多种传感器测速对比的实验报告
霍尔测速实验报告
霍尔测速实验报告
《霍尔测速实验报告》
嘿,大家好呀!今天来给大家讲讲我做霍尔测速实验的那些事儿。
话说那一天,我来到实验室,看到那一堆实验器材,心里还有点小激动呢。
我看着那些霍尔传感器呀,就像看到了一个个小宝贝,嘿嘿。
我开始小心翼翼地组装起实验装置来。
我把电机接上电源,让它欢快地转起来,就像个小风车似的。
然后把霍尔传感器靠近电机,准备开始测量速度啦。
我眼睛紧紧地盯着那个小小的显示屏,心里默默祈祷着数据能准确点。
这时候呀,我感觉自己就像个侦探,在寻找着速度的秘密。
电机转呀转,我盯着看呀看,那紧张的感觉,就好像在等着彩票开奖一样。
突然,数据出来了,我兴奋地差点叫出声来。
我又反复测了几次,每一次都特别认真,感觉自己都快钻进那些数据里去了。
在这个过程中,我还发现了一些小细节呢。
比如传感器的位置稍微变动一下,数据就会有点不一样,真是神奇得很呐!
经过一番折腾,我终于完成了实验。
看着那一串串的数据,心里别提有多满足了。
就好像我收获了满满的宝藏一样。
这次霍尔测速实验,让我深深体会到了科学的魅力。
虽然过程中也遇到了一些小麻烦,像一开始不太会组装呀,数据不太稳定呀,但这些都让我更加投入,更加想要弄清楚其中的奥秘。
现在想想,科学实验还真是有趣呀,就像一场奇妙的冒险。
我期待着下一次的实验,再去探索那些未知的领域。
嘿嘿,这就是我的霍尔测速实验之旅啦,是不是很有意思呀!大家也快去试试吧!
以上就是我的霍尔测速实验报告啦,希望你们也能喜欢这个有趣的实验哦!。
传感器与检测技术实验报告
传感器与检测技术实验报告一、实验目的本次实验旨在深入了解传感器与检测技术的基本原理和应用,通过实际操作和数据测量,掌握常见传感器的特性和检测方法,培养我们的实践能力和解决问题的思维。
二、实验设备与材料1、传感器实验箱,包含各类常见传感器,如电阻式传感器、电容式传感器、电感式传感器、光电式传感器等。
2、数字万用表、示波器。
3、实验连接导线若干。
三、实验原理1、电阻式传感器电阻式传感器是将被测量的变化转换为电阻值的变化。
常见的有应变式电阻传感器和热敏电阻传感器。
应变式电阻传感器基于电阻应变效应,当受到外力作用时,其电阻丝发生形变,从而导致电阻值的变化;热敏电阻传感器则根据温度的变化改变自身电阻值。
2、电容式传感器电容式传感器是将被测量的变化转换为电容值的变化。
主要有变极距型、变面积型和变介质型电容传感器。
其工作原理基于电容的定义式 C =εS/d,其中ε 为介质的介电常数,S 为两极板的相对面积,d 为两极板间的距离。
3、电感式传感器电感式传感器是利用电磁感应原理将被测量转换为电感量的变化。
包括自感式和互感式传感器。
自感式传感器通过改变线圈的自感系数来反映被测量;互感式传感器则是根据互感系数的变化进行测量。
4、光电式传感器光电式传感器是把被测量的变化转换成光信号的变化,然后通过光电元件转换成电信号。
常见的有光电管、光电倍增管、光敏电阻、光敏二极管和光敏三极管等。
四、实验内容与步骤1、电阻式传感器实验(1)连接应变式电阻传感器到实验电路,施加不同的外力,用数字万用表测量电阻值的变化,并记录数据。
(2)将热敏电阻传感器接入电路,改变环境温度,测量电阻值,绘制温度电阻曲线。
2、电容式传感器实验(1)分别连接变极距型、变面积型和变介质型电容传感器到实验电路,改变相应的参数,如极距、面积或介质,用示波器观察输出电压的变化。
(2)记录不同参数下的输出电压值,分析电容值与输出电压的关系。
3、电感式传感器实验(1)连接自感式传感器,改变磁芯位置或气隙大小,测量电感值的变化。
传感器测速实验报告(第一组)讲诉
传感器测速实验报告院系:班级:、小组:组员:日期:2013年4月20日实验二十霍尔转速传感器测速实验一、实验目的了解霍尔转速传感器的应用。
二、基本原理利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。
每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。
本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平三、需用器件与单元霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。
四、实验步骤1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。
图9-1 霍尔转速传感器安装示意图2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。
3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。
4、将转速调解中的转速电源引到转动源的电源插孔。
5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。
6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。
五、实验结果分析与处理1、记录频率计输出频率数值如下表所示:电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。
六、思考题1、利用霍尔元件测转速,在测量上是否有所限制?答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。
