中考数学圆的解题方法归纳总结与例题分析报告

合集下载

2012中考数学复习(47):圆与圆(二)

2012中考数学复习(47):圆与圆(二)

中考数学复习(47):圆与圆(二)知识考点:1、掌握两圆的内外公切线长的性质和求切线长的方法(转化为解直角三角形)。

2、掌握有关两圆的内、外公切线的基本图形,以及这类问题添加辅助线的方法,会结合圆的切线的性质解决有关两圆公切线的问题。

精典例题:【例1】如图,⊙O 1与⊙O 2外切于P ,AB 是两圆的外公切线,切点为A 、B ,我们称△PAB 为切点三角形,切点三角形具有许多性质,现总结如下:(1)△PAB 是直角三角形,并且∠APB =900; (2)△PAB 的外接圆与连心线O 1O 2相切;(3)以O 1O 2为直径的圆与Rt △PAB 的斜边AB 相切; (4)斜边AB 是两圆直径的比例中项;(5)若⊙O 1、⊙O 2的半径为1R 、2R ,则PA ∶PB ∶AB =1R ∶2R ∶21R R +; (6)内公切线PC 平分斜边AB ; (7)△CO 1O 2为直角三角形。

这些结论虽然在证题时仍需证明,但有了这些基本结论作基础,可帮助你迅速找到解题思路,可以提高解题速度,下面用一个具体的例子来说明。

例1图1例1图2F如图2,⊙A 和⊙B 外切于P ,CD 为两圆的外公切线,C 、D 分别为切点,PT 为内公切线,PT 与CD 相交于点T ,延长CP 、DP 分别与两圆相交于点E 、F ,又⊙A 的半径为9,⊙B 的半径为4。

(1)求PT 的长;(2)求证:PF PE PD PC ⋅=⋅;(3)试在图中找出是线段PA 和PB 比例中项的线段,并加以证明。

分析:图中的基本图形是切点三角形,易证T 为CD 的中点,∠CPD =900,PT 即为外公切线长的一半,CF 、DE 分别为两圆直径,且互相平行,问题就解决了。

略解:(1)作BG ⊥AC 于G ,则CD =BG =12)49()49(22=--+∴PT =CT =TD =21CD =6 证明:(2)PT =21CD ,∴∠CPD =900 ∴CF 、DE 分别是⊙A 和⊙B 的直径又∵CD 切两圆于C 、D ,∴FC ⊥CD ,ED ⊥CD∴CF ∥DE ,∴PDPFPE CP =,∴PF PE PD PC ⋅=⋅ (3)图中是PA 和PB 比例中项的线段有PT 、CT 、DT (证明略)【例2】如图,⊙O 和⊙O '内切于点B ,⊙O '经过O ,⊙O 的弦AE 切⊙O '于点C ,AB 交⊙O '于D 。

中考数学知识总结之隐圆解题模型归纳总结

中考数学知识总结之隐圆解题模型归纳总结

中考数学知识总结之隐圆解题模型归纳总结一、引言隐圆模型是初中数学中的一个重要题型,它涉及到圆的性质、直线与圆的位置关系等多个知识点。

这类题目具有一定的难度,需要学生具备较强的逻辑思维能力和空间想象能力。

本文将对初中数学中的隐圆模型题型进行归纳总结,以帮助学生更好地掌握这一知识点。

二、隐圆模型的定义与性质隐圆模型是指在一个平面图形中,通过一些已知条件,可以推断出一个或多个圆的存在,但这些圆在题目中并未直接给出。

隐圆模型具有以下性质:1.圆的半径、圆心位置与已知条件有关;2.可以通过已知条件确定圆的方程;3.直线与圆的位置关系可以帮助判断隐圆的存在。

三、隐圆模型题型的分类与解题方法1.单隐圆模型题目中只涉及到一个隐圆的情况。

解题方法:首先根据已知条件推断出隐圆的存在,然后利用圆的性质确定圆的方程,最后结合题目要求求解。

1.多隐圆模型题目中涉及到多个隐圆的情况。

解题方法:首先分别推断出各个隐圆的存在,然后根据直线与圆的位置关系,确定各个隐圆之间的关系,最后联立方程求解。

四、典型例题解析1.单隐圆模型例题:已知三角形ABC中,AB=AC,且BC边上的中线AD垂直于BC。

求证:三角形ABC的外接圆半径等于AD的一半。

解析:首先根据已知条件推断出三角形ABC的外接圆存在,然后利用圆的性质和已知条件确定圆的方程,最后求解得出结论。

1.多隐圆模型例题:已知平面内两个不相交的圆O1和O2,以及两条直线L1和L2。

L1与O1相切,L2与O2相切,且L1与L2平行。

求证:在L1与L2之间存在一个与两圆都相切的隐圆。

解析:首先根据已知条件推断出隐圆的存在,然后利用直线与圆的位置关系确定各个圆的关系和隐圆的方程,最后结合题目要求证明隐圆的存在并求解相关参数。

五、总结与建议本文通过对初中数学隐圆模型题型的归纳总结,介绍了隐圆模型的定义、性质、分类以及解题方法。

希望学生在学习和练习过程中,能够充分理解隐圆模型的本质,掌握解题方法和技巧,不断提高自己的解题能力和思维水平。

“中考数学专题复习--圆来如此简单”经典几何模型之隐圆专题

“中考数学专题复习--圆来如此简单”经典几何模型之隐圆专题

“中考数学专题复习--圆来如此简单”经典几何模型之隐圆专题(含答案)(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--经典几何模型之隐圆”“圆来如此简单”一.名称由来在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。

正所谓:有“圆”千里来相会,无“圆”对面不相逢。

“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。

一旦“圆”形毕露,则答案手到擒来!二.模型建立【模型一:定弦定角】【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】【模型三:直角所对的是直径】【模型四:四点共圆】三.模型基本类型图形解读【模型一:定弦定角的“前世今生”】【模型二:动点到定点定长】【模型三:直角所对的是直径】【模型四:四点共圆】四.“隐圆”破解策略牢记口诀:定点定长走圆周,定线定角跑双弧。

直角必有外接圆,对角互补也共圆。

五.“隐圆”题型知识储备3六.“隐圆”典型例题 【模型一:定弦定角】1.(2017 威海)如图 1,△ABC 为等边三角形,AB =2,若 P 为△ABC 内一动点,且满足 ∠PAB =∠ACP ,则线段 P B长度的最小值为_。

