4习课件第11讲 一次函数的图象与性质

合集下载

_考点11一次函数的图像与性质课件-2021年浙江省中职升学数学一轮复习

_考点11一次函数的图像与性质课件-2021年浙江省中职升学数学一轮复习

知识要点
2.一次函数 (1)函数y=kx+b(k≠0)叫做一次函数,一次函数图象是 经过点(0,____b____)和点(____bk____,0)的一条直线. (2)y=kx+b(k≠0)的图象可由y=kx(k≠0)的图象沿y轴方 向平移_____b____个单位得到. (3)当k>0时,在R上是____增_____函数;当k<0时,在R上 是____减_____函数. (4)当k>0,b>0时,图象经过第__一__、__二__、__三___象限; 当___k>__0_,__b_<_0__时,图象经过第一、三、四象限; 当__k_<__0_,__b_>_0__时,图象经过第一、二、四象限; 当k<0,b<0时,图象经过第__二__、__三__、__四___象限.
9.当x=2时,函数y=kx-2和y=2x+k的值相等,则k=__6____.
10.对任意实数m,一次函数f(x)=(3-m)x+2m图象必过
定点_(__2_,__6_)__.
由题意得2k-2=4+k,得k=6.
函数y=(3-m)x+2m可变形为m(2-x)=y-3x,关于m的方程
有无穷多组解,∴
2
3
4 a
C= .b{2 x,|x<∴-ba =32-} 12
和x= .
2 b
3x 2 0, .∵图象B.在{xx|x轴< 上23 }交于由同2一x点 3,得0 -得a4
x x
2 3 3 2
, ,
D.{x|x< 3 }
2
解得x<- 3 .
2
5.已知一次函数y=ax+4与y=bx-2的图象在x轴上交于同一点,

人教版数学九年级上册第11节 一次函数的图象和性质-课件

人教版数学九年级上册第11节 一次函数的图象和性质-课件
(2)当x=a时,yc=2a+1,当x=a时,yD=4-a. ∵CD=2,
∴|2a+1-(4-a)|=2,解得a=13或a=53. ∴a的值为13或53
10.如图,直线l1:y=x+3与直线l2:y=ax+b相交于点 A(m,4).
(1)求出m的值; y=x+3,
(2)观察图象,请你直接写出关于x,y的方程组 y=ax+b 的 解和关于x的不等式x+3≤ax+b的解集.
(2)如图,直线l1即为所求,直线l1的解析式为y=-2x+2+4 =-2x+6,故答案为:y=-2x+6
(3)如图,直线l2即为所求, ∵直线l绕点A顺时针旋转90°得到l2, 易证∠OBA=∠CAD,
∴tan∠CAD=tan∠OBA=OOAB=12
12.如图,已知直线y=x+3与x轴、y轴交于A,B两点,直线l经过原点, 与线段AB交于点C,把△AOB的面积分为2∶1的两部分,求直线l的解析 式.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/152021/8/152021/8/152021/8/158/15/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月15日星期日2021/8/152021/8/152021/8/15 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/152021/8/152021/8/158/15/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/152021/8/15August 15, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/152021/8/152021/8/152021/8/15

中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件

中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件
中的函数表达式为
y=-x+2
.
图 11-1
2021/12/9
第十一页,共三十二页。

y= x

,图②
课前双基巩固
5. [八上 P164 探索改编] 已知一次函数 y=2x+4.
图 11-2
(1)在如图 11-2 所示的平面直角坐标系中,画出函数的图像;
(2)图像与 x 轴的交点 A 的坐标是 (-2,0) ,与 y 轴的交点 B 的坐标是 (0,4)
与 x 轴交点坐标
令 y=0,求出对应的 x 值
两直线的
与 y 轴交点坐标
令 x=0,求出对应的 y 值
交点坐标
与其他函数图
像的交点坐标
一条直线与坐标轴围
成的三角形的面积
2021/12/9
解由两个函数表达式组成的二元一次方程组,方程组的解即两函数
图像的交点坐标

1


2

直线 y=kx+b(k≠0)与 x 轴的交点为 - ,0 ,与 y 轴的交点为(0,b),三角形面积为 S△= - ×|b|(用
a2+a2=
直线 y=2x+1 向右、向上平移 3 个单位后的解析式是 y=2x-2.
2021/12/9
第二十二页,共三十二页。
2
3 2 ,解得 a=3.
高频考向探究
[方法模型] 直线 y=kx+b(k≠0)在平移过程中 k 值不变.平移的规律是:若上下平移,则直接在常数 b 后加上或减
去平移的单位长度数;若向左(或向右)平移 m 个单位长度,则直线 y=kx+b(k≠0)变为 y=k(x±m)+b,其口诀是上加

