28-凝聚态结构.

合集下载

第2章 聚集态结构——第06讲 非晶态与取向态(1)

第2章 聚集态结构——第06讲 非晶态与取向态(1)

基本原理:

声速沿分子链的传播速度>>链间的传播速度
f 1 (Cunoriented )2 C
声波在完全未取向聚合物中的传播速度 待测聚合物取向方向上的传播速度
cos2 1 2 (Cunoriented )2
3C
这种方法得到的是晶区和非晶区的平均取向度, 由于声波在高 聚物中的波长较大, 该方法反映的只是分子链取向的情况.
(4) 红外二向色性
本讲小结
掌握不同非晶态结构模型的实验事实 取向现象 取向方式 取向机理 取向度及测量方法 能够解释取向在实际中的应用
isotropic
After orientation
Different degree of orders
anisotropic
聚合物取向方法
双轴拉伸或吹塑的薄膜 纤维 熔融挤出的管材和棒材
2.3.1 聚合物的取向方式
单轴取向(Uniaxial Orientation)
纤维纺丝
薄膜的单 向拉伸
双轴取向 (Biaxial Orientation)
SANS测量的分子尺寸一般大于10nm, 而对小 于10nm的区域不敏感
密度比完全无序模型计算的要高 某些聚合物结晶速度极快 TEM直接观察的结果
Random coils
local orders
Local orders, if exist, are limited to short-range no more than a few of tens of Angstroms.
一般在两个垂直方向施加外力。如薄膜双 轴拉伸,使分子链取向平行薄膜平面的任 意方向。在薄膜平面的各方向的性能相近, 但薄膜平面与平面之间易剥离。
2.3.2 聚合物的取向机理

聚合物结构的三个层次

聚合物结构的三个层次

1.1 聚合物结构的三个层次近程结构——系指单个大分子链内部一个或几个结构单元的化学结构和立体化学结决定聚合物性能的根本性物质基础,亦是决定远程结构和凝聚态结构的重要因素。

远程结构——系指由数目众多的结构单元组成的单个大分子链的长短及其在空间存在的各种形态(是直链还是有支链?是刚性的还是柔性的?是折叠状,还是螺旋状的?)。

凝聚态结构——系指聚合物在宏观上所表现出的分子凝聚结构类型。

包括非晶态、结晶态、 取向态、液晶态、织态结构,前四个描述是聚合物的堆砌方式,织态为不同聚合物分子链或与添加剂间的结合和堆砌方式,以结晶态和非晶态最常见。

分子链结构是决定聚合物性质最基本、最重要的结构层次。

熔点、密度、溶解性、溶液或熔体的粘度、粘附性能很大程度上取决于分子结构;而凝聚态结构是决定聚合物材料和制品的使用性能,尤其是力学性能的重要因素。

关于化学结构与物理结构的确切划分,普遍认同的是 H.G.Elias 提出的界定原则:化学结构:除非通过化学键的断裂,即同时生成新的化学键才能够产生改变的分子结构。

聚合物结构中所包括的结构单元的组成及其空间构型属于化学结构。

物理结构:将大分子内部、之间或者基团与大分子之间的形态学表述。

取向、结晶和分子链的构象则属于物理结构 1.2 大分子链的近程结构大分子链的近程结构包括结构单元的化学组成,连接方式、结构异构、立体异构、以及共聚物的序列结构等五个主要方面。

1.2.1 结构单元的化学组成结论1:聚合物的近程结构,即结构单元的化学组成和结构是决定其远程结构和凝聚态结构以及聚合物性能最重要的决定性因素。

尼龙-66、PET 、PBT ~缩聚物, PP 、PS 、PMMA 、PB ~加聚物 归纳表中三条主要规律:1)杂链聚合物(多为缩合聚合物)与碳链聚合物(多为加成聚合物)相比较,前者的各项物理性能均优于后者; 2)在碳链聚合物中,侧基带有极性基团的PVC 和带有苯基的PS 的相对密度和熔点均高于非极性和低位阻侧基的PE 和PP ; 3)缩聚物尼龙和涤纶等的相对密度、熔点、强度和使用温度均普遍高于一般加聚物。

高分子物理---第二章 高分子凝聚态

高分子物理---第二章 高分子凝聚态
第2章 聚合物的凝聚态结构
The Aggregation State of Polymers
凝聚态(聚集态)与相态



凝聚态:物质的物理状态, 是根据物质的分 子运动在宏观力学性能上的表现来区分的, 通常包括固、液、气体(态),称为物质 三态 相态:物质的热力学状态,是根据物质的 结构特征和热力学性质来区分的,包括晶 相、液相和气相(或态) 一般而言,气体为气相,液体为液相,但 固体并不都是晶相。如玻璃(固体、液相)
R O H O R H R O H
O H C
O H O
» ô µ ª¶ Å Ú Á õ · ¬® «¸ Í «¬¶ Á ¶ ° ² ¸ È £ Ì ©¸ Í · ² ° µ Ê Á ­ ß Ê Ð Í ä â ÷ ¾ ß Û ê ©µ ã ß Ê É ß ¾ ö ° ¹ ± ´ ¾ Â Ê £  ¾ » ° ¡ Â Ç Ç Î © ç ® ö  £
2.1.3 聚合物的结晶形态
Crystalline Polymer Morphology