简答:因为∠PAB =∠PCA ,∠PAB +∠PAC =60°,所以∠PAC +∠PCA =60°,即∠APC =120°。

因为 A C 定长、∠APC =120°定角,故满足“定弦定角模型”,P 在圆上,圆周角∠APC =120°,通过简单推导可知圆心角∠AOC =60°,故以 AC 为边向下作等边△AOC ,以 O 为圆心,OA 为半径作⊙O ,P 在⊙O 上。

当 B 、P 、O 三点共线时,BP 最短(知识储备一:点圆距离),此时 BP =2 -22. 如图 1 所示,边长为 2 的等边△ABC 的原点 A 在 x 轴的正半轴上移动,∠BOD =30°,顶点 A 在射线 OD 上移动,则顶点 C 到原点 O 的最大距离为 。

圆中考常考题型

圆中考常考题型

圆中考常考题型摘要:1.圆的概述2.圆的性质3.常考题型及解题方法4.总结与建议正文:一、圆的概述圆是几何学中的一种基本图形,它是由一条闭合的曲线组成,其上所有点到某一固定点的距离相等。

这个固定点被称为圆心,距离被称为半径。

圆可以根据其半径和圆心的位置进行分类,如以圆心为中心,半径为R 的圆可以表示为(x-a)+(y-b)=R。

二、圆的性质圆具有许多重要的性质,如:1.圆的周长:C=2πR,其中R 为半径,π为圆周率。

2.圆的面积:S=πR。

3.圆的切线:与圆相切且与圆只有一个公共点的直线称为圆的切线。

4.圆的割线:过圆上一点且与圆相交的直线称为圆的割线。

5.圆的同心圆:与已知圆有共同圆心的圆称为同心圆。

6.圆的公切线:与两个圆都相切的直线称为公切线。

三、常考题型及解题方法在中考数学中,圆的题型丰富多样,主要包括以下几种:1.求圆的周长、面积及半径解法:根据圆的性质,直接套用公式进行计算。

2.求圆的切线、割线长度解法:利用切线、割线与半径的关系进行计算。

3.判断两圆的位置关系解法:根据两圆的半径大小和圆心距进行判断,如外离、外切、相交、内切、内含等。

4.求圆与直线的交点解法:利用解析几何中的公式,如点到直线距离公式、直线与圆的位置关系等。

5.圆与圆的位置关系及应用解法:根据两圆的位置关系,利用公式进行计算,如求公共弦、公共切线等。

四、总结与建议对于圆的题型,我们要熟练掌握圆的性质和公式,并能灵活运用到实际问题中。

在做题过程中,要注重分析题目,找到问题的关键点,运用相应的知识点进行解答。

中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)【专题分析】圆在中考中的常见考点有圆的性质及定理,圆周角定理及其推论,圆心角、圆周角、弧、弦之间的“等推”关系;切线的判定,切线的性质,切线长定理,弧长及扇形面积的计算,求阴影部分的面积等.对圆的考查在中考中以客观题为主,考查题型多样,关于圆的基本性质一般以选择题或填空题的形式进行考查,切线的判定等综合性强的问题一般以解答题的形式进行考查;圆在中考中的比重约为10%~15%.【解题方法】解决圆的有关问题常用的数学思想就是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法,设参数法等.【知识结构】【典例精选】如图,⊙O的半径是3,点P是弦AB延长线上的一点,连结OP,若OP =4,∠APO=30°,则弦AB的长为( )A.2 5 B. 5C.213 D. 13【思路点拨】先过点O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,进而得出AB的值.【解析】如图,过点O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=4×sin 30°=2.∵OB=3,∴BC=OB2-OC2=32-22=5,∴AB=2 5.故选A.答案:A规律方法:利用垂径定理进行证明或计算,通常是在半径、圆心距和弦的一半所组成的直角三角形中,利用勾股定理构建方程求出未知线段的长.如图,从一块直径是8 m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )A.4 2 m B.5 m C. 30 m D.215 m【思路点拨】首先连结AO,求出AB,然后求出扇形的弧长BC,进而求出扇形围成的圆锥的底面半径,最后应用勾股定理求出圆锥的高即可.【解析】如图,连结AO,∵AB=AC,点O是BC的中点,∴AO⊥BC.又∵∠BAC=90°,∴∠ABO=∠ACO=45°,∴AB=2OB=2×(8÷2)=42(m).∴l BC=90π×42180=22π(m).∴将剪下的扇形围成的圆锥形的半径是22π÷2π=2(m).∴圆锥的高是422-22=30(m).故选C.答案:C规律方法:解决圆锥的相关问题,可以利用圆的周长等于扇形的弧长建立方程,利用方程解决问题.如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心、ED 为半径作半圆,交A,B所在的直线于M,N两点,分别以MD,ND为直径作半圆,则阴影部分的面积为( )A.9 5 B.18 5 C.36 5 D.72 5【思路点拨】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN 的面积-大半圆的面积,MN为半圆的直径,从而可知∠MDN=90°,在Rt△MDN 中,由勾股定理可知MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AED中,ED=AD2+AE2=62+32=35,所以MN=65,然后利用三角形的面积公式求解即可.【解析】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积.∵MN为大半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积和=大半圆的面积.∴阴影部分的面积=△DMN 的面积.在Rt△AED中,ED=AD2+AE2=62+32=35,∴阴影部分的面积=△DMN的面积=12MN·AD=12×65×6=18 5.故选B.答案:B规律方法:求阴影部分的面积,一般是将所求阴影部分进行分割组合,转化为规则图形的和或差.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连结CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【思路点拨】(1)根据圆周角定理可得∠ADC=90°,根据直角三角形的性质可得∠A+∠ACD=90°,再由∠DCB+∠ACD=90°,可得∠A=∠BCD;(2)当点M是BC的中点时,直线DM与⊙O相切.连结DO,证明∠ODM =90°,进而证得直线DM与⊙O相切.【自主解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解:当点M是BC的中点时,直线DM与⊙O相切.理由如下:如图,连结DO,∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.规律方法:在判定一条直线是圆的切线时,如果这条直线和圆有公共点,常作出经过公共点的半径,证明这条直线与经过公共点的半径垂直,概括为“连半径,证垂直,得切线”.【能力评估检测】一、选择题1.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( B )A.40° B.50° C.60° D.20°2.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( C )A. 3 B.3 C.2 3 D.43.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( A )A.25° B.50° C.60° D.30°4.