第十章 植物遗传转化技术和方法
植物基因转化常用方法(植物遗传,农杆菌、病毒介导和基因枪转化法)
一. 植物遗传转化的方法植物遗传转化技术可分为两大类:一类是直接基因转移技术,包括基因枪法、原生质体法、脂质体法、花粉管通道法、电激转化法、PEG介导转化方法等,其中基因枪转化法是代表。
另一类是生物介导的转化方法,主要有农杆菌介导和病毒介导两种转化方法,其中农杆菌介导的转化方法操作简便、成本低、转化率高,广泛应用于双子叶植物的遗传转化。
二.农杆菌介导的基因转化方法(一)农杆菌的Ti质粒与T-DNA的整合机制几乎所有双子叶植物都容易受到土壤农杆菌感染,而产生根瘤。
它是一种革兰氏阴性土壤杆菌(A. tumefaciens)。
其致瘤特性是由Ti(tumor-inducing)质粒介导的。
农杆根瘤菌之所以会感染植物根部是因为植物根部损伤部位分泌出酚类物质乙酰丁香酮和羟基乙酰丁香酮,这些酚类物质可以诱导Vir(Virulence region)基因的启动表达,Vir基因的产物将Ti质粒上的一段T-DNA单链切下,而位于根瘤染色体上的操纵子基因产物则与单链T-DNA结合,形成复合物,转化植物根部细胞。
T-DNA上有三套基因,其中两套基因分别控制合成植物生长素与分裂素,促使植物创伤组织无限制地生长与分裂,形成冠瘿瘤。
第三套基因合成冠瘿碱,冠瘿碱有四种类型:章鱼碱(octopine)、胭脂碱(nopaline)、农杆碱(agropine)、琥珀碱(succinamopine),使农杆菌生长必需的物质。
1. Ti质粒的结构在发现根瘤农杆菌诱发冠瘿瘤的本质是Ti质粒后,Ti质粒便成为冠瘿瘤形成基因鉴定与分析的主要研究对象。
Ti质粒大约在160~240kB之间。
其中T-DNA大约在15kb-30kb。
Vir基因区在36kb 左右。
除此之外,Ti质粒上还存在Con区(region encoding conjugation)和Ori区(origin of replication)。
T-DNA上共有三套基因和左右两个边界,LB和RB是长为25bp的末端反复重复顺序,在切除及整合过程具有重要意义。
植物遗传转化技术
binary vector
• 包括mini-Ti质粒(T-DNA边界,缺失Vir区)和 helper Ti质粒(含有Vir区缺失T-DNA边界,相当 于co-integrated vector 的disarmed Ti质粒) mini-Ti质粒:pBin19,pCAMBIA系列 helper Ti质粒:EHA105,LBA4404(pAL4404)
26
Co-integration plasmid
• 一元载体系统A plasmid based on pBR322 used to clone gene of interest
• A Ti-based vector: pGV3850 (LB, RB, most of T-DNA replaced by pBR322)
Left border
Right border
12-24 kbp
vir genes
Opine
ori
catabolism
15
3. 创伤诱导分子
• 是一类可溶性的小分子酚类化合物 • 乙酰丁香酮(acetosyringone,AS)、羟
基乙酰丁香酮(acetosyringone,OH-AS) • A.t: recognition and chemotaxis (趋化性)
• Left and right border (LB\RB):TDNA左右两侧各有一段25bp的重复 序列,在T-DNA的整合中起重要作用
• Ori区(origin of replication):该区段 基因调控Ti质粒的自我复制,故称之 为复制起始区。
