中考复习 圆专题 所有知识点和题型汇总 全

合集下载

初中数学圆的知识点归纳及题型

初中数学圆的知识点归纳及题型

初中数学圆的知识点归纳及题型在初中数学的学习中,圆是一个非常重要的知识点,它不仅在几何中有着广泛的应用,还与其他数学知识有着紧密的联系。

下面我们就来对初中数学圆的知识点进行归纳,并对常见的题型进行分析。

一、圆的基本概念1、圆的定义平面内到定点的距离等于定长的点的集合叫做圆。

定点称为圆心,定长称为半径。

2、圆的表示方法以点 O 为圆心,以 r 为半径的圆,记作“⊙O,半径为r”。

3、弦连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,直径是圆中最长的弦。

4、弧圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

5、圆心角顶点在圆心的角叫做圆心角。

6、圆周角顶点在圆上,并且两边都与圆相交的角叫做圆周角。

二、圆的基本性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线;圆也是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

3、弧、弦、圆心角的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

三、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:当 d > r 时,点在圆外;当 d = r 时,点在圆上;当 d < r 时,点在圆内。

2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:当 d > r 时,直线与圆相离;当 d = r 时,直线与圆相切;当 d < r 时,直线与圆相交。

3、圆与圆的位置关系设两圆的半径分别为 R 和 r(R > r),圆心距为 d,则有:当 d > R + r 时,两圆外离;当 d = R + r 时,两圆外切;当 R r < d < R + r 时,两圆相交;当 d = R r 时,两圆内切;当 d < R r 时,两圆内含。

初三数学圆的知识点总结及经典例题详解

初三数学圆的知识点总结及经典例题详解

1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。

直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 .A. 50°B. 80°C. 90°D. 100°2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 .A.100° B.130° C.80° D.50°3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 .A.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是.A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cmD.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.507.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 .A.100° B.130° C.200° D.508. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是.A.100°B.130°C.80°D.50°9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm.A.3B.4C.5D. 10点、直线和圆的位置关系1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 .A.相离 B.相切 C.相交 D.相交或相离2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . A.0个 B.1个 C.2个 D.不能确定5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 不能确定6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线l 和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交8. 已知⊙O 的半径为7cm,PO=14cm,则PO 的中点和这个圆的位置关系是 .A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定•BADO C•CBAO•BOCAD•BOCAD•BOCAD•DBAO •D BAO •DBCAO圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .A. 外离B. 外切C. 相交D. 内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B. 外切C. 相交D. 外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是.A.外离B. 外切C.相交D.内切35.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长4,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为 .A. 5cmB.cmC.10cmD.5πcm102.正三角形外接圆的半径为2,那么它内切圆的半径为.32A. 2B.C.1D.3.已知,正方形的边长为2,那么这个正方形内切圆的半径为.23A. 2B. 1C.D.24.扇形的面积为,半径为2,那么这个扇形的圆心角为= .3A.30°B.60°C.90°D. 120°5.已知,正六边形的外接圆半径为R,那么这个正六边形的边长为 .A.R B.RC.RD.212R 36.圆的周长为C,那么这个圆的面积S= .A.B.C. D.2C ππ2C π22C π42C 7.正三角形内切圆与外接圆的半径之比为 .A.1:2B.1:C.:2D.1:3328. 圆的周长为C,那么这个圆的半径R= .A.2B.C.D.C πC ππ2CπC9.已知,正方形的边长为2,那么这个正方形外接圆的直径为 .A.2B.4C.2D.22310.已知,正三角形的外接圆半径为3,那么这个正三角形的边长为 .A. 3B.C.3D.3323。

中考圆的复习资料(经典+全)

中考圆的复习资料(经典+全)

圆的知识点复习知识点1垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

题型1.在直径为1000mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=800mm,则油的最大深度为 mm.2. 如图,在△ABC中,∠C是直角,AC=12,BC=16,以C为圆心,AC为半径的圆交斜边AB于D,求AD的长。

