高中数学三角函数学案精编
高中数学学案43第五章三角函数的图象与性质
5.4 三角函数的图象与性质 5.4.1 正弦函数、余弦函数的图象【学习目标】1.了解正弦函数、余弦函数的图象. 2.会用五点法画正弦函数、余弦函数的图象.3.能利用正弦函数、余弦函数的图象解决简单问题.【自主学习】一.正弦函数的图象正弦函数的图象叫做 ,是一条“波浪起伏”的连续光滑曲线.五点法:在函数y =sin x ,x ∈[0,2π]的图象上,以下五个点: ,⎝ ⎛⎭⎪⎫π2,1, ,⎝ ⎛⎭⎪⎫3π2,-1,在确定图象形状时起关键作用.描出这五个点,函数y =sin x ,x ∈[0,2π]的图象形状就基本确定了.因此,在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图. 二.余弦函数图象1.变换法将正弦函数的图象向左平移π2个单位长度,就得到余弦函数的图象,如图所示.余弦函数y =cos x ,x ∈R 的图象叫做余弦曲线.它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.2.五点法:y =cos x ,x ∈[-π,π]的五个关键点为: ,⎝ ⎛⎭⎪⎫-π2,0, ,⎝ ⎛⎭⎪⎫π2,0, ,用光滑曲线连接这五个点可得到x ∈[-π,π]的简图.注意:(1)“五点法”作图中的“五点”是指函数的最高点、最低点以及图象与坐标轴的交点,这是作正弦函数、余弦函数图象最常用的方法.(2)“五点法”画正弦函数、余弦函数的图象时要注意图象的对称性和凸凹方向.【小试牛刀】1.思考辨析(正确的画“√”,错误的画“×”)(1)正、余弦函数的图象形状相同,位置不同.( ) (2)正、余弦函数的图象向左、右和上、下无限伸展.( )(3)将正弦曲线向右平移π2个单位就得到余弦曲线.( )(4)函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,5π2的图象与函数y =cos x ,x ∈[0,2π]的图象的形状完全一致.( )(5)函数y =sin x ,x ∈[2k π,2(k +1)π]k ∈Z ,且k ≠0的图象与y =sin x ,x ∈[0,2π]的图象形状完全一致.( ) 2.用五点法作函数y =sin 2x ,x ∈[0,π]的简图的五个点的横坐标为( ) A .0,π2,π,3π2,2π B .0,π4,π2,3π4,π C .0,π,2π,3π,4π D .0,π6,π3,π2,2π3【经典例题】题型一 用“五点法”作三角函数图象点拨:用“五点法”画函数y =A sin x +b (A ≠0)在[0,2π]上的简图的步骤 1.列表2.描点:在平面直角坐标系中描出下列五个点:(0,y 1),⎝ ⎛⎭⎪⎫2,y 2,(π,y 3),⎝ ⎛⎭⎪⎫2,y 4,(2π,y 5).3.连线:用光滑的曲线将描出的五个点连接起来. 例1 用“五点法”作出下列函数的简图:(1)y =-sin x (0≤x ≤2π); (2)y =1+cos x (0≤x ≤2π).【跟踪训练】1 用“五点法”作出函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤-π6,11π6的图象.题型二 利用正、余弦函数的图象解简单的三角不等式 点拨:用三角函数图象解三角不等式的步骤1.作出相应的正弦函数或余弦函数在[0,2π]上的图象(也可以是[-π,π]上的图象);2.在[0,2π]上或([-π,π]上)写出适合三角不等式的解集;3.根据公式一写出定义域内的解集.例2 利用正弦曲线,求满足12<sin x ≤32的x 的集合.【跟踪训练】2 求下列函数的定义域.(1)y =lg(-cos x ); (2)y =2sin x - 2.题型三 利用正弦(余弦)函数图象解决图象交点问题 点拨:方程根(或个数)的两种判断方法1.代数法:直接求出方程的根,得到根的个数.2.几何法:(1)方程两边直接作差构造一个函数,作出函数的图象,利用对应函数的图象,观察与x 轴的交点个数,有几个交点原方程就有几个根.(2)转化为两个函数,分别作这两个函数的图象,观察交点个数,有几个交点原方程就有几个根. 例3 方程x +sin x =0的根有( )A .0个B .1个C .2个D .无数个【跟踪训练】3 方程sin x =lg x 的解的个数是________.【当堂达标】1.对于余弦函数y =cos x 的图象,有以下三项描述: ①向左向右无限延伸; ②与x 轴有无数多个交点;③与y =sin x 的图象形状一样,只是位置不同. 其中正确的有( )A .0个B .1个C .2个D .3个2.函数y =1-sin x ,x ∈[0,2π]的大致图象是( )3.使不等式2-2sin x ≥0成立的x 的取值集合是( ) A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2k π+π4≤x ≤2k π+3π4,k ∈Z B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2k π+π4≤x ≤2k π+7π4,k ∈Z C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2k π-5π4≤x ≤2k π+π4,k ∈Z D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+5π4≤x ≤2k π+7π4,k ∈Z4.方程x 2-cos x =0的实数解的个数是________.5.若方程sin x =4m +1在[0,2π]上有解,则实数m 的取值范围是________.6.求下列函数的定义域.(1)y = sin x -12+cos x ;(2)y =sin x +25-x 2.7.在[0,2π]内用“五点法”作出y =-2cos x +3的简图.。
三角函数教案(高三数学教案)
三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间 ,且满足不等式:即:一角的正弦大于另一个角的余弦。
2、若 ,则 ,3、的图象的对称中心为 ( ),对称轴方程为。
4、的图象的对称中心为 ( ),对称轴方程为。
5、及的图象的对称中心为 ( )。
6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中 )。
7、辅助角公式: ,其中。
辅助角的位置由坐标决定,即角的终边过点。
8、时, 。
9、。
其中为内切圆半径, 为外接圆半径。
特别地:直角中,设c为斜边,则内切圆半径 ,外接圆半径。
10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。
11、解题时,条件中若有出现,则可设 ,则。
12、等腰三角形中,若且 ,则。
13、若等边三角形的边长为 ,则其中线长为 ,面积为。
14、 ;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。
三、学习指导1、角的概念的推广。
从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。
这样一来,在直角坐标系中,当角的终边确定时,其大小不一定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。
为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。
在弧度制下,扇形弧长公式l=|α|r,扇形面积公式 ,其中α为弧所对圆心角的弧度数。
最新高中数学三角函数教案设计(六篇)
最新高中数学三角函数教案设计(六篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、心得体会、演讲致辞、策划方案、职场文书、党团资料、教案资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as report summaries, contract agreements, insights, speeches, planning plans, workplace documents, party and youth organization materials, lesson plans, essay compilations, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!最新高中数学三角函数教案设计(六篇)作为一位无私奉献的人·民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。