T-DNA region
Auxin Cytokinin Opine
• T-DNA和vir基因参与,T-DNA上的基因与 T-DNA的转移及整合有关,因为它不编码 T-DNA转移的产物。
生物学中的植物遗传转化与基因编辑技术
生物学中的植物遗传转化与基因编辑技术植物遗传转化与基因编辑技术在生物学中的应用植物遗传转化与基因编辑技术是生物学领域中的重要研究方向,它们可以用于改良植物品种、提高农作物产量和抵抗力、开发新型植物药物等。
一、植物遗传转化技术的原理和方法植物遗传转化是指将外源基因或DNA片段导入植物细胞,并使其稳定地遗传给后代。
常见的植物遗传转化方法包括农杆菌介导的遗传转化、基因枪法和凯南法等。
1. 农杆菌介导的遗传转化农杆菌介导的遗传转化是最常用的植物遗传转化方法之一。
该方法利用土壤中广泛存在的植物病原性农杆菌将外源基因导入目标植物细胞。
首先,将外源基因插入农杆菌质粒的T-DNA区域,然后将农杆菌通过注射或浸泡等方式导入植物细胞。
在遗传转化后,利用选择标记基因或报告基因进行筛选和检测。
2. 基因枪法基因枪法是将DNA载体以高速射击的方式直接导入植物细胞。
将外源基因负载在金粒等微粒表面,然后使用高压氦气或火药等加速器将其射入植物细胞。
在转化后,通过培养基中的选择性筛选剂来筛选转化的细胞。
3. 凯南法凯南法是一种基于物理和化学手段的遗传转化方法。
通过利用聚乙烯醇(PEG)或电击等方法,使DNA能够与植物细胞质融合,然后通过培养和筛选等步骤来获得转化的植物细胞。
二、基因编辑技术在植物遗传改良中的应用基因编辑技术是指通过精确地修改植物基因组中的特定位置,实现遗传改良的方法。
常见的基因编辑技术包括CRISPR-Cas9系统、TALENs和ZFNs等。
1. CRISPR-Cas9系统CRISPR-Cas9系统是一种高效、快速和精确的基因编辑技术。
它利用CRISPR RNA(crRNA)和转录单元RNA(tracrRNA)组成的复合物与Cas9蛋白结合,以形成靶向特定基因序列的复合物。
在植物中,CRISPR-Cas9系统被广泛应用于基因敲除、基因敲入和基因修饰等方面。
通过将CRISPR-Cas9系统导入植物细胞,可以实现对植物基因组的精确编辑。
植物遗传转化步骤
植物遗传转化步骤植物遗传转化是指通过外源DNA的导入,使植物细胞或组织发生基因改变,从而获得具有特定性状的转基因植物。
这一技术在农业、医学和工业等领域有着广泛的应用。
下面将介绍植物遗传转化的基本步骤。
步骤一:选择外源DNA在植物遗传转化中,首先需要选择外源DNA,也就是我们要导入到植物细胞中的目标基因。
这个目标基因可以来自于其他物种,也可以是人工合成的。
目标基因的选择取决于我们希望在转基因植物中表达的特定性状。
步骤二:构建转化载体将目标基因导入植物细胞需要使用载体。
载体是一种专门设计用于植物遗传转化的DNA分子。
通常,载体由多个组成部分组成,包括启动子、终止子、选择标记和目标基因。
这些组成部分的功能是确保目标基因能够在植物细胞中正确表达。
步骤三:转化载体导入植物细胞一旦构建好转化载体,接下来就需要将其导入到植物细胞中。
目前,有多种方法可以实现这一步骤,包括农杆菌介导转化、基因枪法和电穿孔法等。
这些方法都可以有效地将外源DNA导入植物细胞,使其成为转基因细胞。
步骤四:筛选转基因细胞一旦植物细胞被导入外源DNA,我们需要对其进行筛选,以确定哪些细胞成功地获得了目标基因。
为了实现这一步骤,常常会在转化载体中加入选择标记基因,如抗生素抗性基因。
只有携带了目标基因的细胞才能存活下来,而其他细胞则会被筛选掉。
步骤五:培养和再生转基因植物筛选出的转基因细胞可以通过培养和再生来获得完整的转基因植物。