2、本实验装置上用了十二只磁钢,能否只用一只磁钢?答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。
实验二十一 磁电式传感器转速测量实验一、 实验目的:了解磁电式测量转速的原理; 二、需用器件与单元:磁电传感器、转动调节2-24V ,转动源单元。
(完整版)传感器与检测技术实验报告
传感器与检测技术实验报告学院专业班级学号姓名实验目录实验一金属箔式应变片单臂、半桥、全桥性能比较实验 (3)实验二电容式传感器的位移实验 (8)实验三直流激励时霍尔式传感器位移特性实验 (9)实验四磁电式转速传感器测速实验 (11)实验五压电式传感器测振动实验 (12)实验六计算修正法热电偶测温电路 (13)实验一金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应,单臂、半桥、全桥工作原理和性能比较。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。
电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压 Uo1= EKε/4;对于半桥不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压UO2=EKε/2;对于全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
应变片电桥性能试验原理图如下图所示:三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘、砝码、4位数显万用表(自备)。
图1 应变片单臂电桥性能实验安装、接线示意图四、实验步骤:单臂:应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
传感器测速实验报告
传感器测速实验报告传感器测速实验报告引言:近年来,随着科技的发展和社会的进步,传感器技术在各个领域得到了广泛应用。
其中,传感器在测速领域的应用越来越受到重视。
本文将介绍一项关于传感器测速实验的研究,探讨其原理、方法和实验结果。
一、实验目的本实验的主要目的是通过使用传感器测速的方法,了解传感器的工作原理,以及探究传感器测速的准确性和可行性。
二、实验装置和方法1. 实验装置:本实验使用了一台传感器测速仪器,该仪器由传感器、计算机和数据处理软件组成。
2. 实验方法:a. 将传感器正确安装在测速仪器上,并连接至计算机。
b. 在实验过程中,保持传感器与被测物体之间的距离恒定。
c. 启动测速仪器,并开始进行测速实验。
d. 实验过程中,记录传感器所测得的速度数据,并进行数据处理和分析。
三、实验原理传感器测速的原理基于多种物理现象,如声波、光学、电磁等。
不同类型的传感器采用不同的原理来测量速度。
在本实验中,我们使用了一种基于光学原理的传感器。
光学传感器利用光的传播速度和物体的运动速度之间的关系来测量物体的速度。
当物体通过传感器时,光束被物体遮挡,传感器会记录下遮挡时间。
通过计算遮挡时间和传感器与物体之间的距离,可以得出物体的速度。
四、实验结果与讨论在实验过程中,我们使用传感器测速仪器对一辆运动车辆进行了测速。
实验结果显示,该车辆的速度为每小时60公里。
通过多次实验,我们发现传感器的测速结果相对准确,与实际速度相差不大。
然而,我们也注意到传感器测速的准确性受到一些因素的影响。
首先,传感器与物体之间的距离需要保持恒定,否则会导致测速结果的偏差。
其次,传感器对于高速运动的物体可能存在测量误差,因为遮挡时间非常短,传感器的响应时间有限。
为了提高测速的准确性,我们可以采取以下措施:1. 定期校准传感器,确保其测量结果的准确性。
2. 采用多个传感器进行测速,以提高测量的可靠性和准确性。
3. 结合其他测速方法,如GPS等,进行对比验证,以确保测速结果的可信度。
多种传感器测速对比的实验报告
测速传感器实验报告系别:电子通信工程系班级:应电113班组号:第三组组员工作分配情况:连接电路:苏芳(110415248)记录数据:魏莹莹(110415216)分析数据:康书娟(110415237)拍照人员:刘素芳(110415238)实习报告:李颂(110415218)实习报告:李源(110415210)检查电路:王德福(110415215) 2013年4月20日磁电式传感器、光纤式传感器、光电传感器、霍尔传感器在测速方面的对比实验一. 实验目的1.了解磁电式传感器、光纤式传感器、光电传感器、霍尔传感器的结构及其特点;2.掌握磁电式传感器、光纤式传感器、光电传感器、霍尔传感器测量转速的方法;3.掌握磁电式传感器、光纤式传感器、光电传感器、霍尔传感器的实际应用.二. 实验仪器设备1.实训台、磁电式传感器、光纤式传感器、光电传感器、霍尔传感器、及其对应的测量模块、导线、万用表、电压表、示波器、电流表. 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分三. 实验基本原理利用不同的传感器的特性,把圆盘的转速转换成为电信号,通过对电信号的频率和电压的测量就能根据相应的公式计算出圆盘的转速.丛而达到测量转速的目的.四. 实验内容及步骤1.磁电式传感器测速电路基于电磁式感应原理,N匝线圈在磁场中的磁通变化时,线圈中感应电势的变化,因此当转盘上嵌入N个磁铁时,每转一周线圈感应电势产生N次变化,通过放大,整形和计数等电路即可测量转速.2.光纤式测速传感器测速时,光源发出的光由发射光纤传输并投射到反射镜片的表面,反射后由接收光纤接收至光敏元件,当反射片随转盘转动位置发生变化.