结晶形态学研究的对象:单个晶粒的大小、 形状以及它们的聚集方式。 单晶体与多晶体

单晶体:具有一定外形, 长程有序 多晶体:由很多微小单晶无规则地聚集而成 单晶、球晶、树枝状晶、纤维晶、串晶、伸 直链晶等
PE的晶胞结构 Planar zigzag conformation
PP的晶胞结构
碳链的各种构象
Nylon-66 Extended
Poly-peptide Helical PET, kinked
晶胞密度
MZ c N AV
其中: M----结构单元分子量
Z----单位晶胞中单体(即链结构单元)的数目 V----晶胞体积 NA----为阿佛加德罗常数

聚合物的聚集态结构全解

聚合物的聚集态结构全解
因为分子间作用力与分子量有关,而高分子的分子量一般都很大,致 使分子间的作用力的加和超过化学键的键能,所以一般聚合物不存在气 态。所以我们不能用单一作用能来表示高分子链间的相互作用能,而用 宏观量:
内聚能
内聚能密度
内聚能(cohesive energy):
把1mol的液体或固体分子移到其分子引力范围之外所需
Axes Axial angles a=b=c =b=g=90 a=bc =g=90; b=120 a=bc =b=g=90 a=b=c =b=g90 a bc =b=g=90 a bc =g=90; b90 a bc bg90
(3) 晶面和晶面指数
二、聚合物的晶体结构
• 等同周期(或称纤维周期):高分子晶体中,在 c 轴
单晶:短程有序性和长程有序贯穿整块晶体;
外观:多面体、规则外形且各相异性
孪晶:长程有序在某一平面上发生转折,另一部分也具
有长程有序外观:规则的几何外形
多晶:整个晶体有多个取向不同的晶粒(单晶和弯晶)
组成,外观:无多面体的规则外形且各向同性
非晶:只具有近似的短程有序而不具有长程有序的固体
10埃~20埃存在着几个链段的局部的平行排列; 高分子链的形态是相互穿透的
聚合物的聚集态结构全解
凝聚态(聚集态)与相态
• 凝聚态:物质的物理状态, 是根据物质的分子运动在 宏观力学性能上的表现来区分的, 通常包括固、液、 气体(态),称为物质三态
• 相态:物质的热力学状态,是根据物质的结构特征和 热力学性质来区分的,包括晶相、液相和气相(或态)
• 一般而言,气体为气相,液体为液相,但固体并不都 是晶相。如玻璃(固体、液相)
图4等规PS的衍射曲线

等规立构PS既有尖锐的衍射峰,又有很钝的衍射降。

高分子物理名词解释

高分子物理名词解释

高分子物理名词解释1、近程结构:高分子重复单元的化学结构和立体结构合称为高分子的近程结构2、远程结构:由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构3、链段与链节:高分子链中能自由取向并在一定范围独立运动的最小单元称为链段。

链节是指高分子链中不断重复的单元。

4、均方旋转半径:分子链质心与组成该分子链所有链段质心之间矢量距离的均方值。

5、大分子链的末端距:高分子链中由一端指向另一端的有向线段6、构型与构象:构象系指由C-C单键内旋转而形成的空间排布。

构型系指化学键连接的邻近原子或原子团之间的空间状态表征。

7、液晶态:某些物质的结晶受热熔融或被溶剂溶解之后,仍部分地保持晶态物质分子的有序排列,呈现各项异性的物理性质,形成一种兼有晶态和液态部分性质的过渡状态,称为液晶态。