这一过程通常需要在培养基上进行,通过提供适当的营养物质和激素来促进细胞分裂和分化。
经过一段时间的培养,转基因细胞可以发展成为转基因植物。
步骤六:鉴定转基因植物需要对获得的转基因植物进行鉴定,以确认其是否成功地获得了目标基因。
这一步骤通常需要使用分子生物学技术,如PCR和Southern blot等,来检测目标基因的存在和表达。
只有经过鉴定的转基因植物才能用于进一步的研究或应用。
总结:植物遗传转化是一项复杂的技术,需要经历多个步骤才能成功。
植物生物技术:第十章 植物遗传转化技术和方法
2. 无菌苗制备
3. 外植体与农杆菌共培养
取7d左右的棉花无菌苗置于无菌平皿,迅速切成0.5-0.7cm左右 的小段,放入农杆菌工程菌液,放置5-10min;期间摇动三角瓶 数次,然后取出下胚轴小段,置于干燥的无菌滤纸上,吸干材 料表面的菌液,吹5分钟使表面稍为干燥,分散布于垫有滤纸的 共培养培养基(MS无机盐+B5有机物+2,4-D 0.1mg/l+ KT0.1mg/l+葡萄糖30g/l + 琼脂7.5g/l, pH 5.6 )中,19-21℃, 暗 培养48小时结束共培养。
进行花序侵染前先剪掉角果和花,然后将拟南芥的花序浸 泡于含农杆菌的渗透培养基里2-3分钟,可用吸管轻轻搅拌 农杆菌浸染缓冲液,以利于转化,浸染结束后将植株平放 于吸水纸上干燥数分钟,以免农杆菌菌液滴落到莲座叶上 ,同时也避免过高浓度的农杆菌对植株有毒害作用。
转化完成后套黑色塑料袋进行暗培养,1天后,揭开塑料 袋进行光照培养直至角果成熟。
抗3’和5’外切核酸酶及内切核酸酶的降解 加工好的单链T-DNA复合体穿过由VirB蛋白形成的类接合孔进入植物受
体细胞,然后由VirD2和VirE2的核导向作用进入植物细胞核
(6)T-DNA的整合
当单链的T-DNA转移到植物细胞之后,在有关的 植物细胞酶体系的催化作用下,便会合成出互 补链形成双链形式的T-DNA分子。 在一系列酶 的参与下整合进植物基因组。
(4)外植体的类型和生理状态
1997年Villemont研究指出,转化只发生在细胞分裂的一个 较短时期内,只有处于细胞分裂S期的细胞才具有被外源基 因转化的能力。因此,细胞具有分裂能力是转化的基本条 件。 一般来说,发育早期(幼年期)的组织细胞转化能力较强。
第10章 植物遗传转化
8
农杆菌和基因枪转化的特点比较
1,农杆菌转化的特点: 多为单拷贝或寡拷贝转化与整合,减少了 共抑制等基因沉默现象,转基因遗传较稳 定; 不需要特殊设备,实验成本较低。
9
农杆菌和基因枪转化的特点比较
2,基因枪法转化的特点: 不受基因型限制,并且可用各种组织或细胞 作为靶材料。 操作简便。
21
第二节
转化的受体系统
二、转化受体系统的类型和特性
1,经过愈伤组织的受体系统 1.3,两种形式的共同特点:
1)外植体材料来源广泛; 2)适用的植物物种范围广; 3)再生植株群体变异大。
22
第二节
转化的受体系统
二、转化受体系统的类型和特性
2,不经过愈伤组织的受体系统 也称直接分化受体系统,指直接对外植体 材料进行遗传转化操作,然后经过培养直接在 外植体上形成不定芽的情况。 这种系统的特点是 1)获得再生植株的所 需时间短,操作简单;2)遗传变异少;3)外 源基因稳定性高;4)嵌合体比例偏高;5)受 植物物种的限制比较大。
25
第二节
转化的受体系统
二、转化受体系统的类型和特性 5,生殖细胞受体系统
以花粉粒或卵细胞为受体细胞进行直接的 转化的技术系统,也叫种质系统。 5.1,花粉管通道法; 5.2,花粉粒浸泡法; 5.3,花粉粒基因枪转化法; 5.4,子房微注射法。
26
第二节
转化的受体系统
二、转化受体系统的类型和特性
16
第二节
转化的受体系统
