BD,此时运动的时间为16秒和秒.。
人教版(五四学制)2022-2023学年七年级数学上册第二次月考测试题(附答案)
2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(共计30分)1.﹣2的倒数是()A.﹣2B.﹣C.D.22.下列计算正确的是()A.2a+3b=5ab B.(﹣a3b4)2=a6b8C.a6÷a2=a3D.(a+b)2=a2+b23.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.4.如图所示的几何体的左视图是()A.B.C.D.5.方程=的解为()A.x=2B.x=﹣4C.x=4D.x=﹣26.如图,点A,B,C,D都在⊙O上,∠BAC=15°,∠BOD=70°,DE切⊙O于D,则∠CDE的度数是()A.15°B.20°C.25°D.55°7.如图.BC是⊙O的直径,点A、D在⊙O上,P A切⊙O于A,若∠ADC=48°,则∠P AB =()A.42°B.48°C.46°D.50°8.在菱形ABCD中,AB=5,∠BCD=120°,则对角线BD等于()A.20B.C.10D.59.在△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有()A.b=a•tan A B.b=c•sin A C.a=c•cos B D.c=a•sin A 10.如图,点D,E,F分别在△ABC的边AB,AC,BC上,连接DE,EF,若DE∥BC,EF∥AB,则下列比例式正确的是()A.=B.=C.=D.=二、填空题(共计30分)11.实数16800000用科学记数法表示为.12.在函数中,自变量x的取值范围是.13.计算:=.14.在实数范围内分解因式:a2m﹣5m=.15.关于x的不等式组的整数解是.16.某种过季绿茶的价格两次大幅下降,原来每袋250元,现在每袋90元,则平均每次下调的百分率是.17.在△ABC中,AB=AC=5,BD是高,且cos∠ABD=,则BC=.18.如图,分别过⊙O上A、B、C三点作⊙O切线,切线两两交于P、M、N,P A=9,则△PMN的周长为.19.在△ABC中,∠ACB=90°,CA=CB,点D为AB边上一点,AD=3BD,CD=2,点E在直线AC上,∠CDE=45°,则AE=.20.如图,△ABC中,AB=AC,AD⊥BC于D,DE平分∠ADC,EF⊥AB交AD于G,AG =1,BC=6,则BF=.三、解答题(共计60分)21.先化简,再求代数式的值,其中a=tan60°﹣6sin30°.22.△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向右平移5个单位长度,同时向下平移4个单位长度得到△A1B1C1;(2)将△ABC绕点A顺时针旋转90°得到△AB2C2,连接A1C2,直接写出A1C2的长.23.为了丰富同学们的课余生活,某中学开展以“我最喜欢的书籍种类”为主题的调查活动,围绕“在文学类、科普类、艺术类、其它类四类书籍中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若该中学共有1200名学生,请你估计该中学最喜欢科普类书籍的学生有多少名.24.在▱ABCD中,E,F分别为对角线BD上两点,连接AE、CE、AF、CF,且AE∥CF.(1)如图1,求证:四边形AECF是平行四边形;(2)如图2,若2BE=3EF,在不添加任何字母及辅助线的情况下,请直接写出图2中面积是△ABD面积的的四个三角形.25.某文教店用1200元购进了甲、乙两种钢笔.已知甲种钢笔进价为每支12元,乙种钢笔进价为每支10元.文教店在销售时甲种钢笔售价为每支15元,乙种钢笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种钢笔各多少支?(2)若该文教店以原进价再次购进甲、乙两种钢笔,且购进甲种钢笔的数量不变,而购进乙种钢笔的数量是第一次的2倍,乙种钢笔按原售价销售,而甲种钢笔降价销售.当两种钢笔销售完毕时,要使再次购进的钢笔获利不少于340元,甲种钢笔最低售价每支应为多少元?26.如图,四边形ABCD内接于⊙O,AC平分∠BCD.(1)如图1,求证:AB=AD;(2)如图2,点E在弧AD上,弧CE=弧BC,延长CD、AE交于点F,求证:AF=AD.(3)在(2)的条件下,如图3,连接ED并延长ED交AC延长线于点P,连接PF,若PF=AF=4,PE=10,求⊙O的半径.27.如图,在平面直角坐标系中,O为坐标原点,直线AC的解析式为:y=﹣x+3,点B在x轴负半轴上,且AB=5.(1)求直线BC的解析式;(2)点P从点C出发,沿射线CO方向以每秒1个单位的速度运动,点T在AO上,且BT=CO,连接PT,设点P运动时间为t秒,S△OTP=S,求S与t之间的函数解析式(直接写出自变量t的取值范围);(3)在(2)的条件下,过点T作AB的垂线,交AC于E,连接BE,过点A作CT的平行线AL,将线段BP绕P点顺时针方向旋转得PQ点Q恰好落在直线AL上,若∠BPQ=2∠BET,求t值.参考答案一、选择题(共计30分)1.解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.