电磁感应中的导体棒问题
导体棒切割磁感线问题分类解析
导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。
解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。
导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。
一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。
例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图2所示。
在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。
图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。
(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。
电磁感应中涉及导体棒的题型
(4)由牛顿第二定律,得
B2L2(v1 R
v2) -
Ff
= ma
可见导体棒要 做匀加速运动,( v1 - v2)必须为一 常数,设为 Δv ,由图 2,得
k = a = vt + Δv t
则
B2L2(at R
vt) - F f = ma
B2L2vt + F f R 解得 a = B2L2t - mR
(4)若 t = 0 时磁场由 静止开始水平向右做匀加速
运动,经过较短时间后,导体棒也做匀 加速直线运动,
其 v - t 关系 如图 1 乙,已知在时刻 t 导体棒的瞬 时速
度大小为 vt ,则导体棒做匀加速 直线运动时的加速度
大小是多少?
解析 (1)当导体 棒运动速 度为 v2 时,整个回 路 产生的电动势为 E = BL(v1 - v2)
B
M
N
b
a
P
Q
C
图3
(1)t 时刻 C 的加速度值;
(2)t 时刻 a 、b 与导轨所组成的闭合回路消耗的
总功率.
解析 (1)画出等效电路图 4,两棒切割磁场均产
生电 动势,相当 于反接 ,根 据法拉第 电磁感 应定律,t
时刻回路的感应电动势
E=
ΔΦ Δt
=
Ea
-
Eb = Bl(v1 -
v2)
回路 中的感 应电流为 I = E ,对 a ,据牛 顿第二 2R
定律,有 F T - F 安 = ma
F安
F安
FT
b
a
x
x
b
a
图4
对 C ,据牛顿第二定律,有 M g - F T = M a 联 立以上 各式 ,得 a = 2M gR - B2l2(v1 - v2) ,说
重点内容回味无穷_电磁感应中导体棒运动问题归类解析
27
试题研究
B
2
L2 R
v
0
,
则当
ma -
B
2L 2v R
0>
0
时,
即
v0<
maR B2L2
=
10 m/ s
时, F > 0, 方向 F 方向与 x 轴方向相反.
当 ma-
B
2L 2 R
v
0
<
0 时,
即 v 0>
L
maR B2L 2
=
10 m/ s 时,
F< 0, 方向与 x 轴方向相同.
二、双导棒问题
较宽部分, 此后两棒运动情况同例 3, 动 量守恒, 且最终 同向匀速前进.
3. 导轨宽度均匀, 两棒所受的合外力不为零 例 5 如图 8, 在相
距 L= 0. 5 m 的 两条水 平 放置 无 限 长 的金 属 导 轨
上, 放 置 两 根 金 属 棒 ab 和 cd, 两棒质量均为 m =
0. 1 kg, 电阻均为 R = 3 欧 姆, 整 个 装 置 处 于 无 限
对 ab 棒由动量定理: - 2BILt= mv - mv0 对 cd 棒由动量定理: - 2BILt = mv - 0
由上分 析知, 要使两棒产 生相等 感应电 动势, 必须
v = 2v
由以上两棒中 I 相等, 令 I = BILt
则- 2I = mv - mv 0 I = 2mv - 0
v = v0 / 5, v = 2v0 / 5
于同 一 水 平面 内, 两 导 轨 间距为 L , 导轨上放着两 根
导体棒 ab 和 cd , 构 成矩 形 回路, 两根导棒的 质量皆 为 m, 电 阻均 为 R , 回路 中其
电磁感应导体棒切割磁感线题型
电磁感应导体棒切割磁感线题型引言电磁感应是指导体内的电荷受到磁场变化的影响而发生运动的现象。
当导体与磁场相互作用时,导体内部将产生感应电流。
本文将讨论关于电磁感应导体棒切割磁感线的题型,并探讨有关问题。
电磁感应基础知识回顾在讨论电磁感应导体棒切割磁感线的题型之前,我们首先回顾一些基础知识。
电磁感应定律电磁感应定律是描述电磁感应现象的基本定律。