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.
4)一次函数与正比例函数有着共同的性质:
①当k>0时,y的值随x值的增大而增大;②当k<0时,y的值随x值的增大而减小.
考点二 一次函数的图象与性质
1. 正比例函数y= kx中,|k|越大,直线y= kx越靠近y轴;反之,|y|越小,直线y= kx越靠近x轴.
C.3
D.−3或3
∴9 = 2 ,∴ = ±3,又∵正比例函数 = 的图象经过第二、
∴ < 0,∴ = −3,故选:B.
【对点训练1】(2023·浙江杭州·统考一模)已知 − 与 − 1成正比例,且当 = −2时, = 3.若关
于的函数图象经过二、三、四象限,则m的取值范围为(
用待定系数法求一次函数表达式的一般步骤:
1)设出函数的一般形式y=kx(k≠0)或y=kx+b(k≠0);
2)根据已知条件(自变量与函数的对应值)代入表达式得到关于待定系数的方程或方程组;
3)解方程或方程组求出k,b的值;
4)将所求得的k,b的值代入到函数的一般形式中,从而得到一次函数解析式.
考点二 一次函数的图象与性质
两点即可,
图象确定
b
k
1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(− ,0)两点;
2)画正比例函数的图象,只要取一个不同于原点的点即可.
考点二 一次函数的图象与性质
三、k,b的符号与直线y=kx+b(k≠0)的关系


在直线y=kx+b(k≠0)中,令y=0,则x=− ,即直线y=kx+b与x轴交于(− ,0)
综上所述,0 > 1 > 2

一次函数图像与性质ppt课件

一次函数图像与性质ppt课件


象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是

条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .

4.3.2 一次函数的图象与性质 课件 2024-2025学年北师大版八年级数学上册

4.3.2  一次函数的图象与性质   课件   2024-2025学年北师大版八年级数学上册

同,图象都经过点 (0 , 3))
y = 5x - 2 的图象经过点 ( 0 , -2 )
一次函数 y = kx+ b 的图象经过点 ( 0 , b )
图象与 y 轴交点的纵坐标就是 b 的值
y = -x + 3
y = 5x - 2
y = -x
归纳总结
一次函数 y = kx + b 的图象是一条经过 ( 0 , b
一次函数 y=kx+b图像有什么特点?
一次函数的图象:一次函数y=kx+b的图象是一条经过点(0,b)的直线,
通常也称为直线y=kx+b.
y=kx+b
y
b
( k , 0)
(0, b)
O
x
一次函数图象的画法
画图时通常取两点(0,b)与( b ,0)(k≠0),有时也可取横、纵坐标均为
整数的点.
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
B )
3. 在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k,b的
取值范围为(
C
)
A. k>0,b>0
B. k>0,b<0
C. k<0,b<0
D. k<0,b>0
第3题图
4.在平面直角坐标系中,一次函数y=-x-4的图象与y轴交于点A.
y = -2x向上平移一个单位得到y = -2x + 1;
y = -2x向下平移一个单位得到y = -2x - 1;
y = -2x - 1
(3)平移直线y = -2x+ 1,能得到y = -2x,y = -2x - 1吗?
y = -2x
y = -2x + 1