解:A、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、(﹣a3b4)2=a6b8,原计算正确,故此选项符合题意;C、a6÷a2=a4,原计算错误,故此选项不符合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意.故选:B.3.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.4.解:这个组合体的左视图为:故选:A.5.解:去分母得:5x=8x﹣12,解得:x=4,检验:把x=4代入得:x(2x﹣3)≠0,∴分式方程的解为x=4.故选:C.6.解:连接OC,∵∠BAC=15°,∴∠BOC=2∠BAC=30°,∵∠BOD=70°,∴∠COD=70°﹣30°=40°,∵OC=OD,∴∠ODC=∠OCD=(180°﹣40°)=70°,∵DE切⊙O于D,∴OD⊥DE,∴∠CDE=90°﹣70°=20°,故选:B.7.解:连接OA,∵P A切⊙O于A,∴∠OP A=90°,∵∠ADC=48°,∴∠ABC=∠ADC=48°,∵OA=OB,∴∠OAB=∠ABC=48°,∴∠P AB=90°﹣∠OAB=42°,故选:A.8.解:∵四边形ABCD是菱形,∴∠ACB=∠BCD=×120°=60°,AC⊥BD,OC=AC=×5=2.5,BD=2OB,∴在Rt△OBC中,OB=OC•tan∠ACB=2.5×=,∴BD=2OB=5.故选:B.9.解:在△ABC中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,tan A=,则a=b•tan A,A错误;sin A=,则a=c•sin A,B错误;cos B=,则a=c•cos B,C正确;sin A=,则a=c•sin A,D错误;故选:C.10.解:∵DE∥BC,∴△ADE∽△ABC,∴=,∴≠,故A错误;∵EF∥AB,∴∠CEF=∠A,∵∠C=∠AED,∴△CEF∽△EAD,∴=,∵△ADE∽△ABC,∴=,∵四边形BDEF是平行四边形,∴DE=BF,∴=,∵≠,∴≠,故B错误;∵EF∥AB,∴=,故C正确;∵△CEF∽△CAB,∴=,∵DE=BF,∴=,∵≠,∴≠,故D错误,综上所述,C正确,故选:C.二、填空题(共计30分)11.解:16800000=1.68×107.故答案为:1.68×107.12.解:由题意得:x+2>0,解得:x>﹣2,故答案为:x>﹣2.13.解:原式=4×2﹣2=8﹣2=6.故答案为:6.14.解:a2m﹣5m=m(a2﹣5)=m(a+)(a﹣),故答案为:m(a+)(a﹣).15.解:,由①得:x≤2,由②得:x>,∴不等式组的解集为<x≤2,则不等式组的整数解为1,2.故答案为:1,2.16.解:设平均每次下调的百分率为x,依题意得250(1﹣x)2=90,(1﹣x)2=,1﹣x=±,x1=40%,x2=160%(舍去).答:平均每次下调的百分率为40%.故答案为:40%.17.解:分两种情况:①如图一,当△ABC是锐角三角形时,在△ABD中,BD是AC边上的高,AB=5,cos∠ABD=,∴BD=3,∴AD==4,∴CD=AC﹣AD=5﹣4=1,在Rt△BDC中,BC=;②如图二,当△ABC是钝角三角形时,在△ABD中,BD是AC边上的高,AB=5,cos∠ABD=,∴BD=3,∴AD==4,∴CD=AC+AD=5+4=9,在Rt△BDC中,BC==3.故答案为:或3.18.解:∵P A、PB、MN分别与⊙O切于A、B、C,∴P A=PB,MA=MC,NB=NC,∴△PMN的周长=PM+MN+PN=PM+MC+CN+PN=PM+MA+NB+PN=P A+PB=9+9=18,故答案为:18.19.解:①如图,点E在AC上时,在△ABC,∠ACB=90°,CA=CB,∴∠EAD=∠CBA=45°,∵∠CDE=45°,∠CDA=∠CDE+∠ADE=∠B+∠BCD,∴∠ADE=∠BCD,∴△ADE∽△BCD,∴,∴AD=,BD=,∴,∴AE=,∵∠CDE=∠A=45°,∴△CED∽△CDA,∴,∵CD=2,∴AC•CE=40,∴,即AE•CE=15,∵AE+CE=AC,即AE+CE=,∴CE=,∴AE,∴AE=3;②如图,点E在AC的延长线上,∵∠CDE=45°,∠DCM=∠BCD,∴△CDE∽△BCD,∴,∵CD=2,CB=AC,∴BC•CM=40,即AC•CM=40,∵∠EDB=∠A+∠E,∠DCA=∠E+∠CDE,∠A=∠CDE=45°,∴∠EDB=∠DCA,∵∠A=∠B=45°,∴△BDM∽△ACD,∴,∵AC=BC,AB=AC,AD=3BD,∴AD=,BD=,,∴BM=,∵BM+CM=AC,∴CM=,∴AC=8,作DN∥BC,∴,∴DN=BC×=8×=6,AN=AC×=8×=6,∴CN=8﹣6=2,∵CM=,∴,∴,∴CE=10,∴AE=AC+CE=8+10=18,综上,AE=3或18,故答案为:3或18.20.解:如图,连接BG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,BD=CD=BC=3,∵EF⊥AB,∴∠AFG=90°,∵∠AFG=∠ADC=90°,∴∠AGF=∠C,∵∠AGF=∠DGE,∴∠DGE=∠C,∵DE平分∠ADC,∴∠CDE=∠EDG,∵DE=DE,∴△CDE≌△GDE(AAS),∴DG=CD=3,∵AG=1,∴AD=AG+DG=1+3=4,由勾股定理得:AB===5,∵S△ABG=•AB•FG=•AG•BD,∴×5FG=×1×3,∴FG=,由勾股定理得:AF===,∴BF=AB﹣AF=5﹣=.