变频器控制电机运行最常用的两种方式
变频调速的基本控制方式ppt课件
28
机械特性曲线
n
可见,当频率ω1提高 时,同步转速n1随之提 n1c 高,最大转矩减小,机 n1b
械特性上移;转速降落 n1a
1c 1b 1a
随频率的提高而增大, n1N 1N
1N <1a <1b <1c 恒功率调速
特性斜率稍变大,其它
形状基本相似。如右图
所示。
2024/7/16
O Te
图6-5 基频以上恒压变频调速的机械特性29
2024/7/16
22
结论
➢在恒压频比的条件下改变频率 1 时,机械特性基本上是
平行下移 ➢当转矩增大到最大值以后,转速再降低,特性就折回来 了。而且频率越低时最大转矩值越小
➢最大转矩 Temax 是随着的 1 降低而减小的。频率很
低时,Temax太小将限制电机的带载能力,采用定子压 降补偿,适当地提高电压Us,可以增强带载能力
(U漏—漏磁阻抗压降;Us—每相电压),
当Us很大时,U漏很小;可以认为Us≈Eg 。
m
US f1
C
要改变f1实现调速,则同时应改变Us来保持Φm不变。
—恒压频比控制方式
2024/7/16
12
带定子压降补偿的恒压频比控制特性
但当f1太小时,忽略U漏则误差较大,这时可以人为增 大Us进行补偿,以减小误差。
2024/7/16
30
小结
电压Us与频率1是变频器—异步电动机调速系统的两个独立
的控制变量,在变频调速时需要对这两个控制变量进行协调 控制。 在基频以下,有两种协调控制方式。采用不同的协调控制方 式,得到的系统稳态性能不同。 在基频以上,采用保持电压不变的恒功率弱磁调速方法。
2024/7/16
为什么变频器会烧毁电机
为什么变频器会烧毁电机如果想变频器对电机起完全保护作用,从工艺、设置上都要注意,设置上参数设置正确、不能盲目加大过载系数等,对电机勤保养、检查。
工艺上要注意负载变化(我们要求一般电流是不超90%的,超过了就要控制、检查),300多台变频4年还未出现过电机烧毁。
一、为什么变频器会烧毁电机普通异步电机的散热是靠电机屁股后面的风扇吹风散热,如果长时间低频运行(就是长时间运行在电机的额定频率以下,电机转速低风扇吹的风量就小,从而使电机散热不良,太热了就会烧毁电机。
电机有问题了电机电流就会增大。
超过变频器的最大电流,变频器就会实施保护停止输出同时报一个故障代码告诉用户。
变频器显示OC就是过电流的意思。
解决的办法是把电机换成变频专用电机,或者给电机加装一个散热风扇。
或者是换功率大一点的电机。
二、烧机技术解读“烧电机的变频器,基本上都是匝间短路、相间短路及对地短路,为什么变频器容易烧电机,而且大部分还是变频电机,与哪些技术指标有关系?”在工频供电情况下,电机绕组输入的是三相50Hz的正弦波电压,绕组产生的感生电压也较低,线路中的浪涌分量较小。
在变频供电情况下,变频器逆变部分将直流电压转换为三相交流电压,通过控制六个桥臂的开关元件导通,关断,来实现三相交流电压的输出。
接入变频器后,载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
电压变化率dv/ dt 的增加,使得电机绕组匝间电压变化率dv/ dt 很高,绕组电压分布变得很不均匀,电机的供电条件由此变得“恶劣”了。
使绕组匝间短路的故障增加,电机故障率增加。
变频器输出的PWM波形,在电机绕组供电回路中,还会产生各种分量的谐波电压。
由电感特性可知,流过电感电流的变化速度越快,电感的感生电压也越高。
电机绕组的感生电压比工频供电时升高了。
在工频供电时暴露不出的绝缘缺陷,因不耐高频载波下感生电压的冲击,于是绕组匝间或相间的电压击穿产生了。
变频器的控制方式
变频器的控制方式1 引言我们通常意义上讲的低压变频器,其输出电压一般为220~650v、输出功率为0.2~400kw、工作频率为0~800hz左右,变频器的主电路采用交-直-交电路。
根据不同的变频控制理论,其模式主要有以下三种:(1)v/f=c的正弦脉宽调制模式(2)矢量控制(vc)模式(3)直接转矩控制(dtc)模式针对以上三种控制模式理论,可以发展为几种不同的变频器控制方式,即v/f控制方式(包括开环v/f控制和闭环v/f控制)、无速度传感器矢量控制方式(矢量控制vc的一种)、闭环矢量控制方式(即有速度传感器矢量控制vc 的一种)、转矩控制方式(矢量控制vc或直接转矩控制dtc)等。
这些控制方式在变频器通电运行前必须首先设置。
2 v/f控制方式2.1 基本概念我们知道,变频器v/f控制的基本思想是u/f=c,因此定义在频率为fx时,ux的表达式为ux/fx=c,其中c为常数,就是“压频比系数”。
图1中所示就是变频器的基本运行v/f曲线。
由图1可以看出,当电动机的运行频率高于一定值时,变频器的输出电压不再能随频率的上升而上升,我们就将该特定值称之为基本运行频率,用fb 表示。