三角函数教案优秀3篇
三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。
情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。
2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
高中数学学案 第一章 三角函数新课标人教A版必修4
§1.2.3同角三角函数的基本关系(新授课)【教学目标】1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系;2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
3.牢固掌握同角三角函数的两个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力;【教学重点】同角三角函数的基本关系式【教学难点】三角函数值的符号的确定,同角三角函数的基本关系式的变式应用【教学过程】一、 知识回顾1.任意角的三角函数定义:设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为(0)r r ==>,那么:sin y r α=,cos x r α=,tan y xα=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的?3.背景:如果53sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系?二、预习自学1. 由三角函数的定义,我们可以得到以下关系:(1)商数关系:αααcon sin tan =(2)平方关系:1sin 22=+ααcon 说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等;②注意这些关系式都是对于使它们有意义的角而言的,如tan cot 1(,)2k k Z πααα⋅=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α= 22sin 1cos αα=-, sin cos tan ααα=等。
三.典型例题例1.(1)已知12sin 13α=,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4cos 5α=-,求sin ,tan αα.例2.已知tan α为非零实数,用tan α表示sin ,cos αα.例3、已知α=αcos 2sin ,求ααααcos 2sin 5cos 4sin +-.αααα22cos cos sin 2sin 2-+⑵四、课堂练习练习1440练习2.)23( cos 1cos 1cos 1cos 1 πθπθθθθ<<-+++-化简例4.求证:cos 1sin 1sin cos x x x x+=-五、课堂小结、本节课你学了哪些知识?有哪些收获?你已经正确理解、掌握它们了吗?六、课后作业1:化简1--θθθtan cos sin2、化简:αα222-11-2sin cos3、化简ααααα22422⋅++⋅tan cos cos cos sin。
高中数学必修一 (学案)三角函数的应用
三角函数的应用【学习目标】会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.【学习重难点】三角函数的实际应用问题。
【学习过程】一、自主学习知识点一:函数y=A sin(ωx+φ),A>0,ω>0中各参数的物理意义知识点二:三角函数模型应用的步骤三角函数模型应用即建模问题,根据题意建立三角函数模型,再求出相应的三角函数在某点处的函数值,进而使实际问题得到解决.步骤可记为:审读题意→建立三角函数式→根据题意求出某点的三角函数值→解决实际问题.这里的关键是建立数学模型,一般先根据题意设出代表函数,再利用数据求出待定系数,然后写出具体的三角函数解析式.知识点三:三角函数模型的拟合应用我们可以利用搜集到的数据,做出相应的“散点图”,通过观察散点图并进行数据拟合,从而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题.状元随笔解答三角函数应用题应注意四点(1)三角函数应用题的语言形式多为“文字语言、图形语言、符号语言”并用,阅读理解中要读懂题目所要反映的实际问题的背景,领悟其中的数学本质,列出等量或不等量的关系.(2)在建立变量关系这一关键步骤上,要充分运用数形结合的思想、图形语言和符号语言并用的思维方式来打开思想解决问题.(3)实际问题的背景往往比较复杂,而且需要综合应用多门学科的知识才能完成,因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助解决问题.(4)实际问题通常涉及复杂的数据,因此往往需要用到计算机或计算器. 教材解难: 教材P 248思考不对.因为这条船停止后还需0.4h ,若在P 点停止,再经0.4h 后船驶出安全水深. 基础自测:1.商场人流量被定义为每分钟通过入口的人数,五一某商场的人流量满足函数F (t )=50+4sin t2(t ≥0),则在下列哪个时间段内人流量是增加的( )A .[0,5]B .[5,10]C .[10,15]D .[15,20]解析:由2k π-π2≤t 2≤2k π+π2,k ∈Z ,知函数F (t )的增区间为[4k π-π,4k π+π],k ∈Z .当k =1时,t ∈[3π,5π],而[10,15]⊆[3π,5π],故选C .答案:C2.在两个弹簧上各挂一个质量分别为M 1和M 2的小球,它们做上下自由振动,已知它们在时间t (s )时离开平衡位置的位移s 1(cm )和s 2(cm )分别由下列两式确定:s 1=5sin ⎝ ⎛⎭⎪⎫2t +π6,s 2=5cos ⎝ ⎛⎭⎪⎫2t -π3. 则在时间t =2π3时,s 1与s 2的大小关系是( )A .s 1>s 2B .s 1<s 2C .s 1=s 2D .不能确定解析:当t =2π3时,s 1=-5,s 2=-5,所以s 1=s 2. 答案:C3.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过12周期后,乙的位置将传播至( )A .甲B .乙C .丙D .丁解析:相邻的最大值与最小值之间间隔区间长度为半个周期,故选C . 答案:C4.简谐振动y =12sin ⎝ ⎛⎭⎪⎫4x +π6的频率和相位分别是________.解析:简谐振动y =12sin ⎝ ⎛⎭⎪⎫4x +π6的周期是T =2π4=π2,相位是4x +π6,频率f =1T =2π.答案:2π,4x +π6 二、素养提升题型一:三角函数在物理中的应用例1:已知弹簧上挂着的小球做上下振动,它离开平衡位置(静止时的位置)的距离h (cm )与时间t (s )的函数关系式为:h =3sin ⎝ ⎛⎭⎪⎫2t +π4.(1)求小球开始振动的位置;(2)求小球第一次上升到最高点和下降到最低点的时间; (3)经过多长时间小球往返振动一次?(4)每秒内小球能往返振动多少次? 解析:(1)令t =0,得h =3sin π4=322,所以开始振动的位置为平衡位置上方距离平衡位置322cm 处.(2)由题意知,当h =3时,t 的最小值为π8,即小球第一次上升到最高点的时间为π8s .当h =-3时,t 的最小值为5π8,即小球第一次下降到最低点的时间为5π8s .(3)T =2π2=π,即经过约πs 小球往返振动一次.(4)f =1T =1π,即每秒内小球往返振动1π次.令t =0解1 →令h =±3解2 →问题3即求周期T→问题4即求频率f T 的倒数方法归纳:处理物理学问题的策略(1)常涉及的物理学问题有单摆、光波、电流、机械波等,其共同的特点是具有周期性. (2)明确物理概念的意义,此类问题往往涉及诸如频率、振幅等概念,因此要熟知其意义并与对应的三角函数知识结合解题.跟踪训练1:已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s (cm )随时间t (s )的变化规律为s =4sin ⎝ ⎛⎭⎪⎫2t +π3,t ∈[0,+∞).用“五点法”做出这个函数的简图,并回答下列问题:(1)小球在开始振动(t =0)时的位移是多少?