故答案为:.三、解答题(共计60分)21.解:原式=÷=﹣•=﹣,当a=tan60°﹣6sin30°=﹣3时,原式=﹣=﹣.22.解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,A1C2==3.23.解:(1)在这次调查中,一共抽取的学生数是:8÷20%=40(名);(2)其它类的人数有:40﹣8﹣14﹣12=6(名),补全统计图如下:(3)根据题意得:1200×=360(名),答:估计该中学最喜欢科普类书籍的学生有360名.24.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE∥CF,∴∠AEF=∠CFE,∴∠AEB=∠CFD,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形;(2)解:△ABE、△CDF、△BCE、△ADF,理由如下:由(1)得:△ABE≌△CDF,∴BE=DF,∵2BE=3EF,∴BE:BD=3:8,∴△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=△ABD面积的.25.解:(1)设文具店购进甲种钢笔x支,乙种钢笔y支,由题意,得,解得.答:这个文具店购进甲种钢笔50支,乙种钢笔60支.(2)设甲种钢笔每只的最低售价为m元,由题意,得50(m﹣12)+2×60(12﹣10)≥340,解得:m≥14.故甲种钢笔每只的最低售价为14元.26.(1)证明:∵四边形ABCD内接于⊙O,AC平分∠BCD,∴∠BCA=∠DCA,∴AB=AD;(2)证明:由(1)知,∠BCA=∠DCA,AB=AD,∵弧CE=弧BC,∴∠BAC=∠CAE,在△ABC和△AFC中,,∴△ABC≌△AFC(ASA),∴AB=AF,∵AB=AD,∴AF=AD;(3)解:连接BE、BP,过点E作EG⊥BP于点G,∵PF=AF=4,AF=AB=AD,∴AB=PF=4,∠APF=∠P AF,由(2)知,∠BAP=∠P AF,∴∠BAP=∠APF,∴AB∥PF,又∵AB=PF,∴四边形ABPF是平行四边形,又∵AB=AF,∴四边形ABPF是菱形,∴AF∥BP,BP=AB=4,∴∠AEB=∠EBP,∠FEP=∠EPB,∵点A、C、D、E在⊙O上,∴∠FEP=∠ACD,∵∠AEB=∠ACB,∴∠EBP=∠EPB,∴EB=EP=10,∵EG⊥BP,∴PG=BP=2,在Rt△PEG中,PE=10,∴EG===4,∴AB=EG,又∵EG⊥BP,∴∠ABP=90°,∴菱形ABPF是正方形,∴∠BAE=90°,∴EB是⊙O的直径,∴⊙O的半径是5.27.解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,∴A(3,0),C(0,3),∴OA=3,OC=3,∵AB=5,∴OB=2,∵B在x轴负半轴上,∴B(﹣2,0),设直线BC解析式为y=kx+b,将B(﹣2,0),C(0,3)代入得:,解得,∴直线BC解析式为y=x+3;(2)∵OC=3,点T在AO上,且BT=CO,B(﹣2,0),∴T(1,0),OT=1,∵点P从点C出发,沿射线CO方向以每秒1个单位的速度运动,点P运动时间为t秒,∴CP=t,当t<3时,如图:∴OP=OC﹣CP=3﹣t,∴S=OT•OP=×1×(3﹣t)=﹣t+,当t>3时,如图:同理可得S=OP•OT=t﹣,∴S=;(3)由(2)知T(1,0),在y=﹣x+3中令x=1得y=2,∴E(1,2),∵B(﹣2,0),∴ET=2,BT=3,由C(0,3),T(1,0)可得直线CT解析式为y=﹣3x+3,由AL∥CT,A(3,0)可得AL解析式为y=﹣3x+9,设Q(m,﹣3m+9),取BQ中点M,∵B(﹣2,0),∴M(,),过M作MN⊥x轴于N,过P作PH⊥MN于H,当P在x轴上方时,如图:∵将线段BP绕P点顺时针方向旋转得PQ,∴BP=PQ,∵M是BQ中点,∴∠BPQ=2∠BPM,∠BMP=90°,∵∠BPQ=2∠BET,∴∠BPM=∠BET,∵∠BMP=∠BTE=90°,∴△BMP∽△BTE,∴==,∵∠PMH=90°﹣∠BMN=∠MBN,∠PHM=∠MNB=90°,∴△PMH∽△MBN,∴===,∴=,解得m=,∴M(,),∴BN=OB+ON=,而=,∴MH=,∴NH=MH+MN=+==OP,∴CP=OC﹣OP=3﹣=,∴t=CP÷1=;当P在x轴下方时,如图:同理可得==,∴=,解得m=4,∴M'(1,﹣),∴BN'=OB+ON'=3,M'H'=2,∴OP=N'H'=M'N'+M'H'=+2=,∴CP=OC+OP=,∴t=CP÷1=,综上所述,t的值为或.。
2022-2023学年人教版七年级数学上册第二次月考测试题(附答案)