2015年河北省地区中考数学总复习课件 第11讲 一次函数及其图象

2015年河北省地区中考数学总复习课件 第11讲 一次函数及其图象

3.正比例函数y=kx的性质 (1)当k>0时,__y随x的增大而增大__; (2)当k<0时,__y随x的增大而减小__. 4.一次函数y=kx+b的图象
5.一次函数 y=kx+ b 的性质 b 过__(0,b),(- ,0)__的一条直线. k (1)__当 k>0 时 , y 随 x 的增大而增大__; (2)__当 k<0 时 , y 随 x 的增大而减小__.
【点评】 (1)一次函数y=kx+b,当k>0时,y随x的 增大而增大,当k<0时,y随x的增大而减小.(2)一次 函数y=kx+b(k,b为常数,k≠0)是一条直线,当k>0 ,图象经过第一、三象限,y随x的增大而增大;当k< 0,图象经过第二、四象限,y随x的增大而减小;图象 与y轴的交点坐标为(0,b).
交于点D.直线l2经过点A,B,直线l1,l2交于点C.
(1)求点D的坐标; (2)求直线l2的解析式; (3)求△ADC的面积; (4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等 ,请直接写出点P的坐标.
( 1 ) D( 1 , y= x- 2 (4)P(6,3)
4.(2014·河北)某种正方形合金板材的成本y(元)与它的面积成 正比,设边长为x厘米,当x=3时,y=18,那么当成本为72元 时,边长为( A ) A.6厘米 B.12厘米 C.24厘米 D.36厘米
5 .(2008·河北 )如图, 直线 l1 的解析表达式为 y=-3x +3, 且l1与x 轴
2.(2013·河北)如图,A(0,1),M(3 ,2) , N(4,4) .动点P从点 A出发, 沿 y 轴以每秒 1 个单位长的速度向上 移动 , 且过点 P 的直线 l : y =- x + b 也随之移动,设移动时间为t秒. (1)当t=3时,求l的解析式; (2)若点M,N位于l的异侧,确定t的 取值范围; (1)直线y=-x+b交y轴于点P(0,b),由题意得b>0,t≥0, b=1+t,当t=3时,b=4,∴y=-x+4 (2)当直线y=-x +b过M(3,2)时,2=-3+b,解得b=5,5=1+t,∴t=4 ,当直线y=-x+b过N(4,4)时,4=-4+b,解得b=8,8 =1+t,∴t=7,∴4<t<7

第11讲 一次函数的图象与性质

第11讲 一次函数的图象与性质

【拓展】 一次函数图象与坐标轴围成的图形面积的计算(如图) (1)S△AOB=12AO·BO=12|yA|·|xB|; (2)S△AOC=12AO·CP=12|yA|·|xC|; (3)S△BOC=12BO·CQ=12|xB|·|yC|.
4.如图,已知直线 y=kx+b 经过点 A(5,0),B(1,4). (1)方程 kx+b=0 的解是 x=5 , 不等式 kx+b<0 的解集是 x>5 ; (2)kx+b>4 的解集是 x<1 ;
3.一次函数与一元一次不等式的关系: (1)从“数”上看:kx+b>0 的解集⇔y=kx+b 中,y>0 时 x 的取 值范围; kx+b<0 的解集⇔y=kx+b 中,y<0 时 x 的取值范围. (2)从“形”上看:kx+b>0 的解集⇔函数 y=kx+b 的图象位于 x 轴上方部分对应的点的横坐标的取值范围; kx+b<0 的解集⇔函数 y=kx+b 的图象位于 x 轴下方部分对应的 点的横坐标的取值范围.
直 线 y = kx + b ―向―上―平―移――m(――m― >―0)―个―单――位―长―度→ 直 线 y = kx+b+m ; 直 线 y = kx + b ―向―下―平―移――m(――m― >―0)―个―单――位―长―度→ 直 线 y = kx+b-m .
简记为“左加右减,上加下减”,左右平移只给 x 加减,上下平 移给整体加减.
1.已知函数 y=(m-1)xm2+3 是关于 x 的一次函数,则 m 的值 为 -1 .
一次函数的图象与性质 1. 一次函数的图象特征:一次函数 y=kx+b(k≠0)的图象是经过
点(0,④ b )和(⑤ -bk ,0)的一条⑥ 直线 .特别地,正比例函数 y =kx(k≠0)的图象是经过点(0,⑦ 0 )和(1,⑧ k )的一条⑨ 直线 .

2013届中考数学考前热点冲刺《第11讲 一次函数的图象与性质》课件 新人教版

2013届中考数学考前热点冲刺《第11讲 一次函数的图象与性质》课件 新人教版

教材母题
人教版八上 P120T8
一个函数的图象是经过原点的直线 , 并且这条直线过第 四象限及点 (2,-3a)与点(a,-6),求这个函数的解析式.
第11讲┃ 回归教材
解:根据题目条件,可设这个函数的解析式为
2k=-3a, ak=-6, a=2, 解得 k=-3, a=-2, 或 k=3.
一、二、三象限 ________________
y随x增 大而增大
________________ 一、三、四象限
y=kx+ b(k≠0)
一、二、四象限 _______________
y随x增 大而减小
二、三、四象限 _______________
第11讲┃ 考点聚焦 考点3 两条直线的位置关系
直线l1:y=k1x+b1和l2: y=k2x+b2的位置关系
第11讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限 k>0 y=kx (k≠0)
一、三象限 _______
函数性质 y随x增 大而增大 y随x增 大而减小
k<0
二、四象限 _______
第11讲┃ 考点聚焦
k>0 b>0 k>0 b<0 k<0 b>0 k<0 b<0
第11讲┃ 回归教材
中考变式
[2012· 聊城] A(1,0), 与 y 轴交于点 B(0,-2). (1)求直线 AB 的关系式; (2)若直线 AB 上的点 C 在第一象限,且 S△ BOC=2,求点 C 的坐标.
图 11-4
第11讲┃ 回归教材
b =a k+b, 1 1 b2=a2k+b,