其变化周期即为转动周期,由此可测量转动速度.3.光电传感器测速时,光源发出的光由发射光纤传输并投投射到反射镜片的表面,反射后由接收光纤接收至光敏元件,当反射片随转盘转动位置发生变化.其变化周期即为转动周期,由此可测量转动速度.4.霍尔式传感器测速电路实验利用霍尔效应的表达式,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次.每转一周霍尔电势就同频率相应变化,输出电势通过放大\整形和计数电路就可以测量被测旋转物的转速.五.电路连接图如下图所示:五.实验内容及步骤六. 实验小结:通过本次试验,我们了解了霍尔式传感器、磁电式传感器、光纤式传感器和光电式传感器的实验原理和它们之间的区别,并知道如何去使用它,意识到了团队合作的重要性,更激发了我们对传感器的更深层次的学习.。
传感器实验报告实验总结(3篇)
第1篇一、实验背景随着科技的不断发展,传感器技术已成为现代工业、医疗、环保等领域不可或缺的重要组成部分。
为了深入了解传感器的工作原理和应用,我们开展了本次传感器实验,通过实际操作和数据分析,加深对传感器性能的理解。
二、实验目的1. 熟悉各类传感器的结构、原理和应用。
2. 掌握传感器的测试方法及数据分析技巧。
3. 培养实验操作能力和团队协作精神。
三、实验内容本次实验主要包括以下几部分:1. 压电式传感器测振动实验- 实验目的:了解压电式传感器测量振动的原理和方法。
- 实验步骤:1. 将压电传感器安装在振动台上。
2. 连接低频振荡器,输入振动信号。
3. 通过示波器观察振动波形,分析传感器输出。
2. 光纤式传感器测量振动实验- 实验目的:了解光纤传感器动态位移性能。
- 实验步骤:1. 将光纤位移传感器安装在振动台上。
2. 连接低频振荡器,输入振动信号。
3. 通过示波器观察振动波形,分析传感器输出。
3. 传感器设计实验- 实验目的:认识传感器,了解其设计原理和调试方法。
- 实验步骤:1. 根据实验要求,设计传感器电路。
2. 连接实验设备,进行电路调试。
3. 分析测试数据,评估传感器性能。
四、实验结果与分析1. 压电式传感器测振动实验- 实验结果显示,压电式传感器能够有效地测量振动信号,输出波形与输入信号一致。
- 分析原因:压电式传感器利用压电效应将振动信号转换为电信号,具有较高的灵敏度和抗干扰能力。
2. 光纤式传感器测量振动实验- 实验结果显示,光纤式传感器能够准确地测量振动位移,输出波形与输入信号一致。
- 分析原因:光纤式传感器采用光导纤维传输信号,具有抗电磁干扰、高抗拉性能等特点。
3. 传感器设计实验- 实验结果显示,所设计的传感器电路能够正常工作,输出信号稳定。
- 分析原因:在电路设计和调试过程中,充分考虑了传感器性能、信号传输和抗干扰等因素。
五、实验结论1. 压电式传感器和光纤式传感器在振动测量方面具有较好的性能,能够满足实际应用需求。
传感器实验实验报告总结(3篇)
第1篇一、实验背景随着科学技术的不断发展,传感器在各个领域得到了广泛应用。
为了提高学生对传感器原理和应用的了解,我们开展了传感器实验课程。
通过本次实验,使学生掌握传感器的原理、设计、制作和测试方法,提高学生的动手能力和创新思维。
二、实验目的1. 了解传感器的基本原理和分类;2. 掌握传感器的设计、制作和测试方法;3. 培养学生的动手能力和团队协作精神;4. 提高学生对传感器在实际工程中的应用的认识。
三、实验内容本次实验主要分为以下几个部分:1. 传感器基本原理实验:通过实验,使学生了解传感器的工作原理,掌握传感器的分类和应用。
2. 传感器设计实验:根据传感器的基本原理,设计并制作一个简单的传感器。
3. 传感器测试实验:对制作的传感器进行测试,分析其性能指标。
4. 传感器应用实验:将传感器应用于实际工程中,解决实际问题。
四、实验过程1. 传感器基本原理实验:通过实验,我们了解了传感器的分类、工作原理和应用。
实验过程中,我们学习了不同类型传感器的原理,如光电传感器、热敏传感器、压力传感器等。
2. 传感器设计实验:在老师的指导下,我们设计并制作了一个简单的压力传感器。
我们首先确定了传感器的结构,然后选择了合适的材料和元器件,最后进行了组装和调试。
3. 传感器测试实验:我们对制作的压力传感器进行了测试,测试内容包括灵敏度、线性度、响应时间等。
通过实验,我们分析了传感器的性能指标,并与理论值进行了比较。
4. 传感器应用实验:我们将制作的压力传感器应用于实际工程中,解决了一个简单的实际问题。
通过实验,我们了解了传感器在实际工程中的应用价值。
五、实验结果与分析1. 传感器基本原理实验:通过实验,我们掌握了不同类型传感器的原理和应用,为后续实验奠定了基础。
2. 传感器设计实验:我们成功设计并制作了一个简单的压力传感器,其灵敏度、线性度等性能指标符合预期。
3. 传感器测试实验:测试结果表明,我们制作的压力传感器性能稳定,能够满足实际应用需求。
传感器测速性能比较实验
传感器技术实验报告实验序号: *********************** 系别: ************** 班级: ********** 组别: ****** 成员:********* ****** ******** 1******** ****** ***************** ****** ***************** **** ********20**年**月**日各类传感器测速性能比较实验一、实验目的比较各类传感器对测速实验的性能差异。