一、转化受体的条件
5,农杆菌敏感性 对于农杆菌介导的基因转化来说,需要受 体材料对农杆菌敏感,因为只有对农杆菌敏感 的材料才能够接受农杆菌的转化。一般认为, 大多数双子叶植物对农杆菌敏感而单子叶植物 不敏感。 农杆菌有不同的菌株,同一材料对不同菌 株的敏感程度可能存在不同;目前,还可以采 用化学试剂(乙酰丁香酮)来弥补敏感性的不 足。
植物基因工程实验教案:遗传转化技术的应用和优化
植物基因工程实验教案:遗传转化技术的应用和优化植物基因工程是一种将目标基因移入植物细胞内的方法,以实现改良作物品种的过程。
这一技术可以应用于许多方面,如增强作物产量、提高作物品质、促进作物抗病抗虫能力等。
植物基因工程是一个极具潜力的领域。
本文将介绍植物基因工程实验教案中的遗传转化技术的应用和优化。
一、遗传转化技术遗传转化技术是一种将外源基因转移入植物细胞中的方法,该方法包括四个主要步骤:选择载体、制备载体、转化载体和鉴定基因。
选择载体:目前用于植物基因工程的两种载体是农杆菌和冷冻冻融法。
农杆菌转化法是最常用的方法之一,农杆菌以同源重组的方式在植物细胞中形成感染斑。
农杆菌将外源基因植入植物细胞中,目标基因将被插入植物细胞的染色体中。
制备载体:载体是一种可以将外源基因植入植物细胞内的DNA分子。
在制备载体的过程中,需要用到回收携带目标基因的载体。
常用的载体包括质粒和病毒,质粒是一种带有目标基因的圆形DNA分子,可以将目标基因直接植入质粒中。
转化载体:转化载体是指将目标基因输送至植物细胞内的过程。
转化方法主要有两种:物理转化和生物转化。
物理转化是指通过高斯粒子加速器等物理手段将目标基因输送至植物细胞内;生物转化是指使用农杆菌或病毒将外源基因输送至植物细胞内。
鉴定基因:鉴定基因是指确定转化后的植物细胞中是否成功植入了外源基因。
通常使用PCR和Southern杂交等方法对植物细胞进行鉴定。
二、遗传转化技术的应用1. 增强作物产量:遗传转化技术可以实现植物细胞的营养分配和代谢的调节,从而提高作物的生长速度和生产力;2. 提高作物品质:通过遗传转化技术,可以改善作物的色、香、味等特征;3. 促进作物抗病抗虫能力:外源基因的应用可以帮助作物提高其对病菌、虫害等的抵抗力;4. 创建新的生物技术:可以通过遗传转化技术创建新的生物技术,例如转基因药物、疫苗等。
三、遗传转化技术的优化虽然遗传转化技术在基因工程领域中应用较为广泛,但是该技术仍存在一些问题。
遗传转化的方法和技术
遗传转化的方法和技术常见的遗传转化方法和技术包括农杆菌介导法、基因枪转化法和聚乙二醇-介导法等。
其中,农杆菌介导法是植物基因转化中使用最普遍的一种方法。
其Ti质粒具有将DNA整合到植物染色体上,并使之与植物内源基因同步表达的能力。
农杆菌介导法的具体步骤如下:1. Ti质粒的构建:利用农杆菌进行遗传转化前,必须对Ti质粒进行改造。
改造的目的有以下几点:去除T-DNA区的激素基因,因为激素基因的产物会导致转化细胞激素水平的不平衡而引起细胞的无限分裂,阻碍正常植株的再生。
保留T-DNA区的左右边界,尤其是左边界,以保证T-DNA的正常转化。
在去除的T-DNA区,增加至少一个可以在植物体内表达的选择基因,以使转化细胞易于被检测出来。
在T-DNA区外加一个可以克隆外源目的基因的多聚接口。
在T-DNA区外加一个抗菌素基因标记质粒,该基因只能在细菌中表达,而不能在植物中表达。
2. 外源基因的转化:除Ti质粒外,发根农杆菌的Ri质粒也已成为植物基因工程载体家庭中的新成员。
发根农杆菌感染植物伤口,向目的植物转入Ri质粒中的T-DNA,经一段时间后被感染的植物会在不定的部位生出发状根。
发状根没有向地性,可在无激素的培养基上培养生长,生长迅速并产生许多分枝,其增长速度一个月可增殖数倍到数百倍。