中考复习之一次函数的图象与性质

中考复习之一次函数的图象与性质

第11讲┃ 归类示例
归类示例
► 类型之一 一次函数的图象与性质
命题角度: 1.一次函数的概念; 2.一次函数的图象与性质 .
第11讲┃ 归类示例
[2012· 山西] 如图11-1,一次函数y=(m-1)x-3 的图象分别与x轴、y轴的负半轴相交于点A、B,则m的取 值范围是 ( B )
图11-1 A.m>1 B.m<1 C.m<0 D.m>0 [解析] 根据函数的图象可知m-1<0,求出m的取 值范围为m<1.故选B.
第11讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限 k>0 y=kx (k≠0)
一、三象限 _______
函数性质 y随x增 大而增大 y随x增 大而减小
k<0
二、四象限 _______
第11讲┃ 考点聚焦
k>0 b>0 k>0 b<0 k<0 b>0 k<0 b<0
第11讲┃ 一次函数的图象与性质
第11讲┃ 考点聚焦
考点聚焦
考点1 一次函数与正比例函数的概念
一般地,如果 y=kx+b(k、b是常数, k≠ 0),那么y叫做x的一次函数 特别地,当 b=0时,一次函数 y=kx+b变为 正比例函数 y=kx(k为常数, k≠0),这时y叫做x的正比 例函数 一次函数
[2012· 衡阳] 如图11-2,一次函数y=kx+b的图 象与正比例函数y=2x的图象平行且经过点A(1,-2),则 kb=________. -8

图11-2
第11讲┃ 归类示例
[解析] ∵y=kx+b的图象与正比例函数 y=2x的图象平 行,两平行直线的关系式的 k值相等,∴k=2, ∵y=kx+b的图象经过点A(1,-2),∴2+b=-2, 解得b=-4,∴kb=2×(-4)=-8.

一次函数的性质PPT课件

一次函数的性质PPT课件

2
2
请谈谈:
(1)哪些函数的图像与y轴的交点在x轴的上方,哪些函数的图像与y
轴的交点在x轴的下方?
(2)函数的图像与y轴的交点在x轴的上方和函数的图像与y轴的交点
在x轴的下方,这两种函数,它们的区别与常数项有怎样的关系?
(3)正比例函数的图像一定经过哪个点?
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
4
新知导入 课程讲授 随堂练习 课堂小结ຫໍສະໝຸດ 一次函数 的性质内容
当k>0时,y的值随x值的增大而增大; 当k<0时,y的值随x值的增大而减小.
当k>0, b>0时,经过一、二、三象限; 当k>0 ,b<0时,经过一、三、四象限; 当k<0 ,b>0时,经过 一、二、四象限; 当k<0 ,b<0时,经过二、三、四象限.
2
(2)当2k+1=0,即k=- 1 时,函数y=(2k-1)x+(2k+1)的图像经过原点.
2
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
例 (3)当k满足什么条件时,函数y=(2k-1)x+(2k+1)的图像与y轴的交点在 x轴的下方?
(3)当2k+1<0时,函数y=(2k-1)x+(2k+1)的图像与y轴的交点在x轴的 下方. 解2k+1<0,得k<- 1 .
新知导入 课程讲授 随堂练习 课堂小结
CONTENTS
2
新知导入 课程讲授 随堂练习 课堂小结
一次函数的性质
问题1.1 请在如图所示的直角坐标系中,画出一次函数y=2x+3和y=1 x-2的

一次函数的图象与性质 经典课件(最新)