如图,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP 的度数为( B )A.15° B.30° C.60° D.90°5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心、AB长为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( D )A.6 B.7 C.8 D.96.如图,已知AB为⊙O的直径,AD切⊙O于点A,EC=CB.则下列结论中不一定正确的是( D )A.BA⊥DA B.OC∥AEC.∠COE=2∠CAE D.OD⊥AC7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B为圆心的弧与AD,DC相切,则阴影部分的面积是( D )A.23-33π B.43-33πC.43-π D.23-π8.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( B )A .13π cmB .14π cmC .15π cmD .16π cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D .2 5 解:如图,连接OE ,OF ,ON ,OG .∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°.∴四边形AFOE ,FBGO 都是正方形.∴AF =BF =AE =BG =2.∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG . ∴CM =5-2-MN =3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=(3-MN )2+42.∴NM =43.∴DM =3+43=133.故选A. 答案:A二、填空题10.在平面直角坐标系中,O 为坐标原点,则直线y =x +2与以O 点为圆心,1为半径的圆的位置关系为 相切.11.如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =40° .12.如图,正三角形ABC 的边长为2,点A ,B 在半径为2的圆上,点C 在圆内,将正三角形ABC 绕点A 逆时针旋转,当点C 第一次落在圆上时,点C 运动的路线长为 .【解析】设点C 落在圆上的点为C ′,连结OA ,OB ,OC ′,则OA =OB = 2.又∵AB =2,∴OA 2+OB 2=AB 2,∴∠AOB =90°,∴∠OAB =45°,同理∠OAC ′=45°,∴∠BAC ′=90°.∵△ABC 为等边三角形,∴∠CAB =60°,∴∠CAC ′=30°,∴点C 运动的路线长为30π×2180=π3.故答案为π3. 答案:π3 13.如图,在△ABC 中,∠BAC =90°,AB =5 cm ,AC =2 cm ,将△ABC 绕顶点C按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中的阴影部分)的面积为 cm 2.【解析】在Rt△ABC 中,BC =AC 2+AB 2=29(cm),S 扇形BCB 1=45π×292360=29π8(cm 2),S △CB 1A 1=12×5×2=5(cm 2),S 扇形CAA 1=45π×22360=π2(cm 2),故S 阴影部分=S 扇形BCB 1+S △CB 1A 1-S △ABC -S 扇形CAA 1=29π8+5-5-π2=25π8(cm 2). 答案:25π8三、解答题14.如图,AB 是⊙O 的直径,BC 切⊙O于点B ,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .求证:(1)PE =PD ;(2)AC ·PD =AP ·BC .证明:(1)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴EP BC =AE AB .又∵AD ∥OC ,∴∠DAE =∠COB ,∴△AED ∽△OBC ,∴ED BC =AE OB =AE 12AB =2AE AB .∴ED =2EP ,∴PE =PD . (2)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴AP AC =PE BC .∵PE =PD ,∴AP AC =PD BC,∴AC ·PD =AP ·BC . 15.如图,在△OAB 中,OA =OB =10,∠AOB =80°,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′,求证:AP =BP ′;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.(1)证明:如图,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′.又∵OA=OB,OP=OP′,∴△AOP≌△BOP′.∴AP=BP′.(2)解:如图,连结OT,过点T作TH⊥OA于点H.∵AT与MN相切,∴∠ATO=90°.∴AT=OA2-OT2=102-62=8.∵12OA·TH=12AT·OT,即12×10×TH=12×8×6,∴TH=245,即点T到OA的距离为245.(3)10°,170°.16.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).解:(1)直线BC与⊙O相切.理由如下:如图,连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.∴直线BC与⊙O相切.(2)①设OA=OD=r,∵在Rt△BDO中,∠B=30°,∴OB=2r,∴在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②∵在Rt△ODB中,∠B=30°,∴∠BOD=60°,∴S扇形ODE=60π×22360=23π,∴阴影部分面积为S△BOD-S扇形ODE=23-23π.11。

天津中考数学圆的题的解题技巧

天津中考数学圆的题的解题技巧

解题技巧一:掌握圆的基本概念1. 圆的定义:平面上与一个定点的距离等于r的全部点的集合,这个定点叫做圆心,距离r叫做半径。

2. 圆的元素:圆心、半径、直径、弧、弦、切线、切点等。

3. 圆的公式:圆的周长C=2πr,圆的面积S=πr²。

4. 圆的相关定理:相交弦定理、相交弧定理等。

解题技巧二:掌握圆的性质1. 圆的性质:相等弧对应的圆周角相等,相等弦对应的圆周角相等,等腰三角形的高与底的积等于弦的二倍等。

2. 圆的判定方法:判定两个角是否为圆周角的方法有:是否在同一个圆内;是否相等;是否有公共点。

判定两条线段是否是圆的切线的条件是:两条直线是否有公共点;是否存在一个等于半径长的线段。

3. 圆的位似性质:圆内接四边形的三对角顶点角之和为360°,圆外接四边形的对角之和为360°。

解题技巧三:掌握圆的作图方法1. 画圆的基本步骤:确定圆心、半径;用圆规或者圆规尺作出圆心;用圆规或者定长圆弧尺作出半径。

2. 圆的相关作图方法:圆的切线、圆的切点、平行于已知直线的直线上某点到圆的切点等。

解题技巧四:掌握圆的相关计算方法1. 计算圆的周长和面积2. 计算圆的相关角度3. 计算圆内接四边形或者外接四边形的顶点位置、角度等。

总结:天津中考数学中关于圆的题目难度适中,主要考核考生对圆的基本概念和性质的掌握程度,以及对圆的相关计算和作图方法的应用能力。

考生在备考过程中需加强对圆的定义、性质、公式的记忆和理解,掌握圆的相关计算和作图方法,并通过大量的练习题来提高解题能力。

通过巩固基础知识、强化实际应用能力,考生们一定能够在中考数学中圆的题目中取得好成绩。

解题技巧五:解题方法与实例分析在解答天津中考数学中关于圆的题目时,考生可以采用以下方法进行解题:1. 圆的基本概念题目当遇到关于圆的基本概念的题目时,首先需要理清题目中圆的定义、元素以及相关公式和定理,然后根据所给定的条件,应用数学知识进行分析和推理,得出结论。