也就是说,基本运行频率是指变频器输出最高电压时对应的最小频率。
在通常情况下,基本运行频率是电动机的额定频率,如电动机铭牌上标识的50hz或 60hz。
同时与基本运行频率对应的变频器输出电压称之为最大输出电压,用vmax表示。
当电动机的运行频率超过基本运行频率fb后,u/f不再是一个常数,而是随着输出频率的上升而减少,电动机磁通也因此减少,变成“弱磁调速”状态。
基本运行频率是决定变频器的逆变波形占空比的一个设置参数,当设定该值后,变频器cpu将基本运行频率值和运行频率进行运算后,调整变频器输出波形的占空比来达到调整输出电压的目的。
因此,在一般情况下,不要随意改变基本运行频率的参数设置,如确有必要,一定要根据电动机的参数特性来适当设值,否则,容易造成变频器过热、过流等现象。
变频器控制电机转速方法是
变频器控制电机转速方法是在工业应用领域,电机是最为常见的设备之一,而电机的转速是电机性能的一个关键指标。
为了满足不同的工业生产需求,实现电机转速的控制和调节,通常采用变频器控制电机转速。
本文就介绍变频器控制电机转速的方法。
变频器的基本原理变频器是一种实现电机转速控制的设备,它通过改变电机的供电频率和电压,实现电机转速的调节。
变频器的工作原理是将电网中的高频交流电先变成直流电,再加工成不同频率、不同电压的交流电来供给电机,从而实现对电机的转速控制。
变频器的控制方法下面介绍几种常见的变频器控制方法。
1. 固定模式控制固定模式控制是一种比较简单的控制方法,它通过调整变频器的固定参数来实现对电机转速的控制。
这种方法可以比较方便地实现对电机的开启、关闭、正反转、变频等基本控制功能。
2. 调速控制调速控制是变频器最常用的控制方法之一。
它通过调整变频器输出频率和电压,实现对电机转速的调节。
调速控制有许多不同的方式,其中比较常见的是向电机提供一个恒定的电压,通过调整输出频率来实现电机转速的变化。
3. 矢量控制矢量控制是一种比较高级的变频器控制方法,它通过对电机的电流和电压进行精准控制,实现对电机转速的控制。
矢量控制的优点是能够实现非常精准的转速控制,缺点是控制算法需要较高的计算能力。
变频器控制电机转速的优点使用变频器控制电机转速具有以下优点:1. 提高电机效率在电机正常工作范围内,变频器控制可以使电机的效率达到最大值,实现能源的节约。
2. 实现精确控制变频器控制下,电机转速可以实现精确控制,避免传统控制方式存在的由于电网频率波动造成的转速高低波动。
3. 增加电机寿命变频器控制下,电机启动电流减小,对电机寿命的延长有一定的作用。
变频器控制电机转速的应用领域由于变频器控制电机转速有以下优点,它在许多领域得到了广泛应用:1. 工业生产在各个工业领域,如冶金、化工、纺织、造纸、机械制造等,都广泛使用变频器控制电机转速。
PWM型变频器的基本控制方式
PWM型变频器的基本控制方式通用的PWM型变频器是一种交—直—交变频,通过整流器将工频交流电整流成直流电,经过中间环节再由逆变器将直流电逆变成频率可调的交流电,供给交流负载。
异步电动机调速时,供电电源不但频率可变,而且电压大小也必须能随频率变化,即保持压频比基本恒定。
PWM型变频器一般采用电压型逆变器。
根据供给逆变器的直流电压是可变的还是恒定的,变频器可分成两种基本控制方式。
(1)变幅PWM型变频器这是一种对变频器输出电压和频率分别进行调节的控制方式,其基本电路如图3-3所示。
中间环节是滤波电容器。
图2-3 变幅PWM型变频器晶闸管整流器用来调压,与一般晶闸管调压系统一样,采用相位控制,通过改变触发脉冲的延迟角α来获得与逆变器输出频率相对应的不同大小的直流电压。
逆变器只作输出频率控制,它一般是由6个开关器件组成,按脉冲调制方式进行控制。
图3-4所示是另一种直流电压可调的PWM变频电路。
它采用二极管不可控整流桥,把三相交流电变换为恒定的直流电。
分立斩波器电路,来改变输出直流电压的大小,通过逆变器输出三相交流电。
图2-4 利用斩波器的变频电路图以上两种调压式变频电路,都需要两极可控功率级,相比较,采用晶闸管整流桥可以获得更大功率的直流电,由于可控整流桥采用相位控制,输入功率因数将随输出直流电压的减小而降低;而斩波式调压,输入功率变流级采用的是二级管整流桥,所以输入端有很高的功率因数,代价是多了一个斩波器。
另外,就动态响应的快速性来说后者比前者好。
(2)恒幅PWM型变频器恒幅脉宽调制PWM式变频电路如图3.3所示,它由二极管整流桥,滤波电容和逆变器组成。
逆变器的输入为恒定不变的直流电压,通过调节逆变器的脉冲宽度和输出交流电压的频率,既实现调压又实现调频,变频变压都是由逆变器承担。
此系统是目前使用较普遍的一种变频系统,其主电路简单,只要配上简单的控制电路即可。