一次函数的图象与性质 经典课件(最新)
初中数学课件
一次函数的图象和性质 课件
初中数学课件
学习目标
情境引入
1.会画一次函数的图象,掌握一次函数的性质.(重点) 2.能灵活运用一次函数的图象与性质解答有关问题.(难点)
导入新课
初中数学课件
复习引入
(1)什么叫一次函数?从解析式上看,一次函数 与正比例函数有什么关系?
(2)正比例函数的图象是什么?是怎样得到的? (3)正比例函数有哪些性质?是怎样得到这些性 质的?
0
,解得
1 m 8 3
又∵m为整数, ∴m=2
课堂小结
初中数学课件
图象
一次函数 函数的图 象和性质
与y轴的交点是(0,b),
与x轴的交点是(

b k
,0),
当k>0, b>0时,经过一、二、三象限;
当k>0 ,b<0时,经过一、三、四象限;
当k<0 ,b>0时,经过 一、二、四象限;
当k<0 ,b<0时,经过二、三、四象限.
① b>0时,直线经过一、二、三象限; ② b<0时,直线经过一、三、四象限. 当k<0时,直线y=kx+b由左到右逐渐下降,y随x的增大 而减小. ① b>0时,直线经过 一、二、四象限; ② b<0时,直线经过二、三、四象限.
初中数学课件
例3 已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件的m的值:
初中数学课件
思考:根据一次函数的图象判断k,b的正负,并说出 直线经过的象限:
k > 0,b> 0 k > 0,b = 0 k > 0,b < 0
k < 0,b> 0

初中数学课件《一次函数的图像与性质》

初中数学课件《一次函数的图像与性质》


新知探究一: 一次函数y=kx+b的图象与直线y=kx的关系
画一次函数 y =2x-3 的图象. 列表 描点 连线
x … -2 -1 0 1 2 …
y=2x-3 … -7 -5 -3 -1 1 … y
y=2x … -4 -2 0 2 4 … 2
1.观察:函数y=2x-3的图象
它可以看作由直线 y=2x向下 平
新知探究二: 一次函数y=kx+b的性质
一次函数y=kx+b有下列性质: 1.当k>0时,y随x的增大而__增_大__ 这时函数
的图象从左到右__上_升__
(2) 当k<0时,y随x的增大而_减__小__,这
时函数的图象从左到右_下__降__.
新知探究二: 一次函数y=kx+b的性质
当k>0时,y随x的增大而增大
例:在同一坐标系中画出函数 y=2x-1 与 y=-0.5x+1的图象.
x y=2x-1
x
y= -0.5x+1
y 6
5
4
3
2
1
- - - - - - o1 2 3 4 5 6x 6 5 4 3 2 1-
1 2 3 4 5-6
例:用两点法在同一坐标系中画出函数y=2x-1 与y=-0.5x+1的图象.
数学思想:类比、数形结合、从特殊到一般。
归纳
对于一次函数y=kx+b(k,b为常数,k≠0) (1)判断k值符号的方法
①增减性法:当y随x的增大而增大时k > 0;反之k < 0 ②直线升降法:当直线从左到右上升时,k > 0; 反之k < 0 ③经过象限法:直线经过一、三象限时k > 0;

第11讲 一次函数的图象和性质

第11讲 一次函数的图象和性质

5.(2016·温州)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段 AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周 长为10,则该直线的函数表达式是( C) A.y=x+5 B.y=x+10
C.y=-x+5
D.y=-x+10
D 【例1】 (1)(2016·玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是( ) A.点(0,k)在l上 B.l经过定点(-1,0) C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限 (2)(2016·贵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点 ,则a与b的大小关系是____. a>b 【点评】 一次函数y=kx+b(k,b为常数,k≠0)是一条直线,当k>0时,图象 经过第一、三象限,y随x的增大而增大;当k<0时,图象经过第二、四象限,y随x 的增大而减小;图象与y轴的交点坐标为(0,b).
解:①对于直线 y= 3x+ 3,令 x=0,则 y= 3,令 y=0, 则 x=-1, 故点 A 的坐标为(0, 3), 点 B 的坐标为(-1, 0), 则 AO= 3, AO BO=1,在 Rt△ABO 中,∵tan∠ABO=BO = 3,∴∠ABO=60°; ②在△ABC 中,∵AB=AC,AO⊥BC,∴AO 为 BC 的中垂线, 即 BO=CO,则 C 点的坐标为(1,0),设直线 l 的解析式为 y=kx+b(k, k=- 3, 3=b, b 为常数),则 解得 即函数解析式为 y=- 3x+ 3. 0=k+b, b= 3,
(2)在平面直角坐标系中,已知点 A(27 ,3),B(4,7),直线 y=kx-k(k≠0) ≤k≤3 与线段 AB 有交点,则 k 的取值范围为 3 .