(2)小球上升到最高点和下降到最低点时的位移分别是多少? (3)经过多长时间小球往复振动一次? t 0 π12 π3 7π12 5π6 2t +π3 π3 π2 π 3π2 2π sin ⎝ ⎛⎭⎪⎫2t +π3 32 1 0 -1 0 s234-4描点、连线,图象如图所示.(1)将t =0代入s =4sin ⎝ ⎛⎭⎪⎫2t +π3,得s =4sin π3=23,所以小球开始振动时的位移是23cm .(2)小球上升到最高点和下降到最低点时的位移分别是4cm 和-4cm . (3)因为振动的周期是π,所以小球往复振动一次所用的时间是πs .解决此类问题的关键在于明确各个参数的物理意义,易出现的问题是混淆彼此之间的对应关系.题型二:三角函数在实际生活中的应用[教材P 245例2]例2:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下表是(1)选用一个函数来近似描述这一天该港口的水深与时间的关系,给出整点时水深的近似数值(精确0.001m ).(2)一条货船的吃水深度(船底与水面的距离)为4m ,安全条例规定至少要有1.5m 的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?(3)某船的吃水深度为4m ,安全间隙为1.5m ,该船这一天在2:00开始卸货,吃水深度以0.3m/h 的速度减少,如果这条船停止卸货后需0.4h 才能驶到深水域,那么该船最好在什么时间停止卸货,将船驶向较深的水域?解析:(1)以时间x (单位:h )为横坐标,水深y (单位:m )为纵坐标,在直角坐标系中画出散点图(图1).根据图象,可以考虑用函数y =A sin (ωx +φ)+h 刻画水深与时间之间的对应关系.从数据和图象可以得出:A =2.5,h=5,T =12.4,φ=0;由T =2πω=12.4,得ω=5π31.所以,这个港口的水深与时间的关系可用函数y =2.5sin 5π31x +5近似描述.(2)货船需要的安全水深为4+1.5=5.5m,所以当y≥5.5时就可以进港.令2.5sin5π31x+5=5.5,sin5π31x=0.2.由计算器可得0.2013579208≈0.2014.如图2,在区间[0,12]内,函数y=2.5sin5π31x+5的图象与直线y=5.5有两个交点A,B,因此5π31x≈0.2014,或π-5π31x≈0.2014.解得x A≈0.3975,x B≈5.8025.由函数的周期性易得:x C≈12.4+0.3975=12.7975,x D≈12.4+5.8025=18.2025.因此,货船可以在零时30分左右进港,早晨5时45分左右出港;或在下午13时左右进港,下午18时左右出港.每次可以在港口停留5小时左右.(3)设在x h时货船的安全水深为y m,那么y=5.5-0.3(x-2)(x≥2).在同一直角坐标系内画出这两个函数的图象,可以看到在6~8时之间两个函数图象有一个交点(图3).借助计算工具,用二分法可以求得点P的坐标约为(7.016,3.995),因此为了安全,货船最好在6.6时之前停止卸货,将船驶向较深的水域.状元随笔观察问题中所给出的数据,可以看出,水深的变化具有周期性,根据表中的数据画出散点图,如图1.从散点图的形状可以判断,这个港口的水深与时间的关系可以用形如y=A sin(ωx+φ)+h的函数来刻画,其中x是时间,y是水深.根据数据可以确定A,ω,φ,h的值.教材反思:解三角函数应用问题的基本步骤跟踪训练2:如图,游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时.请解答下列问题:(1)求出你与地面的距离y与时间t的函数关系式;(2)当你第四次距离地面60.5米时,用了多少时间?解析:(1)由已知可设y =40.5-40cos ωt (t ≥0),由已知周期为12分钟,可知ω=2π12,即ω=π6.所以y =40.5-40cos π6t (t ≥0).(2)令y =40.5-40cos π6t =60.5,得cos π6t =-12,所以π6t =23π或π6t =43π,解得t =4或t =8,故第四次距离地面60.5米时,用时为12+8=20(分钟).(1)由已知可得解析式. (2)利用y =60.5解t . 题型三:根据数据拟合函数例3:某港口水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),下面经长期观察,y =f (t )的曲线可近似地看成是函数y =A sin ωt +b 的图象. (1)试根据以上数据,求出函数y =f (t )的近似解析式.(2)一般情况下,船舶航行时,船底高出海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,那么它至多能在港内停留多长时间(忽略进出港所需的时间)?解析:(1)由已知数据,描出曲线如图:易知函数y =f (t )的周期T =12,振幅A =3,b =10,∴ω=2πT =π6,∴y =3sin π6t +10.(0≤t ≤24)(2)由题意,该船进出港时,水深应不小于5+6.5=11.5米,由y ≥11.5,得3sin π6t +10≥11.5,∴sin π6t ≥12.①∵0≤t ≤24,∴0≤π6t ≤4π.②由①②得π6≤π6t ≤5π6或13π6≤π6t ≤17π6.化简得1≤t ≤5或13≤t ≤17.∴该船最早能在凌晨1时进港,下午17时出港,在港内最多可停留16小时. 由表格画出曲线图,由图可求A ,b ,由周期T 可求ω,即求y =A sin ωt +b . 方法归纳:在处理曲线拟合和预测的问题时,通常需以下几个步骤 (1)根据原始数据,绘出散点图;(2)通过散点图,做出“最贴近”的直线或曲线,即拟合直线或拟合曲线; (3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式;(4)利用函数关系式,根据条件对所给问题进行预测和控制,以便为决策和管理提供依据.跟踪训练3:已知某海滨浴场的海浪高度y (米)是时间t (时)的函数,其中0≤t ≤24,记经长期观测,y =f (x )的图象可近似地看成是函数y =A cos ωt +b 的图象. (1)根据以上数据,求其最小正周期、振幅及函数解析式;(2)根据规定,当海浪高度大于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8:00到20:00之间,有多少时间可供冲浪者进行活动?解析:(1)由表中数据可知,T =12,所以ω=π6.又t =0时,y =1.5,所以A +b =1.5;t =3时,y =1.0,得b =1.0,所以振幅A 为12,函数解析式为y =12cos π6t +1(0≤t ≤24).(2)因为y >1时,才对冲浪爱好者开放,所以y =12cos π6t +1>1,cos π6t >0,2k π-π2<π6t <2k π+π2(k ∈Z ),即12k -3<t <12k +3(k ∈Z ). 又0≤t ≤24.所以0≤t <3或9<t <15或21<t ≤24,所以在规定时间内只有6个小时可供冲浪爱好者进行活动,即9<t <15.根据表格,确立y =A cos ωt +b 的模型,求出A ,T ,b ,推出ω,利用t =0时,y 为1.5,t =3,y =1.0,求出b ,即可求出拟合模型的解析式. 三、学业达标(一)选择题1.电流I (A )随时间t (s )变化的关系是I =3sin100πt ,t ∈[0,+∞),则电流I 变化的周期是( )A .150B .50C .1100D .100解析:T =2π100π=150. 答案:A2.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10解析:由图可知-3+k =2,则k =5,∴y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+5,∴y max =3+5=8.答案:C3.某市某房地产中介对某楼群在今年的房价作了统计与预测,发现每个季度的平均单价y (每平方米的价格,单位:元)与第x 季度之间近似满足y =500sin (ωx +φ)+9500(ω>0),已知第1季度和第2则此楼群在第3季度的平均单价大约是( ) A .10000元B .9500元C .9000元D .8500元解析:因为y =500sin (ωx +φ)+9500(ω>0),所以当x =1时,500sin (ω+φ)+9500=10000;当x =2时,500sin (2ω+φ)+9500=9500,即⎩⎨⎧sin 2ω+φ=0,sinω+φ=1,所以⎩⎪⎨⎪⎧2ω+φ=m π,m ∈Z ,ω+φ=π2+2n π,n ∈Z .