它具有下列主要优点:1)简化了主电路和控制电路的结构。
变频器工作的常用模式
变频器工作的常用模式变频器是一种常见的电器控制装置,用于调节电动机的速度和频率。
在工作过程中,变频器可以通过选择不同的工作模式来满足各种应用需求。
本文将介绍变频器工作的常用模式。
1. 恒定转速模式恒定转速是变频器最基本的工作模式之一,适用于需要保持电机恒定转速的场景。
变频器通过控制输出频率,使电机稳定地运行在设定的转速上。
该模式广泛应用于传送带、风机等需要稳定运转的设备。
2. 变频调速模式变频调速模式是变频器最常用的工作模式之一,适用于需要实现精细调速的场景。
通过改变输出频率,变频器可以调节电机的转速,实现从低速到高速的连续调节。
这种模式在机械加工、液压系统等领域得到广泛应用。
3. 节能运行模式节能运行模式是一种针对节约能源的工作模式。
在这个模式下,变频器根据实际需求调整电机的转速和负载,以达到最佳能效。
例如,当负载较轻时,变频器会适当降低电机的运行频率,降低能耗。
这种模式在节能的要求日益提高的环境中得到广泛应用。
4. 同步控制模式同步控制模式是一种多电机协同运行的工作模式。
通过变频器的同步控制功能,可以实现多台电动机的协同运行,保持各个电机的同步性和一致性。
这种模式在车间生产线、物流系统等需要多电机配合的场景中得到应用。
5. 故障检测与保护模式故障检测与保护模式是变频器工作中非常关键的一个模式。
变频器通过内置的故障检测与保护机制,对电机运行过程中的异常情况进行监测,并及时采取相应的措施,以避免设备损坏或人身安全事故的发生。
这种模式在电机运行安全保障方面起着重要作用。
总结:变频器作为一种重要的电气控制设备,可以通过不同的工作模式来满足各种应用需求。
无论是恒定转速、变频调速还是节能运行,每种模式都有其独特的应用场景。
而同步控制模式和故障检测与保护模式则分别在多电机协同和安全保障方面发挥着重要的作用。
通过灵活应用变频器的不同工作模式,可以更好地实现电机的控制和优化运行。
变频器的控制方式及合理选用
变频器的控制方式及合理选用1.变频器的控制方式低压通用变频器输出电压在380~650V,输出功率在0.75~400KW,工作频率在0~400HZ,它的主电路都采用交-直-交电路。
其控制方式经历以下四代。
(1)第一代以U/f=C,正弦脉宽调制(SPWM)控制方式。
其特点是:控制电路结构简单、成本较低,但系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
(2)第二代以电压空间矢量(磁通轨迹法),又称SPWM控制方式。
他是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形。
以内切多边形逼近圆的方式而进行控制的。
经实践使用后又有所改进:引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流成闭环,以提高动态的精度和稳定度。
但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。
(3)第三代以矢量控制(磁场定向法)又称VC控制。
其实质是将交流电动机等效直流电动机,分别对速度、磁场两个分量进行独立控制。
通过控制转子磁链,以转子磁通定向,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。
然而转子磁链难以准确观测,以及矢量变换的复杂性,实际效果不如理想的好。
(4)第四代以直接转矩控制,又称DTC控制。
其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。
具体方法是:a.控制定子磁链——引入定子磁链观测器,实现无速度传感器方式;b.自动识别(ID)——依靠精确的电机数学模型,对电机参数自动识别;c.算出实际值——对定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;d.实现Band-Band 控制——按磁链和转矩的Band-Band 控制产生PWM信号,对逆变器开关状态进行控制;e.具有快速的转矩响应(〈2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(〈±3%);f.具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150% ~200%转矩。
变频器控制电机的频率和电压
变频器控制电机的知识你了解多少?我们都知道,变频器是从事电气工作所应该掌握的一种技术,使用变频器控制电机是电气控制中较为常见的方法;有的也要求一定要熟练运用。
今天小编就以浅薄的知识整理归纳相关的知识点,内容或有重复,旨在和大家分享变频器和电机之间的那些奇妙关系。