3. 如图,弦AB垂直于⊙O的直径CD,OA=5,AB=6,求BC长。

CBDA4. 如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长。

知识点2 圆心角:顶点在圆心的角叫做圆心角。

弦心距:过圆心作弦的垂线,圆心与垂足之间的距离叫弦心距。

定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角度数相等,所对的弦相等。

在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角度数相等,所对的弧相等。

题型1. 如果两条弦相等,那么()A.这两条弦所对的弧相等 B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等 D.以上答案都不对2.下列说法正确的是()A.相等的圆心角所对的弧相等 B.在同圆中,等弧所对的圆心角相等C.相等的弦所对的圆心到弦的距离相等 D.圆心到弦的距离相等,则弦相等3.线段AB是弧AB 所对的弦,AB的垂直平分线CD分别交弧AB、AC于C、D,AD的垂直平分线EF分别交弧AB、AB于E、F,DB的垂直平分线GH分别交弧AB、AB于G、H,则下面结论不正确的是()A.弧AC=弧CB B.弧EC=弧CG C.EF=FH D.弧AE=弧EC4. 弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____.5. 如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.6. 如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________.7. 如图,已知AB 、CD 为⊙O 的两条弦,弧AD =弧BC , 求证:AB =CD 。

初三圆的知识点总结图

初三圆的知识点总结图

初三圆的知识点总结图一、圆的基本定义1. 圆的定义- 圆心- 半径- 直径- 圆周2. 圆的表示方法- 用圆心坐标和半径表示- 用方程式表示二、圆的性质1. 圆的对称性- 轴对称- 中心对称2. 圆的内接图形- 弦- 直径- 切线3. 圆的外切图形- 外切正多边形- 外切圆三、圆的计算公式1. 圆的周长计算公式- 周长与直径的关系- 周长与半径的关系2. 圆的面积计算公式- 面积与半径的关系 - 环形面积的计算四、圆的应用1. 圆在几何中的应用- 圆与直线的关系- 圆与圆的关系2. 圆在实际生活中的应用 - 建筑设计- 机械制造- 日常生活中的圆五、圆的相关定理1. 垂径定理- 定理内容- 定理的应用2. 圆周角定理- 定理内容- 定理的应用3. 圆的切线定理- 切线与半径的关系 - 切线与弦的关系六、圆的作图方法1. 用圆规画圆- 步骤说明- 注意事项2. 圆的五等分- 方法介绍- 应用实例七、圆的方程1. 标准圆方程- 方程形式- 参数解释2. 一般圆方程- 方程形式- 参数解释八、圆与坐标系1. 圆的坐标方程- 圆心和半径的坐标表示- 圆与坐标轴的关系2. 圆与直线的交点- 解析方法- 交点求解九、圆的进阶知识1. 圆锥曲线- 椭圆- 双曲线- 抛物线2. 非欧几何中的圆- 球面几何- 双曲几何请根据上述框架在Word文档中创建内容,并添加适当的图表、公式和示例以增强文档的可读性和实用性。

您可以根据实际需要调整各个部分的内容和顺序。

记得在编辑时使用清晰、专业的语言,并确保文档的格式规范、逻辑清晰。

中考圆常考题型详细解析!常考知识点都在这里,中考高分必备!

中考圆常考题型详细解析!常考知识点都在这里,中考高分必备!

中考圆常考题型详细解析!常考知识点都在这里,中考高分必
备!
中考数学专题复习:圆(按知识点和题型归类)
圆知识点复习
一、圆的概念
集合形式的概念:
1、圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);
一、中考数学圆考点分析
考点一:三角形内切圆、三角形的外接圆
1、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()。

圆知识梳理+题型归纳附答案-(详细知识点归纳+中考真题)

圆知识梳理+题型归纳附答案-(详细知识点归纳+中考真题)

圆【知识点梳理】一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点; 四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,rd d CBAO即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

中考数学圆题型大归纳

中考数学圆题型大归纳

中考数学圆题型大归纳
中考数学中关于圆的题型涵盖了很多内容,主要涉及圆的性质、圆的面积与周长、相交定理等方面。

下面对中考数学中常见的圆题型进行大归纳:
一、圆的性质题型:
1. 圆的基本概念:圆的半径、直径、周长、面积等概念的理解和计算;
2. 圆心角与弧度的关系:圆心角的大小和对应弧的关系,以及圆心角的计算;
3. 圆内接四边形:正方形、矩形、菱形等图形的性质及相关计算;
4. 圆的切线与切点:切线的性质、切线与半径的关系,以及切点的判定方法。