8、取向函数:9、高斯链:统计单元为一个链段且链段与链段之间自由结合,无规取向的高分子链称为等效自由结合链,因为其链段分布函数服从高斯分布,故也称为高斯链。

10、等规立构:聚合物一种或两种构型的结构单元以单一顺序重复排列。

11、无规立构:手性中心的构型呈无规排列。

12、柔顺性和刚性:高分子长链能以不同程度卷曲的特性。

13、UCST 和LCST :最高共溶温度和最低共溶温度。

14、凝胶和冻胶:凝胶是高分子链之间以化学键形成的交联结构的溶胀体,加热不溶不熔,既是高分子的浓溶液,又是高弹性的固体。

冻胶是由高分子间以分子间作用力形成的,加热时可以溶解。

15、高分子电解质:在侧链中有许多可电离的离子型基团的高分子称为高分子电解质。

16、溶解度参数δ:1.高分子化合物:由众多原子或原子团主要以共价键结合而成的相对分子质量在1万以上的化合物。

2.近程结构:构成大分子链的结构单元的化学组成和物理结构。

3.远程结构:由数目众多结构单元构成的分子链的长短及其空间形态和结构。

4.凝聚态结构:从物理学角度界定聚合物的微观结构类型。

5.化学结构:除非通过化学键断裂并同时生成新键才能产生改变的分子结构。

高分子物理复习名词解释

高分子物理复习名词解释

高分子物理复习名词解释高分子物理复习名词解释1、构型是指分子中由化学键所固定的原子在空间的排列。

要改变构型,必须经过化学键的断裂与重组。

2、构象是指由于单键的内旋转而产生的分子中原子的空间位置上的变化。

3、链段:聚合物分子链的一部分(或一段),是高分子链运动的基本结构单元。

4、高分子链能够通过内旋转作用改变其构象的性能称为高分子链的柔顺性。

5、等规度:全同或间同立构单元所占的百分数。

6、均方末端距:末端距:线型高分子链的一端至另一端的直线距离。

用一向量(h)表示.。

均方末端距用来表示高分子的尺寸。

高分子物理名词解释2017-04-09 17:24 | #2楼1.高分子化合物:由众多原子或原子团主要以共价键结合而成的相对分子质量在1万以上的化合物。

2.近程结构:构成大分子链的结构单元的化学组成和物理结构。

3.远程结构:由数目众多结构单元构成的分子链的长短及其空间形态和结构。

4.凝聚态结构:从物理学角度界定聚合物的微观结构类型。

5.化学结构:除非通过化学键断裂并同时生成新键才能产生改变的分子结构。

6.物理结构:而将分子链内,链间或基团与大分子之间的形态学表述均界定为物理结构。

7.构型:大分子链内相邻原子或原子团之间所处空间相对位置的表征。

8.构象:指大分子链内非化学键连接的邻近原子或原子团之间空间相对位置的具体表征或状态描述。

9.链段:链段指分子链内可自由取向并在一定范围独立运动的最小单元。

10.链段长:既可用其实际长度l表示,也可用其所含结构单元数N表示。

11.均方末端距:众多分子链矢量末端距的均平方值,系表征线型聚合物分子链柔性的重要参数。

12.均方半径:由组成分子链的所有链段的质心至整个分子链质心矢量距离的均方值。

13.热力学链段长与动力学链段长:按照统计势力学方法测定并计算的链段长度称为“热力学链段长度”。

按照动力学方法测定并计算的链段长度则称为“动力学链段长度”,其表征外界条件改变时分子链从一种平衡态构象转变为另一种平衡态构象的难易和快慢。

高分子物理第二章高分子凝聚态结构

高分子物理第二章高分子凝聚态结构
高分子物理第二章高分子凝聚态结构
凝聚态(聚集态)与相态
凝聚态:物质的物理状态, 是根据物质的分子运动在 宏观力学性能上的表现来区分的, 通常包括固、液、 气体(态),称为物质三态
相态:物质的热力学状态,是根据物质的结构特征和 热力学性质来区分的,包括晶相、液相和气相(或态)
一般而言,气体为气相,液体为液相,但固体并不都 是晶相。如玻璃(固体、液相)
xcwvvaavvc
ρc(ρρa) ρ(ρcρa)
高分子物理第二章高分子凝聚态结构
2. X射线衍射法
Ac x 10% 0 c
A KA c a 高分子物理第二章高分子凝聚态结构
3.量热法(DSC)
(Differential scanning calorimetry - DSC
DSC sensor
其他在结晶中分子链取平面锯齿形构象的聚合物还 有脂肪族聚酯、聚酰胺、聚乙烯醇等。
实验证明,等规PP的分子链呈螺旋状结构,
高分子物理第二章高分子凝聚态结构
晶胞密度: c
MZ N AV
其中: M----结构单元分子量 Z----单位晶胞中单体(即链结构单元)的数目 V----晶胞体积 NA----为阿佛加德罗常数
小角中子散射本体和溶 剂中的均方旋转半径相同
局部有序模型
1972年Yeh两相球粒模型, 认为非晶聚合物中具有 3~10nm范围的局部有序 性。
非晶态聚合物密度要比 无规线团计算的密度高
TEM形态结构观察,球 粒结构
高分子物理第二章高分子凝聚态结构
高分子物理第二章高分子凝聚态结构
高分子物理第二章高分子凝聚态结构
取向态:纤维和薄膜必不可少的加工过程,了解取向因子的
含义和掌握取向度的测定方法具有十分重要的意义。

第二章 凝聚态结构

第二章 凝聚态结构

第二章高分子的凝聚态结构Structure of condensed state of polymer12学时——引言链结构:单个分子的结构和形态凝聚态结构:分子群体的结构和形态。