易得3ω+φ=-π2+2k π,k ∈Z .又当x =3时,y =500sin (3ω+φ)+9500,所以y =9000. 答案:C4.如图,单摆离开平衡位置O 的位移s (单位:cm )和时间t (单位:s )的函数关系为s =6sin ⎝ ⎛⎭⎪⎫2πt +π6,则单摆在摆动时,从最右边到最左边的时间为( )A .2sB .1sC .12sD .14s解析:由题意,知周期T =2π2π=1(s ),从最右边到最左边的时间是半个周期,为12s . 答案:C (二)填空题5.设某人的血压满足函数式p (t )=115+25sin (160πt ),其中p (t )为血压(mmHg ),t 为时间(min ),则此人每分钟心跳的次数是________.解析:T =2π160π=180(分),f =1T =80(次/分).答案:806.有一小球从某点开始来回摆动,离开平衡位置的距离s (单位:cm )关于时间t (单位:s )的函数解析式是s =A sin (ωt +φ),0<φ<π2,函数图象如图所示,则φ=________.解析:根据图象,知⎝ ⎛⎭⎪⎫16,0,⎝ ⎛⎭⎪⎫1112,0两点的距离刚好是34个周期,所以34T =1112-16=34.所以T =1,则ω=2πT =2π.因为当t =16时,函数取得最大值,所以2π×16+φ=π2+2k π,k ∈Z ,又0<φ<π2,所以φ=π6.答案:π67.据市场调查,某种商品每件的售价按月呈f (x )=A sin (ωx +φ)+B ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低,为4千元,则f (x )=________.解析:由题意得⎩⎨⎧A +B =8,-A +B =4,解得A =2,B =6,周期T =2×(7-3)=8,所以ω=2πT=π4.所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx 4+φ+6.又当x =3时,y =8, 所以8=2sin ⎝ ⎛⎭⎪⎫3π4+φ+6,所以sin ⎝ ⎛⎭⎪⎫3π4+φ=1,结合|φ|<π2可得φ=-π4,所以f (x )=2sin ⎝ ⎛⎭⎪⎫πx 4-π4+6.答案:f (x )=2sin ⎝ ⎛⎭⎪⎫πx 4-π4+6(三)解答题8.弹簧振子以O 为平衡位置,在B ,C 两点间做简谐运动,B ,C 相距20cm ,某时刻振子处在B 点,经0.5s 振子首次到达C 点,求:(1)振动的振幅、周期和频率;(2)弹簧振子在5s 内通过的路程及位移. 解析:(1)设振幅为A ,则2A =20cm ,所以A =10cm .设周期为T ,则T2=0.5s ,所以T =1s ,所以f =1Hz .(2)振子在1s 内通过的距离为4A ,故在5s 内通过的路程s =5×4A =20A =20×10=200(cm ).5s 末物体处在B 点,所以它的位移为0cm .9.交流电的电压E (单位:V )与时间t (单位:s )的关系可用E =2203sin (100πt +π6)来表示,求:(1)开始时电压;(2)电压值重复出现一次的时间间隔;(3)电压的最大值和第一次获得最大值的时间. 解析:(1)当t =0时,E =1103(V ), 即开始时的电压为1103V .(2)T =2π100π=150(s ),即时间间隔为0.02s . (3)电压的最大值为2203V ,当100πt +π6=π2,即t =1300s 时第一次取得最大值. 尖子生题库:10.心脏跳动时,血压在增加或减少,血压的最大值、最小值分别称为收缩压、舒张压,血压计上的读数就是收缩压、舒张压,读数120/80mmHg 为标准值,设某人的血压满足方程式P (t )=115+25sin (160πt ),其中P (t )为血压(mmHg ),t 为时间(min ),试回答下列问题:(1)求函数P (t )的周期; (2)求此人每分钟心跳的次数; (3)画出函数P (t )的草图;(4)求出此人的血压在血压计上的读数,并与标准值进行比较.解析:(1)由于ω=160π代入周期公式T=2πω,可得T=2π160π=180(min),所以函数P(t)的周期为180min.(2)函数P(t)的频率f=1T=80(次/分),即此人每分钟心跳的次数为80.(3描点、连线并左右扩展得到函数P(t)的简图如图所示.(4)此人的收缩压为115+25=140(mmHg),舒张压为115-25=90(mmHg),与标准值120/80mmHg相比较,此人血压偏高.。
三角函数教案
三角函数教案三角函数教案(通用5篇)在教学工作者实际的教学活动中,就有可能用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
快来参考教案是怎么写的吧!下面是店铺帮大家整理的三角函数教案,仅供参考,希望能够帮助到大家。
三角函数教案篇1一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。
本节是第一课时,教学内容为公式(二)、(三)、(四)。
教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。
同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有非常重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
高中数学《三角函数》全部教案
平移、伸缩、对称等变换方法。
三角函数的变换与化简
三角函数的和差化积
sin(x+y)、cos(x+y)、 tan(x+y)的化简方法。
三角函数的倍角公式
sin(2x)、cos(2x)、tan(2x)的化 简方法。
三角函数的半角公式
sin(x/2)、cos(x/2)、tan(x/2) 的化简方法。
辅助角公式
将复杂的三角函数表达式化为 简单的形式。
03
教学方法与手段
讲解与演示相结合
讲解
通过教师讲解,使学生理解三角函数的基本概念、性质和公 式。
演示
利用教学软件、图形计算器等工具,演示三角函数的图像和 性质,帮助学生直观理解。
练习与讨论相结合
练习
通过大量的练习题,让学生熟悉三角函数的各种题型和解题方法。
三角函数的应用
由于三角函数的应用领域广泛,学生可能难以理解和掌握,需要教师结合实际案例进行讲 解,帮助学生理解并掌握。
综合应用
综合应用是学生学习三角函数的难点之一,需要教师通过设计综合性题目,引导学生逐步 掌握综合应用的能力。同时,教师也可以通过小组讨论、合作学习等方式,鼓励学生互相 交流、互相帮助,共同提高。
三角函数的图像和变换
学生需要理解三角函数的图像特点,掌握图像变 换的方法,如平移、伸缩、对称等。
3
三角函数的应用
学生需要了解三角函数在各个领域的应用,如物 理、工程、经济等,掌握利用三角函数解决实际 问题的能力。
教学难点及解决方法
三角函数的图像和变换
由于三角函数的图像变换涉及多个知识点,学生容易混淆,需要教师通过实例演示和讲解 ,帮助学生理解并掌握。
高中数学新苏教版精品学案《任意角的三角函数》
任意角的三角函数【学习目标】1.借助单位圆理解任意角的三角函数正弦、余弦、正切定义。
2.熟记正弦、余弦、正切函数值在各象限的符号。
【学习重难点】重点:任意角的正弦、余弦、正切函数的定义、定义域以及根据任意角三角函数的定义求相关角的三角函数值。
难点:把三角函数理解为以实数为自变量的函数。
【学习过程】【第一课时】知识梳理1.任意角三角函数的定义设角α终边上任意一点的坐标为,,它与原点的距离为r,则in α=________,co α=________,tan α=________。
2.正弦、余弦、正切函数值在各象限的符号【达标检测】一、填空题1.若角α的终边过点3a,n是α终边上一点,且O-n=________。
二、解答题11.确定下列各式的符号:(1)tan 12021in 273°;(2)错误!;(3)in 错误!·co 错误!·tan 错误!π。
12.已知角α终边上一点3a,n位于=3在第三象限的图象上,且m0,∴式子符号为正。
(2)∵108°是第二象限角,∴tan 108°0从而错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误!错误! 15a8a17a17a”连接。
5.集合A=[0,2π],B={α|in α错误!,则角α的取值范围是________。
7.如果错误!错误!错误!0的解集是______________。