它可以用以下公式表达:ε=−dΦdt其中,ε表示产生的感应电动势,Φ表示磁通量,t表示时间。
该定律表明,当磁场发生变化时,导体内部将产生感应电动势,通过闭合回路可以产生感应电流。
磁感线磁感线是描述磁场分布的线条。
磁感线的方向表示磁场的方向,磁感线的密度表示磁场强度。
在磁场的分布中,磁感线形成一个封闭的回路。
电磁感应导体棒切割磁感线问题在实际问题中,我们经常遇到关于电磁感应导体棒切割磁感线的题型。
这类问题要求计算感应电动势、感应电流或导体受到的力等。
我们将通过以下几个方面来探讨这类问题。
导体切割磁感线产生的感应电动势当导体切割磁感线时,根据电磁感应定律,导体内将产生感应电动势。
感应电动势的大小可以根据切割磁感线的速度、磁感线的密度和导体的长度等因素来计算。
根据右手定则,我们可以确定感应电动势的方向。
导体切割磁感线产生的感应电流如果导体是一个闭合回路,切割磁感线产生的感应电动势将产生感应电流。
根据欧姆定律,我们可以计算产生的感应电流的大小,并根据导体形状和电源方向确定感应电流的方向。
感应电流会产生磁场,与外部磁场相互作用。
导体受到的力通过切割磁感线产生的感应电流,导体将受到一个力,称为洛伦兹力。
洛伦兹力的大小与感应电流、磁感线的强度以及导体的长度和形状等有关。
根据洛伦兹力的方向规则,我们可以确定导体受到的力的方向。
导体切割磁感线的应用导体切割磁感线的现象广泛应用于发电机、电动机和变压器等电磁设备中。
通过切割磁感线产生感应电流,可以实现能量转换和能量传输。
各种电磁设备的工作原理都涉及到导体切割磁感线的现象。
电磁感应导体棒问题
(2008•东莞模拟)如图(a)所示,两根足够长的光滑平行金属导轨相距为L,导轨平面与水平面成θ角,上端通过导线连接阻值为R的电阻,阻值为r的金属棒ab放在两导轨上,棒与导轨垂直并保持良好接触,整个装置处在垂直导轨平面向上的磁场中,若所加磁场的磁感应强度大小恒为B,使金属棒沿导轨由静止向下运动,金属棒运动的v-t图象如图(b)所示,当t=t时刻,物体下滑距离为s.已知重力加速度为g,导轨电阻忽略不计.试求:(1)金属棒ab匀速运动时电流强度I的大小和方向;(2)导体棒质量m;时间内电阻R产生的焦耳热.(3)在t如图所示,两根足够长不计电阻的光滑平行金属导轨相距为L=1m,导轨平面与水平面成θ=300,上端通过导线连接阻值为R=3Ω的电阻,阻值为r=1Ω的金属棒ab放在两导轨上,棒与导轨垂直并保持良好接触,整个装置处在垂直导轨平面向上的匀强磁场中,磁场的磁感应强度B=2T,使金属棒沿导轨由静止向下运动,t0时刻,金属棒下滑距离为s=3m,此时金属棒恰好以速度v0=5m/s匀速运动.g=10m/s2.试求:(1)金属棒ab匀速运动时电流强度I的大小和方向;(2)求导体棒质量m;(3)在t0时间内产生的总热量Q.如图所示,足够长的光滑平行金属导轨MN、PQ固定在一水平面上,两导轨间距L=0.2m,在两导轨左端M、P间连接阻值R=0.4Ω的电阻,导轨上停放一质量m=0.1kg、电阻r=0.1Ω的金属杆CD,导轨电阻可忽略不计,整个装置处于方向竖直向上磁感应强度B=0.5T的匀强磁场中.现用一垂直金属杆CD的拉力F沿水平方向拉杆,使之由静止开始向右运动.(1)若拉力F恒为0.5N,求F的最大功率;(2)若在拉力F作用下,杆CD由静止开始作加速度a=0.5m/s2的匀加速运动,求在开始运动后的2s时间内通过电阻R的电量.如图所示,两根水平放置的平行光滑导轨上,有两根可以移动的、垂直导轨的导体棒ab和cd,导轨的间距为25cm,ab棒和cd棒的阻值均为2Ω,导轨的电阻不计.现将cd棒用一根绝缘细绳水平拉住,细绳所能承受的最大拉力为2N.整个装置处于竖直向上的匀强磁场中,磁感应强度为4T.今在棒ab上作用一个与导轨平行向右的恒力F,直到细绳被拉断.则细绳被拉断时,求:(1)cd棒中电流强度的大小(2)ab棒的速度大小.如图所示,在一对平行的金属导轨的上端连接一阻值为R的定值电阻,两导轨所决定的平面与水平面成30°角,若将一质量为m、长为L的导体棒ab垂直于两导轨放在导轨上,并使其由静止开始下滑,已知导体棒电阻为r,整个装置处在垂直于导轨平面的匀强磁场中,磁感应强度为B,求导体棒最终下滑的速度及电阻R最终的发热功率分别为多少.(导轨足够长,磁场足够大,不计导轨电阻和摩擦)。
电磁感应中金属棒在匀强磁场中的运动
利用公式E=BLv求电动势这类习题在中学物理中是常见的,但利用此公式时应注意以下几点。
1. 此公式的应用对象是一部分导体在磁场中做切割磁感线运动时产生感应电动势的计算,一般用于匀强磁场(或导体所在位置的各点的磁感应强度相同)。
2. 此公式一般用于导体各部分切割磁感线速度相同的情况,如果导体各部分切割磁感线的速度不同,可取其平均速度求电动势。