中考数学常见问题汇总及解决方案整理

中考数学常见问题汇总及解决方案整理

中考数学常见问题汇总及解决方案整理自信,是成功的一半;平澹,是成功的驿站;努力,是成功的积淀;祝福,是成功的先决条件。

自信的你,定会在中考中摘取桂冠。

下面是小编给大家带来的中考数学常见问题汇总及解决方案,欢迎大家阅读参考,我们一起来看看吧!初中数学要学会解题套路老师一讲就明白,自己一做就不会我们先来说说“老师一讲马上就明白,自己一做就不会”的情况。

该怎么办呢?解题关键:要学会找题目的套路,一是从题眼抓做题点,二是总结题目类型。

这句话你应该也听过很多遍了吧,可你依旧不明白该怎么入手。

老师举个例子,你就一目了然了。

下面是关于圆的题目。

【例1】先不用看题,直接看图,当我们看到这个图的时候如果你总结过,你会发现①△ABC和△DBE相似;②∠ABC和∠DBE相等,代表着这两个角的三角函数值是相等的。

那么这就已经给我们两种思路了。

再看题目,求DE的长,无论是用①相似三角形的相似比来求,还是用②的三角函数值相等都可以。

再看第二问,问题是求一个三角形是等腰三角形,那么对于该问的考法有①腰底不定,分类讨论哪条线为底或腰,②三角形是等腰三角形,需要证角相等再证腰相等。

如果你做求等腰三角形的题目时分析过解题过程,这两个考法是你看一眼立马就闪现在脑子里的东西。

再看条件,题目告诉我们EF是圆O的切线,也就代表着OE垂直于EF,不管你有没有想法,都可以去考虑连接OE了。

题眼说了句是切线,就要想到连接圆心和切点了,不然告诉你这句话还有什么用呢!听题眼的话。

在这道题目里,我们分析了题眼和解题过程,总结了题眼的隐含条件,总结了问题的考法,这个过程就是我们题型总结的过程。

总结了一道题,当你看到类似的题目时,自然知道怎么做了。

再来看我们的第二题。

第一问,求相切,自然你知道是求DF⊥AB,怎么求呢?题目说了BD是平分线,对于平分线来说有两个特点:①角相等;②角平分线上点到角的两边距离相等;这两个条件都是题目中“BD平分∠ABC”告诉我们的。

中考圆的七大解题模型

中考圆的七大解题模型

中考圆的七大解题模型中考圆的七大解题模型是指在中考数学中与圆相关的常见问题的解题方法。

这其中包括以下七种解题模型:一、圆的性质运用模型:在解题过程中,我们可以利用圆的性质进行分析和计算。

例如,圆的周长计算公式2πr、面积计算公式πr²等,可以帮助我们解决与周长、面积相关的问题。

二、切线与弦模型:切线与弦是圆中常见的线段,可以利用它们之间的关系进行问题的解答。

比如,利用切线与半径垂直的性质,可以解决与切线长度、切点的位置等问题。

三、正多边形内接圆模型:正多边形内接圆是指一个正多边形内切于一个圆。

利用正多边形内接圆的一些性质,我们可以解决一些和正多边形和圆有关的问题,如多边形的边长、圆的半径等。

四、弦长定理模型:弦长定理是指在一个圆上,两条弦的乘积等于它们分别对应的弦分割的弧段的乘积。

通过运用弦长定理,我们可以解决与圆弧长、圆心角度、弦长等问题。

五、割线模型:割线是指一条直线穿过圆内部,并且与圆的边界有两个交点。

利用割线与弦之间的关系,我们可以解决与割线长、弦长、切点位置等问题。

六、相切与相交模型:当两个圆相切或相交时,它们之间会存在一些特殊的关系。

利用这些关系,我们可以解决与两个圆的半径、圆心、切点、相交弦等问题。

七、轨迹模型:轨迹是指在一定条件下,一个点、一条线或一个图形所组成的曲线或曲面。

利用轨迹的特点,我们可以解决与圆的半径、圆心位置、点的位置等问题。

通过掌握这七大解题模型,我们可以更加方便地解决中考数学中与圆相关的各种问题,提高解题的效率和准确性。

同时,也能够培养我们对于几何形体的认识和推理能力。

中考数学圆的重心和垂心难题讲解

中考数学圆的重心和垂心难题讲解

在中考数学中,圆的重心和垂心是比较常见但难度较大的题目。

通过深入的讲解和解析,我们可以更好地理解这一主题的内涵和求解方法。

一、圆的重心1. 圆的重心概念圆的重心指的是圆内任意一点到圆上任意一点的距离的平方的和达到最小值时,这个点的位置。

通俗地讲,重心是圆内到圆上各点距离平方的和的最小值点。

2. 圆的重心求解当圆心坐标为(a, b),半径为r时,圆的重心坐标可表示为(Gx, Gy)=(a, b)。

也就是说,圆的重心坐标与圆心重合。

3. 圆的重心难题示例例题:已知圆心为O(-3, 4),半径为5,求圆的重心坐标。

解析:根据圆的特性可得,圆心坐标即为重心坐标,所以重心坐标为(-3, 4)。

这里是一个简单的例题,仅用于帮助理解圆的重心的概念。

二、圆的垂心1. 圆的垂心概念圆的垂心是指在直角三角形中,垂直于各边的三条高线的交点。

在圆内部,垂心是指三条垂直于圆上某点切线的交点。

2. 圆的垂心求解对于一个直角三角形,垂心是三条高的交点;对于一个圆,垂心是三条切线的交点。

垂心的求解需要根据具体的题目和情况来进行分析和计算。

3. 圆的垂心难题示例例题:已知圆心为A(2, 3),半径为4,点P在圆上,求AP的垂直平分线方程。

解析:首先求出AP的中点坐标M,然后根据斜率的性质求出垂直平分线的方程。

这是一个典型的圆的垂心难题,需要利用多种数学知识和方法来求解。

总结回顾:通过以上的深入讲解和示例分析,我们对圆的重心和垂心有了更清晰的理解。

重心是圆内到圆上各点距离平方的和的最小值点,而垂心是直角三角形或圆内三条切线的交点。

在实际求解中,需要运用到圆的性质、坐标系和几何知识等多方面的内容。

对于学生来说,需要通过大量的练习和实际应用来加深理解和掌握这一主题。

个人观点和理解:在学习和教学圆的重心和垂心时,应该注重学生对基本原理和概念的理解,同时也要引导他们探索解题的方法和思路。

通过合理的示例讲解和练习,可以帮助学生更好地掌握这一知识点,并在解题中灵活运用。

圆的运用问题(精讲)-2019年中考数学高频考点突破全攻略(解析版)