9.已知α,β均为第二象限角,若in αin 1.2>in 1解析∵1,1.2,1.5均在错误!内,正弦线在错误!内随α的增大而逐渐增大,∴in 1.5>in 1.2>in 1.5.错误!∪错误!6.错误!∪错误!7.co α<in α<tan α解析如图所示,在单位圆中分别作出α的正弦线M、正切线AT,很容易地观察出OM<MP=错误!in α,=错误!α,S△AOT=错误!OA·AT=错误!tan α,S扇形AOP=错误!αOA2又S△AOP<S扇形AOP<S△AOT,所以错误!in α<错误!α<错误!tan α,即in α<α<tan α。
人教版高中数学 教案+学案综合汇编 第4章:三角函数 课时13
人教版高中数学 教案+学案 综合汇编第4章 三角函数第13教时教材:诱导公式(3)——综合练习目的:通过复习与练习,要求学生能更熟练地运用诱导公式,化简三角函数式。
过程:一、复习:诱导公式三、例一、(《教学与测试》 例一)计算:sin315︒-sin(-480︒)+cos(-330︒) 解:原式 = sin(360︒-45︒) + sin(360︒+120︒) + cos(-360︒+30︒) = -sin45︒ + sin60︒ + cos30︒ =223- 小结:应用诱导公式化简三角函数的一般步骤:1︒用“- α”公式化为正角的三角函数2︒用“2k π + α”公式化为[0,2π]角的三角函数3︒用“π±α”或“2π - α”公式化为锐角的三角函数例二、已知的值。
,求)65cos(33)6cos(α-π=α+π(《教学与测试》例三) 解: 33)6cos()]65(cos[)65cos(-=α+π-=α-π-π-=α-π 小结:此类角变换应熟悉例三、求证:Z k k k k k ∈-=α+π+α+π+α+πα-π,1])1cos[(])1sin[()cos()cos( 证:若k 是偶数,即k = 2 n (n ∈Z) 则:1)c o s (s i n c o s s i n )](2cos[)](2sin[)2cos()2cos(-=α-α-αα-=α+π+πα+π+πα+πα-π=n n n n 左边 若k 是奇数,即k = 2 n + 1 (n ∈Z) 则:1cos sin )cos (sin )])1(2cos[)])1(2sin[)](2cos[)](2cos[-=ααα-α=α+π+α+π+α+π+πα-π+π=n n n n 左边 ∴原式成立小结:注意讨论例四、已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(α--α-πα-π+α-π的值。
2021年《高一数学 任意角的三角函数学案》优秀教案
任意角的三角函数学案班级:_____________ 姓名:___________设计人:侯俊琴审查人:强立东学习目标:1.学会任意角的三角函数定义,理解三角函数是以实数为自变量的函数,2.学会握正弦、余弦、正切函数在各象限内的符号.3.能初步应用定义分析和解决与三角函数值有关的一些简单问题.学习重点任意角的正弦、余弦、正切的定义学习难点用单位圆上点的坐标刻画三角函数;已知角α终边上一点,会求角α的三角函数值学习方法自主学习合作探究学习导航一.课前准备自主学习预习课本二.新课导学1复习回顾:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗?2自主探究:问题1、在直角坐标系中如何用坐标表示锐角三角函数?问题2、如果角α不变化,改变点P的位置,这三个函数值会发生改变吗?问题3、结合所学函数概念,解释一下为什么可以将这三个关系式称为锐角三角函数..问题4、怎样将锐角的三角函数推广到任意角的三角函数呢?任意角的三角函数定义(1)比值叫做α的正弦,记作inα,即inα=(2)比值叫做α的余弦,记作coα,即coα=(3)比值叫做α的正切,记作tanα,即tanα=≠0问题5、这三个三角函数的定义域分别是什么问题6、结合正弦函数的定义,试判断在一二三四各象限,正弦值的正负号情况。
余弦函数和正切函数呢?3典例练习例1.已知角α的终边经过点P -3,4,求角α的正弦、余弦、正切值4a , -3a )0(>a ,求角α的正弦、余弦、正切值.(若a ≠0呢?例2确定下列三角函数值的符号:(1) 250cos (2))4sin(π- (3))672tan( -(4)4sin4、课堂反馈:1、已知角α的终边经过点P -12,5,求角α的正弦、余弦、正切值.1、已知角α的终边经过点P 的值,求),且,(x x 135cos 6-=--β,2、填表 tancossin角的弧度数360。
270。
180。
90。
高中数学三角函数教案
高中数学三角函数教案高中数学三角函数教案作为一位杰出的教职工,可能需要进行教案编写工作,通过教案预备可以更好地依据详细状况对教学进程做适当的必要的调整。
如何把教案做到重点突出呢?以下是我细心整理的高中数学三角函数教案,供大家参考借鉴,期望可以帮忙到有需要的朋友。
高中数学三角函数教案1一、教学目标把握三角函数的单调性以及三角函数值的取值范围。
经受三角函数的单调性的探究过程,提升规律推理力量。
在猜想计算的过程中,提高学习数学的爱好。
二、教学重难点三角函数的单调性以及三角函数值的取值范围。
探究三角函数的单调性以及三角函数值的取值范围过程。
三、教学过程(一)引入新课提出问题:如何讨论三角函数的单调性(四)小结作业提问:今日学习了什么?引导同学回顾:基本不等式以及推导证明过程。
课后作业:思索如何用三角函数单调性比较三角函数值的大小。
高中数学三角函数教案2教材:已知三角函数值求角(反正弦,反余弦函数)目的:要求同学初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。
过程:一、简洁理解反正弦,反余弦函数的意义。
由1在R上无反函数。
2在上, x与y是一一对应的`,且区间比较简洁在上,的反函数称作反正弦函数,记作,(奇函数)。
同理,由在上,的反函数称作反余弦函数,记作二、已知三角函数求角首先应弄清:已知角求三角函数值是单值的。
已知三角函数值求角是多值的。
例一、1、已知,求x解:在上正弦函数是单调递增的,且符合条件的角只有一个 (即 )2、已知解:,是第一或其次象限角。
即( )。
3、已知解: x是第三或第四象限角。
(即或 )这里用到是奇函数。
例二、1、已知,求解:在上余弦函数是单调递减的,且符合条件的角只有一个2、已知,且,求x的值。
解:, x是其次或第三象限角。
3、已知,求x的值。
解:由上题:。
介绍:∵上题例三、(见课本P74-P75)略。
高考数学《三角函数》专题学案:二倍角的正弦、余弦、正切
第4课时 二倍角的正弦、余弦、正切1.基本公式:sin2α= ;cos2α= = = ; tan2α= . 2.公式的变用:1+cos2α= ; 1-cos2α= . 例1. 求值:140cos 40cos 2)40cos 21(40sin 2-︒+︒︒+︒解:原式=︒+︒︒+︒80cos 40cos 80sin 40sin=)2060cos()2060cos()2060sin()2060sin(︒+︒+︒-︒︒+︒+︒-︒=3变式训练1:)12sin12(cos ππ-(cos12π+sin12π)= ( )A .-23B .-21C . 21 D .23 解:D例2. 已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值. 解:∵α为锐角 ∴ααααα2cos 2sin sin cos 2sin -=ααααα2cos cos sin 2)1cos 2(sin 2-=αcos 1=α2tan 1+=45变式训练2:化简:)4(sin )4tan(21cos 222απαπα+⋅--解:原式=)4(cos )4cos()4sin(22cos 2απαπαπα-⋅--=1例3.已知x x x x f cos sin sin 3)(2+-=;(1) 求)625(πf 的值; (2) 设2341)2(),,0(-=∈απαf ,求sinα的值. 解:(1)∵23625cos21625sin ==π ∴0625cos 625sin 625cos 3)625(2=+-=ππππf (2)x x x f 2sin 21232cos 23)(+-= ∴234123sin 21cos 23)2(-=-+=ααa f 16sin22-4sinα-11=0 解得8531sin ±=α ∵0sin ),0(2>∴∈απ 故8531sin +-=α 变式训练3:已知sin(απ-6)=31,求cos(απ232+)的值. 