首先,为什么要用变频器控制电机?我们先简单的了解下这两个设备。
电机是一个感性负载,它阻碍电流的变化,在启动的时候会产生电流的较大变化。
变频器,是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
它主要由两部分电路构成,一是主电路(整流模块、电解电容和逆变模块),二是控制电路(开关电源板、控制电路板)。
为了降低电动机的启动电流,尤其是功率较大的电机,功率越大,启动电流越大,过大的启动电流会给供配电网络带来较大的负担,而变频器能够解决这个启动问题,让电机平滑启动,而不会引起启动电流过大。
使用变频器的另一个作用就是对电机进行调速,很多场合需要控制电机的转速以获得更好的生产效率,而变频器调速一直是它最大的亮点,变频器通过改变电源的频率以达到控制电机转速的目的。
变频器控制方式都有哪些?变频器控制电机最常用的五种方式如下:低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。
其控制方式经历了以下四代。
1U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。
另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
变频器实现电机的点动控制的常见方法解析
变频器实现电机的点动控制的常见方法解析1.引言概述部分的内容应该对整篇文章的主题进行一定程度的解释和引入。
下面是一个可供参考的概述部分的编写示例:引言1.1 概述在现代工业控制领域中,电机是被广泛应用的关键设备之一。
为了实现精准的控制和高效的运行,往往需要采用一些特殊的控制方法。
变频器是一种常用的控制设备,它通过改变电源给电机供电的频率来控制电机的转速和运行状态。
而点动控制,则是一种常见的特殊控制模式,适用于电机需要进行单次、短时的运行或停止的场景。
本文将介绍变频器实现电机的点动控制的常见方法,旨在帮助读者深入了解和掌握这一领域的技术。
1.2 文章结构本文主要分为引言、正文和结论三个部分。
首先在引言部分,我们将对本文的主题进行概述。
接下来,在正文部分的第二节中,我们将介绍变频器的基本原理和作用,为后续的点动控制方法铺垫基础。
然后,我们将在正文部分的第三节详细介绍变频器实现电机的点动控制的常见方法,涵盖多种实现技术和应用场景。
最后,在结论部分,我们将对本文的内容进行总结,并对未来的研究和应用方向进行展望。
1.3 目的本文的目的是系统地解析变频器实现电机的点动控制的常见方法。
通过对不同的方法进行介绍和分析,读者可以了解每种方法的原理、特点和适用场景,以便在实际工程应用中能够选择合适的方法,并对其进行正确的配置和调试。
同时,本文还旨在推动相关领域的技术发展和研究,促进电机控制技术的创新和进步。
1.2文章结构文章结构部分的内容是文章的框架,用来引导读者理解文章的结构和内容安排。
在这部分内容中,我们可以简要介绍文章的组织结构和各个章节的主要内容。
以下是对文章结构部分的一种可能的编写方式:文章结构本文将围绕变频器实现电机的点动控制展开讨论,主要包括以下几个部分:1. 引言1.1 概述在引言部分,我们会简要介绍变频器实现电机的点动控制的背景和意义。
通过概述,读者可以初步了解文章的话题和研究的重点。
1.2 文章结构本文的结构如下所示。
变频器常用的10种控制方式
变频器常用的10种控制方式
变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素。
除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。
本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。
一、变频器的分类
变频器的分类方法有多种。
按照主电路工作滤波方式分类,可以分为电压型变频器和电流型变频器。
按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器。
按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等。
按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
二、变频器中常用的控制方式
1、非智能控制方式
在交流变频器中使用的非智能控制方式有V/f控制、转差频率控制、矢量控制、直接转矩控制等。
(1) V/f控制
V/f就是加在电机定子上的电压和电源频率的比值。
如下图,V/F符合直线AB,则是直线型;符合折线段ABC,则是多点型;符合曲线AB,则是平方型。