例1. 如图1所示,导体棒AB长为L,在垂直纸面向里的匀强磁场中以A点为圆心做匀速圆周运动,角速度为。
磁感应强度为B,求导体棒中感应电动势的大小。
图1解析:导体棒AB在以A点为圆心做匀速圆周运动过程中,棒上每一点切割磁感线的线速度是不同的,我们可以求出导体棒切割磁感线的平均速度为:则导体棒中感应电动势为:3. 此公式中的L不是导体棒的实际长度,而是导体切割磁感线的有效长度,所谓有效长度,就是产生感应电动势的导体两端点的连线在切割速度v的垂直方向上投影的长度。
例2. 如图2甲、乙、丙所示,导线均在纸面内运动,磁感应强度垂直纸面向里,其有效长度L分别为:甲图:乙图:沿方向运动时,L=MN,沿方向运动时,L=0丙图:沿方向运动时,,沿方向运动时,L=0,沿方向运动时,L=R甲乙丙图24. 在匀强磁场里,若切割速度v不变,则电动势E为恒定值,若v为时间t里的平均速度,则E为时间t里的平均电动势。
若v为瞬时值,则E为瞬时电动势。
5. 若v与导体棒垂直但与磁感应强度B有夹角时,公式中的v应是导体棒的速度在垂直于磁场方向的分速度。
此时,公式应变为:。
例3. 如图3所示,磁感应强度为B,方向竖直向下。
一导体棒垂直于磁场放置,导体棒的速度方向与磁场方向的夹角为,大小为v。
求导体棒上感应电动势的大小。
导体棒运动问题
与力学结合的电磁感应问题1.超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具。
其推进原理可以简化为如图10-18所示的模型:在水平面上相距L 的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动。
这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( )图10-18A .v m =(B 2L 2v -fR )/B 2L 2 B .v m =(2B 2L 2v -fR )/2B 2L 2C .v m =(4B 2L 2v -fR )/4B 2L 2D .v m =(2B 2L 2v +fR )/2B 2L 22.平行轨道PQ 、MN 两端各接一个阻值R 1=R 2=8Ω 的电热丝,轨道间距L =1m ,轨道很长,本身电阻不计。
轨道间磁场按如图10-19所示的规律分布,其中每段垂直纸面向里和向外的磁场区域宽度为2cm ,磁感应强度的大小均为B =1T ,每段无磁场的区域宽度为1cm 。
导体棒ab 本身电阻r =1Ω ,与轨道接触良好。
现让ab 以v =10m/s 的速度向右匀速运动。
求:图10-19(1)当ab 处在磁场区域时,ab 中的电流为多大?ab 两端的电压为多大?ab 所受磁场力为多大?(2)整个过程中,通过ab 的电流是否是交变电流?若是,则其有效值为多大?并画出通过ab 的电流随时间的变化图象。
3.如图10-20所示,质量为m 的跨接杆ab 可以无摩擦地沿水平的导轨滑行,两轨间距为L ,导轨一端与电阻R 连接,放在竖直向下的匀强磁场中,磁感应强度为B 。
杆从x 轴原点O 以大小为v 0的水平初速度向右滑行,直到停下。
导体棒切割磁感线问题
导体切割磁感线问题电磁感应中,“导体棒”切割磁感线问题是高考常见命题。
解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。
(如果学生能力足够,完全可以力学和电学同时分析,找到中间那个联系点,一般联系点都是合力,之后运用牛二定律很容易解题。
)导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等。
一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。
例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q 之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图2所示。
在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。
图2(1)根据欧姆定律,R中的电流强度为0.4A,方向从N经R到Q。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F=F安=BIh=0.02N。
(3)金属棒ab两端的电势差等于U ac、U cd与U db三者之和,由于U cd=E cd-Ir cd,所以U ab =E ab-Ir cd=BLv-Ir cd=0.32V。
导体棒在磁场中运动问题-精品资料