2024年中考第一轮复习 一次函数的图象与性质 课件

2024年中考第一轮复习 一次函数的图象与性质 课件
1
画图可知当 x>3 时,一次函数 y=3x 的
图象在 y=kx+b 的图象上方,即 kx+b
图10-6
1
3
< x.
考向三
两条直线的位置关系
4
3
4
3
例 3 一次函数 y= x-b 与 y= x-1 的图象之间的距离等于 3,则 b 的值为 (
A.-2 或 4
B.2 或-4
C.4 或-6
D.-4 或 6
1.[2020·天门]对于一次函数y=x+2,下列说法不正确的是( D )
A.图象经过点(1,3)
B.图象与x轴交于点(-2,0)
C.图象不经过第四象限
右移n个单位
注:直线y=kx+b可由直线y=kx平移|b|个单位得到
考点二
一次函数的性质
3.[2018·绍兴]如图10-3,一个函数的图象由射线BA、线段BC、射线CD组成,其中
点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数
A
(
)
A.当x<1时,y随x的增大而增大
B.当x<1时,y随x的增大而减小
点 P,并分别与 x 轴相交于点 A,B.
(1)求交点 P 的坐标;
(2)求△ PAB 的面积;
(3)请把图象中直线 y=-2x+2 在直线
1
y=- x-1 上方的部分
2
描黑加粗,并写出此时自变量 x 的取值范围.
1
- -1,
2
= 2,
解:(1)解

∴P(2,-2).
= -2 + 2, = -2,
(2)图象经过点(2,-1)且与直线

【中考复习方案】2015中考数学总复习 第11课时 一次函数的图象及性质课件(考点聚焦+京考探究+热考京讲)

【中考复习方案】2015中考数学总复习 第11课时 一次函数的图象及性质课件(考点聚焦+京考探究+热考京讲)

例 1 对于一次函数 y=-2x+4, 下列结论错误的 是( D ) A.函数值随自变量的增大而减小 B.函数的图象不经过第三象限 C. 函数的图象向下平移 4 个单位长度得 y=-2x 的图象 D.函数的图象与 x 轴的交点坐标是(0,4)
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
[解析] ∵一次函数 y=-2x+4 中 k=-2<0, ∴函数 值 y 随 x 的增大而减小,故 A 正确;∵一次函数 y=-2x +4 中 k=-2<0,b=4>0,∴此函数的图象经过第一、 二、 四象限, 不经过第三象限, 故 B 正确; 由“上加下减” 的原则可知,函数的图象向下平移 4 个单位长度得 y=- 2x 的图象,故 C 正确;∵令 y=0,则 x=2,∴函数的图 象与 x 轴的交点坐标是(2,0),故 D 错误.故选 D.
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
方法点析
一般来说,使用待定系数法求函数解析式有“四部曲”: (1)设——按照所求函数类型,设出解析式,其系数是待定的; (2)列——把题目中提供的坐标代入所设解析式中,列出关于待定系 数的方程或方程组; (3)解——解这个方程或方程组,得到待定系数的值; (4)代——将第(3)步中求出的结果,代入第(1)步所设的解析式中,从 而得到完整的函数解析式. 通常情况下,有几个待定的系数,就要列几个方程,也就需要几个 点的坐标.
考点2 一次函数的图象和性质
第一、三象限
第二、四象限
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
第一、二、三象限
第一、三、四象限
第一、二、四象限
第二、三、四象限
考点聚焦
京考探究