圆的运用问题(精讲)-2019年中考数学高频考点突破全攻略(解析版)

【课标解读】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系的证明会有所下降趋;势,不会有太复杂的大题出现.2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放、探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【解题策略】1.在弄清题意的基础上把复杂图形分解为几个基本图形进行思考,并适当添加辅助线补全或构造基本图形,在直径或有切线的条件下,构造直角三角形或利用圆内角的关系构造相似三角形,从而使已知和未知之间建立联系.2. 掌握常规的与圆有关的问题的证明方法与技巧(如证角相等、证线段相等、证线段垂直等),掌握与圆有关的图形(如圆外切三角形、圆内接三角形、圆内接四边形、圆内接正n边形等)的特殊性质与计算公式,对于求阴影部分的面积有以下几种解决方法:方法- - :加减法,将阴影部分变成几个规则图形的和或差;方法二:割补法,将阴影部分分割成几部分,然后将它们补在某些合适的地方;方法三:覆盖法,几个规则图形覆盖在一起,重叠部分就是阴影部分。

3.注意数学思想方法的运用,如转化思想,通过与圆有关的直角三角形的勾股定理把证明问题转化为方程计算问题等,熟悉并掌握这类问题的常用解题方法和解题策略。

【考点深剖】★考点一圆与特殊三角形的综合【典例1】(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,★考点二圆与特殊四边形的综合【典例2】(2018·江苏镇江·8分)如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆心,PA为半径的⊙P与对角线AC交于A,E两点.(1)如图2,当⊙P与边CD相切于点F时,求AP的长;(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P 与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围.【解答】解:(1)如图2所示,连接PF,在Rt△ABC中,由勾股定理得:AC==8,设AP=x,则DP=10﹣x,PF=x,∵⊙P与边CD相切于点F,∴PF⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∵AB⊥AC,∴AC⊥CD,∴AC∥PF,∴△DPF∽△DAC,∴,∴,∴x=,AP=;故答案为:<AP<或AP=5.学科&网★考点三圆与相似三角形的综合【典例3】(2018·辽宁大连·10分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.解:(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;★考点四圆与锐角三角函数的综合【典例4】(2018•莱芜•10分)如图,已知A.B是⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥AB交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为的中点,F为⊙O上一点,EF交AB于G,若tan∠AFE=,BE=BG,EG=3,求⊙O的半径.【分析】(1)连接OC,如图,先证明∠OCB=∠CBD得到OC∥AD,再利用CD⊥AB得到OC⊥CD,然后根据切线的判定定理得到结论;(2)解:连接OE交AB于H,如图,利用垂径定理得到OE⊥AB,再利用圆周角定理得到∠ABE=∠AFE,在Rt△BEH中利用正切可设EH=3x,BH=4x,则BE=5x,所以BG=BE=5x,GH=x,接着在Rt△EHG中利用勾股定理得到x2+(3x)2=(3)2,解方程得x=3,接下来设⊙O的半径为r,然后在Rt△OHB中利用勾股定理得到方程(r﹣9)2+122=r2,最后解关于r的方程即可.【解答】(1)证明:连接OC,如图,∵BC平分∠OBD,∴∠OBD=∠CBD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠CBD,∴OC∥AD,而CD⊥AB,∴OC⊥CD,∴CD是⊙O的切线;在Rt△EHG中,x2+(3x)2=(3)2,解得x=3,∴EH=9,BH=12,设⊙O的半径为r,则OH=r﹣9,在Rt△OHB中,(r﹣9)2+122=r2,解得r=,即⊙O的半径为.★考点五圆与函数的综合【典例5】(2018•大庆)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•=×,∵m>0,解得OD=,由直线与圆的位置关系可知<6,解得m<.故答案为:m<.★考点六有关圆计算的综合【典例6】(2018·云南省·9分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2易求S△AOC=×2×1=S扇形OAC==∴阴影部分面积为﹣。

中考数学圆知识点总结7篇

中考数学圆知识点总结7篇

中考数学圆知识点总结7篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点叫做圆心,定长叫做半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转不变性,即围绕圆心旋转任意角度后,得到的图形仍然与原图形重合。

二、圆的性质1. 圆的直径是最大的弦,弦是连接圆上两点的直线段,直径是特殊的弦。

2. 圆心到圆上各点的距离都等于半径,即圆的半径是圆的长度单位,它决定了圆的大小。

3. 圆的周长与直径的比值叫做圆周率,是一个重要的数学常数,约等于3.1415926。

4. 圆的面积等于π乘以半径的平方,即圆的面积随着半径的增大而增大。

三、圆与直线的关系1. 直线与圆有三种位置关系:相交、相切、相离。

相交是指直线与圆有两个不同的交点;相切是指直线与圆有一个切点;相离是指直线与圆没有交点。

2. 圆的切线垂直于过切点的半径,即切线与半径是垂直关系。

3. 圆的两条平行弦所对的圆心角相等,即圆心角的大小只与弦的位置有关,与弦的长度无关。

四、圆与圆的位置关系1. 两个圆的位置关系有五种:外离、外切、相交、内切、内含。

外离是指两个圆没有公共点;外切是指两个圆有一个公共点;相交是指两个圆有两个不同的公共点;内切是指两个圆有一个公共点且两圆的圆心在公共点的两侧;内含是指两个圆的圆心在同一个大圆的内部。