二、圆的面积与周长题型:
1. 圆的面积计算:根据圆的半径或直径计算圆的面积;
2. 圆的周长计算:根据圆的半径或直径计算圆的周长;
3. 圆与多边形的面积比较:圆与正方形、正三角形等图形的面积比较和计算;
4. 圆的面积与周长的关系:圆的面积与周长的计算及应用。

三、圆的相交定理题型:
1. 同弧的圆周角:同弧的圆周角的性质和计算方法;
2. 圆的相交性质:相交弧的关系、相交角的计算等;
3. 圆的切线定理:圆的切线与切点的性质、切线长度的计算方法;
4. 圆的交点的计算:两个圆的交点的计算和判定方法。

以上是中考数学中关于圆的题型的大致分类和内容归纳,希望对你的学习有所帮助。

在备考中考数学的过程中,重点理解圆的基本性质和计算方法,灵活运用各种定理和公式,多做相关的练习题目,扎实掌握圆的相关知识,相信你一定能在考试中取得优异的成绩。

祝你学业有成,考试顺利!。

初中数学圆知识梳理 题型归纳附答案-(详细知识点归纳 中考真题)

初中数学圆知识梳理 题型归纳附答案-(详细知识点归纳 中考真题)

圆【知识点梳理】一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

2025年中考数学考点分类专题归纳之 圆

2025年中考数学考点分类专题归纳之 圆

2025年中考数学考点分类专题归纳圆知识点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.备注:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.备注:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.4.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.备注:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.知识点二、与圆有关的位置关系1.判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.备注:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点A1,A2……A n在同一个圆上的方法当A1O=A2O=……=A n O=R时,A1,A2……A n在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.知识点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.备注:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.知识点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.备注:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.1.(2024•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB,BD=5,则AH的长为()A.B.C.D.2.(2024•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(2024•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.24.(2024•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm5.(2024•枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.86.(2024•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm7.(2024•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.8.(2024•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸9.(2024•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED 的正切值等于()A.B.C.2 D.10.(2024•巴中)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB 等于()A.B.2 C.2D.311.(2024•赤峰)如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°12.(2024•盘锦)如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°13.(2024•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°14.(2024•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°15.(2024•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°16.(2024•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°17.(2024•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.518.(2024•陇南)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°19.(2024•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°20.(2024•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°21.(2024•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.822.(2024•牡丹江)如图,△ABC内接于⊙O,若sin∠BAC,BC=2,则⊙O的半径为()A.3B.6C.4D.223.(2024•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.24.(2024•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定25.(2024•湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4D.426.(2024•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°27.(2024•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°28.(2024•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.529.(2024•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D 在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_______.30.(2024•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_________.31.(2024•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是______cm.32.(2024•广元)如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C 与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为___cm.33.(2024•舟山)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________cm.34.(2024•毕节市)如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为_____.35.(2024•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=____度.36.(2024•黑龙江)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=_____.37.(2024•吉林)如图,A,B,C,D是⊙O上的四个点,,若∠AOB=58°,则∠BDC=____度.38.(2024•北京)如图,点A,B,C,D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=_____.39.(2024•绥化)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是________(结果用含π的式子表示).40.(2024•常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是___.41.(2024•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是__.42.(2024•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是______cm.43.(2024•内江)已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=410b,则△ABC的外接圆半径=_.44.(2024•益阳)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=____度.45.(2024•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.46.(2024•徐州)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.。

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。

二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。

2. 切线性质:圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。

3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。

4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。

圆锥椭圆的两焦点是圆锥的底面圆心和顶点。

双曲线类似。

三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。

如圆形广场、圆形剧场等。

2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。

这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。

3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。

这些元件的形状和布局对于电子设备的功能和性能有着重要影响。

4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。

对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。

四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。

我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。

2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。

3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。

中考圆的常见题型总结

中考圆的常见题型总结

中考圆的常见题型总结中考圆的常见题型总结圆是中考数学中的一个重要概念,掌握圆的性质和相关题型能有效提高数学成绩。

下面将对中考圆的常见题型进行总结。

常见题型一:圆的基本性质题1. 求圆的面积和周长:圆的面积公式为:S = πr²圆的周长公式为:C = 2πr2. 求圆心角的度数:圆心角所对的弧与圆周所对的角相等,所以可以用圆心角的度数去表示弧的度数。