人教版2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(每小题3分,30分)1.实数1,﹣1,0,﹣四个数中,最大的数是()A.0B.1C.﹣1D.2.某市某日的气温是﹣2℃~6℃,则该日的温差是()A.8℃B.6℃C.4℃D.﹣2℃3.下列各式中,是一元一次方程的是()A.2x+5y=6B.3x﹣2C.x2=1D.3x+5=84.下列各式中运算错误的是()A.5x﹣2x=3x B.5ab﹣5ba=0C.4x2y﹣5xy2=﹣x2y D.3x2+2x2=5x25.下列说法正确的是()A.单项式的系数是﹣5B.单项式a的系数为1,次数是0C.次数是6D.xy+x﹣1是二次三项式6.方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8B.0C.2D.87.下面说法中错误的是()A.368万精确到万位B.0.0450精确到千分位C.2.58精确到百分位D.10000保留到百位为1.00×1048.如果a=b,则下列式子不成立的是()A.a+c=b+c B.a2=b2C.ac=bc D.a﹣c=c﹣b 9.在某次活动中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A.30x﹣8=31x+26B.30x+8=31x+26C.30x﹣8=31x﹣26D.30x+8=31x﹣2610.观察图和所给表格回答.当图形的周长为80时,梯形的个数为()梯形个数12345….图形周长58111417….A.25B.26C.27D.28二、填空题(每小题3分,30分)11.﹣23=.12.已知多项式2mx m+2+4x﹣7是关于x的三次多项式,则m=.13.产量由m千克增长15%后,达到千克.14.若有理数a、b满足|a+6|+(b﹣4)2=0,则a﹣b的值为.15.与原点的距离为2个单位的点所表示的有理数是.16.白玉兰商店把某种服装成本价提高50%后标价,又以7折卖出,结果每一件仍然获利20元,这种服装每件的成本是元.17.如果a﹣b=3,ab=﹣1,则代数式3ab﹣a+b﹣2的值是.18.列等式表示:“x的2倍与8的和等于10”上述等式可列为:.19.若代数式2a+3与8﹣3a的值相等,则a2021=.20.一份试卷,一共20道选择题,每一题答对得5分,答错或不答扣3分,小红共得68分,那么小红答对了道题.三、解答题(60分)21.(1)计算﹣12021+18÷(﹣3)×|﹣|(2)化简3a2﹣[8a﹣(4a﹣7)﹣2a2](3)化简求值﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=﹣,b=1022.解方程:(1)5(x+2)=2(5x﹣1);(2);(3)23.若方程3x+2a=12和方程3x﹣4=2的解相同,求a的值.24.甲乙两车从相距240km的两站同时开出,相对而行,甲车每小时行50km,乙车每小时行30km,问出发几小时后两车相距80km?25.抗洪抢修施工队甲处有31人,乙处有21人,由于任务的需要,现另调23人去支援,使在甲处施工的人数是在乙处施工人数的2倍,问应调往甲、乙两处各多少人?26.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天?27.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?参考答案一、选择题(每小题3分,30分)1.解:﹣1<﹣<0<1,故选:B.2.解:该日的温差=6﹣(﹣2)=6+2=8(℃).故选:A.3.解:A、含有2个未知数,故选项错误;B、不是等式,故选项错误;C、是2次方程,故选项错误;D、正确.故选:D.4.解:A、5x﹣2x=(5﹣2)x=3x,正确;B、5ab﹣5ba=(5﹣5)ab=0,正确;C、4x2y与5xy2不是同类项,不能合并,故本选项错误;D、3x2+2x2=(3+2)x2=5x2,正确.故选:C.5.解:A、单项式的系数是﹣,错误;B、单项式a的系数为1,次数是1,错误;C、次数是4,错误;D、正确.故选:D.6.解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选:D.7.解:A、368万精确到万位,此选项不符合题意;B、0.0450精确到万分位,此选项符合题意;C、2.58精确到百分位,此选项不符合题意;D、10000保留到百位为1.00×104,此选项不符合题意.故选:B.8.解:A.根据等式性质1,在等式的两边同时加上c,结果成立,故正确;B.根据等式性质2,在等式的两边同时乘以一个相同的数或式子,结果成立,故正确;C.根据等式性质2,在等式的两边同时乘以c,结果成立,故正确;D.不符合等式的性质,故不成立.故选:D.9.解:由题意得:30x+8=31x﹣26,故选:D.10.解:周长分别是5,8,11,14…可以看出:首项a1=5,等差d=3,由公式a n=a1+(n﹣1)d,即a n=5+(n﹣1)×3=3n+2.∴3n+2=80,解得n=26.故选:B.二、填空题(每小题3分,30分)11.解:﹣23=﹣8.故答案为:﹣8.12.解:∵多项式2mx m+2+4x﹣7是关于x的三次多项式,∴m+2=3,解得:m=1,故答案为:1.13.解:根据题意得:m(1+15%)=1.15m(千克);故答案为:1.15m.14.解:∵|a+6|+(b﹣4)2=0,∴a+6=0,b﹣4=0,∴a=﹣6,b=4,∴a﹣b=﹣6﹣4=﹣10.故答案为:﹣10.15.解:设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得:x=±2.故答案为:±2.16.解:设这种服装每件的成本为x元,依题意,得:0.7×(1+50%)x﹣x=20,解得:x=400.故答案为:400.17.解:∵a﹣b=3,ab=﹣1,∴3ab﹣a+b﹣2,=3×(﹣1)﹣3﹣2,=﹣3﹣3﹣2,=﹣8.