二、实验要求通过实验二十(霍尔测速实验)、实验二十一(磁电式传感器测速实验)、实验二十八(电涡流传感器测转速实验)、实验三十一(光纤传感器测速实验)以及实验三十二(光电转速传感器的转速测量实验),获得实验数据,进而对实验数据进行比较,获得各传感器测速的性能。
三、基本原理(一)霍尔测速实验:利用霍尔效应表达式UH = KHIB,当被测圆盘上装上N只磁性体时,圆盘每转一周,磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12)。
(二)磁电式传感器测速实验:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N个磁钢时,每转一周线圈感应电势产生N次变化,通过放大、整形和计数等电路即可测量转速。
(三)电涡流传感器测转速实验:利用电涡流的位移传感器及其位移特性,当被测转轴的端面或径向有明显的位移变化(齿轮、凸台)时,就可以得到相应的电压变化量,再配上相应电路测量转轴转速。
本实验请实验人员自己利用电涡流传感器和转动源、数显单元组建。
(四)光纤传感器测速实验:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。
(五)光电转速传感器的转速测量实验:光电式转速传感器有反射型和直射型两种,本实验装置是反射型的,传感器端部有发光管和光电管,发光管发出的光源在转盘上反射后由光电管接收转换成电信号,由于转盘上有黑白相间的12个间隔,转动时将获得与转速及黑白间隔数有关的脉冲,将电脉冲计数处理即可得到转速值。
传感器实验总结报告范文(3篇)
第1篇一、实验背景随着科技的飞速发展,传感器技术在各个领域都得到了广泛的应用。
传感器作为一种将非电学量转换为电学量的装置,对于信息采集、处理和控制具有至关重要的作用。
本实验旨在通过一系列传感器实验,加深对传感器基本原理、工作原理和应用领域的理解。
二、实验目的1. 了解传感器的定义、分类和基本原理。
2. 掌握常见传感器的结构、工作原理和特性参数。
3. 熟悉传感器在信息采集、处理和控制中的应用。
4. 培养动手操作能力和分析问题、解决问题的能力。
三、实验内容本次实验共分为以下几个部分:1. 压电式传感器实验- 实验目的:了解压电式传感器的测量振动的原理和方法。
- 实验原理:压电式传感器由惯性质量块和受压的压电片等组成。
工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
- 实验步骤:1. 将压电传感器装在振动台面上。
2. 将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3. 将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端Vo1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
4. 合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。
5. 改变低频振荡器的频率,观察输出波形变化。
2. 电涡流传感器位移特性实验- 实验目的:了解电涡流传感器测位移的原理和方法。
- 实验原理:电涡流传感器利用电磁感应原理,当传感器靠近被测物体时,在物体表面产生涡流,通过检测涡流的变化来测量物体的位移。
- 实验步骤:1. 将电涡流传感器安装在实验平台上。
2. 调整传感器与被测物体的距离,观察示波器波形变化。
3. 改变被测物体的位移,观察示波器波形变化。
3. 光纤式传感器测量振动实验- 实验目的:了解光纤传感器动态位移性能。
传感器实验报告总结
传感器实验报告总结一、实验目的本次实验的主要目的是了解传感器的基本概念和原理,并通过实验掌握传感器在不同环境下的测量方法、数据获取和处理技巧。
二、实验内容本次实验主要涉及以下内容:1. 了解传感器基本概念和原理2. 选择适当的传感器和信号处理器,实现测量环境和测量物理量的匹配3. 设计实验方案,进行传感器的实际应用探究4. 数据采集和处理,分析实验结果并进行总结三、实验器材1. 传感器:温度传感器、湿度传感器、压力传感器、光强传感器以及红外线传感器等2. 信号处理器:单片机或微处理器3. 其他器材:数据采集卡、计算机、实验电路板、线缆等四、实验步骤1. 建立传感器测量系统根据实验需要选择相应的传感器和信号处理器,将其连接在实验电路板上,并与计算机通过数据采集卡连接,建立传感器测量系统。
2. 测量环境和测量物理量的匹配根据所选传感器的特性和测量要求,设计合理的测量环境并选择适当的测量物理量进行实验。
3. 实验方案的实施根据设计的实验方案,实施实验并完成数据采集和处理,根据采集到的数据分析实验结果。
4. 结果分析和总结根据实验结果进行分析和总结,从实验数据中发现和提取规律,进一步探索应用场景和改进方法。
五、实验中的问题和解决方法在实验过程中,可能会出现各种问题,以下是常见问题及其解决方法:1. 传感器读取数据有误解决方法:首先检查传感器能否正常工作,确保连接线路正确,考虑是否需要校准传感器或更换传感器。
2. 数据采集不全或丢失解决方法:检查数据采集卡和计算机连接是否正常,考虑更换数据采集卡,自行编写数据采集程序等。
3. 实验结果不符合实际解决方法:可进一步调整测量环境和测量方法,考虑传感器灵敏度等因素,检查数据采集是否存在误差等。
六、实验结论通过本次实验,我们深入了解传感器的基本概念和原理,并通过实验掌握了传感器在不同环境下的测量方法和数据处理技巧。