发根农杆菌对植物的这种作用主要依赖于其菌体中的Ri质粒。
例如通过发状根培养来生产只有在高度的根趋向分化细胞中才能产生的有用次生代谢物质等。
3. 外源基因的转化:一般而言,农杆菌只感染双子叶植物;但利用Ti质粒作载体已将外源基因导入了水稻、玉米、吊兰、石刁柏、香蕉等某些单子叶植物中。
农杆菌介导的遗传转化技术简单,易于掌握,对植物受体要求不严,绝大多数双子叶植物和少数单子叶植物的组织或器官均可,且转化频率较高,转化周期较短,是目前应用最广的一种植物遗传转化方法。
以上内容仅供参考,建议查阅专业书籍或咨询专业人士获取更准确的信息。
植物生物技术-绪论
绪 论
1. 生物技术的定义
生物技术 (biotechnology) ,也称生物工程 (bioengineering) ,是指以现代生命科
学为基础,结合先进的工程技术手段和其他基础科学的科学原理 , 按照预先
的 设计改造生物体或加工生物原料 ,
为人类生
产出所需要的产品或达到某种目的 的一系列技术。
先进的工程技术:基因工程、细胞工程、酶工程、发酵工程和蛋白质 工程 等 新 技 术
于生产,使水稻单产增长 20 -30 ,创造了农业奇迹
绪论
棉花杂种优势利用研究 利用人工去雄配制杂种 ( 中棉 29, 鲁棉 15, 南抗 3…)主 要利用 GMS ( 中棉 39, 南农早… )
杂交小麦的研究始于上世纪 50 年代。
1951 年日本首次导入异源细胞质获得普通小麦雄性麦雄性不
许多国家育成多种CMS 与光温敏不育系
20 世纪 80 年代初转基因 (Bt 等 ) 的应用与推广 。
新基因的分离 分子标记辅助选择育种
绪 论
二 植物生物技术的产生和发 展
绪
动物生物技
论
术
克隆羊:从一个细胞到一头 羊
绪 论
克隆羊 --- 多 利绪ຫໍສະໝຸດ 多利羊风论暴
英国爱丁堡罗斯林研究 所
伊恩•威尔穆特小组:
1996. 7
出生
1996. 11
绪
论
3.2 世界转基因作物发展的趋势
绪 2011 年全球商业转基因作物分布
论
美国 种植面积: 6900 万公顷 品种:玉米、大豆、棉花、油菜、甜 菜
、苜蓿、木瓜、南瓜
巴阿西 根廷种种植植面面积积::30203000万万公公顷顷品品种种::玉玉米米、、大大豆豆、、棉棉花
植物遗传转化步骤
植物遗传转化步骤植物遗传转化是一种通过改变植物的遗传物质来实现特定目的的技术。
这一技术已经被广泛应用于植物育种、基因工程和农业生产中。
下面我们将介绍植物遗传转化的具体步骤。
一、选择目标植物和目标基因在进行植物遗传转化之前,首先需要确定目标植物和目标基因。
目标植物通常是经济作物或者重要的研究对象,而目标基因则是具有特定功能的基因,如抗病性、耐旱性等。
二、构建载体构建载体是进行植物遗传转化的重要步骤之一。
载体是将目标基因导入植物细胞的媒介,通常由DNA序列构成。
在构建载体时,需要将目标基因插入到适当的表达载体中,并加入其他必要的DNA片段,如启动子、终止子和选择标记基因等。
三、转化载体到植物细胞将构建好的载体导入植物细胞是植物遗传转化的核心步骤。
目前常用的转化方法有农杆菌介导的转化和基因枪法。
农杆菌介导的转化是将构建好的载体转化到农杆菌中,然后利用农杆菌侵染植物组织,将载体导入植物细胞。
基因枪法则是利用高压气体将载体直接“射击”到植物细胞中。
四、筛选转化植株在转化植物细胞后,需要进行筛选以获得含有目标基因的转化植株。
为了区分转化植株和未转化的植株,常常会在载体中加入选择标记基因。
选择标记基因通常会使转化植株对某种抗生素或除草剂具有耐受性,在培养基中添加相应抗生素或除草剂后,只有含有目标基因的转化植株能够生长下去。