常见题型二:圆的位置关系题1. 判断关系:a. 外切圆和内切圆的位置关系:两个相切的圆,内切圆的圆心在外切圆的圆心的同一直线上。

b. 相交关系:两个相交的圆在两个交点的位置关系,可以根据边长和半径等关系进行求解。

c. 同圆关系:两个同圆的圆是重合的,即它们的半径相等。

d. 不交相离:两个完全不相交的圆,它们的位置关系为不交相离。

2. 判断位置:判断一个点在圆的内部、外部还是圆上,可以通过求这个点到圆心的距离是否等于圆的半径来判断。

常见题型三:弧和扇形的性质题1. 弧段公式:已知圆的半径和弧长,可以用弧长公式计算圆心角的度数。

2. 扇形面积公式:已知扇形中心角的度数和半径,可以用扇形面积公式计算扇形的面积:S = (θ/360°)πr²常见题型四:切线和切点的性质题1. 切线的定义:切线是与圆只有一个交点的直线。

2. 切点的性质:切点与切线垂直,切点到圆心的距离等于半径。

常见题型五:菱形和正方形的圆内接问题1. 菱形的性质:菱形的四个角都是直角,因此可以通过对角线的性质判断是否为菱形。

2. 正方形的性质:正方形是一种特殊的菱形,它的四条边相等且四个角都是直角。

常见题型六:圆锥、圆台和球的性质题1. 圆锥的性质:圆锥是一个底面是圆而侧面是圆锥曲线的立体。

求圆锥的体积公式为:V = (1/3)πr²h求圆锥的侧面积公式为:S = πrl2. 圆台的性质:圆台是一个底面是圆而顶面平行于底面的立体。

求圆台的体积公式为:V = (1/3)π(R² + r² + Rr)h求圆台的侧面积公式为:S = π(R + r)l3. 球的性质:求球的体积公式为:V = (4/3)πr³求球的表面积公式为:S = 4πr²以上是中考圆的常见题型总结,通过对这些题目的分析和解答,可以有效提高对圆的理解和掌握,并且能够在中考数学中灵活运用。

2023年中考专题复习:圆形知识点

2023年中考专题复习:圆形知识点

2023年中考专题复习:圆形知识点1. 圆的基本属性- 定义:圆是由平面上的一点到另一点距离恒定的所有点的集合。

定义:圆是由平面上的一点到另一点距离恒定的所有点的集合。

- 半径:从圆心到圆上任意点的距离都相等,称为圆的半径。

半径:从圆心到圆上任意点的距离都相等,称为圆的半径。

- 直径:穿过圆心并且两端点都在圆上的线段称为圆的直径,直径的两倍等于圆的周长。

直径:穿过圆心并且两端点都在圆上的线段称为圆的直径,直径的两倍等于圆的周长。

- 弧:圆上两点之间的弧是连接这两点的部分圆弧,圆心角等于弧对应的夹角。

弧:圆上两点之间的弧是连接这两点的部分圆弧,圆心角等于弧对应的夹角。

- 扇形:由圆心、弧和两个弧上的端点组成的图形称为扇形。

扇形:由圆心、弧和两个弧上的端点组成的图形称为扇形。

- 弦:连接圆上任意两点的线段称为弦。

弦:连接圆上任意两点的线段称为弦。

2. 圆的计算公式- 周长:圆的周长等于圆的直径乘以π(π≈3.14),即C = πd。

周长:圆的周长等于圆的直径乘以π(π≈3.14),即C = πd。

- 面积:圆的面积等于半径的平方乘以π,即A = πr^2。

面积:圆的面积等于半径的平方乘以π,即A = πr^2。

3. 圆的相关定理- 圆的内接四边形:四边形内接于一个圆时,对角线互相垂直。

圆的内接四边形:四边形内接于一个圆时,对角线互相垂直。

- 圆的垂直定理:如果一个直径与一条弦相交,那么它一定垂直于该弦。

圆的垂直定理:如果一个直径与一条弦相交,那么它一定垂直于该弦。

- 圆的切线与半径定理:切线与半径的垂直线性交于圆上一点。

圆的切线与半径定理:切线与半径的垂直线性交于圆上一点。

- 同弦定理:圆上的两个弧所对的圆心角相等,则这两个弧相等。

同弦定理:圆上的两个弧所对的圆心角相等,则这两个弧相等。

- 相交弧定理:相交的两个弧所对的圆心角互补。

相交弧定理:相交的两个弧所对的圆心角互补。

4. 圆的应用- 圆的投影:当光线垂直照射在立体表面上时,投影形成的图形通常是圆。

(完整版)中考复习--圆专题(所有知识点和题型汇总,全)