通过分析实验结果,总结了应用场景和改进方法。
在未来的学习和工作中,将能够更准确地选择适合的传感器并进行相关测量工作,为科研和实际应用提供更好的技术支持。
传感器与检测技术实验报告
传感器与检测技术实验报告一、实验目的。
本实验旨在通过对传感器和检测技术的研究和实验,掌握传感器的工作原理、特性及其在检测技术中的应用,提高学生对传感器和检测技术的理论和实际操作能力。
二、实验原理。
1. 传感器的工作原理。
传感器是一种能够对被测量进行感知并将感知到的信息转换成可识别的信号输出的装置。
其工作原理一般为根据被测量的变化,通过内部的敏感元件产生相应的信号输出。
常见的传感器有温度传感器、湿度传感器、光敏传感器等。
2. 传感器的特性。
传感器的特性包括灵敏度、线性度、分辨率、稳定性等。
这些特性直接影响着传感器的检测精度和可靠性。
在实际应用中,需要根据具体的检测需求选择合适的传感器,并对其特性进行评估和测试。
3. 传感器在检测技术中的应用。
传感器在各个领域都有着广泛的应用,如工业生产、环境监测、医疗诊断等。
通过传感器的检测技术,可以实现对各种参数的实时监测和控制,为生产和生活带来便利和安全保障。
三、实验内容。
1. 温度传感器的实验。
通过连接温度传感器和数据采集系统,测量不同温度下传感器的输出信号,并分析温度传感器的特性曲线和灵敏度。
2. 光敏传感器的实验。
利用光敏传感器对不同光照条件下的光强进行测量,并观察其输出信号的变化规律,了解光敏传感器的工作原理和特性。
3. 气体传感器的实验。
使用气体传感器对不同浓度的气体进行检测,并记录传感器的输出信号,分析气体传感器的检测灵敏度和稳定性。
四、实验结果与分析。
通过实验数据的收集和分析,我们得出了不同传感器在不同条件下的输出信号变化规律,了解了传感器的特性和在检测技术中的应用。
同时,也发现了传感器在实际应用中可能存在的一些问题和局限性,为今后的实际应用提供了参考和改进的方向。
五、实验总结与展望。
通过本次实验,我们对传感器和检测技术有了更深入的了解,掌握了一定的实验操作技能和数据分析能力。
同时,也意识到了传感器技术在实际应用中的重要性和挑战,为今后的学习和研究打下了基础。
传感器综合实验报告
传感器综合实验报告( 2014-2015年度第二学期)名称:传感器综合实验报告题目: 利用传感器测量重物质量院系:自动化系班级:测控1201 班姓名:蔡攀学号:201202030101指导教师:仝卫国实验周数:一周成绩:日期:2015 年7 月7日传感器综合实验报告一、实验目的1、了解各种传感器的工作原理与工作特性。
2、掌握多种传感器应用于电子称的原理。
3、根据不同传感器的特性,选择不同的传感器测给定物体的重量。
4、能根据原理特性分析结果,加深对传感器的认识与应用。
5、测量精度要求达到1%。
二、实验设备、器材1、差动变压器:差动变压器、音频振荡器、电桥、差动放大器、移相器、相敏检波器、低通滤波器、电压表、示波器、测微器。
2、霍尔式传感器:直流稳压电源、电桥、霍尔传感器、差动放大器、电压表。
3、电涡流式传感器:电涡流式传感器、测微器、铝测片、铁测片、铜测片、电压表、示波器。
三、传感器工作原理1、差动变压器的工作原理:差动变压器的基本元件有衔铁、初级线圈、次级线圈和线圈骨架。
初级线圈作为差动变压器激励用,相当于变压器的原边。
而次级线圈由两个结构尺寸和参数相同的两个线圈反相串接而成,形成变压器的副边。
差动变压器是开磁路,工作是建立在互感变化的基础上。
当差动变压器的衔铁处于中间位置时,理想条件下其输出电压为零。
但实际上,当使用电桥式电路时,在零点仍有一个微小的电压值(从零点几mv到数十mv)存在,称为零点残余电压。
零点残余电压的存在造成零点附近的不灵敏区,零点残余电压输出放大器内会使放大器末级趋向饱和,影响电路正常工作等。
因此需采用适当的方法进行补偿。
2、霍尔式传感器:霍尔传感器是由两个半圆形永久磁钢组成梯度磁场,位于梯度磁场中的霍尔元件——霍尔片通过底座连结在震动台上。
当霍尔片通以恒定的电流时,霍尔元件就有电压输出。
改变振动台的位置,霍尔片就在梯度磁场中上下移动,输出的霍尔电势U 值取决于其在磁场中的位移量Y ,所以由霍尔电势的大小便可获得振动台的静位移。
传感器实验报告1_1
传感器实验报告1传感器实验报告实验一 Pt100铂电阻测温特性实验一、实验目的1.通过自行设计热电阻测温实验方案,加深对温度传感器工作原理的理解。
2.掌握测量温度的电路设计和误差分析方法。
二、实验内容1.设计PT100 铂热电阻测温实验电路方案;2.测量PT100 的温度与电压关系,要求测温范围为:室温~65℃;温度测量精度:±2℃;输出电压≤4V,输出以电压V方式记录。
3.通过测量值进行误差分析。
三、实验仪器、设备、材料主机箱、温度源、Pt100热电阻(2支)、温度传感器实验模板、万用表。
四、实验原理利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
常用的热电阻有铂电阻(650℃以内)和铜电阻(150℃以内)。
铂电阻是将~mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷管等保护管内构成。
在0-650℃以内,它的电阻Rt与温度t的关系为:Rt=Ro(1+At+Bt2),式中:Ro系温度为0℃时的电阻值(本实验的铂电阻Ro=100Ω)。
A=×10-3/℃,B=-×10-7/℃2。
铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计。