五、培养和繁殖转化植株筛选出含有目标基因的转化植株后,需要进行培养和繁殖。
通常会将转化植株移至含有适当营养物质的培养基中进行生长,以获得足够数量的转化植株。
六、鉴定转化植株在培养和繁殖转化植株后,需要对其进行鉴定,确认其是否成功转化。
鉴定方法包括PCR扩增、Southern印迹和Western印迹等。
通过这些方法,可以检测目标基因在转化植株中的存在和表达情况。
七、后续分析和应用一旦确认转化植株成功,就可以进行后续的分子生物学和生理学分析,如基因表达分析、蛋白质功能研究等。
此外,转化植株也可以用于基因工程和农业生产中,如改良作物品质、提高产量等。
[农学]第十章 园艺植物遗传转化1
遗传转化的频率低,需要反复的实验,所以要建立一
个高产的组织培养再生系统并能用于遗传转化,需要大量
的、稳定的外植体作为材料。 转化的外植体一般采用无菌实生苗的子叶、胚轴、幼 叶等,或采用可进行快速繁殖的材料
第一节 园艺植物遗传转化受体系统
(4)对抗生素的敏感性
为了抑制农杆菌的过度生长而产生污染,选择、 筛选转化的细胞核植株,在遗传转化中常使用两类 抗生素: 1)选择性抗生素:在遗传转化中用于筛选转化体,如 卡那霉素、潮霉素 2)抑菌性抗生素:在受体材料与农杆菌共培养一定时 间后用于抑制农杆菌的生长 ,防止细菌过度生长而
基因导入玉米原生质体。
电穿孔转化法可用于原生质体的瞬时和稳定
转化,也可用于带壁的植物细胞的遗传转化。
第二节 园艺植物遗传转化方法
1、转化原理
1)原理:利用高压电脉冲作用,在植物细胞膜或原生质体上
造成非对称穿孔,形成瞬间通道,这种通道孔径在8.4mm左右,
每个细胞膜上有上百个,因此能允许外源基因的进入; 2)电穿孔法分为两类:高压短时程法 低压长时程法 选择何种方法应依据细胞种类和实验条件而定。一般用低压 长时程法可以使其达到较快的修复,从而得到较多的瞬时表 达产物。不过,高压短时程法可以得到较高的DNA整合率。
第二节 园艺植物遗传转化方法
2)PEG介导遗传转化方法的缺点: 由于建立植物原生质体再生体系比较困难,加 之PEG对原生质体活力的有害作用,因此转化率低,
一般为10-5~10-3。
第二节 园艺植物遗传转化方法
(二)电穿孔转化法
电穿孔转化法,又称电击法或“电注射法”。
Fromm等首次使用该法成功将氯霉素乙酰转移酶cat
电穿孔法适用植物细胞和组织转化,在已经知道的众多
植物遗传转化研究植物基因工程和遗传转化技术
植物遗传转化研究植物基因工程和遗传转化技术植物遗传转化研究:植物基因工程和遗传转化技术植物遗传转化研究是现代生物技术领域的一个重要分支,它通过操纵植物的基因来改变其性状和功能,为农业、生物医学和环境保护等方面提供了广阔的应用前景。
本文将介绍植物基因工程的原理和遗传转化技术的发展现状,以及其在农业和医学领域的应用。
一、植物基因工程原理植物基因工程是指通过人为干预植物基因组,将外源基因导入植物细胞,并使其在植物中表达。
其核心技术是DNA重组技术,具体包括以下几个步骤:1. 外源基因的克隆:将具有特定功能的基因从其他生物体中分离出来,并经过体外扩增,得到足够的DNA片段。
2. 载体构建:将目标基因与适当的表达载体连接,构建成重组DNA。
常用的载体包括质粒和病毒。
3. 转化方法:将重组DNA导入植物细胞。
常用的转化方法有农杆菌介导的转化和基因枪介导的转化等。
4. 选择与筛选:利用选择标记基因或者报告基因等,对经转化的植株进行筛选和鉴定,确保目标基因已经成功导入植物细胞。
5. 后续培养:将转基因植株培养至成熟植株,并进行繁殖和观察,验证目标基因的功能和表达。
二、遗传转化技术的发展现状随着生物技术的不断进步,植物遗传转化技术也得到了广泛应用,取得了许多重要成果。