导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。
往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。
导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。
1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sin θ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。
由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。
说明基本图v – t 能量导体棒以初速度v 0向右开始运动,定值电阻为R ,其它电阻不计。
动能 → 焦耳热导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R ,其它电阻不计。
外力机械能→ 动能+ 焦耳热导体棒1以初速度v 0向右开始运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。
动能1变化→ 动能2变化 + 焦耳热导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。
外力机械能→ 动能1 + 动能2 + 焦耳热如图1所示,在竖直向下磁感强度为B 的匀强磁场中,有两根水平放置相距为L 且足够长的平行金属导轨AB 、CD ,导轨AC 端连接一阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,不计导轨和金属棒的电阻及它们间的摩擦。
若用恒力F 水平向右拉棒运动⑴.电路特点:金属棒ab 切割磁感线,产生感应电动势相当于电源,b 为电源正极。
当ab 棒速度为v 时,其产 生感应电动势E =BLv 。
⑵.ab 棒的受力及运动情况:棒ab 在恒力F 作用下向 右加速运动,切割磁感线,产生感应电动势,并形成感应电 流,电流方向由a →b ,从而使ab 棒受到向左的安培力F 安, 对ab 棒进行受力分析如图2所示:竖直方向:重力G 和支持力N 平衡。
高中物理 电磁感应中的导轨上的导体棒问题
电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。
解决 电磁感应中的导轨上的导体棒问题 ,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。
下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。
想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。
一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。
(一)含电源闭合电路的导体棒问题例 1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒 ab ,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。
当闭合电键后,求金属棒可达到的最大速度。
图 1分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。
解析:闭合电键后,金属棒在安培力的作用下向右运动。
当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。
但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。
金属板速度最大时,有解得(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例 2、 如图 2,光滑导体棒 bc固定在竖直放置的足够长的平行金属导轨上,构成框架 abcd ,其中 bc棒电阻为R,其余电阻不计。
一质量为m且不计电阻的导体棒 ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。
6电磁感应的动力学和能量问题
D.带电微粒不可能先向 N 板运动后向M 板运动电磁感应的动力学和能量问题知识点1电磁感应的动力学问题 当导体棒切割磁感线产生感应电流时,导体棒自身也受安培力,可知安培力大小与导体棒的运动状态有关,而根据牛顿运动定律,培力大小有关。
因此要把安培力与牛顿运动定律相结合。
知识点2电磁感应的能量问题C.金属棒ab 下滑过程中M 板电势高于N 板电势安培力做功的过程是其他能变为电能的过程。