故答案为:﹣8.18.解:依题意得:2x+8=10.故答案是:2x+8=10.19.解:根据题意得:2a+3=8﹣3a,移项合并得:5a=5,解得:a=1,则原式=1,故答案为:120.解:设小红答对了x道题,则答错或不答(20﹣x)道题,依题意,得:5x﹣3(20﹣x)=68,解得:x=16.故答案为:16.三、解答题(60分)21.解:(1)原式=﹣1﹣6×=﹣1﹣3=﹣4;(2)原式=3a2﹣8a+4a﹣7+2a2=5a2﹣4a﹣7;(3)原式=a2﹣2ab﹣b2﹣a2﹣ab+b2=﹣3ab,当a=﹣,b=10时,原式=2.22.解:(1)去括号得:5x+10=10x﹣2,移项合并得:﹣5x=﹣12,解得:x=2.4;(2)去分母得:6(x﹣2)=2x﹣1,去括号得:6x﹣12=2x﹣1,移项合并得:4x=11,解得:x=;(3)方程整理得:x﹣=2﹣,去分母得:10x﹣5x+5=20﹣2x﹣4,移项合并得:7x=11,解得:x=.23.解:3x﹣4=2x=2,∵方程3x+2a=12和方程3x﹣4=2的解相同,把x=2代入3x+2a=12得6+2a=12,a=3.24.解:设出发x小时后两车相距80km,(50+30)x=240﹣80或(50+30)x=240+80解得,x=2或x=4答:出发2小时或4小时后两车相距80km.25.解:设应调往甲处x人,调往乙处(23﹣x)人.依题意,有31+x=2(21+23﹣x),解方程,得x=19,23﹣x=23﹣19=4.答:应调往甲处19人,调往乙处4人.26.解:设甲挖掘机挖了x天,则乙挖掘机挖了(x+6)天,依题意,得:+=1,解得:x=4.答:甲挖掘机挖了4天.27.解:(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票;(2)设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多.。
人教版(五四学制)2022-2023学年七年级数学上册第二次月考测试题(附答案)
2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(共30分)1.下列各式中,是一元一次方程的是()A.3x﹣2=y B.x2﹣1=0C.=2D.=2 2.下面四个图中,∠1=∠2是对顶角的是()A.B.C.D.3.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若x=y,则=C.若x=y,则1﹣3x=1﹣3y D.若a=b,则ac=bc4.如图,点A到直线CD的距离是指线段()的长.A.AC B.CD C.AD D.BD 5.如图,共有对顶角()A.3对B.6对C.12对D.16对6.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.7.如图,下列结论正确的是()A.∠5与∠2是对顶角B.∠1与∠3是同位角C.∠2与∠3是同旁内角D.∠1与∠2是同旁内角8.如图,直线AB,CD相交于点E,EF⊥AB于点E,若∠FEC﹣∠AEC=20°,那么∠AED 的度数为()A.125°B.135°C.140°D.145°9.如图,OP∥QR∥ST,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=90°C.∠1﹣∠2+∠3=90°D.∠2+∠3﹣∠1=180°10.下列说法正确的个数有()个.(1)若∠1+∠2=180°,则∠1与∠2是邻补角;(2)直线外一点到这条直线的垂线段,叫点到直线的距离;(3)邻补角的角平分线互相垂直;(4)如果两条直线被第三条直线所截,那么同位角相等;(5)如果两条直线都垂直于同一条直线,那么这两条直线平行;(6)同旁内角互补.A.1B.2C.3D.4二、填空题(共18分)11.如图,要把池中的水引到C处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:12.若x=2是方程ax+a﹣3=0的解,则a=.13.表中记录了一次试验中时间和温度的数据.时间/min0510152025温度/℃102540557085如果温度的变化是均匀的,则21min时的温度是℃.14.如图,已知∠1=100°,∠2=100°,∠3=70°,则∠4=度.15.我们知道写成小数形式即0.,反过来,无限循环小数0.写成分数形式即.一般地,任何一个无限循环小数都可以写成分数形式.以无限循环小数0.为例:设0.=x,由0.=0.777…可知,10x=7.777…,所以10x﹣x=7,解方程,得x=,于是0.=.运用以上方法,可求得0.写成分数形式为.16.将直角三角板如图所示放置,∠ABC=60°,∠ACB=90°,∠A=30°,直线CE∥AB,BE平分∠ABC,在直线CE上确定一点D,满足∠BDC=45°,则∠EBD=.三、解答题(共72分)17.解下列方程:(1)1﹣(x+8)=3(2x﹣7).(2)=3﹣.18.如图,网格中的每个小正方形的边长均为1,则线段AB的长为5.(1)过点A画出线段BC的垂线段,垂足为点D;(2)过点C画出线段AB的垂线,垂足为点E;(3)直接写出点C到直线AB的距离为.19.已知代数式与代数式,当x为何值时,代数式与代数式的值相等.20.如图,AB∥CD,EF分别交于AB、CD于E、F,EG平分∠AEF,FH平分∠EFD.