变频器的控制常用模式介绍
变频器的控制常用模式介绍随着现代工业的快速发展,电机在工业生产中的应用越来越广泛。
而作为电机控制的重要组成部分,变频器的出现使得电机的控制更加灵活和高效。
在变频器中,控制模式是影响电机运行的关键因素之一。
本文将介绍变频器的控制常用模式。
1. 开环控制模式开环控制模式是最简单和最基础的控制模式之一。
在开环控制模式下,变频器根据给定的频率和电压信号直接控制电机的转速和负载。
然而,这种控制模式并不能对电机的运行状态进行反馈和监控,因此无法实现对电机的精确控制。
2. 闭环控制模式闭环控制模式是一种通过对电机输出信号与实际运行情况进行反馈,从而实现对电机转速和负载的精确控制的模式。
在闭环控制模式下,变频器通过反馈装置(如编码器)获取电机的实际运行状态,并根据差异调整输出信号,实现对电机的反馈控制。
3. 矢量控制模式矢量控制模式是一种较为先进和高级的控制模式,其基本原理是通过分析电机的转子磁通和转速,实现对电机的精确控制。
在矢量控制模式下,变频器能够对电机的电流、转速和转矩进行精确控制,从而实现更高的控制精度和响应速度。
4. 脉宽调制(PWM)控制模式脉宽调制控制模式是一种通过改变脉冲宽度的方式来控制电机转速的模式。
在脉宽调制控制模式下,变频器通过改变电压的脉冲宽度来控制电机的转速。
脉宽调制模式具有控制精度高、响应速度快等优点,在工业生产中得到了广泛的应用。
5. 多点抑制(MPC)控制模式多点抑制控制模式是一种通过对电机的多个参量进行调整和抑制来实现对电机的控制的模式。
多点抑制控制模式具有较高的控制精度和稳定性,能够有效抑制电机在运行过程中的不稳定因素,提高电机的运行效率。
总结:变频器的控制模式包括开环控制、闭环控制、矢量控制、脉宽调制控制和多点抑制控制等多种模式。
不同的控制模式适用于不同的电机应用场景,可以根据具体需求选择合适的控制模式来实现对电机的精确控制和高效运行。
随着科技的不断进步,相信变频器的控制模式将会不断发展和创新,为工业生产带来更多的便利和高效。
博腾变频器面板控制与端子控制参数
博腾变频器面板控制与端子控制参数1. 引言博腾变频器是一种广泛应用于工业控制领域的调速设备。
通过调节电机的转速,可以实现对设备的精确控制。
博腾变频器通过面板控制和端子控制两种方式实现对电机的控制。
本文将深入探讨博腾变频器面板控制与端子控制参数,并分享对这些参数的理解和观点。
2. 面板控制参数2.1 主频和输出频率主频是博腾变频器的输入频率,而输出频率则是电机运行时的工作频率。
通过调节主频和输出频率,可以实现对电机转速的控制。
主频一般指电网的供电频率,而输出频率可以通过变频器的参数设置或控制面板上的按钮进行调节。
在实际应用中,根据需要选择适当的输出频率,以满足设备的工作要求。
2.2 运行模式博腾变频器的运行模式包括手动模式和自动模式。
在手动模式下,可以通过面板上的按钮手动控制电机的启停、转向等操作。
而在自动模式下,可以通过设置参数,实现对电机的自动控制。
运行模式的选择取决于具体的应用需求。
2.3 设定方式和控制命令设定方式是指设置变频器参数的方式,控制命令则是通过面板上的按钮或外部信号触发的动作。
博腾变频器一般提供多种设定方式,如数字设定、按键设定、通讯设定等。
控制命令包括启动、停止、正转、反转等指令,用于实现对电机的控制。
3. 端子控制参数3.1 控制输入端子博腾变频器提供多个输入端子,用于接收外部信号,实现对电机的控制。
常见的控制输入端子包括启动、停止、正转、反转等。
通过接入外部开关或传感器,可以实现对电机的远程控制。
3.2 变频器输出端子变频器的输出端子用于连接电机,传递变频器输出的信号,实现对电机转速和运行状态的控制。
输出端子的数量和类型根据变频器的规格和型号而定。
4. 观点和理解博腾变频器拥有丰富的面板控制和端子控制参数,可以满足不同应用场景的需求。
在实际应用中,正确设置这些参数对于保证电机的正常运行和提高设备的工作效率至关重要。
在选择控制方式时,需要根据具体情况综合考虑系统的稳定性、可靠性和灵活性。
变频器的矢量控制和TDC控制
以后的三菱、日立、东芝等也有类似产品,但是均未在转矩上引
入调节,系统性能未得到根本改善
70 年代西门子工程师F.Blaschke 首先提出异步电机矢量控制理论来解决交流 电机转矩控制问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子 电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控 制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量 分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加 以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种 控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方 式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。这样就可以