。
若是纯电阻电 路,电能再全部变为热能。
一 W F 安=Q 热,一P F 安=卩热. 例1如图所示,光滑导轨倾斜放置,其下端连接一个灯泡, 当ab 棒下滑到稳定状态时,小灯泡获得的功率为 的功率变为2P o ,下列措施正确的是: 换一个电阻为原来一半的灯泡; 把磁感应强度 B 增为原来的2倍; 换一个质量为原来的 晅倍的金属棒;匀强磁场垂直于导线 所在平面, P o ,除灯泡外,其它电阻不计,要使灯泡 ) 72 倍; 、把导轨间距离增为原来的 练习1如图甲所示,abed 为导体做成的框架,其平面与水平面成 0角, bc 接触良好,整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度 变化情况如图乙所示(设图甲中 B 的方向为正方向)•在0〜t 1时间内导体棒PQ 始终静止, 下面判断正确的是( ) A. 导体棒 B. 导体棒 C. 导体棒 D. 导体棒PQ 中电流方向由 Q 至P PQ 受安培力方向沿框架向下 PQ 受安培力大小在增大 PQ 受安培力大小在减小 练习2如图所示,电阻艮b =0.1 Q 的导体 滑导线框向右做匀速运动线框中接有电阻 线框放在磁感应强度 B=0.1T 的匀强磁场中 导体棒PQ 与ad 、 B 随时间t 4S* ab 沿光R=0.4Q, ,磁 X X X X X X X X 场方向垂直于线框平面,导体的ab 长度l=0.4m, 运动速度v=10m/s.线框的电阻不计. (1) 电路abcd 中相当于电源的部分是 , 相当于电源的正极是 (2) 使导体ab 向右匀速运动所需的外力 F' = N, 方向_ (3) 电阻R 上消耗的功率 P = _____ W 例2拉力所做的功如图10,两根足够长光滑平行金属导轨 PP ‘ 倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的 两金属板M 、N 相连,板间距离足够大, 板间有一带电微粒, 金属棒ab 水平跨放在导轨上, 下滑过程中与导轨接触良好.现同时由静止释放带电微粒和金属棒ab ,则()A .金属棒ab 最终可能匀速下滑B.金属棒ab —直加速下滑导体棒的运动状态也和安练习1练习 如图所示,足够长的光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导轨所在平面向上(导轨和导线电阻不计),则垂直导轨的导体棒 ab 在下滑过程中() A. 导体棒 ab 中感应电流从a 流向b B. 导体棒 ab 受到的安培力方向平行斜面向上 C. 导体棒 ab 一定匀加速下滑D. 灯泡亮度一直保持不变0的斜面上,导轨下端接有电 例3如图5所示电路,两根光滑金属导轨平行放置在倾角为 阻R,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒 ab 质量 为m ,受到沿斜面向上且与金属棒垂直的恒力 F 的作用•金属棒沿导轨匀速下滑, 则它在下滑高度h 的过程中,以下说法正确的是 A •作用在金属棒上各力的合力做功为零 B •重力做的功等于系统产生的电能 C.金属棒克服安培力做的功等于电阻 R 上产生的焦耳热 D •金属棒克服恒力 F 做的功等于电阻 R 上产生的焦耳热 练习1如图Z10 — 1所示,在磁感应强度为 B 的匀强磁场中,有半径为 框架,OC 为一能绕0在框架上滑动的导体棒 0、C 之间连一个电阻 R, 的电阻均不计,若要使 OC 能以角速度 3匀速转动,则外力做功的功率是 X Y B 2 3 2r 4B 23 2r 4 貫 A. R B. 2R X B 23 2r 4B 23 2r 4C. 4RD. 8Rr 的光滑半圆形导体 导体框架与导体棒 ( )X …亠 XX A Q X XX 练习2竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所示,磁感应强度B=0.5 T,导体 杆ab 和cd 的长均为0.2 m,电阻均为0.1 Q ,所受重力均为0.1 N,现在用力向上推导体杆 ab,使之匀速上升(与导轨接触始终良好),此时cd 恰好静止不动,ab 上升时下列说法正确的 是( A. ab B. ab C. 在 D. 在 ) 。
电磁感应中的双导体棒和线框模型(解析版)-2024届新课标高中物理模型与方法
2024版新课标高中物理模型与方法电磁感应中的双导体棒和线框模型目录一.无外力等距双导体棒模型二.有外力等距双导体棒模型三.不等距导轨双导体棒模型四.线框模型一.无外力等距双导体棒模型【模型如图】1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后产生反电动势.2.电流特点:I =Blv 2−BLv 1R 1+R 2=Bl (v 2−v 1)R 1+R 2随着棒2的减速、棒1的加速,两棒的相对速度v 2−v 1变小,回路中电流也变小。