解:cos(32π+2α)=2cos 2(3π+α)-1 =2sin 2(6π-α) -1=-97例4.已知sin 2 2α+sin 2α cosα-cos2α=1,α∈(0,2π),求s inα、tanα的值.解:由已知得sin 22α+sin2αcosα-2cos 2α=0 即(sin2α+2cosα) (sin2α-cosα)=0 cos 2α(1+sinα) (2sinα-1)=0 ∵α∈(0,2π) cosα≠0 sinα≠-1∴2sinα=1 sinα=21 ∴tanα=33变式训练4:已知α、β、r 是公比为2的等比数列])2,0[(πα∈,且sinα、sinβ、sinr 也成等比数列,求α、β、r 的值.解:∵α、β、r 成公比为2的等比数列. ∴β=2α,r =4α∵sinα、sinβ、sinr 成等比数列 ∴12cos 2cos 2sin 4sin sin 2sin sin sin sin sin 2-=⇒=⇔=αααααβαβr 即01cos 2cos 22=--α,解得cosα=1或21cos -=α当cosα=1时,sinα=0与等比数列首项不为零矛盾故cosα=1舍去 当21cos -=α时,∵2∈[0,2π] ∴322π=或322π=∴38,34,32ππβπα===r 或316,38,34ππβπα===r1.二倍角公式是和角公式的特殊情况,在学习时要注意它们之间的联系;2.要理解二倍角的相对性,能根据公式的特点进行灵活应用(正用、逆用、变形用). 3.对三角函数式的变形有以下常用的方法:① 降次(常用降次公式)② 消元(化同名或同角的三角函数) ③ 消去常数“1”或用“1”替换 ④ 角的范围的确定第5课时 三角函数的化简和求值1.三角函数式的化简的一般要求: ① 函数名称尽可能少; ② 项数尽可能少; ③ 尽可能不含根式;④ 次数尽可能低、尽可能求出值.2.常用的基本变换方法有:异角化同角、异名化同名、异次化同次. 3.求值问题的基本类型及方法① “给角求值”一般所给的角都是非特殊角,解题时应该仔细观察非特殊角与特殊角之间的关系,通常是将非特殊角转化为特殊角或相互抵消等方法进行求解.② “给值求值”即给出某些角的三角函数(式)的值,求另外的一些角的三角函数值,解题关键在于:变角,使其角相同;③ “给值求角”关键也是:变角,把所求的角用含已知角的式子表示,由所求得的函数值结合该函数的单调区间求得角.4.反三角函数arcsinα、arccosα、arctanα分别表示[2,2ππ-]、[0,π]、(2,2ππ-)的角.例1. (1)化简:40cos 170sin )10tan 31(50sin 40cos +++(2)化简:xx xx 4466cos sin 1cos sin 1----解:∵10cos 10sin 310cos 10tan 31+=+=10cos 50cos 210cos )1060cos(2=- ∴原式20cos 220cos 220cos 2140cos 20cos 270sin 10cos 50cos 50sin 240cos 222=+=⋅+==2 变式训练1:已知xx x f +-=11)(,若),2(ππα∈,则+)(cos αf )cos (α-f 可化简为 .解:αsin 2例2. 已知0cos 2cos sin sin 622=-+αααα,α∈[2π,π],求sin (2α+3π)的值.解法一:由已知得(3sinα+2cosα) (2sinα-cosα)=0⇔3sinα+2cosα=0或2sinα-cosα=0由已知条件可知cosα≠0 ∴α≠2π即α∈(2π,π) ∴tanα=-32sin(2α+3π)=sin2αcos3π+cos2αsin 3π=sinαcosα+23(cos 2α-sin 2α)=αααααααα222222sin cos sin cos 23sin cos cos sin +-⨯++=αααα222tan 1tan 123tan 1tan +-+++=2635136+-解法二:由已知条件可知cosα≠0 则α≠2π从而条件可化为 6 tan 2α+tanα-2=0 ∵α∈(2π,π) 解得tanα=-32(下同解法一)变式训练2:在△ABC 中,22cos sin =+A A ,2=AC ,3=AB ,求tan A 的值和△ABC 的面积. 解:∵sinA +cosA =22①∵2sinAcosA =-21从而cosA <0 A ∈(ππ,2)∴sinA -cosA =A A A A cos sin 4)cos (sin 2-+=26 ②据①②可得 sinA =426+ cosA =426+- ∴tanA =-2-3S △ABC =4)26(3+例3. 已知tan(α-β)=21,tan β=-71,且α、β∈(0,π),求2α-β的值. 解:由tanβ=-71 β∈(0,π)得β∈(2π, π) ①由tanα=tan[(α-β)+β]=31 α∈(0,π)得0<α<2π ∴ 0<2α<π由tan2α=43>0 ∴知0<2α<2π ②∵tan(2α-β)=βαβαtan 2tan 1tan 2tan +-=1由①②知 2α-β∈(-π,0) ∴2α-β=-43π (或利用2α-β=2(α-β)+β求解)变式训练3:已知α为第二象限角,且sinα=415,求12cos 2sin )4sin(+++ααπα的值.解:由sinα=415α为第二象限角∴cosα=-41∴)cos (sin cos 2)4sin(12cos 2sin )4sin(αααπαααπα++=+++=αcos 221=-2例4.已知310cot tan ,43-=+<<ααπαπ. (1)求tanα的值; (2)求)2sin(282cos 112cos2sin82sin 522πααααα--++的值.解:(1)由310cot tan -=+αα 得03tan 102tan 32=++α 解得tanα=-3或31tan -=α 又παπ<<43,所以31tan -=α为所求.(2)原式:ααααcos 282cos 111sin 42cos 15--+⋅++-⋅=ααααcos 2216cos 1111sin 8cos 55--+++-=625226tan 8cos 22cos 66sin 8-=-+=-=αααα 变式训练4:已知k =++αααtan 12sin sin 22(4π<α<2π),试用k 表示sin α-cos α的值.解:∵αααααcos sin 2tan 12sin sin22=++∴k =2sinαcosα ∵(sinα-cosα)2=1-k 又∵α∈(2,4ππ) ∴sinα-cosα=k-11.三角函数的化简与求值的难点在于:众多的公式的灵活运用和解题突破口的选择,认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在;2.要熟悉角的拆拼、变换的技巧,倍角与半角的相对性,熟悉几种常见的入手方式: ① 变换角度 ② 变换函数名 ③ 变换解析式结构3.求值常用的方法:切割化弦法、升幂降幂法、辅助元素法、“1”的代换法等.。
高中《三角函数》全部教案设计
三角函数第一教时教材:角的概念的推广目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
过程:一、提出课题:“三角函数”回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。
相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。
二、角的概念的推广1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”2.讲解:“旋转”形成角(P4)突出“旋转”注意:“顶点”“始边”“终边”“始边”往往合于x轴正半轴3.“正角”与“负角”——这是由旋转的方向所决定的。
∠可以简记成α记法:角α或α4.由于用“旋转”定义角之后,角的范围大大地扩大了。