经具备异步电动机参数自动检测、自动辨识、自适应功能,带有
这种功能的通用变频器在驱动异步电动机进行正常运转之前可以 自动地对异步电动机的参数进行辨识,并根据辨识结果调整控制 算法中的有关参数,从而对普通的异步电动机进行有效的矢量控 制。
这种磁场定向的矢量控制,用交流电动机和直流电动机进行比 较的方法,阐明了这一控制原理,开创了交流电机等效直流电机控 制的先河,他使人们看到了尽管交流电机控制复杂,但是也可以实 现转矩、磁场独立控制的内在本质。
在一定的容差范围内,容差的大小由频率调节器来控制,并产生PWM脉宽调制
信号,直接对逆变器的开关状态进行控制,以获得高动态性能的转矩输出。它的 控制效果不取决于异步电动机的数学模型是否能够简化,而是取决于转矩的实际
状况,它不需要将交流电动机与直流电动机作比较、等效、转化,即不需要模仿
直流电动机的控制,由于它省掉了矢量变换方式的坐标变换与计算和为解耦而简 化异步电动机数学模型,没有通常的PWM脉宽调制信号发生器,所以它的控制
变频器控制电机,可以调到多大的频率
变频器控制电机,可以调到多大的频率变频器控制电机的知识你了解多少?在工作中,一道变频器控制电机的频率题,难倒众多电工达人工程干将。
请看百度的截图,类似这样的问题不胜枚举!我们都知道,变频器是从事电气工作所应该掌握的一种技术,使用变频器控制电机是电气控制中较为常见的方法;有的也要求一定要熟练运用。
今天小编就以浅薄的知识整理归纳相关的知识点,内容或有重复,旨在和大家分享变频器和电机之间的那些奇妙关系。
首先,为什么要用变频器控制电机?我们先简单的了解下这两个设备。
电机是一个感性负载,它阻碍电流的变化,在启动的时候会产生电流的较大变化。
变频器,是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
它主要由两部分电路构成,一是主电路(整流模块、电解电容和逆变模块),二是控制电路(开关电源板、控制电路板)。
为了降低电动机的启动电流,尤其是功率较大的电机,功率越大,启动电流越大,过大的启动电流会给供配电网络带来较大的负担,而变频器能够解决这个启动问题,让电机平滑启动,而不会引起启动电流过大。
使用变频器的另一个作用就是对电机进行调速,很多场合需要控制电机的转速以获得更好的生产效率,而变频器调速一直是它最大的亮点,变频器通过改变电源的频率以达到控制电机转速的目的。
变频器控制方式都有哪些?变频器控制电机最常用的五种方式如下:低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。
其控制方式经历了以下四代。
1U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。
但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。
另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。
变频器的控制方法
变频器的控制方法变频器是一种用于调节电机转速的电子设备,它通过改变电压、频率和电流来控制电机的运行。
变频器的控制方法有很多种,下面将就几种常见的控制方法进行介绍。
1. 开环控制开环控制是最基本的变频器控制方法之一,也是最简单的控制方法。
在开环控制中,变频器根据事先设定的频率和电压输出信号,直接控制电机的运行。
这种方法适用于负载要求不高的场合,但无法对电机的运行状态进行实时监测和调整。
2. 闭环控制闭环控制是一种反馈控制方法,它通过传感器实时监测电机的运行状态,将监测到的反馈信号与设定值进行比较,并根据比较结果调整输出信号,从而实现对电机转速的精确控制。
闭环控制可以使电机在各种负载条件下保持稳定的运行,具有较高的控制精度和稳定性。
3. 矢量控制矢量控制是一种较为复杂的控制方法,它不仅可以精确控制电机的转速,还可以同时控制电机的转矩和位置。
矢量控制将电机分解为磁场定向控制和转矩控制两个部分,通过控制两个部分的信号来实现对电机的全面控制。
矢量控制具有高精度、高效率、低噪音等优点,适用于对电机运行精度要求较高的场合。
4. 伺服控制伺服控制是一种高性能的控制方法,它通过将电机的转速和位置与设定值进行比较,通过控制电机的输出信号实现对电机的精确控制。