2. 两个圆的圆心距等于两圆半径之和或差,即两圆的位置关系可以通过计算圆心距来判断。

3. 两个相交的圆,它们的交点叫做共点,共点将两圆分成四段弧,每段弧叫做一拱。

五、圆的幂和极坐标1. 圆的幂是指一个点到一个圆的距离的平方,即该点到圆心的距离乘以它自身。

圆的幂是该点的极坐标系中的ρ值。

2. 极坐标系是一种在平面中表示位置的方法,它使用一个角度和一个距离来表示一个点。

在极坐标系中,圆的幂可以通过ρ值来计算。

3. 通过计算圆的幂和极坐标系中的角度值,我们可以确定一个点是否在某个圆上或某个圆外。

篇2一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

2024年中考数学总复习考点梳理第六章第二节与圆有关的位置关系

2024年中考数学总复习考点梳理第六章第二节与圆有关的位置关系

第二节 与圆有关的位置关系
返回目录
考情及趋势分析
类型 年份 题号 题型 分值 2021 24(2) 解答题(三) 3
考情分析 图形背景
/
解题方法 利用平行线证相切
切线的 2020 22(1) 解答题(二) 4 判定 2019 24(2) 解答题(三) 3 2018 24(2) 解答题(三) 3
切线的 2023 22(2) 解答题(三) 9 性质 2020 22(2) 解答题(二) 4
示意图
第二节 与圆有关的位置关系
考点 2 切线的性质及判定(6年7考)★重点
返回目录
直线和圆只有一个公共点,这时我们说这条直线和圆相 概念
切,这条直线叫做圆的切线,这个点叫做切点 性质 圆的切线_垂__直__于过切点的半径
1. 与圆只有一个交点的直线是圆的切线(定义); 2. 经过半径的外端并且垂直于这条半径的直线是圆的切 判定 线(定理); 3. 圆心到直线的距离等于半径的直线是圆的切线
(3)若BD=2,CD=4,则⊙O的半径为_3_;
(4)若tan
∠BAC=
1 2
,CD=4,则BD的长为_2_.
第2题图
第二节 与圆有关的位置关系
返回目录
3. [人教九上P99探究改编]如图,PA,PB是⊙O的切线,A,B 为切点,连接AB,OA,OB,PO,PO交⊙O于点C,交AB于点 D,∠OAB=30°. (1)∠APB的度数为_6_0_°_; (2)若OA=4,则OP的长为_8_.
1 教材改编题课前测 2 教材知识逐点过 3 教材原题到重难考法 4 广东近6年真题
第二节 与圆有关的位置关系
返回目录
广东近6年考情及趋势分析
命题点 与切线有关的证明与计算(6年7考) 课标要求 1.探索并了解点与圆的位置关系;(2022年版课标将“了解”调整为“掌握”) 2.了解直线和圆的位置关系,掌握切线的概念; 3.*探索并证明切线长定理:过圆外一点所画的圆的两条切线长相等; 4.*能用尺规作图:过圆外一点作圆的切线.(2022年版课标新增)

2024年中考数学总复习第一部分考点精讲第六单元圆第1课时与圆有关的性质

2024年中考数学总复习第一部分考点精讲第六单元圆第1课时与圆有关的性质

返回目录
名称
公式
中心角
360 正n边形的每个中心角θ为__n___
图例
正多边 形与圆
边心距
正n边形的边心距r=
R2
a 2
2
周长 面积
正n边形的周长l=na 1
正n边形的面积S=__2___rl(l为
正n边形的周长)
R:半径 r:边心距 a:边长 θ:中心角
第1课时 与圆有关的性质
一题串讲重难点
理及其推
_的__圆__心__角__的__一__半_____,
论(图③) 即∠BAC= 12∠BOC
图③
第1课时 与圆有关的性质
返回目录
1.____同__弧__或__等__弧__所__对__的__圆__周__角__相__等_____,即
∠BAC=∠BDC
推论 2.直径(或半圆)所对的圆周角是___直__角____,
返回目录
基础知识巩固
例1
如图,△ABC内接于⊙O,BC为⊙O的
直径,点D为劣弧 AC上一点,连接OD,BD.
(1)∠BAC=__9_0___°;
(2)若∠COD=70°,
则∠CBD=___3_5__°,
∠BDO=___3_5__°;
例1题图
第1课时 与圆有关的性质
(3)如图②,点A为 BD的中点,若∠ACB=20°, 则∠ABD=__2_0___°,∠CBD=__5_0___°; (4)如图③,OD⊥AC交AC于点F,AC=8. ①AF的长为__4____; ②若∠CBD=27°,则∠ABD=__2_7___°; ③若⊙O的直径为10,则DF的长为__2____.
尺规作图 圆锥的侧面展开图是扇形
1 考点精讲 2 一题串讲重难点 3 广东8年真题子母题

2024年中考数学压轴题型-专题03 与圆有关问题的压轴题之五大题型(解析版)

2024年中考数学压轴题型-专题03 与圆有关问题的压轴题之五大题型(解析版)