v 1=0时:电流最大,I =Blv 0R 1+R 2。
v 1=v 2时:电流 I =03.两棒的运动情况安培力大小:F 安=BIl =B 2L 2(v 2−v 1)R 1+R 2两棒的相对速度变小,感应电流变小,安培力变小.棒1做加速度变小的加速运动,棒2做加速度变小的减速运动,最终两棒具有共同速度。
4.两个规律(1)动量规律:两棒受到安培力大小相等方向相反,系统合外力为零,系统动量守恒.m 2v 0=(m 1+m 2)v 共(2)能量转化规律:系统机械能的减小量等于内能的增加量.(类似于完全非弹性碰撞)Q =12m 2v 20−12(m 1+m 2)v 2共两棒产生焦耳热之比:Q 1Q 2=R 1R 2;Q =Q 1+Q 25.几种变化:(1)初速度的提供方式不同(2)磁场方向与导轨不垂直(3)两棒都有初速度(两棒动量守恒吗?)(4)两棒位于不同磁场中(两棒动量守恒吗?)1(2023春·江西赣州·高三兴国平川中学校联考阶段练习)如图所示,MN 、PQ 是相距为0.5m 的两平行光滑金属轨道,倾斜轨道MC 、PD 分别与足够长的水平直轨道CN 、DQ 平滑相接。
水平轨道CN 、DQ 处于方向竖直向下、磁感应强度大小为B =1T 的匀强磁场中。
质量m =0.1kg 、电阻R =1Ω、长度L =0.5m 的导体棒a 静置在水平轨道上,与a 完全相同的导体棒b 从距水平轨道高度h =0.2m 的倾斜轨道上由静止释放,最后恰好不与a 相撞,运动过程中导体棒a 、b 始终与导轨垂直且接触良好,导轨电阻不计,重力加速度g 取10m/s 2。
电磁感应导体棒切割磁感线题型
电磁感应导体棒切割磁感线题型一、概述电磁感应是指导体内部电荷的运动状态发生改变时,会产生磁场,从而在导体周围形成磁感线。
当导体与磁场相对运动时,磁感线会被切割,产生感应电动势和感应电流。
这就是电磁感应现象。
二、导体棒切割磁感线题型在考试中,常见的关于电磁感应的题型之一就是导体棒切割磁感线题型。
这类题目通常给定一个导体棒在某个时间段内移动的速度和一个垂直于其运动方向的恒定磁场。
要求求出在该时间段内导体棒中所产生的感应电动势或者感应电流大小。
三、切割磁感线产生的电动势公式根据法拉第电磁感应定律,当导体棒与恒定磁场相对运动时,在其两端会产生一个由负极向正极流动的闭合回路中的电荷移动,从而形成一个环路。
根据欧姆定律,该回路中会有一定大小的电流I通过。
根据基尔霍夫第二定律,该回路中所产生的电动势E等于回路中电势差之和,即:E = ε - IR其中,ε表示感应电动势大小,I表示回路中的电流强度,R表示回路中的总电阻。
根据楞次定律,感应电动势的方向与导体棒运动方向垂直,并且遵循右手定则。
具体而言,当右手握住导体棒,并将拇指指向运动方向时,四指所指方向就是感应电动势的方向。
四、切割磁感线产生的感应电流公式当导体棒闭合成环路时,在环路中会有一定大小的电流通过。
根据欧姆定律,该环路中电流I等于环路中总电压V除以总电阻R:I = V/R其中,V等于由导体棒切割磁场所产生的感应电动势ε。
五、影响切割磁感线产生的感应电动势或者感应电流大小因素1. 磁场强度:磁场强度越大,则切割磁感线所产生的感应电动势或者感应电流越大。
2. 导体长度:导体长度越长,则切割磁感线所产生的感应电动势或者感应电流越大。
3. 导体速度:导体速度越快,则切割磁感线所产生的感应电动势或者感应电流越大。
4. 磁场方向:磁场方向与导体棒运动方向垂直时,切割磁感线所产生的感应电动势或者感应电流最大。
六、实际应用导体棒切割磁感线的现象在实际生活中有着广泛的应用。
电磁感应大题题型总结
电磁感应大题题型总结一、导体棒切割磁感线产生感应电动势类1. 单棒平动切割磁感线- 题目示例:- 如图所示,在一磁感应强度B = 0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h = 0.1m的平行金属导轨MN与PQ,导轨的电阻忽略不计。
在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L =0.2m,每米长电阻r = 2.5Ω/m的金属棒ab,金属棒与导轨正交,交点为c、d。
当金属棒以速度v = 4.0m/s向左做匀速运动时,求:- (1)金属棒ab中感应电动势的大小;- (2)通过金属棒ab的电流大小;- (3)金属棒ab两端的电压大小。