)。
实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示。
五、实验步骤1、用万用表欧姆档测出Pt100三根线中其中短接的二根线(同种颜色的线)设为1、 2,另一根设为3,并测出它在室温时的大致电阻值。
2、在主机箱总电源、调节仪电源都关闭的状态下,再根据图1示意图接线,温度传感器实验模板中a、b(Rt)两端接传感器,这样传感器(Rt)与R3、R1、Rw1、R4组成直流电桥,是一种单臂电桥工作形式。
3、放大器调零:将图的温度传感器实验模板的放大器的两输入端引线(一根传感器引线、另一根桥路输出即Rw1活动触点输出)暂时不要引入,而用导线直接将放大器的两输入端相连(短接);将主机箱上的电压表量程(显示选择)切换开关打到2V档,合上主机箱电源开关,调节温度传感器实验模板中的RW2(逆时针转到底)增益电位器,使放大器增益最小;再调节RW3(调零电位器)使主机箱的电压表显示为0。
实验五光电转速传感器测速实验(5篇)
实验五光电转速传感器测速实验(5篇)第一篇:实验五光电转速传感器测速实验实验五光电转速传感器测速实验一、实验目的了解光电转速传感器测量转速的原理及方法。
二、基本原理光电式转速转速传感器有反射型和透射型两种,本实验装置是透射型的,传感器端部有发光管和光电管,发光管发出的光源通过转盘上开的孔透射后由光电二极管接受转换成电信号,由于转盘上有相间的6个孔,转动时将获得与转速及孔数有关的脉冲,将电脉冲计数处理即可得到转速值。
三、需用器件与单元传感器实验模块四、实验步骤1.光电转速传感器已经安装在传感器实模块上。
2.将+5V直流稳压电源接到光电转速传感器的“+5V输入”端。
3.将光电转速传感器的输出接“频率/转速表”输入端。
4.将面板上的0~30V稳压电源调节到小于24V,接到传感器实验模块“0~24V转动电源”输入端。
5.调节0~30V直流稳压电源输出电压(+24V以下),使转盘的转速发生变化,观察频率/转速表显示的变化,并用虚拟示波器观察光电转速传感器输出波形。
五、注意事项1.转动源的正负输入端不能接反,否则可能击穿电机里面的晶体管。
2.转动源的输入电压不可超过24V,否则容易烧毁电机。
3.光电转速传感器中+5V电源不能接错,否则会烧毁光电传感器.六、思考题根据上面实验观察到的波形,分析为什么方波的高电平比低电平要宽。
第二篇:传感器实验五传感器实验报告五姓名江璐学号 1315212017 班级电子二班时间 2015.12.2 实验题目 CC2530基础实验一:实验设备1.硬件:教学实验箱、PC机。
2.软件:PC机操作系统Windows 98(2000、XP)+IAR开发环境。
二:实验(一)光照传感器采集实验1.实验目的(1)掌握光照传感器的操作方法。
(2)掌握光照传感器采集程序的编程方法。
2.实验内容在IAR集成开发环境中编写光照传感器采集程序。
3.相关电路图4.程序5.实验现象(二)人体感应传感器采集实验1.实验目的(1)掌握人体感应传感器的操作方法。
传感器基本实验实验报告(3篇)
第1篇一、实验目的1. 理解传感器的基本工作原理和特性。
2. 掌握传感器的基本测试方法。
3. 学会使用常用传感器进行数据采集和信号处理。
4. 分析实验数据,加深对传感器应用的理解。
二、实验设备与器材1. 传感器实验平台2. 数据采集卡3. 示波器4. 信号发生器5. 电源6. 传感器(如温度传感器、压力传感器、光敏传感器等)7. 连接线、插头等辅助器材三、实验内容1. 传感器基本原理学习- 了解传感器的基本概念、分类、工作原理和特性。
- 学习不同类型传感器的应用场景。
2. 传感器测试方法- 学习传感器的基本测试方法,如静态测试、动态测试、线性度测试等。
- 熟悉使用示波器、信号发生器等仪器进行传感器测试。
3. 传感器应用实验- 以温度传感器为例,进行温度测量实验。
- 以压力传感器为例,进行压力测量实验。
- 以光敏传感器为例,进行光照强度测量实验。
4. 数据分析与处理- 对实验数据进行采集、处理和分析。
- 利用软件进行数据拟合、误差分析等。
四、实验步骤1. 准备实验- 熟悉实验平台和设备,了解传感器的基本特性。
- 检查实验设备是否完好,连接线是否正确。
2. 传感器测试- 根据实验要求,选择合适的传感器。
- 连接传感器、数据采集卡、示波器等设备。
- 设置信号发生器的参数,如频率、幅度等。
- 进行传感器静态测试和动态测试。
3. 数据采集与处理- 利用数据采集卡采集传感器信号。
- 使用示波器观察信号波形。
- 对采集到的数据进行处理和分析。
4. 实验结果与分析- 将实验结果与理论值进行比较,分析误差原因。
- 总结实验经验,提出改进建议。
五、实验结果与分析1. 温度传感器实验- 测试温度范围:0℃~100℃- 测试精度:±0.5℃- 实验数据与理论值吻合较好,说明温度传感器具有良好的线性度和稳定性。
2. 压力传感器实验- 测试压力范围:0~10MPa- 测试精度:±0.1MPa- 实验数据与理论值吻合较好,说明压力传感器具有良好的线性度和稳定性。
传感器系列实验实验报告(3篇)
第1篇一、实验目的1. 理解传感器的基本原理和分类。
2. 掌握常见传感器的工作原理和特性。
3. 学会传感器信号的采集和处理方法。
4. 提高实验操作能力和数据分析能力。
二、实验设备与器材1. 传感器实验平台2. 数据采集卡3. 信号发生器4. 示波器5. 计算机及相应软件6. 传感器:热敏电阻、霍尔传感器、光电传感器、电容式传感器、差动变压器等三、实验内容及步骤1. 热敏电阻实验(1)目的:了解热敏电阻的工作原理和特性。