1︒角有正负之分如:α=210︒β=-150︒γ=-660︒2︒角可以任意大实例:体操动作:旋转2周(360︒×2=720︒)3周(360︒×3=1080︒)3︒还有零角一条射线,没有旋转三、关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30︒390︒-330︒是第Ⅰ象限角300︒-60︒是第Ⅳ象限角585︒1180︒是第Ⅲ象限角-2000︒是第Ⅱ象限角等四、关于终边相同的角1.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同2.终边相同的角都可以表示成一个0︒到360︒的角与)k∈个周角的和k(Z390︒=30︒+360︒)1k(=-330︒=30︒-360︒)1k30︒=30︒+0×=(-360︒)0k(=1470︒=30︒+4×360︒)4k(=-1770︒=30︒-5×360︒)5k=(-3.所有与α终边相同的角连同α在内可以构成一个集合{}Z=,|ο=360S∈k+k⋅ββα即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和4.例一(P5 略)五、小结:1︒角的概念的推广用“旋转”定义角角的范围的扩大2︒“象限角”与“终边相同的角”第二教时教材:弧度制目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R 一一对应关系的概念。
人教版高中数学 教案+学案综合汇编 第4章:三角函数 课时10
人教版高中数学 教案+学案 综合汇编第4章 三角函数第10教时教材:同角三角函数的基本关系(3)——证明 《教学与测试》第50课 目的:运用同角三角函数的基本关系式进行三角函数恒等式的证明。
过程:一、复习同角的三角函数的基本关系:例:(练习、《教学与测试》P25 例一)已知45cos sin -=α-α,求的值。
ααcos sin 解:1625)cos (sin 2=α-α 即:1625cos sin 21=αα- 329cos sin -=αα∴ 三、提出课题:利用同角的三角函数的基本关系证明三角恒等式(或化简) 例一、(见P25 例四)化简: 440sin 12- 解:原式 80cos 80cos 80sin 1)80360(sin 1222==-=+-= 例二、已知α+α--α-α+αsin 1sin 1sin 1sin 1是第三象限角,化简(《教学与测试》例二) 解:)sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(α-α+α-α--α-α+α+α+=原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2222αα--αα+=α-α--α-α+=0cos <α∴α是第三象限角,α-=α-α--α-α+=∴t a n 2c o s s i n 1c o s s i n 1原式 (注意象限、符号) 例三、求证:αα+=α-αcos sin 1sin 1cos (课本P26 例5) 证一:αα+α=α-α+α=α+α-α+α=22cos )sin 1(cos sin 1)sin 1(cos )sin 1)(sin 1()sin 1(cos 左边 右边=αα+=cos sin 1 等式成立∴ (利用平方关系)证二:0c o ,0s i 1c o si n 1)s i n 1)(sin 1(22≠α≠α-α=α-=α+α-且 αα+=α-α∴c o s s i n 1s i n 1c o s (利用比例关系) 证三:αα-α--α=αα-α+α--α=αα+-α-αc )s i1()s 1(c o c o )s i 1()s i 1)(sin 1(cos cos sin 1sin 1cos 222 0cos )sin 1(cos cos 22=αα-α-α= αα+=α-α∴c o s s i n 1s i n 1c o s (作差) 例三、已知方程0)13(22=++-m x x 的两根分别是θθcos sin ,, 求的值。
高中数学学案:三角函数
三角函数(一)1。
三角函数知识要点:(1)有关公式:同角三角函数关系式,诱导公式,两角和与差公式,倍角(半角),辅助角公式,正余弦定理。
(2) 三角函数的图象与性质(研究定义域,值域,单调性,周期性,对称轴,最值) (3)解三角形2. 三角函数的题型:(1)三角求值(证明)问题; (2)涉及解三角形的综合性问题;(3)三角函数图象的对称轴、周期、 单调区间、最值问题; (4)三角函数与向量、导数知识的交汇问题; (5)用三角函数工具解答的应用性问题。
3.解题关键:进行必要的三角恒等变形。
其通法是:发现差异(角度、函数、运算结构)寻找联系(套用、变用、活用公式,注意技巧和方法)合理转化(由因导果的综合法,由果探因的分析法其技巧:常值代换,特列是用“1”代换;项的分拆与角的配凑;化弦(切)法;降次与升次;引入辅助角。
4。
考基础知识也考查相关的数学思想方法:如考三角函数求值时考查方程思想和换元法。
1 。
已知 (I)求 的值,(2)求 的值。
02cos22sin =-x x x tan x x x sin )4cos(22cos +π2x xx 22sin cos -2xx x sin sin 22cos 22⎪⎪⎭⎫ ⎝⎛-)()(x x x x sin cos sin cos +-)(xx x sin sin cos -解.(1) ,∴tan =222tan42tan 31tan 2x x x -=-- (2) 原式===13()144=-+=2.已知α为锐角,且πtan 24α⎛⎫+= ⎪⎝⎭.⑴求tan α的值;⑵求sin 2cos sin cos2αααα-的值.【解析】⑴π1tan tan 41tan ααα+⎛⎫+= ⎪-⎝⎭, 所以1tan 2,1tan 22tan 1tan αααα+=+=--,所以1tan 3α=.⑵2sin 2cos sin 2sin cos sin cos2cos2αααααααα--=2sin (2cos 1)sin cos2sin cos2cos2ααααααα-===.因为1tan 3α=,所以cos 3sin αα=,又22sincos 1αα+=,所以21sin 10α=,又α为锐角,所以sin α=所以sin 2cos sin cos2αααα-=.3.如图,设A 是单位圆和x 两点,O是坐标原点,6π=∠AOP [)παα,0,∈=∠AOQ .cos x +sin x 02cos 22sin =-x x(Ⅰ)若34(,)55Q ,求⎪⎭⎫⎝⎛-6cos πα的值;(Ⅱ)设函数()f OP OQ α=⋅,求()αf 的值域. 解:(Ⅰ)由已知可得54sin ,53cos ==αα6sin sin 6cos cos 6cos παπαπα+=⎪⎭⎫ ⎝⎛-∴1043321542353+=⨯+⨯=(Ⅱ)()f OP OQ α=⋅ ()cos ,sin cos ,sin 66ππαα⎛⎫=⋅ ⎪⎝⎭ααsin 21cos 23+=sin 3πα⎛⎫=+ ⎪⎝⎭[0,)απ∈4[,)333πππα∴+∈sin 123πα⎛⎫-<+≤ ⎪⎝⎭ ()αf ∴的值域是⎛⎤ ⎥ ⎝⎦4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的概念〖考纲要求〗理解三角函数的概念,正确进行弧度和角度的换算;掌握任意角三角函数定义、符号.〖复习要求〗掌握任意角三角函数的概念,正确进行弧度和角度的换算;熟练掌握任意角三角函数定义、符号,会用任意角三角函数定义和符号处理问题;了解三角函数线.〖复习建议〗掌握任意角三角函数的概念,正确进行弧度和角度的换算;熟练掌握任意角三角函数定义、符号,会用任意角三角函数定义和符号处理问题;熟记特殊的三角函数值.〖双基回顾〗⑴角的定义: .⑵叫正角;叫负角;叫零角.⑶终边相同角的表示:或者 .⑷1弧度的定义是 .弧度与角度换算关系是.⑸任意角三角函数定义为:sin= cos=tan=·P(x,y)xyO任意角三角函数的符号规则:在扇形中: .S扇= 。