求证:EG∥FH.请在括号里填写适当的根据.证明:∵AB∥CD(已知)∴∠AEF=∠EFD()∵EG平分∠AEF,FH平分∠EFD()∴∠GEF=∠AEF,∠HFE=∠EFD()∵∠AEF=∠EFD∴∠AEF=∠EFD∴∠=∠()∴EG∥FH()21.如图,AD∥BC,∠DAC=120°,∠ACF=20°,∠EFC=140°(1)求证:EF∥AD.(2)连接CE,若CE平分∠BCF,求∠FEC的度数.22.某人工作一年的报酬是年终给他一件衣服和10枚银币,但他干满了7个月就决定不再继续干了,结账时,给了他一件衣服和2枚银币.这件衣服值多少枚银币?23.如果两个方程的解相差1,则称解较大的方程为另一个方程的“后移方程”.例如:方程x﹣2=0是方程x﹣1=0的后移方程.(1)判断方程2x+1=0是否为方程2x+3=0的后移方程(填“是”或“否”);(2)若关于x的方程3x+m+n=0是关于x的方程3x+m=0的后移方程,求n的值.(3)当a≠0时,如果方程ax+b=0是方程ax+c=0的后移方程,用等式表达a,b,c 满足的数量关系.24.“丰收1号”油菜籽的平均每公顷产量为2500kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”油菜籽的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少2公顷,但是所产菜籽油的总量比去年提高2800kg.(1)设这个村去年种值油菜的面积为x公顷,则今年种植油菜的面积为公顷;(含x的式子表示)(2)这个村去年种植油菜的面积是多少公顷?(3)这个村今年油菜籽的总产量是多少千克?25.已知直线MN、PQ,点A、B为分别在直线MN、PQ上,点C为平面内一点,连接AC、BC,且∠C=∠NAC+∠CBQ.(1)求证:MN∥PQ;(2)如图2,射线AE、BD分别平分∠MAC和∠CBQ,AE交直线PQ于点E,BD与∠NAC内部的一条射线AD交于点D,若∠C=2∠D,求∠EAD的度数.参考答案一、选择题(共30分)1.解:A.3x﹣2=y,含有两个未知数,不是一元一次方程,故本选项不符合题意;B.x2﹣1=0,未知数的最高次数为2,不是一元一次方程,故本选项不符合题意;C.是一元一次方程,故本选项符合题意;D.,不是整式方程,故本选项不符合题意;故选:C.2.解:A、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;B、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;C、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;D、是对顶角,故此选项正确;故选:D.3.解:A、若x=y,则x+5=y+5,正确,不合题意;B、若x=y,则=,a≠0,故此选项错误,符合题意;C、若x=y,则1﹣3x=1﹣3y,正确,不合题意;D、若a=b,则ac=bc,正确,不合题意.故选:B.4.解:要表示点A到直线CD的距离,就要过点A作直线CD的垂线,垂足为D点,垂线段为AD,要求的距离就是线段AD的长,故选C.5.解:两条直线相交于一点,共有对顶角的对数为2对,三条直线两两相交,有三个交点,共有对顶角的对数为6对.故选:B.6.解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.7.解:根据同位角、同旁内角、对顶角的定义进行判断,A、∠5与∠2+∠3是对顶角,故本选项错误;B、∠1与∠3+∠4是同位角,故本选项错误;C、∠2与∠3没有处在两条被截线之间,故本选项错误;D、∠1与∠2是同旁内角;故本选项正确;故选:D.8.解:设∠AEC为x,则∠FEC=x+20°;∵EF⊥AB,∴∠AEF=90°,∴∠AEC+∠FEC=90°,∴x+x+20°=90°,解得:x=35°,即∠AEC=35°,∴∠AED=180°﹣35°=145°.故选:D.9.解:方法一、延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠FSR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.方法二、∵OP∥QR∥ST,∴∠2+∠PRQ=180°,∠3=∠1+∠PRQ,∴∠2+∠3﹣∠1=180°,故选:D.10.解:(1)∠1+∠2=180°,∠1与∠2不一定是邻补角,原来的说法错误;(2)直线外一点到这条直线的垂线段的长度,叫点到直线的距离,原来的说法错误;(3)邻补角的角平分线互相垂直是正确的;(4)如果两条直线平行,那么两条直线被第三条直线所截的同位角相等,原来的说法错误;(5)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;(6)同旁内角不一定互补,原来的说法错误.故选:A.二、填空题(共18分)11.解:过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,根据是垂线段最短.故答案是:垂线段最短;12.解:把x=2代入方程得:2a+a﹣3=0,移项合并得:3a=3,解得:a=1.故答案为:1.13.解:根据表格中的数据可知温度随时间的增加而上升,且每分钟上升3℃,当t=21min时,温度=70+3=73(℃).故21min时的温度是73℃.