(2)步骤:1. 将热敏电阻连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集热敏电阻的输出信号。
3. 使用示波器观察热敏电阻输出信号的波形和幅度。
4. 分析热敏电阻输出信号与温度的关系。
2. 霍尔传感器实验(1)目的:了解霍尔传感器的工作原理和特性。
1. 将霍尔传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集霍尔传感器的输出信号。
3. 使用示波器观察霍尔传感器输出信号的波形和幅度。
4. 分析霍尔传感器输出信号与磁场强度的关系。
3. 光电传感器实验(1)目的:了解光电传感器的工作原理和特性。
(2)步骤:1. 将光电传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集光电传感器的输出信号。
3. 使用示波器观察光电传感器输出信号的波形和幅度。
4. 分析光电传感器输出信号与光照强度的关系。
4. 电容式传感器实验(1)目的:了解电容式传感器的工作原理和特性。
(2)步骤:1. 将电容式传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集电容式传感器的输出信号。
3. 使用示波器观察电容式传感器输出信号的波形和幅度。
4. 分析电容式传感器输出信号与电容变化的关系。
5. 差动变压器实验(1)目的:了解差动变压器的工作原理和特性。
1. 将差动变压器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
实验二 多传感器的工程检测综合实验(2)
实验二多传感器的工程检测综合实验(Ⅱ)一、实验目的1.掌握磁电、光电等各种传感器的工作原理;利用以上传感器进行振动、速度等参数的测量,并采用适当的信号分析方法对测量结果进行分析和显示。
2.结合本实验项目,掌握检测系统的结构和组成,并熟悉振动、速度、轴心轨迹等物理量的测量和工程应用方法。
二、实验台简介多功能转子实验台较好地模拟大型设备(如机床)运行时候的工作状态,提供了振动、转速等测试对象,可以开设磁电、光电、压电等多种传感器的综合实验。
利用不同的传感器,可以对同一个物理量,采用多种方式测量,再现了实际工程应用中物理量的工程测试方法。
转子实验台由以下几个部分组成:1底座、2主轴、3偏心飞轮、4直流电机、5主轴支座、6含油轴承及油杯、7电机支座、8连轴器及护罩、9 RS9008电涡流传感器支架、10磁电转速传感器支架、11测速齿轮(15齿)、12保护挡板支架,如图1所示。
图1 DRZZS-A型多功能转子试验台传感器安装位置示意图主要技术指标为:可调转速范围:0~2500转/分,无级;电源:DC12V;主轴长度:500mm;主轴直径:12mm;外形尺寸:640×140×160mm;重量:12.5kg。
三、实验原理1、转子实验台底座振动测量实验机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。
机械振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故,因此有必要进行机械结构的振动分析和振动测试。
对于转子实验台的振动,可以采用磁电速度传感器和压电加速度传感器进行测量。
将带有磁座的速度和加速度传感器放置在试验台的底座上,如图2所示。
1)采用磁电速度传感器的振动测量:磁电速度传感器是由一个线圈组件和壳体组成的。
如图3所示,壳体中固定有磁铁,线圈组件用弹性元件悬挂在壳体上。
工作时,将传感器壳体固定在振动体上,这样当振动体振动时,在传感器工作频率范围内,线圈与磁铁相对运动,切割磁力线,在线圈内产生感应电压,该电压值正比于振动速度值。
传感器测速实验报告(第一组)
传感器测速实验报告院系:班级:小组:组员:日期:2013年4月20日实验二十霍尔转速传感器测速实验一、实验目的了解霍尔转速传感器的应用。
二、基本原理利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。
每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。
本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平三、需用器件与单元霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。
四、实验步骤1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。
图9-1 霍尔转速传感器安装示意图2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。
3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。
4、将转速调解中的转速电源引到转动源的电源插孔。
5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。
6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。
五、实验结果分析与处理1、记录频率计输出频率数值如下表所示:电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。