专题03与圆有关问题的压轴题之五大题型目录【题型一与圆中三角形全等的有关问题】 (1)【题型二与圆中三角形相似问题的有关问题】 (5)【题型三与圆中证明直线是切线的有关问题】 (29)【题型四与圆中求弧长、扇形面积的有关问题】 (40)【题型五与圆中求函数表达式的有关问题】 (50)【题型一与圆中三角形全等的有关问题】【变式训练】(1)求证:CD BF =.(2)若14BE BF ==,,求GE 的长.(3)连结GO OF ,,如图2,求证:122+EOG AOF ∠∠=【答案】(1)见解析(2)的长为3,由(1)得: CFBD =,FBC BCD ∴∠=∠,BG CG ∴=,AB 为O 的直径,CD 12DE CE CD ∴===,,AF AF =,12AOF OBF ∴∠=∠,在OCG 和OBG △中,OC OB =⎧⎪【题型二与圆中三角形相似问题的有关问题】例题:(2023·浙江宁波·校考一模)如图,已知BC 是O 的直径,点D 为BC 延长线上的一点,点A 为圆上一点,且AB AD =,AC CD =.(1)求证:ACD BAD ∽ ;(2)求证:AD 是O 的切线.【答案】(1)见解析(2)见解析【分析】(1)根据等腰三角形的性质得到CAD B ∠=∠,由于D D ∠=∠,于是得到ACD BAD ∽ ;(2)连接OA ,根据等腰三角形的性质得到B OAB ∠=∠,得到OAB CAD ∠=∠,由BC 是O 的直径,得到90BAC ∠=︒,即可得到结论.【详解】(1)证明:(1)∵AB AD =,∴B D ∠=∠,∵AC CD =,∴CAD D ∠=∠,∴CAD B ∠=∠,∵D D ∠=∠,∴ACD BAD ∽ ;(2)连接OA ,∵OA OB =,∴B OAB ∠=∠,∴OAB CAD ∠=∠,∵BC 是O 的直径,∴90BAC ∠=︒,∴OA ⊥AD ,∴AD 是O 的切线.【点睛】本题考查了相似三角形的判定和性质,切线的判定,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.【变式训练】(1)求证:BDE DCE △∽△.(2)若2,DE C =为BE 中点,求【答案】(1)见解析(2)3AC =【分析】(1)根据CD 平分∠BDE DCE △∽△;(2)由BDE DCE △∽△得BE DE 在由Rt DCE V 中,cos ACD ∠【详解】(1)∵CD 平分ACE ∠∴ACD DCE∠=∠∵AB DE ∥,(2)∵BDE DCE △∽△,∴BE DE DE CE=,∵点C 为BE 中点,设BC =则2a DE DE a=,∴22D E a ==,即1a =∵90ABC ∠=︒,∴90E ADC ∠=∠=︒在Rt DCE V 中,1CE CD =,∴cos cos ACD DCE ∠=∠=∴3AC =.【点睛】此题主要考查了相似三角形的判定和性质,三角形的外接圆等,解答此题的关键是熟练掌握相似三角形的判定方法,理解相似三角形的对应边成比例,难点是正确的作出辅助线.2.(2023·浙江杭州·杭州市公益中学校考三模)如图,AC ,BD 交于点E ,P 为DB(1)求证:ABE DBA∽;的切线;(2)求证:PA是O(3)若E为BD的中点,求tan 【答案】(1)见解析(2)见解析(3)2(1)求B D ∠-∠的值.(2)当75B ∠=︒时,求(3)若BC CE =,DOE 【答案】(1)45︒∵AB是O的直径,半径∴OAD ODA∠=∠=∵ AC AC=,∴ABC ADC∠=∠,(3)解:如图所示,连接∵ BDBD =,∴12BCD BOD =∠∠∵BC CE =,∴B CEB ∠=∠67.5=(1)求BGC ∠的度数.(2)①求证:AF BC =.②若AG DF =,求tan GBC ∠的值,(3)如图2,当点O 恰好在BG 上且1OG =时,求AC 的长.【答案】(1)90︒(2)①证明见解析;②15tan 5GBC ∠=;(3)3172+∵OB OC =,∴CBE OBC OCB ∠=∠=∠,∴OC BE ∥,∵BD CD =,BDE CDN ∠=∠∴EBD NCD ≌,∴BE CN =,DB DG = ,DBG DGB ∠=∠∴.又,DBG CAG BGD ∠=∠∠=∠ CAG AGM ∴∠=∠,MA MG ∴=.OB OC = ,OBC OCB ∴∠=∠,(1)求ACB ∠的大小(用α,β表示);(2)连接CF ,交AB 于H (如图2).若45β=︒,且BC EF AE CF ⨯=⨯.求证:(3)在(2)的条件下,取CH 中点M ,连接OM 、GM (如图3),若OGM ∠①求证:GM BC ∥,12GM BC =;②OM∵AF AG =,∴AFG AGF ∠∠==∴ACF AGF ∠∠==∵FAB ∠β=,∴ACB ACF ∠=∠+∠∵AF AG =,45β=︒,∴AFG G ACH ∠=∠=∠∵EAF FAC ∠=∠,∴EAF FAC ∽,∴EF AE CF FA=,∴AE CF EF FA ⨯=⨯,∵BC EF AE CF ⨯=⨯,∴BC EF EF AF ⨯=⨯,∴BC AF =,∴ AF BC=,∴45BAC AGF ∠=∠=︒,∴180454590AHC ∠=︒-︒-︒=︒,∴2AHC BAC ∠=∠;(3)①证明:如图3中,连接CG ,延长GM 交AB 于点I .∵245OGM α∠=-︒,45AGF ∠=︒,∴2AGM α∠=,∵45AFG G ACH ∠=∠=∠=︒,∴90FAG ∠=︒,∴FG 是直径,∴90FCG ∠=︒,∵90AHC ∠=︒,∴180AHC GCH ∠+∠=︒,∴AB CG ∥,∴MHI MCG ∠=∠,∵MH MC =,HMI CMG ∠∠=,∴ASA MHI MCG ≌(),∴MI MG =,HI CG =,MGC HIM ∠=∠,∵90FAG ∠=︒,∴90FAG BAF BAG BAG α∠=∠+∠=+∠=︒,在AIG V 中,180AGM BAG HIM ∠+∠+∠=︒,∴2180BAG HIM α+∠+∠=︒即()22BAG HIM BAG αα+∠+∠=+∠,∴HIM BAG ∠=∠,又45BAC ∠=︒,【点睛】本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形或全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.6.(2023·浙江·统考中考真题)如图,在径CE 交AB 于点F ,连结(1)求证:AD HC ∥;(2)若2OG GC=,求tan FAG ∠的值;(3)连结BC 交AD 于点N ,若O ①若52OF =,求BC 的长;②若10AH =,求ANB 的周长;∠=∠.∴BAD CAD∴52CF =.∴54CG FG ==,∴154OG =,∴22574AG OA OG =-=.∵CE AD ⊥,∴5272AD AG ==.∵ ==AC CDDB ,∴ AD CB=,∵,AD HC FG GC =∥,∴AH AF =.∵90HCF ∠=︒,∴10AC AH AF ===.