故答案为:73.14.解:∵∠1=100°,∠2=100°,∴∠1=∠2,∴AB∥CD,∴∠5=∠4,∵∠3=70°,∴∠5=110°,∴∠4=110°.故答案为:110.15.解:设0.=x,即x=0.636363…,则100x=63.636363…,所以100x﹣x=63,解方程得:x==.故答案为:.16.解:D在C的左边,如图1:∵BE平分∠ABC,∴∠ABE=∠ABC=30°,∵CE∥AB,∴∠ABD=180°﹣∠BDC=135°,∴∠EBD=135°﹣30°=105°;D在C的右边,如图2:∵BE平分∠ABC,∴∠ABE=∠ABC=30°,∵CE∥AB,∴∠ABD=∠BDC=45°,∴∠EBD=45°﹣30°=15°.故∠EBD=15°或105°.故答案为:15°或105°.三、解答题(共72分)17.解:(1)1﹣(x+8)=3(2x﹣7),去括号,得1﹣x﹣8=6x﹣21,移项,得﹣x﹣6x=﹣21﹣1+8,合并同类项,得﹣7x=﹣14,系数化成1,得x=2;(2)=3﹣,去分母,得4(1﹣x)=36﹣3(x+2),去括号,得4﹣4x=36﹣3x﹣6,移项,得﹣4x+3x=36﹣6﹣4,合并同类项,得﹣x=26,系数化成1,得x=﹣26.18.解:(1)如图,线段AD即为所求;(2)如图,线段CE即为所求;(3)∵AB==5,BC=16,AD⊥BC,CE⊥AB,∴•BC•AD=•AB•CE,∴CE=.故答案为:.19.解:由题意可得:=,∴3x=4(2﹣x),∴3x=8﹣4x,∴7x=8,∴x=.当x=时,代数式与代数式的值相等.20.证明:∵AB∥CD(已知),∴∠AEF=∠EFD(两直线平行,内错角相等),∵EG平分∠AEF,FH平分∠EFD(已知),∴∠GEF=∠AEF,∠HFE=∠EFD(角平分线定义),∵∠AEF=∠EFD,∴∠AEF=∠EFD,∴∠GEF=∠HFE(等量代换),∴EG∥FH(内错角相等,两直线平行),故答案为:两直线平行,内错角相等;已知;角平分线定义;GEF;HFE;等量代换;内错角相等,两直线平行.21.解:(1)∵AD∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵∠EFC=140°,∴∠FCB+∠EFC=180°,∴EF∥BC,∴EF∥AD.(2)∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.22.解:设这件衣服值x枚银币,根据题意可得:(x+10)÷12=(x+2)÷7,解得:x=9.2.答:这件衣服值9.2枚银币.23.解:(1)方程2x+1=0,解得:x=﹣,方程2x+3=0,解得:x=﹣,∵(﹣)﹣(﹣)=﹣+=1,∴方程2x+1=0是方程2x+3=0的后移方程;故答案为:是;(2)方程3x+m+n=0,解得:x=﹣,方程3x+m=0,解得:x=﹣,根据题意得:﹣﹣(﹣)=1,解得:n=﹣3;(3)方程ax+b=0,解得:x=﹣,方程ax+c=0,解得:x=﹣,根据题意得:﹣﹣(﹣)=1,即=1,整理得:a+b﹣c=0.故答案为:a+b﹣c=0.24.解:(1)∵这个村去年种值油菜的面积为x公顷,今年的种植面积比去年减少2公顷,∴今年种植油菜的面积为(x﹣2)公顷.故答案为:(x﹣2);(2)设去年种植油菜面积为x公顷,由题意得,40%×2500x+2800=(40%+10%)×(2500+300)(x﹣2),解得:x=14,答:这个村群种植油菜面积是14公顷;(3)(14﹣2)×(2500+300)=33600(kg),答:这个村今年油菜籽的总产量为33600kg.25.(1)证明:过C作CS∥MN,如图,∵CS∥MN,∴∠NAC=∠ACS,∵∠ACB=∠ACS+∠BCS=∠NAC+∠CBQ,∴∠BCS=∠CBQ,∴PQ∥CS,∴MN∥PQ;(2)解:如图,连接DC并延长交AE于点F,则:∠ACF=∠DAC+∠ADC,∠BCF=∠DBC+∠BDC,∴∠ACB=∠DAC+∠DBC+∠ADB=2∠ADB,∴∠ADB=∠DAC+∠DBC,∴2∠ADB=2∠DAC+2∠DBC=2∠DAC+∠QBC,又∠ACB=∠NAC+∠CBQ=2∠ADB.∴∠NAC+∠CBQ=2∠DAC+∠QBC,即∠NAC=2∠DAC,∴∠DAC=∠NAC,∴∠EAD=∠EAC+∠CAD=∠MAC+∠NAC=(∠MAC+∠NAC)=90°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一年级第二次月考数学试题
题号 一 二 三 四 五 总分 得分
1、若4=a ,则a 2= ;
2、一个数的相反数是1.5,这个数的倒数为 ;
3、用科学计数法表示1234. 5为 ;
4、单项式3a 2b 与 -2a 2b 的差为 ;
5、单项式3
22y
x -的系数与次数之积为 ;
6、若│x+1│+(y -2008)2=0,则x y =__________;
7、把多项式3xy 2 -3x 2y -y 3+ x 3 按字母x 降幂排列为 ; 8、已知点A 、点B 都在数轴上,点A 表示的数为2,且AB=3,则点B 表示的数为 ; 9、夜晚的流星划过天空时留下一道明亮的光线,由此说明了 的数学事实;
汽车的雨刷在挡风玻璃上画出一个扇面,这说明 的数学事实;
10、要想把一根木条固定在墙上,至少需要两个钉子,这个事实说明 的数学原理是 。
11、如图,能用图中字母表示........