(完整版)中考复习--圆专题(所有知识点和题型汇总,全)

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有()A. 1 个B.2 个C.3 个D.4 个2.下列命题是假命题的是()A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。

3.下列命题正确的是()A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形4.下列说法正确的是( )A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等5.下面四个图中的角,为圆心角的是( )D.直径所对的圆周角等于90°A.B.C.D.二.和圆有关的角:1.如图1,点O 是△ABC 的内心,∠A=50 ,则∠BOC=图1 图22.如图2,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数为( )A.116°B.64°C. 58°D.32°3.如图3,点O 为优弧AB 所在圆的圆心,∠AOC=108°,点D 在AB 的延长线上,BD=BC,则∠D 的度数为ADOO1 2CDC图 3图 44.如图 4,AB 、AC 是⊙O 的两条切线,切点分别为 B 、C ,D 是优弧 BC 上的一点,已知∠BAC =80°,那么∠BDC =度.5. 如图 5,在⊙O 中, BC 是直径,弦 BA ,CD 的延长线相交于点 P ,若∠P =50°,则∠AOD =.PCBAOBC图 5 图 66. 如图 6,A ,B ,C ,是⊙O 上的三个点,若∠AOC =110°,则∠ABC =°.7. 圆的内接四边形 ABCD 中,∠A :∠B :∠C =2:3:7,则∠D 的度数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有()A. 1个B.2个C.3个D.4个2.下列命题是假命题的是()A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。

3.下列命题正确的是()A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形4.下列说法正确的是( )A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90°5.下面四个图中的角,为圆心角的是( )A.B.C.D.二.和圆有关的角:1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________图1 图22.如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.116°B.64°C. 58°D.32°3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为图3 图44. 如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=_________度.5. 如图5,在⊙O中, BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=.图5 图66. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°.7.圆的内接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。

,则∠AOB= .8. 若⊙O的弦AB所对的劣弧是优弧的139.如图7,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠1+∠2=________图7 图8 10.如图8,△ABC是e O的内接三角形,点C是优弧AB上一点(点C不与A,B 重合),设OABα∠=∠=,Cβ(1)当35α=o时,求β的度数;(2)猜想α与β之间的关系为11.已知:如图1,四边形ABCD内接于⊙O,延长BC至E,求证:∠A+∠B C D=180°,∠DCE=∠A;如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧,试确定∠A+∠BCD与180°的大小关系;如图3,若点C在⊙O内,且A、C两点分别在直线BD的两侧,试确定∠A+∠BCD与180°的大小关系。

图 1 图 2 图312.如图,四边形ABCD是e O的内接四边形,四边形ABCO是菱形(1)求证:»»=;AB BC(2)求D∠的度数13.(1)如图e O的直径,AC是弦,直线EF和e O相切于点C,AD FE⊥,垂足为D,求证CAD BAC∠=∠;(2)如图(2),若把直线EF向上移动,使得EF与e O相交于G,C两点(点C 在G的右侧),连结AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由。

三.和圆有关的位置关系:(一)点和圆的位置关系:1.已知⊙O的半径为4,A为线段PO的中点,当OP =10时,点A与⊙O的位置关系为()A.在圆上B.在圆外C.在圆内D.不确定2. 如图,在R t△ABC中∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是点P()。