目前常用的植物遗传转化技术包括农杆菌介导的转化、基因枪介导的转化、电击法等。
农杆菌介导的转化是最常用的植物遗传转化技术之一,利用农杆菌通过水分或创伤进入植物细胞,将外源基因导入植物基因组。
该技术具有高效性和选择性,并且适用范围广泛,在获得转基因植株方面具有重要作用。
基因枪介导的转化是一种直接将外源DNA通过高速银粒枪或金粒枪射入植物组织的方法。
该技术能够克服农杆菌介导的转化对组织的要求较高的限制,使得更多的植物种类能够进行遗传转化。
电击法是一种利用暴露在电场中的植物细胞的特定瞬间可逆孔效应,使得外源DNA通过电穿孔方式导入细胞的方法。
该技术常用于难以转化的植物种类,如谷物、树木等。
10转基因植物2012
农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。 因此,农杆菌是一种天然的植物遗传转化体系。 人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外 源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生 出转基因植株。 关键特征:主要适用于双子叶植物和祼子植物 实例: 农杆菌转化法示意图:
最常见的转基因方法,具体方法有农杆菌介导法、 病毒介导法等。
将外源基因重组进入适合的载体系统,通过载体将携带的外 源基因导入植物细胞,整合在核染色体组中并随核染色体复 制和表达。
农杆菌Ti质粒(tumor-inducing plasmid)或 Ri质粒(rootindcing plasmid)介导法是迄今为止植物基因工程中应用最 多、机理最清楚、最理想的载体转移方法。
1.1 受体
1.1.1 叶盘
采用打孔器对叶片进行打孔,得到圆叶片(叶 盘 ),致使叶片四周都有伤口,与对数生长期的一定 浓度的农杆菌浸泡一定时间(数秒-数分),取出叶圆 片,用滤纸吸干,置于无选择剂培养基上,共培养23天,无菌水冲洗或直接于选择培养基上培养。对双 子叶植物较适合。
叶盘法
双子叶植物较为常用、简单有效的方法。
1.3.1 选择性培养检测(抗性基因检测)
一般用抗性基因来富集转化细胞。抗 性基因应满足以下几点:
A. 抗性基因应是显性基因。 B. 在选择压力下,转化细胞能继续生长,而非转 化细胞受到抑制,从而使转化子得到富集。 C. 抗性基因产物本身不能对转化细胞的生长或发 育有抑制作用。 D. 选择物价廉易得。
1.2.3 花粉管通道法
**花粉管通道法是将外源DNA涂抹于植物柱头,通过植 物授粉,经天然的花粉管通道将外源DNA经珠心进入胚 囊,以达到遗传转化的目的。 **特点:是方便易行,不需专门仪器和昂贵药品;直 接得到转化的种子;受季节限制。
植物遗传转化(PPT-70)
8 植PL物AN遗T传G转E化NE体T系IC的TR建A立NSFORMATION
8.1 植物基因转化的受体 8.1.3 胚性愈伤组织
愈伤组织的转化方法也适用于胚性愈伤组织。胚性愈伤组织的转 化已在玉米、甘蔗、芹菜等植物上获得成功。
芹 菜 胚 性 愈 伤 组 织 用 根 癌 农 杆 菌 C58C1 (pBZ6111) 感 染 后 , 在 MS+2,4-D 1mg/L十KT0.1mg/L培养基上继代培养。在筛选到的氯霉素 抗性愈伤组织中检测到胭脂碱合成酶活性,表明外源基因已整合到 芹菜细胞基因组中并得到表达。抗性愈伤组织可在无激素的基本培 养基上增殖,但分化出的再生植株畸形(郑世学等,1996)。
பைடு நூலகம்
8 植PL物AN遗T传G转E化NE体T系IC的TR建A立NSFORMATION
8.1 植物基因转化的受体 8.1.2 悬浮细胞
以悬浮细胞作受体的转化方法包括农杆菌介导法、基因枪法、 PEG介导法、电激法和显微注射法等。