的射线有 条。
12、若线段AB=8cm ,点M 是AB 的中点,点N 是MB 的中点,点P 是AN 的中点,则PN= cm 。
13.在解方程36=-x 时,将x 的系数化为1得x= ,这步变形的依据是 ; 14、若方程3x+2a=9与3x+2=11的解相同,那么a= 。
15、若5x 1
-3m
y 2与是15x 3
-m
y n
-1
同类项,则m n = 。
16、已知三个连续偶数的和为60,则最大的那个为 。
17、一个三角形的三条边长之比为2∶4∶5,周长为22,则最长边为 . 18、若011
=+-m mx
是关于x 的一元一次方程,那么m= 。
19、现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍, 年后父亲的年龄是儿子年
龄的2倍。
20、已知关于x 的方程2x+1=ax+5的解为正整数,则整数a 的值为 ; 二、精心选一选:(每小题2分,共16分)
题号 1 2 3 4 5 6 7 8 得分
A 、2x+2=3x
B 、6x -2=1
C 、-0.2x= -0.4
D 、x 10
1
51=
2、下列结论错误的个数为
(1)若a=b ,则ac -3=bc -3; (2)若ax=ay ,则x=y ;
(3)若c b c a =,则a=b ; (4)若
0.30.232
2200.55
x x --==,则. A 、0个 B 、1个 C 、2个 D 、3个
3、该几何体的主视图、左视图、俯视图按顺序正确的一组为
4、如图所示,画出的直线、射线、线段中,一定能相交的是
5、A 市与B市之间的特快列车,途中要停靠两个站点,全程需设置不同车票( ) 种 A、4种 B、6种 C、10种 D、12种
6、将下列图形绕直线m 旋转一圈,可以得到右面立体图形的是
7、某商店在某一时间以每件150元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%.则卖出这两件衣服总的盈亏情况是
A 、赚了30元
B 、赔了20元
C 、赔了50元
D 、不赔不赚
8、某中学组织初一的同学春游,原计划租用45座客车若干辆,但有15人没有座位;如果租
班级 考号 姓名 ----------------------------------------密-----------------------封-------------------线---------------------------------------- 班级 考号 姓
名
-----------
-----------------------------密-----------------------------封----------------------------线----------------------------------------
用同样数量的60座客车,则多出一辆,且其余客车恰好座满。
设初一年级人数是x 人,由题意可列方程 A 、
1560
4560
x x -+= B 、45156060x x +=- C 、4515601x x +=- D 、451560(60)x x +=- 三、细心算一算:(每题4分,共16分) 1、计算: (-1)3×(-2)-(-22)-(-3)2÷(-1
2
1)2
2、先化简,再求值:()
c b b a a c b a a 212522322
2222--⎪
⎭
⎫ ⎝⎛----,其中,a=-1,b=32,c=0.
3、解方程 (1)0.50.10.50.110.20.6
x x -+-= (2)()1111
222322x x ⎡⎤+-=⎢⎥⎣⎦
四、用心画一画:(每题4分,共8分)
(1)直线m 经过点A ,不经过点B ,经过点B 的直线n 与直线m 相交于点C,连接AB ; (2)已知线段a 、b 、c ,用圆规和直尺作出线段2a+b -c (不写作法,保留作图痕迹)
五、请你露一手:( 用方程...
解决下列实际问题 )(每小题6分,共18分)
1、一项工程甲单独做5天完成,乙单独做10天完成,若乙先干一天后,由甲去支援,则他
们完成全部工程还需几天?
2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?
3、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速度是17.5千米/时,乙的速度是15千米/时,经过几小时,两人相距32.5千米?。