指高分子链之间的排列和堆砌结构。

也称为“超分子结构”。

链结构:决定材料的基本性能,间接影响使用性能。

凝聚态结构:决定材料的本体性能,直接影响使用性能。

例子——砖和建筑物的关系用质量好的砖盖的房子不一定坚固。

譬如结构不好,水泥不好,歪了斜了。

质量稍差的砖,好好盖的话房子也会比较坚固。

材料——分子群体——承担负荷的不是单个分子,而是分子群体。

材料的结构应该均匀(各部分整齐划一),不希望在某些位置出现明显缺陷。

因为材料的破坏总是从最薄弱的位置发生和发展的。

凝聚态结构包括:晶态结构(crystalline structure)非晶态结构(non-crystalline structure)取向结构(oriented structure)共混物结构(织态结构)(texture structure)在实际材料中,它们或共存或单独存在,多方面地影响材料的性能。

目的和意义:了解凝聚态结构特征——物理力学性能的关系掌握凝聚态结构——加工成型条件的关系——指导生产加工和应用§3.1 高聚物的分子间作用力单个分子——(分子间作用力)——〉凝聚态(固态和液态)Note:高分子材料只有凝聚态,没有气态。

说明。

一、分子间作用力的类型分子间的作用力包括范德华力和氢键。

范德华力——存在于分子之间或分子内非键合原子间的一种相互吸引的作用力。

包括静电力、诱导力、色散力。

(1)静电力:极性分子——极性分子之间的引力。

(永久偶极之间)极性分子具有永久偶极,静电相互作用与分子偶极的大小和定向程度有关。

温度升高,定向程度下降,则静电力将减小。

作用能量12~21千焦/摩尔,极性高分子中的主要作用力。

C—C键键能350kJ/mol (2)诱导力:极性分子与非极性分子之间(或者同一分子内极性部分与非极性部分之间) 诱导力是极性分子的永久偶极与它在其它分子上引起的诱导偶极之间的相互作用力。

高分子物理(第四版)课后习题--名词解释

高分子物理(第四版)课后习题--名词解释
泊松比:泊松比是指材料在单向受拉或受压时,横向正应变与轴向正应变的绝对值的比值,也叫横向变形系数,它是反映材料横向变形的弹性常数。
柔量:一个弹性常数,它等于应变(或应变分量)对应力(或应力分量)之比。对一个完善的弹性材料来说,它是弹性模量的倒数,即材料每单位应力的变形率。
拉伸比:测试高分子材料的拉伸性能时,在规定的温度湿度和试验速率下,在试样上沿纵轴方向施加拉伸载荷使其破坏时的长度和试样长度的比值叫做拉伸比
分子构造 (Architecture):指聚合物分子的各种形状,一般高分子链的形状为线形,还有支化或交联结构的高分子链,支化高分子根据支链的长短可以分为短支链支化和长支链支化两种类型
共聚物的序列结构:是指共聚物根据单体的连接方式不同所形成的结构,共聚物的序列结构分为四类:无规共聚物、嵌段共聚物、交替共聚物、接枝共聚物
相图:也称相态图、相平衡状态图,是用来表示相平衡系统的组成与一些参数(如温度、压力)之间关系的一种统计平均分子量:许多高分子组成的聚合物具有分子量的分布,所谓聚合物的分子量仅为统计平均值。包括,数均分子量(按物质的量统计平均分子量),重均分子量(按质量的统计平均分子量),Z均分子量(按Z量的统计平均分子量),粘均分子量(用稀溶液粘度法测得的平均分子量)
相容性:是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力
多组分聚合物:由两种或两种以上高分子材料构成的复合体系
自组装:是指基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。
海-岛结构:两种高聚物相容性差,共混后形成非均相体系,分散相分散在连续相中,像小岛分散在海洋中一样,称为海岛结构
数均分子量:
重均分子量:
Z均分子量:
粘均分子量:
微分(与积分)分子量分布函数:聚合物中各分子量与具有该分子量的分子的数量或质量分数之间用微分(与积分)形式表达的函数关系。

高分子物理名词解释

高分子物理名词解释

高分子物理名词解释1、近程结构:高分子重复单元的化学结构和立体结构合称为高分子的近程结构2、远程结构:由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构3、链段与链节:高分子链中能自由取向并在一定范围独立运动的最小单元称为链段。

链节是指高分子链中不断重复的单元。

4、均方旋转半径:分子链质心与组成该分子链所有链段质心之间矢量距离的均方值。

5、大分子链的末端距:高分子链中由一端指向另一端的有向线段6、构型与构象:构象系指由C-C单键内旋转而形成的空间排布。

构型系指化学键连接的邻近原子或原子团之间的空间状态表征。

7、液晶态:某些物质的结晶受热熔融或被溶剂溶解之后,仍部分地保持晶态物质分子的有序排列,呈现各项异性的物理性质,形成一种兼有晶态和液态部分性质的过渡状态,称为液晶态。