伺服控制具有较高的动态响应能力和控制精度,适用于对电机运行要求非常高的场合,如机床、印刷设备等。
5. 多变量控制多变量控制是一种综合应用多种控制方法的控制策略,它可以根据电机运行的实际需求,同时控制电机的转速、转矩、位置等多个参数。
多变量控制可以根据不同的工况自动调整控制参数,从而实现对电机的最优控制。
这种控制方法适用于对电机运行精度要求高、工况变化较大的场合。
变频器的控制方法有很多种,每种方法都有其适用的场合和优势。
在选择控制方法时,需要根据具体的应用需求和电机的特性进行合理选择,并结合实际情况进行参数调整和优化,以实现对电机的精确控制。
总结使用变频器模拟量控制方式控制电机运行的操作方法
使用变频器模拟量控制方式控制电机运行的操作方法可以归纳为以下几个步骤:1. 硬件准备:确保你有适当的电机、变频器、输入/输出设备以及其他必要的硬件。
变频器应具有模拟输入端口,通常标记为“AI”。
此外,你需要一个能提供模拟输出的设备(如PLC或另一个变频器),其输出能连接到变频器的模拟输入端口。
通常,这个设备会提供0-10V或0-20mA的模拟信号。
2. 连接硬件:将电机的电源线连接到变频器的输出端。
将模拟输入设备的输出线连接到变频器的模拟输入端口。
3. 设定变频器:打开变频器的外壳,找到相应的参数设置按钮或接口。
根据你使用的模拟信号(0-10V或0-20mA),你需要设置变频器的输入电压或电流范围。
对于0-10V的信号,将变频器的AI最小值设置为0V,AI最大值设置为10V。
对于0-20mA的信号,将AI最小值设置为0mA,AI最大值设置为20mA。
4. 调整速度:调整模拟输出设备的输出值以改变电机的速度。
如果你使用的是0-10V的信号,将模拟输出调整到一个适当的电压,这会决定电机的速度。
如果你使用的是0-20mA的信号,调整模拟输出电流到所需的值,电机速度会随之改变。
5. 监控运行:你可以通过变频器或模拟输出设备的显示屏来监控电机的运行状态。
也可以通过电脑或其他上位机软件来实时监控和调整电机的运行。
6. 异常处理:如果遇到任何问题(如电机不转、速度不稳定等),应立即停机检查。
检查所有硬件连接是否正确,检查模拟输出值是否在正确的范围内,检查变频器的设置是否正确。
以上就是使用变频器模拟量控制方式控制电机运行的基本操作方法。
但请注意,不同的设备可能会有不同的操作方式,建议参照设备的用户手册或联系制造商获取更详细的操作指南。
变频器开闭环控制方式
变频器开闭环控制方式1、开环掌握方式由变频器和异步电机构成的变频调速掌握系统主要有开环和闭环两种掌握方式。
开环掌握方式一般采纳一般功能的U/f掌握通用变频器或无速度传感器矢量掌握变频器。
开环掌握方案结构简洁,运行牢靠,但调速精度和动态响应特性不高,尤其在低频区域更为明显,但对于一般掌握要求的场合及风机、水泵类流体机械的掌握,足以满意工艺要求。
采纳无速度传感器矢量掌握变频器的开环掌握系统,可以对异步电机的磁通和转矩进行检测和掌握,具有较高的静态掌握精度和动态性能,转速精度可达0.5%以上,并且转速响应较快。
在一般精度要求的场合下,采纳这种开环掌握系统是特别相宜的,可以达到满足的掌握性能,并且系统结构简洁,牢靠性高,唯一需要留意的是变频器的额定参数、输入和设定的电机参数应与实际负载相匹配,否则难以达到预期效果。
假如将异步电机更换成永磁同步电机,就构成了永磁同步电机开环掌握变频调速系统,此种掌握具有电路简洁,牢靠性高的特点。
同步电机的轴转速始终等于同步转速,其转速只取决于供电频率而与负载大小无关,其机械特性曲线为一根平行于横轴的直线,具有良好的机械硬特性。
假如采纳高精度的通用变频器,在开环掌握状况下,同步电机的转速精度可达到0.01%以上,并且简单达到电机的转速精度与变频器频率掌握精度相全都,所以特殊适合多台电机同步传动系统。
例如,对于静态转速精度要求甚高的化纤纺丝机等,采纳这种开环掌握系统,具有电路结构简洁,调整便利,调速精度与通用变频器掌握频率精度相同,运行效率高等特点,特殊适用于纺织、化纤、造纸等行业的高精度、多电机同步传动系统。
2、闭环掌握方式闭环掌握方式一般采纳带PID掌握器的U/f掌握通用变频器或有速度传感器的矢量掌握变频器组成,适用于温度、压力、流量、速度、张力、位置、pH值等过程参数掌握场合。
采纳带速度传感器的矢量掌握变频器,要在异步电机的轴上安装速度传感器或编码器,构成双闭环掌握系统。
变频器的调速方法
变频器的调速方法变频器是一种能够改变电机转速的设备,它可以通过调节电机的电压和频率来实现不同转速的控制。
在工业生产中,变频器的广泛应用使得电机的运行更加灵活和高效。
本文将介绍几种常见的变频器调速方法。
一、电压/频率控制调速方法电压/频率控制是最常见的变频器调速方法之一、根据电动机的特性,电机的转速与电压和频率成正比。