- 解析:- (1)根据E = BLv,这里L = h = 0.1m(有效切割长度),B = 0.5T,v = 4.0m/s,则E=Bh v = 0.5×0.1×4.0 = 0.2V。
- (2)金属棒的电阻R_ab=Lr = 0.2×2.5 = 0.5Ω。
电路总电阻R_总=R +R_ab=0.3+0.5 = 0.8Ω。
根据I=(E)/(R_总),可得I=(0.2)/(0.8)=0.25A。
- (3)金属棒ab两端的电压U = E - IR_ab=0.2 - 0.25×0.5 = 0.075V。
2. 双棒切割磁感线- 题目示例:- 如图所示,两根足够长的平行金属导轨固定在倾角θ = 30^∘的斜面上,导轨电阻不计,间距L = 0.4m。
导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B = 0.5T。
在区域Ⅰ中,将质量m_1=0.1kg,电阻R_1=0.1Ω的金属条ab放在导轨上,ab刚好不下滑。
然后,在区域Ⅱ中将质量m_2=0.4kg,电阻R_2=0.1Ω的光滑导体棒cd置于导轨上,由静止开始下滑。
高考物理全真复习- 导体棒切割磁感线问题分类解析
导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。
解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。
导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。
一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。
例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。
导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s向左做匀速运动时,试求:图1(1)电阻R 中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab 两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图2所示。
在闭合回路中,金属棒cd 部分相当于电源,内阻r cd =hr ,电动势E cd =Bhv 。
图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F 安=BIh =0.02N 。
(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应中的导体棒问题
电磁感应中的导轨上的导体棒问题是历年高考的考点。
该类问题是力学和电学的综合问题,通过它可以考查考生综合运用知识的能力。
解滑轨上导体棒的运动问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。
一、滑轨上只有一根导体棒的问题
滑轨上只有一个导体棒的问题,分三类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。
第三种是含有电容器的问题。
(一)含电源闭合电路的导体棒问题
例1 如图1所示,水平放置的光滑导轨MN 、PQ 上放有长为L 、电阻为R 、质量为m 的金属棒ab ,导轨左端接有内阻不计、电动势为E 的电源组成回路,整个装置放在竖直向上的匀强磁场B 中,导轨电阻不计且足够长,并与电键S 串联。
当闭合电键后,求金属棒可达到的最大速度。
(二)闭合电路中的导体棒在安培力之外的力作用下的问题 1. 导体棒在外力作用下从静止运动问题
例2 如图所示,倾角θ=30º、宽度L =1m 的足够长的“U ”形平行光滑金属导轨固定在磁感应强度B =1T ,范围充分大的匀强磁场中,磁场方向垂直于斜面向下。
用平行于轨道的牵引力拉一根质量m =0.2㎏、电阻R =1Ω放在导轨上的金属棒a b ,使之由静止沿轨道向上移动,牵引力做功的功率恒为6W ,当金属棒移动2.8m 时,获得稳定速度,在此过程中金属棒产生的热量为5.8J ,不计导轨电阻及一切摩擦,取g =10m/s 2。
求:(1)金属棒达到稳定时速度是多大?
(2)金属棒从静止达到稳定速度时所需的时间多长?
2. 外力作用下有初速问题
例3 如图4所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L ,右端接有电阻为R ,磁感应强度为B ,一根质量为m 、电阻不计的金属棒受到外力冲量后,以的初速度沿框架向左运动,棒与框架的动摩擦因数为,测得棒在整个运动过程中,通过任一截面的电量为q ,求:(1)棒能运动的距离?(2)R 上产生的热量?