8、取向函数:9、高斯链:统计单元为一个链段且链段与链段之间自由结合,无规取向的高分子链称为等效自由结合链,因为其链段分布函数服从高斯分布,故也称为高斯链。

10、等规立构:聚合物一种或两种构型的结构单元以单一顺序重复排列。

11、无规立构:手性中心的构型呈无规排列。

12、柔顺性和刚性:高分子长链能以不同程度卷曲的特性。

13、UCST 和LCST :最高共溶温度和最低共溶温度。

14、凝胶和冻胶:凝胶是高分子链之间以化学键形成的交联结构的溶胀体,加热不溶不熔,既是高分子的浓溶液,又是高弹性的固体。

冻胶是由高分子间以分子间作用力形成的,加热时可以溶解。

15、高分子电解质:在侧链中有许多可电离的离子型基团的高分子称为高分子电解质。

16、溶解度参数δ:1.高分子化合物:由众多原子或原子团主要以共价键结合而成的相对分子质量在1万以上的化合物。

2.近程结构:构成大分子链的结构单元的化学组成和物理结构。

3.远程结构:由数目众多结构单元构成的分子链的长短及其空间形态和结构。

4.凝聚态结构:从物理学角度界定聚合物的微观结构类型。

5.化学结构:除非通过化学键断裂并同时生成新键才能产生改变的分子结构。

聚合物的凝聚态结构

聚合物的凝聚态结构

锥形X射线衍射图
平面底片照片
由下图能够看出,等规立构PS既有清楚旳衍射环,又有弥 散环,而无规立构PS仅有弥散环;等规立构PS既有锋利旳衍射 峰,又有很钝旳衍射峰。一般,结晶聚合物是部分结晶旳或半 结晶旳多晶体,既有结晶部分,又有非晶部分,个别例外。
等规立构聚苯乙烯旳X射线衍射图像和衍射曲线 (a) —衍射把戏 (b)—衍射曲线
❖如截距:(2,0,0) 倒数:( 1/2, 0,0) 通分:(2.0.0) 晶面指数:(2,0,0) 平行X面
2.1.2.聚合物旳晶体构造
单轴取向聚乙烯旳X射线衍射把戏
(1)平面锯齿构造
如:PE、等规PVA 波折链晶体 PE斜方晶系
α = β = γ = 90° a=0.741nm b=0.491nm c=0.65nm V = a b c = 9.2×10-29m3 Z = 1 + 4×(1/4) =2
-
3 2
( I1I2 I1 I2
)(R162
)
I:分子电离能
一般EL:0.8~8.4kJ/mol 从关系式发觉:EL与分子极化率α和分子 间距R有关
(4)氢键
极性很强旳X—H键上旳氢原子,与另外一 种键上电负性很大旳原子Y上旳孤对电子相互 吸引而形成旳一种键(X—H…Y)。
饱合性
方向性:Y旳孤对电子云旳对称轴尽量与X— H键旳方向在一条直线上。
合用于多层片晶和熔体结晶。
2.1.5. 结晶度和晶粒尺寸
(1)结晶度
结晶度:试样中结晶部分所占旳质量分数(质量结晶度xcm) 或者体积分数(体积结晶度xcv)。
式中 mc 和Vc —分别表达试样中结晶部分旳质量和体积; ma和Va —分别表达试样非品部分旳质量和体积