通过控制变频器的输出电压和频率,可以实现对电机转速的精确控制。
在调节电压/频率变化的过程中,需要考虑电机的负载、电磁兼容性等因素。
二、矢量控制调速方法矢量控制是一种高性能的变频器调速方法。
它采用了感应电机的电流/磁场定向控制原理,通过测量电机的转子位置和电流反馈信号,计算出电机的电磁矢量,进而控制电机的转速。
矢量控制具有较高的响应速度和较好的转矩控制能力,适用于对转速和转矩精度要求较高的应用场景。
三、闭环控制调速方法闭环控制调速是一种采用反馈控制方式的变频器调速方法。
它通过测量电机输出端的转速信号,与设定的转速进行比较,计算出误差信号,然后通过控制变频器的输出进行补偿,使得电机的转速能够稳定在设定值附近。
闭环控制调速方法能够更精确地控制电机的转速,适用于对转速精度要求较高的应用场景。
四、多点控制调速方法多点控制调速是一种能够实现多个转速设定的变频器调速方法。
通过对变频器进行编程设置,可以实现电机在不同工况下的转速切换。
这种调速方法适用于需要频繁改变转速的应用场景,能够优化电机的运行效率和能耗。
五、过热保护调速方法过热保护调速是一种通过监测电机的温度信号以保护电机的调速方法。
在电机运行过程中,如果温度超过设定的阈值,则会触发保护措施,如降低电机的转速或直接停机。
这种调速方法能够有效保护电机,延长其使用寿命,并防止因过热而导致的事故发生。
综上所述,变频器具有多种调速方法,可以根据不同的应用场景选取合适的调速方式。
通过合理配置和运用变频器的调速功能,可以提高电机的运行效率、降低能耗,实现对电机转速的精确控制,进而提高生产效率和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器控制电机运行最常用的两种方式
当变频器主电路接好电源线之后,要控制电动机的运行,还需要给有关端子接上外围接控制电路,并且将变频器的启动方式参数设为外部操作模式。
变频器控制电动机运转,常见的有两种方式,分别是开关控制方式和继电器控制方式:
一、开关控制的正转控制电路
开关控制的转控制电路如下图所示,它是依靠手动操作变频器STF端子外接开关SA,来对电动机进行正转控制。
电路工作原理说明如下:
1、启动准备:按下按钮SB2,接触器KM线圈得电,KM常开辅助触点和主触点均闭合,常开辅助触点闭合锁定KM线圈得电自锁,KM主触点闭合为变频器接通主电源。
2、正转控制:按下变频器STF端子外接开关SA,STF、SD端子接通,相当于STF端子输、输入正转控制信号,变频器U、V、W端子输出正转电源电压,驱动电动机正向运转。
调节端子外电位器R,变频器输出电源频率会发生改变,电动机转速也随之变化。
3、变频器异常保护:若变频器运行期间出现异常或故障,变频器B、C端子间内部等效的常闭开关断开,接触器KM线圈失电,KM主触点断开,切断变频器输入电源,对变频器进行保护。
4、停转控制:在变频器正常工作时,将开关SA断开,STF、SD端子断开,变频器停止输出电源,电动机停转。
若要切断变频器输入主电源,可按下按钮SB1,接触器KM线圈失电,KM 主触点断开,变频器输入电源被切断。
二、继电器控制的正转控制电路
继电器控制的正转控制电路如下图所示
电路工作原理说明如下:
1、启动准备:按下按钮SB2,接触器KM线圈得电,KM主触点和两个常开辅助触点均闭合,KM主触点闭合为变频器接通主电源,一个KM常开辅助触点闭合,锁定KM线圈得电,另一个KM常开辅助触点闭合,为继电器K中间A线圈得电作准备。
2、正转控制:按下按钮SB4,继电器KA线圈得电,3 个KA常开触点均闭合,一个常开触点闭合锁定KA线圈得电,一个常开触点闭合将按钮SB1短接,还有一个常开触点闭合将STF、SD端子接通,相当于STF端子输入正转控制信号,变翻器U、V、W端子输出正转电源电压,驱动电动机正向
运转。
调节端子外接的电位器R,变频器的输出电源频率会发生改变,电动机转速也随之变化。
3、变频器异常保护:若变频器异常期间出现故障,变频器B、C端子之间内部等效的常闭开关断开,接触器KM线圈失电,KM主触点断开,切断变频器输入人电源,对变频器进行保护,同时继电器KA线圈也失电,3个KA常开触点均断开。
4、停转控制:在变频器正常工作时,按下按钮SB3,KA线圈失电,KA 3个常开触点均断开,其中一个KA常开触点断开使STF、SI)端子连接切断,变频器停止输出电源,电动机停转。
在变频器运行时,若要切断变频器输入主电源,须先对变频器进行停转控制,再按下按钮SB1,接触器KM线圈失电,KM主触点断开,变频器输入电源被切断,如果没有对变频器进行停转控制,而直接去按SB1,是无法切断变频器输入主电源的。
这是因为变频器正常工作时KA常开触点已将SB1短接,断开SB1无效,这样做可以防止在变频器工作时误操作SB1切断主电源。