小麦幼胚悬浮细胞用JQ-700基因枪法转化,得到了GUS基因瞬间表 达的各项最适参数。他们还建立了‘冀谷11号’谷子幼穗的悬浮培 养细胞系及植株再生体系。将胚性悬浮细胞系接种到MS培养基, 20d继代1次,直至出现绿芽点;然后转入无激素的MS0或1/2 MS0 培养基分化植株。以基因枪轰击转化悬浮细胞后,放置48h,检测 GUS短暂表达频率TTF%为20%-40%;在添加200mg/L卡那霉素 的MS培养基上,有5%-10%的愈伤组织具有抗性,且能稳定传代 (董云洲等,1998)。
8 植PL物AN遗T传G转E化NE体T系IC的TR建A立NSFORMATION
8.2 植物基因转化的方法 8.2.1 农杆菌介导法(Agrobacterium-mediated transformation)
植物遗传转化
从1986年首批转基因植物被批准进入田间试验
,至今国际上已有30个国家批准数千例转基因
植物进入田间试验,涉及的植物种类有40多种 。主要包括延熟番茄 , 抗除草剂的玉米、棉花 、大豆和油菜,抗虫的马铃薯、棉花和玉米,抗 病毒的西葫芦、南瓜和番木瓜 , 雄性不育的玉 米和莴苣 , 以及改变油脂特性的油菜和大豆等 。
。
优点: 不受宿主范围的限制 操作简便 成本底 缺点: 一般只适用于原生质体的转化,而原生质体 再生植株并不容易,转化效率低; 再生植株常不可育或形态异常、多拷贝插入等 现象。
• 花粉管通道法 利用开花植物授粉后形成的花粉管通道,直接将 外源目的基因导入尚不具备正常细胞壁的卵、合子或 早期胚胎细胞,实现目的基因的转化。 步骤: 1)去除花冠; 2)用微量注射器从断面沿花柱中轴插入子房长度的约 1/4处,再退回2毫米左右; 3)注入含外源目的基因的缓冲液; 4)正常管理,收获种子, 经筛选获得转基因植株。
转基因块茎中花色苷含量分析
一种基于同源重组构建多基因双元载体的方法张兴国按目的基因导入位置细胞核叶绿体按启动子的类型组成型启动子特异性启动子遗传转化的主要方法农杆菌介导的遗传转化基因枪法电击法注射法化学药剂诱导转化花粉管通道法根癌农杆菌ti质粒转化系统外植体农杆菌共培养芽诱导抗生素筛选生根培养植株再生分子检测转基因植株获得技术特点
整合后外源基因结构变异小
操作简便等优点
该技术已成为转化成功最多的一种转化方法
• 基因枪法(particle gun) 又称微弹轰击法 (microprojectile bombardment或 particle bombardment) 。 该法借助高速运动的金属 粒子将附着于其表面的核 酸分子引入受体细胞,外 源基因进入受体细胞核后 整合到染色体组,然后通 过组织培养再生出完整个 体(植株)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
农业生物技术课程
第二节 根癌农杆菌介导的植物转基因
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
第十章 植物遗传转化技术和方法
第一节 第二节 第三节 第四节 植物遗传转化的发展 根癌农杆菌介导的植物转基因 基因枪介导的植物转基因 其他植物转基因技术
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
七、农杆菌转化的具体技术
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学学与工程系
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程
辽东学院农学院种子科学与工程系
农业生物技术课程