第11讲 函数的图像

第11讲 函数的图像

第10讲 函数的图像【考点解读】1. 掌握基本函数图象的作法——描点法和图象变换法; 2. 会运用函数图象,理解研究函数的性质;3. 会看图得到相关信息,即学会作图、识图、用图.【知识扫描】1.基本函数的图象要熟记:一次函数、二次函数、反比例函数、幂函数、指数函数、对数函数、三角函数以及常用函数:y= ,y=x+ .(图象略)2.函数图象的基本作法有两种:描点法 和 图象变换法. (1)描点法作图的基本步骤是:列表、描点、连线画函数图象时有时也可利用函数的性质如单调性、奇偶性、对称性、周期性等 以及图象上的特殊点、线(如对称轴、渐近线等)(2)图象的变换是指一个函数的图象经过适当的变换,得到另一个与之有关的函数图象 在高考中要求学生掌握的三种变换是:平移变换、对称变换和伸缩变换 3.常用函数图象变换的规律.(1)平移变换:y=f(x)的图象向左(+)或向右(-)平移a(a>0)个单位长度得到函数y=f(x ±a)的图象;y=f(x)的图象向上(+)或向下(-)平移k(k>0)个单位长度得到函数y=f(x)±k.(2)对称变换:y=f(x)与y=f(-x)的图象关于y 轴 对称:y=f(x)与y= -f(x)的图象关于x 轴对称;y=f(x)与y= -f(-x)的图象关于原点对称;y=|f(x)|的图象可将函数y=f(x)的图象在x 轴下方的部分以x 轴为对称轴翻折到x 轴上方,其余部分不变; y=f(|x|)的图象可将函数y=f(x)的图象在x ≥0的部分作出,再用偶函数的图象关于y 轴对称,作出x<0的图象.(3)伸缩变换: y=kf(x)(k>0) 的图象可将函数y=f(x)的图象上所有点纵坐标变为原来的k 倍,横坐标不变而得到.y=f(ωx)(ω>0)的图象可将函数y=f(x)的图象上所有点的横坐标变为原来的1ω,纵坐标不变得到;(4)函数y=f(a+x)与y=f(a-x)的图象关于x =0对称,y=f(a+x)与y=(b-x)的图象关于2b ax -= 对称.【考计点拨】牛刀小试1.(2011高考陕西卷)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是( )a xbc xd ++ax答案:B2.函数()y f x =与()y g x =的图像如下图:则函数()()y f x g x =⋅的图像可能是( )A B C D【答案】A【解析】∵函数()()y f x g x =⋅的定义域是函数()y f x =与()y g x =的定义域的交集(,0)(0,)-∞+∞ ,图像不经过坐标原点,故可以排除C 、D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b - ,0, 直线 y=kx+b 与 x 轴交点坐标为 与 k
一条直线与坐标轴围成 的三角形的面积
1 b y 轴交点为(0,b),三角形面积为 S△= - 2 k ×|b|
第11讲┃ 考点聚焦
考点5
由待定系数法求一次函数的解析式
因在一次函数y=kx+b(k≠0)中有两个未知系数k 和b,所以,要确定其关系式,一般需要两个条件 ,常见的是已知两点P1(a1,b1),P2(a2,b2),将其 坐标代入 得 求出k,b的值即可,这种 方法叫做__________. 待定系数法
2k+b=0, k=-1, 代入得 解得 b=2, b=2.
∴y=-x+2.
第11讲┃ 回归教材
中考变式
[2012·聊城] 如图11-5,直线AB与x轴交于点A(1,0), 与y轴交于点B(0,-2). (1)求直线AB的解析式; (2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐 标.
第11讲┃ 考点聚焦
考点聚焦
考点1 一次函数与正比例函数的概念
特别地,当b=0时,一次函数y=k x +b变为y=k x (k为常数,k≠0),这 时y叫做x的正比例函数 一般地,如果y=k x+b (k、b是常数, k≠0),那么y叫做x的一次函数
正比例函数
一次函数
第11讲┃ 考点聚焦 考点2 一次函数的图象和性质 (1)正比例函数与一次函数的图象
平行
k1=k________⇔l1和l2平行 2,b1≠b2
第11讲┃ 考点聚焦
考点4 两直线的交点坐标及一次函数的图象与坐标轴 围成的三角形的面积
分类 一条直线与 x 轴交点坐 标 一条直线与 y 轴交点坐 标 一条直线与其他一次函 数图象的交点坐标 求法 设 y=0,求出对应的 x 值 设 x=0,求出对应的 y 值 解由两个函数关系式组成的二元一次方程组, 方程组的解即两函数图象的交点坐标
图11-4
第11讲┃ 回归教材
[解析] 第①幅图象过原点和(3.5,2),是正比例函数,第②幅图,图象不过原点,但过点 (2,0)和(0,2),是一次函数,可直接用待定系数法来求. 解:①设函数关系式为 y=kx,将(3.5,2)代入得, 4 4 3.5k=2,得 k= .∴y= x. 7 7 ②设函数关系式为 y=kx+b,将(2,0),(0,2)
b1=a1k+b, b2=a2k+b,
第11讲┃ 考点聚焦
考点6
一次函数与一次方程(组)、一元一次不等式(组)
一次函数y=kx+b(k,b是常数,k≠0)的值 一次函数与一 为0时,相应的自变量的值为方程kx+b=0 次方程 的根 一次函数y=kx+b(k,b是常数,k≠0)的值 一次函数与一 大于(或小于)0,相应的自变量的值为不等 元一次不等式 式kx+b>0(或kx+b<0) 的解集 两直线的交点坐标是两个一次函数解析式y 一次函数与方 =k1x+b1和y=k2x+b2所组成的关于x,y的 程组 y=k1x+b1, 方程组 y=k x+b 的解
命题角度: 1.一次函数的图象的平移规律; 2.求一次函数的图象平移后对应的解析式.
例2 [2012·衡阳 ]如图11-2,一次函数y=kx+b的图象与 正比例函数y=2x的图象平行且经过点A(1,-2),则kb= -8 ________.
图11-2
第11讲┃ 归类示例
[解析] ∵y=kx+b的图象与正比例函数y=2x 的图象平行,两平行直线的解析式的k值相等, ∴k=2. ∵y=kx+b的图象经过点A(1,-2),∴2+b =-2, 解得b=-4,∴kb=2×(-4)=-8.
第11讲┃ 考点聚焦 (2)正比例函数与一次函数的性质
一、三象限
二、四象限
第11讲┃ 考点聚焦
一、二、三象限
一、三、四象限
一、二、四象限
二、三、四象限
第11讲┃ 考点聚焦
考点3
两条直线的位置关系
直线l1:y=k1x+b1 和l2:y=k2x+b2位 置关系
相交
k1≠k2 ________⇔l1和l2相交
图11-5
第11讲┃ 回归教材