中科大高物名词解释Polymer Physics

中科大高物名词解释Polymer Physics

Polymer Physics1.软物质:处于理想液体和理想固体这两个极端之间的中间带物质。

其间的弱连接性和密度低导致了它的“软”,并且外力作用主要不是能量效应而是熵的效应。

2.内聚能:1mol物质出去全部分子间作用力而使其内能增加的量。

3.内聚能密度:单位体积内某物质内聚能的大小,表征分子间作用力大小的物理量。

4.近程结构:是构成高聚物分子链最基本的结构,包括高聚合物的化学组成、结构单元的键接方式、结构单元的键接顺序、端基、支化与交联以及空间构型等。

5.远程结构:是指单个高分子链的大小和在空间存在的各种形状(形态、构象)例如:伸直链、无规线团、折叠链等,又称二级结构。

6.构型:由化学键所固定原子或原子团在空间的几何排列,这种排列是稳定的要改变构型必须通过化学键的断裂和重组。

7.等规度:是指高聚物中所含全同立构和间同立构在整个高聚物中所占的比例,也叫立构规整度。

8.全同指数:全同指数(IIP)是全同立构聚合物占聚合物总量的百分数。

9.自由内旋转:如果内旋转时完全不发生能量的变化,即分子中原子在空间中各种排布方式能量相同,这样的内旋转称之为自由内旋转。

10.受阻内旋转:实际的高分子链的内旋转不是自由的,因为C原子上所带的取代基在旋转过程中距离发生改变导致旋转时能量发生变化,内旋转受阻。

11.构象:是指分子中原子或是原子团由于单键内旋转而形成的在空间的排布称为构象,构象是不稳定的。

12.内旋转位垒:分子在内旋转时从最稳定的构象到最不稳定构象所需克服的能量。

13.内旋转异构体:对应位能曲线上不同深度位谷的相对稳定的构象即位能曲线上极小值点处的构象。

14.柔性:是指高分子链能够通过改变构象而无规卷曲的特性,柔性是长链高分子最主要的结构特征,是高聚物特有的结构层次。

15.刚性:与柔性相对的概念,之高分子链难以或不能改变其构象的性质。

16.持续长度:无限长的旋转链在第一个键方向上的投影平均值,是高分子链的刚性尺度。

高分子的聚集态结构

高分子的聚集态结构

晶格的最小单位均为平行六面体,称为晶胞
晶胞可用六个参数描述:边长和夹角
晶胞按几何形状可 分为七个晶系
每种晶系的晶胞中 按结晶单元排布方 式可分为不同的 (Bravais )晶格
布拉菲
z
a cb
g b x
y a
晶系和晶胞参数
晶系
晶胞参数
高分子无此晶系
Cubic 立方
a=b=c; a=b=g=90
高分子的聚集态结构
2023年5月29日星期一
2.1 Introduction
引言
2.1.1 Concept of aggregate state
聚集态结构的内涵
高分子结构
链结构
构造 近程结构
构型
远程结构
凝聚态结构
一级结构 二级结构 三级结构
物质的分子分子运动在宏观上的表现
凝聚态
物质的物理状态
相态
q
AC
d
B
2dsinq = nl
AB + BC = 2dsinq
布拉格方程
衍射级数 X-ray 波长
晶面间距
入射角
n---n=1,2,3…等整数integral number,称衍射级数。在聚合物中,用最 强X光强度时,n常为1。
样品
弥散环
弥散环+衍射环
无规(a)和全同(b) PS的X射线衍射图案和衍射曲线(c)
dc=2*0.154nm*sin(109.5°/2)=0.25n m
Orthorhombi 斜方(正交) a bc;a=g=b=90
正好是正交晶系的c轴 晶胞参数
2.2.3 聚合物的晶体结构和研究方法
平面锯齿结构
聚乙烯为平面锯齿形构象,晶体属斜方(正交) 晶系,已知其晶胞参数如下:

大学本科高分子物理第二章《聚合物的凝聚态结构》课件

大学本科高分子物理第二章《聚合物的凝聚态结构》课件

===90
Three perpendicular two-fold rotation axis
Monoclinic
a bc ==90; 90One two-fold rotation axis
Triclinic
a bc 90
None
a,b,c – unit vectorial distances
第二章 聚合物的凝聚态结构
本章课时 6
1
固体
凝聚态为物质的物理状态
液体
气体
晶态 液态
相态为物质的热力学状态
气态
高分子凝聚态是指高分子链 之间的几何排列和堆砌状态
液体 固体 液晶态
取向结构
晶态 非晶态
织态结构
2
高分子的 凝聚态结构
决 聚合物的基本 决 定 性能特点 定
材料的 性能
控制成型 加工条件
=bc;= ac;= ab
20
Structure of PE、PP crystal cell
左图:PE的晶体结构 上图:PP的晶体结构
21
晶胞密度求解
c
MZ N AV
M是结构单元分子量;
Z为单位晶胞中单体(即链结构单元)的数目;
V为晶胞体积;
NA为阿佛加德罗常数
22
2.2.2聚合物的结晶形态(晶体的外形)
24
Maltese Cross in Isotactic Polystyrene
偏光显微镜照片
25
Maltese Cross的形成原因
26
Maltese Cross
27
电镜观察的球晶结构
Spherulite model and the Microscopy of PE spherulite 球晶模型及PE球晶的电镜照片

聚合物的凝聚态结构课件

聚合物的凝聚态结构课件
随后陆续发现聚甲醛、尼龙、聚脂等单晶。
PE单晶
学习交流PPT
螺旋生长
10
单晶的概念:
在极稀(浓度约0.01%)的 聚合物溶液中,极缓慢冷 却时生成具有规则外形的、 在电镜下可观察到的片晶, 并呈现出单晶特有的电子 衍射图。聚合物单晶的横 向尺寸几微米到几十微米, 厚度10nm左右。单晶中高 分子链规则地近邻折叠, 形成片晶。
第二章 聚合物的凝聚态结构
学习交流PPT
1
固体
凝聚态为物质的宏观 物理状态
液体
气体
高分子凝聚态指高分子链之间 的几何排列和堆砌状态
相态为物质的热 力学状态
液体 固体 液晶态
晶态 非晶态
取向结构
晶态 液态 气态
不存在 气态
织态结构
意义:高分子链结构决定的聚合物的基本性能特点,而凝聚态 结构与材料的性能有着直接的关系。
1. 缨状模型
结晶高聚物中,晶
区与非晶区互相穿插,同
时存在,在晶区中分子链
互相平行排列形成规整的
结构,通常情况是无规取
向的;非晶区中,分子链
的堆砌是完全无序的。
这是一个两相结构模型,即具有规则堆砌的微晶(或胶 束)分布在无序的非晶区基体内。
这一模型解释了聚合物性能中的许多特点,如晶区部分具
有较高的强度,而非晶部分降低了聚合物的密度,提供了
➢它对聚合物的力学性能、密度、光学性质、热性质、耐溶 剂性、染色性以及气透性等均有明显的影响。
➢结晶度的提高,拉伸强度增加,而伸长率及冲击强度趋于 降低;相对密度、熔点、硬度等物理性能也有提高。
➢冲击强度不仅与结晶度有关,还与球晶的尺寸大小有关, 球晶尺寸小,材料的冲击强度要高一些。
➢结晶聚合物通常呈乳白色,不透明。如聚乙烯、尼龙。