形lr⑹两个特殊的公式:如果∈,那么sin<<推论:>0则sin<如果∈,那么1<sin+cos≤一、知识点训练:1、终边在y轴上的角的集合是 .2、终边在Ⅱ的角的集合是 .3、适合条件|sin|=-sin的角是第象限角.4、在-720º到720º之间与-1050º终边相同的角是 .5、sin2·cos3·tan4的符号是………………………………………………………………………()(A)小于0 (B)大于0 (C)等于0 (D)不确定6、已知角的终边过点P(-4m,3m),则2sin+cos=…………………………………………()(A)1或者-1 (B)或者- (C)1或者- (D)-1或者二、典型例题分析:1、确定的符号2、角终边上一点P的坐标为(-,y)并且,求cos与tan的值.3、如果角的终边在直线y=3x上,求cos与tan的值.4、扇形的周长为20cm,问其半径为多少时其面积最大?三、课堂练习:1、角终边上有一点(a,a)则sin=…………………………………………………………()(A) (B) -或 (C) - (D)12、如果是第二象限角,那么-是第……………………………………………()象限角(A)Ⅱ或Ⅲ (B) Ⅰ或Ⅱ (C) Ⅰ或Ⅲ (D) Ⅱ或Ⅳ3、“=2k+(k是整数)”是“tan=tan”的…………………………………………………() (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分条件也不必要条件4、如果角与的终边关于y轴对称,则cos+cos= .5、在(-4,4)上与角终边相同的所有角为 .四、课堂小结:1、要熟悉任意角的概念,掌握角度与弧度的转化方法,熟练掌握任意角三角函数的定义方法.2、已知角的一个三角函数值求其它三角函数值时,必须对讨论角的范围3、知道所在的象限能熟练求出所在象限.五、能力测试:姓名得分1、下列结果为正值的是……………………………………………………………………………()(A)cos2-sin2 (B)tan3·sin2 (C)cos2·sin2 (D) sin2·tan2*2、已知锐角终边上有一点(2sin3,-2cos3),那么=………………………………………()(A)3 (B)-3 (C)3- (D) -33、如果与都是第一象限角,并且>,则一定有如下关系………………………………()(A)sin>sin (B)sin<sin (C)sin≠sin (D)不能确定4、2弧度的圆心角所对的弦长为2,那么此圆心角所夹扇形的面积的数值为…………………()(A) (B) (C) (D)tan15、如果角是第二象限角,那么角是第象限角.6、已知第二、第三象限角x满足cosx=,求实数a的取值范围.同角三角函数关系与诱导公式〖考纲要求〗掌握同角三角函数关系和诱导公式,能运用上述公式化简三角函数式、求任意角的三角函数值与证明较简单的三角恒等式.〖复习要求〗掌握并熟练应用同角三角函数关系和诱导公式.〖复习建议〗重点从同角三角函数关系和诱导公式出发,解决知值求值的一些题型.〖双基回顾〗⑴诱导公式:sin(-)= ;sin(+)= ;sin(-)= ;sin(+)= ;sin(-)= ;⑵同角三角函数关系:平方关系:______________ 商的关系:__________一、知识点训练:1、sin(-)=…………………………………………………………………………………()(A) sin(+) (B) cos(+) (C) cos(-) (D) sin(+)3、=……………………………………………………………………………………( )(A)- (B) (C) (D)-二、典型例题分析:1、化简: cos4-sin4+2sin2.2、已知,求之值.3、已知<<2,cos(-9)=-,求cot(-)5、sin与cos是方程的两个根,求实数m.三、课堂练习:1、如果sin=,∈(0,),那么cos(-)=……………………………………………()(A) (B) (C) - (D)-2、函数的周期是函数的周期的2倍,则=……………()(A) (B)1 (C) 2 (D)43、=……………………………………………………………………()(A)0 (B)2sin51º (C) 2cos51º (D) -2sin51º4、,那么是第象限的角.四、课堂小结:1、记忆诱导公式方法:“奇变偶不变(横同竖余)、符号看象限”.2、角的运算规则:“偶丢,奇留”,“负化正,大化小、化到锐角再查表”3、用同角三角函数关系时,首先考虑平方关系,但是要注意符号的讨论.五、能力测试:1、如果sin(+)=-,那么cos()=………………………………………………………()(A)- (B) (C) - (D)2、sin600º的值为………………………………………………………………………………………()(A)- (B) (C) - (D)3、化简,那么= .4、= .5、化简:8、如果,求sin x之值.角的和、差、倍〖考纲要求〗能推导两角和、差、倍、半的正弦、余弦、正切公式.〖复习建议〗在复习中要注意掌握三角变形的方法和技巧:1的替换、角的变换(拼凑、分拆)、降次与升次,了解万能代换〖知识回顾〗两角和差公式: . 倍角公式:sin2= .. cos2= .. = ..一、知识点训练:1、sin(x-y)cosy+cos(x-y)siny= .2、tanx=2,那么sin2x= ;cos2x= ;tan2x= ;tan= .3、如果,则tan=………………………………………………………()(A)-4- (B) -4+ (C) (D)-二、典型例题分析:1、求之值.2、如果,,求的值.3、已知,并且∈(0,),∈(,),求角.4、设tan,tan是一元二次方程:ax2+bx+c=0(abc≠0)的两个实数根,求的值.三、课堂练习:1、利用公式求:tan20º+tan40º+tan20ºtan40º= .2、如果,则函数的值域为…………………………………()(A) (B) (C) (D)3、………………………………………………………()(A) (B)- (C) (D)-四、课堂小结:处理三角函数的和、差、倍、半问题,一个最重要的内容是能熟练记住几组公式:两角和与差的三角函数、倍角与半角公式,最好能记住万能公式,要学会根据角的范围确定三角函数的符号,掌握几种公式的变形结果并且能熟练使用.五、能力测试:1、如果sinx·cosx=-,其中x∈(,),则tanx=…………………………………………()(A) - (B)- (C) -或者- (D)以上都不对.2、…………………………………………………………………………………………()(A) 2+ (B) 2- (C) -2+ (D)-2-3、=…………………………………………()(A) (B) (C) (D)4、tan18º+tan42º+tan18ºtan42º= .5、= .6、设tan,tan是一元二次方程:x2+3x+4=0的两个实数根,并且-<<,-<<求的值.7、在等腰三角形ABC中,B=C,,求sinB.8、已知,,并且∈(0,),∈(,),求.三角函数式的化简求值证明〖考纲要求〗能运用三角函数公式化简三角函数式、在化简的基础上会求某些三角函数式的值,会证明比较简单的三角恒等式(包括条件恒等式).〖复习建议〗1、在复习中主要熟练公式的各种变形;掌握化简的常用方法:异角化同角、异次化同次、高次化低次、切割化弦、特殊值与特殊角的转化;掌握化简的基本要求:项数尽可能要少、次数尽可能的低、函数种类尽可能的少、能求值的尽量求值;在处理化简问题时,观察表达式的结构特点和问题中出现的角的关系尤为重要.2、在复习中主要熟练公式的各种变形,注意公式的逆向使用、变形使用.掌握恒等变形的基本方法:异角化同角、高次化低次、特殊值与特殊角的转换、条件的代入等.在做题过程中,要注意做到:过程详细,不能遗漏任何一个知识点.〖知识回顾〗一、知识点训练:1、等于………………………………………………………………()(A) (B) (C) (D)2、sinx·cosx=,,则cosx-sinx= .3、= .4、= .二、典型例题分析:1、化简表达式:2、化简表达式:3、如果,求证:.*4、已知、是锐角且,求证:.5、求值:6、,,求之值.7、已知:,,求的值.三、课堂练习:1、化简的最简式为…………………………………………………()(A) 2sin4 (B)2sin4-4cos4 (C)-2sin4-4cos4 (D)4cos4-2sin42、的最简形式为 .3、= .五、能力测试:姓名得分 .1、如果,那么sin4x+cos4x=…………………………………………………………()(A) (B) (C) (D)2、如果,则=…………………………………………………………()(A)2 (B) (C) 或者不存在 (D) 不存在3、(2003广东考题)x∈(-,0),=……………………………………()(A) (B)- (C) (D)-4、是方程:x2+p x+q=0的两个根,那么……………………………………()(A)p-q+1=0 (B)p+q+1=0 (C)p+q-1=0 (D) p-q-1=05、sin x+sin2x=1,则cos2x+cos4x= .6、如果,求cos(提示:)三角函数的图象〖考纲要求〗了解正弦、余弦、正切、余切函数图象的画法,会用“五点法”画正弦、余弦以及函数的图象,并能解决与正弦曲线有关的实际问题.〖复习建议〗熟练掌握三角函数特别是正弦、余弦函数的图象,深刻理解并且熟练掌握函数中参量A、、对正弦函数y=s i nx图象的影响;用“五点法”画图象时,关键是正确选取“五点”,在如何选择“五点”上下工夫.〖知识回顾〗函数图象的几种常见变换:1、振幅变换:2、周期变换:3、相位变换:4、在横线上填写变换方法:nx y=s i n(x+) y=s i n(x+)y=s i nx y=s i n(x+)5、。