2 2
第11讲┃ 归类示例
归类示例
► 类型之一 一次函数的图象与性质
命题角度: 1.一次函数的概念; 2.一次函数的图象与性质. 例1 [2012·山西 ]如图11-1,一次函数y=(m-1)x- 3的图象分别与x轴、y轴的负半轴相交于点A、B,则m的 取值范围是( ) B A.m>1 B.m<1 C.m<0 D.m>0
第11讲┃ 归类示例 ► 类型之四 一次函数与一次方程(组),一元一次不等式(组)
命题角度: 1.利用函数图象求二元一次方程组的解; 2.利用函数图象解一元一次不等式(组). 例4 [2012·湖州 ]一次函数y=kx+b(k、b为常数,且 k≠0)的图象如图11-3所示.根据图象信息可求得关于x的 方程kx+b=0的解为______________. x=-1
图11-3
第11讲┃ 归类示例
第11讲┃ 归类示例
(1)两直线的交点坐标是两直线所对应的 二元一次方程组的解.(2)根据在两条直线的 交点的左右两侧,图象在上方或下方来确定 不等式的解集.
第11讲┃ 回归教材
回归教材
待定系数法求“已知两点的一次函数的关系式” 教材母题 江苏科技版八上P156T5 根据所给函数图象,写出函数关系式(如图11-4).
正比例函 数的图象 一次函数 的图象 正比例函数 y=kx(k≠0)的图象是经过点 (0,0)和点(1,k)的一条直线 一次函数 y=kx+b(k≠0)的图象是经过点
b 一条直线 (0,b)和- ,0的________ k
一次函数 y=kx+b 的图象可由正比例函数 图象关系 y=kx 的图象平移得到,b>0,向上平移 b 个单位;b<0,向下平移b个单位 因为一次函数的图象是一条直线, 由两点确 图象确定 定一条直线可知画一次函数图象时, 只要取 两个点即可
第11讲┃ 归类示例
直线y=kx+b(k≠0)在平移过程中k值不变.平 移的规律是若上下平移,则直接在常数b后加上或减 去平移的单位数;若向左(或向右)平移m个单位,则 直线y=kx+b(k≠0)变为y=k(x+m)+b(或k(x-m) +b),其口诀是上加下减,左加右减.
第11讲┃ 归类示例 ► 类型之三 求一次函数的解析式
图11-1
第11讲┃ 归类示例
[解析] 根据函数的图象可知m-1<0,求出m的 取值范围为m<1.故选B.
第11讲┃ 归类示例
k和b的符号作用:k的符号决定函数的增减性, k>0时,y随x的增大而增大象与y轴交点在原点上方
还是下方(上正,下负).
第11讲┃ 归类示例 ► 类型之二 一次函数的图象的平移
命题角度: 由待定系数法求一次函数的解析式. 例3 [2012·湘潭 ] 已知一次函数y=kx+b(k≠0)图象过 点(0,2),且与两坐标轴围成的三角形面积为2,求此一 次函数的解析式.
[解析] 先根据一次函数 y=kx+b(k≠0)的图象过点(0,2)可知 b=2,再用 k 表示出函数 图象与 x 轴的交点,利用三角形的面积公式求解即可. 解:将(0,2)代入解析式 y=kx+b(k≠0)中,得 b=2, b 2 所以一次函数 y=kx+b(k≠0)的图象与 x 轴的交点的横坐标为- =- , k k 2 1 由题意可得 ×-k×2=2,则 k=± 1. 2 所以一次函数的解析式为 y=x+2 或 y=-x+2.
相关文档
最新文档