(三)含有电容器的问题
例4 【2013新课标 25】(19分)如图.两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。
导轨上端接有一平行板电容器,电容为c 。
导轨处于匀强磁场中,磁感应强度大小为B .方向垂直于导轨平面。
在导轨上放置质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。
已知金属棒与导轨之间的动摩擦因数为µ,重力加速度大小为g 。
忽略所有电阻。
让金属棒从导轨上端由静止开始下滑,求(1)电容器极扳上积累的电荷量与金属棒速度大小的关系:(2)金属转的速度大小随时间变化的关系。
例4 两根相距为L 的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面。
质量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R 。
整个装置处于磁感应强度大小为B ,方向竖直向上的匀强磁场中。
当ab 杆在平行于水平导轨的拉力F 作用下以速度V 1沿导轨匀速运动时,cd 杆也正好以速度V 2向下匀速运动。
重力加速度为g 。
以下说法正确的是
A.ab 杆所受拉力F 的大小为μmg +R
V L B 21
22
B.cd 杆所受摩擦力为零
C.路中的电流强度为
R
V V BL 2)
(21+
D.μ与V 1大小的关系为μ=1
222V L B Rmg
例5 如图所示,两根足够长、电阻不计、间距为d 的光滑平行金属导轨,其所在平面与水平面夹角为θ,导轨平面内的矩形区域abcd 内存在有界匀强磁场,磁感应强度大小b 方向垂直于斜面向上,ab 与cd 之间相距为L0金属杆甲、乙的阻值相同,质量均为m,甲杆在磁场区域的上边界ab 处,乙杆在甲杆上方与甲相距L 处,甲、乙两杆都与导轨垂直。
静止释放两杆的同时,在甲杆上施加一个垂直于杆平行于导轨的外力F ,使甲杆在有磁场的矩形区域内向下做匀加速直线运动,加速度大小甲离开磁场时撤去F ,乙杆进入磁场后恰好做匀速运动,然后离开磁场。
(1 )求每根金属杆的电阻R 是多大?
(2 )从释放金属杆开始计时,求外力F 随时间t 的变化关系式?并说明F 的方向。
(3 )若整个过程中,乙金属杆共产生热量Q ,求外力F 对甲金属杆做的功W 是多少?
三、电磁驱动问题
例6 如图所示,彼此平行的长直金属导轨倾斜放置,间距为L=2m 、倾角为θ=370,导轨下端接有阻值为R=2Ω的电阻,质量为m=0.2kg 的导体棒垂直跨接在导轨上并保持静止。
导轨和导体棒的电阻均不计,且接触良好。
现导轨所在的平面上有一矩形区域内存在着垂直导轨平面向上的匀强磁场,磁感应强度大小为B =0.5T 。
开始时,导体棒静止于磁场区域的上端,当磁场以速度v 1 =5m/s 匀速沿倾斜导轨向上移动时,导体棒随之开始运动后受到大小恒为f=1.2N 的滑动摩擦阻力作用,当棒达到稳定速度时,导体棒仍处于磁场区域内,已知:sin370=0.6,cos370=0.8,g=10m/s 2。
问: (1)为使导体棒能随磁场运动,最大静摩擦阻力不能超过多少? (2)导体棒所达到的恒定速度v 2多大? (3)导体棒在磁场区域内以恒定速度运动时,电路中消耗的电功率和维持磁场匀速运动的外力功率各为多大?
例7 磁悬浮列车是通过周期性地变换磁极方向而获取推进动力的列车,磁悬浮列车的运行原理可简化为如图所示的模型。
在水平面上,两根平行直导轨问有竖直方向且等距离分布的匀强磁场B 1和B 2,导轨上有金属框abcd ,其宽度与每一个方向的磁场宽度相同,当匀强磁场B 1和B 2同时沿直导轨向右运动时,金属框也会沿直导轨运动。
设直导轨间距为L ,B 1=B 2=B ,金属框的电阻为R ,金属框运动时受到的阻力恒为f 。
(1)若两磁场同时以速度υ向右做匀速直线运动,则金属框运动的最大速度是多少? (2)若两磁场同时以加速度a 向右做初速度为零的匀加速直线运动,则金属框要经过多少时间开始运动?经过足够长时间后,金属框也要做匀加速直线运动,则其加速度有多大?。