六、思考题1、利用霍尔元件测转速,在测量上是否有所限制?答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。
2、本实验装置上用了十二只磁钢,能否只用一只磁钢?答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。
实验二十一 磁电式传感器转速测量实验一、 实验目的:了解磁电式测量转速的原理;二、需用器件与单元:磁电传感器、转动调节2-24V ,转动源单元。
传感器测速性能比较实验
传感器技术实验报告实验序号:***********************系别:**************班级:**********组别:******成员: ********* ****** ********1******** ****** ***************** ****** ***************** ************20** 年** 月** 日各类传感器测速性能比较实验一、实验目的比较各类传感器对测速实验的性能差异。
二、实验要求通过实验二十(霍尔测速实验)、实验二十一(磁电式传感器测速实验)、实验二十八(电涡流传感器测转速实验)、实验三十一(光纤传感器测速实验)以及实验三十二(光电转速传感器的转速测量实验),获得实验数据,进而对实验数据进行比较,获得各传感器测速的性能。
三、基本原理(一)霍尔测速实验:利用霍尔效应表达式UH = KHIB,当被测圆盘上装上N只磁性体时,圆盘每转一周,磁场就变化N 次,霍尔电势相应变化N 次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速(转速=60*频率/12 )。
(二)磁电式传感器测速实验:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N 个磁钢时,每转一周线圈感应电势产生N次变化,通过放大、整形和计数等电路即可测量转速。
(三)电涡流传感器测转速实验:利用电涡流的位移传感器及其位移特性,当被测转轴的端面或径向有明显的位移变化(齿轮、凸台)时,就可以得到相应的电压变化量,再配上相应电路测量转轴转速。
本实验请实验人员自己利用电涡流传感器和转动源、数显单元组建。
(四)光纤传感器测速实验:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。
(五)光电转速传感器的转速测量实验:光电式转速传感器有反射型和直射型两种,本实验装置是反射型的,传感器端部有发光管和光电管,发光管发出的光源在转盘上反射后由光电管接收转换成电信号,由于转盘上有黑白相间的 12 个间隔,转动时将获得与转速及黑白间隔数有关的脉冲,将电脉冲计数处理即可得到转速值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测速传感器实验报告
系别:电子通信工程系
班级:应电113班
组号:第三组
组员工作分配情况:
连接电路:苏芳(110415248)
记录数据:魏莹莹(110415216)
分析数据:康书娟(110415237)
拍照人员:刘素芳(110415238)
实习报告:李颂(110415218)
实习报告:李源(110415210)
检查电路:王德福(110415215) 2013年4月20日
磁电式传感器、光纤式传感器、光电传感器、霍尔传感器在测速方面的对比实验
一. 实验目的
1.了解磁电式传感器、光纤式传感器、光电传感器、霍尔传感器的结构及其特点;
2.掌握磁电式传感器、光纤式传感器、光电传感器、霍尔传感器测量转速的方法;
3.掌握磁电式传感器、光纤式传感器、光电传感器、霍尔传感器的实际应用.
二. 实验仪器设备
1.实训台、磁电式传感器、光纤式传感器、光电传感器、霍尔传感器、及其对应的测量模块、导线、万用表、电压表、示波器、电流表. 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分
三. 实验基本原理
利用不同的传感器的特性,把圆盘的转速转换成为电信号,通过对电信号的频率和电压的测量就能根据相应的公式计算出圆盘的转速.丛而达到测量转速的目的.
四. 实验内容及步骤
1.磁电式传感器测速电路基于电磁式感应原理,N匝线圈在磁场中的磁通变化时,线圈中感
应电势的变化,因此当转盘上嵌入N个磁铁时,每转一周线圈感应电势产生N次变化,通过放大,整形和计数等电路即可测量转速.
2.光纤式测速传感器测速时,光源发出的光由发射光纤传输并投射到反射镜片的表面,反射后由接收光纤接收至光敏元件,当反射片随转盘转动位置发生变化.其变化周期即为转动周期,
由此可测量转动速度.
3.光电传感器测速时,光源发出的光由发射光纤传输并投投射到反射镜片的表面,反射后由接收光纤接收至光敏元件,当反射片随转盘转动位置发生变化.其变化周期即为转动周期,由此
可测量转动速度.
4.霍尔式传感器测速电路实验利用霍尔效应的表达式,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次.每转一周霍尔电势就同频率相应变化,输出电势通过放大\整形和计数电路就可以测量被测旋转物的转速.
五.电路连接图如下图所示:
五.实验内容及步骤
六. 实验小结:
通过本次试验,我们了解了霍尔式传感器、磁电式传感器、光纤式传感器和光电式传感器的实验原理和它们之间的区别,并知道如何去使用它,意识到了团队合作的重要性,更激发了我们对传感器的更深层次的学习.。