聚合物的凝聚态结构

聚合物的凝聚态结构

2024届高三一轮复习联考(四)数学试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

考试时间为120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}{}{}1,2,3,4,5,2,3,2,UA B x x k k ====∈Z ,则U B A = ( )A .{}4B .{}2,4C .{}1,2D .{}1,3,5 2.已知复数z 满足()()2i 1i 2z −−=,则z =( )A B C .3 D .23.已知12311cos ,3,log 22a b c ===,则( )A .c a b >>B .b c a >>C .b a c >>D .a b c >>4.“a ≤或a ≥”是“圆221:1C x y +=与圆222:()(2)36C x a y a ++−=存在公切线”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5.已知13tan sin2αα=,则cos2α=( ) A .13−B .13C .23−D .236.如图,111ABC A B C −是一个正三棱台,而且下底面边长为4,上底面边长和侧棱长都为2,则异面直线1AC 与1BB 夹角的余弦值为( )ABC7.已知函数()()22log 121xf x x =+++,则不等式()14f x +<的解集为( )A .()2,0−B .(),2−∞−C .()0,+∞D .()(),20,−∞−∪+∞ 8.已知函数()()21e xf x m x x x =−−+在1,22x∈上有两个极值点,则实数m 的取值范围为( ) A .230,2eB .231,2e eC .1,e +∞D .2310,,2e e+∞ 二、选择题:本题共4小题,每小题5分,共20分。

【国家自然科学基金】_凝聚态结构_基金支持热词逐年推荐_【万方软件创新助手】_20140731

【国家自然科学基金】_凝聚态结构_基金支持热词逐年推荐_【万方软件创新助手】_20140731

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
α -fese zn_(0.85)mg_(0.13)al_(0.020)薄膜 zn2sno4(zto) x射线衍射 wigner函数 smith-purcell效应 simple算法 rashba电子波函数 oseen-ivantsov理论 lifeas li3v2(po4)3 laofeas gan feas超导体 cu掺杂 co掺杂zno conigasi合金 cdses量子点 bcn化合物 bacu3ti4o 12 alq3 afe(ni)2as2
石墨烯纳米带 相干声子 相场法 界面不稳定性 电阻开关 电针 电导率 电场下氧离子迁移 电化学 球差校正电子显微镜 爆轰 爆炸力学 点火-生长模型 溶胶-凝胶法 流变性能 模型合金 晶格热运动 晶格效应 时间分辨 无碰撞静电冲击波 接触网络 振荡生长 振动注射 形态 强迫对流 强激光 库仑阻塞 带电线性谐振子 实时观测 定向凝固 太赫兹 多铁材料 多尺度结构 场效应晶体管 土骨架 取向 反尖晶石结构 双向拉伸 半导体 力链 切向流动 分子结构 凝聚态结构 凝聚态炸药 凝固 光诱导 光致发光 光子能带 光子晶体 体弹模量 介电损耗 介电常数 一阶反转曲线(forc) 一维量子波导
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