A. 在⊙O内B. 在⊙O上C. 在⊙O外D. 无法确定3.如图1,已知Oe上到弦AB所在直e的半径为5,点O到弦AB的距离为3,则O线的距离为2的点有()A.1个B.2个C.3个D.4个图1 备用图4.变式训练:如图1,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为1的点有()A.1个B.2个C.3个D.4个5. Rt△ABC中,∠C=90°,AC=2,BC=4,如果以点A为圆心,AC为半径作⊙A,那么斜边中点D与⊙O的位置关系是()A.点D在⊙A外B.点D在⊙A上C.点D在⊙A内D.无法确定(二)直线和圆的位置关系:1.如图,在RT△ABC中,∠C=90°,∠B=30°,BC=32cm4cm,以点C为圆心,以3的长为半径,则⊙C与AB的位置关系是;2.如图,已知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD=3,则线段BC的长度等于__________.3.如图Rt△ABC中∠C=90°,∠A=30°,在AC边上取点O画圆使⊙O经过A、B两点,下列结论中:①AO=2CO;②AO=BC;③以O为圆心,以OC为半径的圆与AB相切;④延长BC交⊙O于点D,则A、B、D是⊙O的三等分点,正确的序号是4.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:①AD⊥BC;②∠EDA=∠B;③AD=AO;④AB=AC;⑤DE是⊙O切线.正确的是_______________.5. 如图,∠AOB=30°,M为OB边上一点,以M为圆心、2为半径作⊙M. 若点M在OB边上运动,则当OM=时,⊙M与OA相切;当OM满足时,⊙M 与OA相交;当OM满足时,⊙M与OA相离.6. 在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm7. 已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,?DOC=2?ACD=90?。

(1) 求证:直线AC是圆O的切线;(2) 如果?ACB=75?,圆O的半径为2,求BD的长。

8. 如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.9.如图,四边形ABCD是等腰梯形,AD∥BC,BC=2,以线段BC的中点O为圆心,以OB为半径作圆,连结OA交⊙O于点M。

若点E是线段AD的中点,AE,OA=2,求证:直线AD与⊙O相切。

10. 如图,已知四边形OABC是菱形,∠O的60°,点M是边OA的中点.以点O为圆心,r为半径作⊙O分别交OA,OC于点D,E,连接BM。

若BM⌒DE的长是.求证:直线BC与⊙O相切.11. 如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上.(1)求证:EF=PF;(2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么?12. 如图,已知AB是e O的直径,点D在e O上,C是e O外一点.若AD//OC,直线BC与e O相交,判断直线CD与e O的位置关系,并说明理由.13. 如图,□ABCD中,O为AB边上一点,连接OD,OC,以O为圆心,OB为半径PQ=2π,画圆,分别交OD,OC于点P,Q.若OB=4,OD=6,∠ADO=∠A,⌒判断直线DC与⊙O的位置关系,并说明理由.14. 如图,□ABCD中,O为BC边上一点,OD平分∠ADC,以O为圆心,OC为半径画圆,交OD于点E,若AB=6.□ABCD的面积是,弧EC=π,判断直线AB与⊙O的位置关系,并说明理由.15. 已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°.当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.图1图216.已知直线PA交⊙O于A、B,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA,垂足为D.(1)求证:CD是⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.17.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C点的切线互相垂直,垂足为D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)若∠B=60°,CD=,求AE的长。

18.如图,已知AB是⊙O的直径,点C在⊙O上,H是AC的中点,且OH=1,∠A=30o.(1)求劣弧AC⌒的长;(2)若∠ABD=120o,BD=1,求证:CD是⊙O的切线.19.如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF。

(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3) PF是⊙O的切线。

20.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F, AE= 3.EF的长;(1)求⌒(2)若AD=3+5,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线 DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由21.如图在平面直角坐标系中,矩形ABCO的边OA=5,OC=3,E为BC的中点,以OE 为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.(1)求证: △OCE ≌△ABE;(2)求证: DF为⊙O′的切线;(3)在直线BC上是否存在除点E以外的点P,使AOP也是等腰直角三角形,若存在请求出点P的坐标,不存在请说明理由.22. 如图,形如量角器的半圆O 的直径DE =12cm ,形如三角板的ABC ∆中,90ACB ∠=︒,30ABC ∠=︒,BC =12cm .半圆O 以2cm /s 的速度从左向右运动,在运动过程中,点D 、E 始终在直线BC 上,设运动时间为t (s ),当t =0s 时,半圆O在ABC ∆的左侧,OC =8cm .当t 为何值时,ABC ∆的一边与半圆相切?当ABC ∆的一边与半圆O 相切时,如果半圆O 与直线DE 围成的区域与ABC ∆三边围成的区域有重叠部分,求重叠部分的面积.23.如图,在直角梯形ABCD 中,AD //BC ,∠ABC =90o ,AB =12cm ,AD =10cm ,BC =22cm ,AB 为⊙O 的直径,动点P 从点A 开始沿AD 边向D 点以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以2cm/s 的速度运动,P 、Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一个动点也随之停止运动。

相关文档
最新文档