2-1 第二章 凝聚态-晶态、非晶态

2-1 第二章 凝聚态-晶态、非晶态
第二章 高分子的凝聚态结构
1
• • • • •
2.1晶态聚合物的结构 2.2非晶态聚合物结构 2.3 高分子液晶 2.4 聚合物的取向结构 2.5 多组分聚合物
2
教学内容:聚合物的各种凝聚态结构(晶 态、非晶态、液晶态、取向和织态结构)
教学目的:通过本章的学习全面掌握高分子链之间的 各种排列方式及由此而产生的各种凝聚态结构,弄清 高分子链结构条件和外部条件与凝聚态结构之间的关 系,了解各种凝聚态结构的表征和应用,初步建立凝 聚态结构与性能之间关系。 重点和难点:各种凝聚态结构(晶态、非晶态、液晶 态、取相态、高分子合金的织态)的结构特点、形成 条件和性能差异。
24
空间格子(空间点阵)
• 把组成晶体的质点抽象成为几何点,由这些等同的几 何点的集合所形成的格子,称为空间格子,也称空间 点阵。 • 点阵结构中,每个几何点代表的是具体内容,称为晶 体的结构单元。 • 所以,晶体结构=空间点阵+结构单元
晶体结构与点阵的关系
25
• 直线点阵——分布在同一直线上的点阵
a b c, a b g 90 0
a b c, a g 90 0 , b 90 0
a b c,a b g 90 0
28
晶面和晶面指数
晶格内所有格子点全部集中在相互平行的 等间距的平面群上,这些平面叫做晶面。 晶面与晶面之间的距离叫做晶面间距。
• 具有较大的侧基的高分子,为了减小空间阻碍, 降低位能,则必须采取旁式构象。 例如:全同PP, 聚邻甲基苯乙烯, 聚甲基丙烯酸甲酯PMMA, 聚4-甲基-1-戊烯 , 聚间甲基苯乙烯 等。
39
等规聚丙烯(IPP)
1.PP构象(螺旋构象H31) 2.晶系:单斜、六方、拟六方 3.晶胞俯视图(单斜)

聚合物的凝聚态结构习题解答

聚合物的凝聚态结构习题解答

第2章聚合物的凝聚态结构1. 名词解释凝聚态:物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来区分的,通常包括固体、液体和气体。

高分子的凝聚态是指高分子链之间的几何排列和堆砌状态,包括固体和液体。

内聚能密度:单位体积的内聚能,CED = ∆E/V m。

内聚能是克服分子间作用力,把1mol 液体或固体分子移至分子引力范围之外所需的能量。

结晶度:试样中结晶部分所占的质量分数(质量结晶度x c m)或者体积分数(体积结晶度x c v)。

取向:聚合物取向是指在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列。

高分子合金的相容性:高分子共混物中分子间分子水平的互容程度。

2. 什么叫内聚能密度?它与分子间作用力的关系如何?如何测定聚合物的内聚能密度?答:内聚能密度是指单位体积的内聚能;CED = ∆E/V m。

内聚能是克服分子间作用力,把1mol液体或固体分子移至分子引力范围之外所需的能量,CED<290J/cm3的高聚物,都是非极性高聚物,由于它们的分子链上都不含极性基因,分子间作用力主要是色散力,分子间相互作用力较弱,加上分子链的柔性较好,使这些高聚物材料易于变形,富有弹性,可作橡胶,但聚乙烯是个例外,由于它的结构对称规整易于结晶而失去弹性,只能作塑料使用。

CED>420 J/cm3的高聚物,由于分子链上有强极性基因,或者分子间能形成氢键,分子间作用力大,因而有较好的机械强度和耐热性,再加上分子结构比较规整,易于结晶,取向,使强度更高,可成为优良的纤维材料或工程塑料。

CED∈290~420 J/cm3的高聚物,分子间作用力居中,适合于作塑料使用。

内聚能密度的测试方法主要有:最大溶胀比法、最大特性粘数法。

3. 聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态的特征是什么?单晶:形成条件:0.01%~0.1%PE溶液中极缓慢冷却结晶或较高压力下100MP)熔体结晶而成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 聚合物的凝聚态结构
本章课时 6
固体
凝聚态为物质的物理状态
晶态
相态为物质的热力学状态
液体
液态 气态
气体
液体 固体
高分子凝聚态是指高分子链之间的几 何排列和堆砌状态 晶态 非晶态
液晶态
取向结构 织态结构
高分子的凝聚态结构
决 定
聚合物的基本性能特点
决 定
材料的性能
控制成型加工条件
获 得
预定材料结构
5、结晶度的概念及其测定方法;
本讲教学目的:全面掌握高分子聚合物的晶态结构的形成条件、分子排列方式、形 态及对性能的影响。
第五讲 分子间作用力及晶态结构
本讲内容: 第一节 高聚物的分子间作用力
•范德华力与氢键
•内聚能密度
第பைடு நூலகம்节
聚合物的晶态结构
•晶体结构的基本概念; •聚合物的结晶形态; •高聚物的晶态结构模型; •结晶度的表征
本讲重点及要求:
1、聚能密度的概念;
2、晶体结构的基本概念;
3、各种结晶形态和形成条件及结晶形态与性能之间的关系; 4、聚合物晶态结构模型;
得 到
预定材料性能
教学内容:聚合物的各种凝聚态结构(晶态、非晶 态、液晶态、取向和织态结构)
教学目的:通过本章的学习全面掌握高分子链之间的各种排列方式及由 此而产生的各种凝聚态结构,弄清高分子链结构条件和外部条件与凝聚 态结构之间的关系,了解各种凝聚态结构的表征和应用,初步建立凝聚 态结构与性能之间关系。 重点和难点:各种凝聚态结构(晶态、非晶态、液晶态、取相态、高分 子合金的织态)的结构特点、形成条件和性能差异。
相关文档
最新文档