设CG x =,则,5FG x OG ==-由勾股定理得222AG AO OG =-2225(5)10x x --=-,设CG x =,则,5FG x OG x ==-由勾股定理得222AG AO OG =-2222210AF AG FG x x x =+=-+∵,AD HC FG GC =∥,∴12AH AF HF ==,∴12AG HC =.(1)设E ∠为α,请用α表示BAC ∠的度数.(2)如图1,当BE AD ⊥时,①求证:DE BG =.②当3tan ,54ABE BG ∠==时,求半径的长.(3)如图2,当BE 过圆心O 时,若tan ABE k ∠=90 ABC ADC∴∠=∠=又AB AD=,AC=∴ABC ADC△≌△.∴12 BAC CAD∠=∠=∠E BADα∠=∠=,3tan 4ABE ∠=,BG =∴3tan 4FDE ∠=,DE 3EF FG ∴==,FD =8BF BG GF ∴=+=.AB AD = ,BAC ∠AC BD ∴⊥,【题型三与圆中证明直线是切线的有关问题】(1)求证:DE 为圆O 的切线;(2)连接OC 交DE 于点F ,若cos ABC ∠O为AB中点,D为BC中点,OD AC∴∥.DE AC⊥,DE OD∴⊥,且点D在O上,DE∴是O的切线;OD AC∥,∴OF OD FC EC=.AB为O的直径,90ADB ADC∴∠=∠=︒.又D为BC的中点,【变式训练】1.(2023·浙江台州·台州市书生中学统考一模)如图,直线AB 经过O 上的点M ,并且,OA OB MA MB ==,OA 交O 于点N .(1)求证:直线AB 是O 的切线;(2)当ON AN =时,求AOB ∠的度数.【答案】(1)见解析(2)120AOB ∠=︒【分析】(1)连接OM ,根据等腰三角形的性质与判定推出OM AB ⊥,即可证明结论;(2)连接MN ,根据直角三角形的性质和圆的基本性质得出OMN 是等边三角形,从而得到60MON ∠=︒,即可求解.【详解】(1)连接OM ,∵OA OB =,∴OAB 是等腰三角形,∵MA MB =,∴OM AB ⊥,又点M 在O 上,∴直线AB 是O 的切线;(2)连接MN ,∵,OM AB ON AN ⊥=,∴MN AN ON ==,又OM ON =,∴OMN 是等边三角形,∴60MON ∠=︒,∴906030A B ==︒-︒=︒∠∠,∴120AOB ∠=︒.【点睛】本题考查了圆的性质,圆的切线证明,等腰三角形的性质与判定,等边三角形的性质与判定,直角三角形的性质等知识点,熟练掌握相关知识点是解题的关键.2.(2023·浙江金华·校联考模拟预测)如图,BC 是O 的直径,PB 是O 的切线,切点为B ,连接PO ,过点C 作AC PO 交O 于点A ,连接PA .(1)求证:AP是O的切线;(2)若4cos5APO∠=,O的半径为∵OA OC=,∴OAC OCA∠=∠.∵O 的半径为3,∴3,6OA BC ==.∵POB POA △≌△,(1)求证:DG 是O 的切线.(2)已知3DG =,1EG =,求【答案】(1)见解析(2)O 的半径为5【分析】(1)连接OD ,根据(2)解:∵OD DG ⊥∴四边形ODGF 为矩形,∴3OF DG ==,OD 设O 的半径为r ,即∵1EG =,(1)求证:DC 为O 的切线;(2)若ACB ∠的角平分线CE 交线段AB 于点F ,交O 于点E ,连接BE ,求CF CE ⋅.OA OC,=∴∠=∠,OAC OCA ,DCB OAC ∠=∠∴∠=∠,OCA DCB 是直径,AB(1)求证:直线AB 是O 的切线;(2)若2BC OC =,①求tan ADB ∠的值;②作CAD ∠的平分线AP 交O 于点P 的代数式表示).∴90OAC OAD ∠+∠=︒,又∵OA OD =,∴OAD ODA ∠=∠,∵BAC ADB ∠=∠,∴OAD BAC ∠=∠,∴90BAC OAC ∠+∠=°,即90BAO ∠=∴AB OA ⊥,又∵OA 为半径,∴直线AB 是O 的切线;(2)解:①解:∵BAC ADB ∠=∠,∴BCA BAD △∽△,∴AC BC AD BA=,2②在Rt CAD △中,22AC AD =,2AC +∴()()222222AC AC CD r +==解得233AC r =,263AD r =,∵AP 平分CAD ∠,∴CAP EAD ∠=∠,又∵APC ADE ∠=∠,∴CAP EAD △∽△,∴AC AP AE AD=,∴2423AE AP AC AD r ⋅=⋅=,∵22AB r k ==,∴24r k =,∴224212386AE AP k k ⋅=⋅=.【点睛】本题考查圆周角定理、切线的判定、等腰三角形的性质、相似三角形的判定与性质、勾股定理、角平分线的定义等知识,熟练掌握相关知识的联系与运用,会利用相似三角形的性质求解是解答的关键.【题型四与圆中求弧长、扇形面积的有关问题】(1)求证:BC BD =.(2)若,2OB OA AE ==.①求半圆O 的半径.②求图中阴影部分的面积.【变式训练】1.(2023·浙江绍兴·校联考三模)如图,已知,在ABC 中,4AB =,以AB 为直径作O ,交边BC 的中点D .DE AC ⊥于点E ,连结AD .(1)求证:DE 是O 的切线.(2)请你给ABC 添加一个条件,并求弧【答案】(1)证明过程见详解(2)添加条件为:60DAB ∠=︒(添加条件不唯一)【分析】(1)如图所示,连接OD 由此即可求证;(2)根据圆周角的性质,可求出∵点D 是BC 的中点,点O 是∴12BD BO BC BA ==,∴OD AC ∥,∴ADO DAE ∠=∠,∵DE AC ⊥,∴90ADE DAE ∠+∠=︒,∴90ADE ADO ∠+∠=︒,∴OD DE ⊥,点D 在O 上,∥;(1)求证:OD ACAB=,求阴影部分的面积.(2)若6【答案】(1)见解析393∵OA OC =,60A ∠=︒,∴AOC 是等边三角形,过点C 作CF AO ⊥,(1)证明: BDCE =;(2)若60A ∠=︒,2BC =,求阴影部分面积.【答案】(1)证明见解析∵AB AC =,∴A ABC CB =∠∠,∵BC 为O 的直径,∵AB AC =,60BAC ∠=︒,OB ∴ABC 为等边三角形,AO ∴60ABC ACB ∠=∠=︒,OB(1)求证:DE AB ⊥.(2)若3DE =,30C ∠=︒,求阴影部分面积.【答案】(1)见解析(2)332π23-∵AC 为直径,∴AD BC ⊥,∵AB AC =,(1)求证:ACD E∠=∠;(2)若3AC=,1AD=,求弧【答案】(1)见解析(2)π3∵直线AC与O相切于点C ∴OC CA⊥,∴190ACD︒∠+∠=,∵ED为直径,【题型五与圆中求函数表达式的有关问题】(1)求CD 的长;(2)如图2,当90PQD ∠=︒时,求PEC 的正切值;(3)如图1,设PE x DF y ==,.①求y 关于x 的函数解析式;②若20PF DQ ⨯=,求y 的值.【答案】(1)8(2)322x 73。

中考数学点对点-涉及圆的证明与计算问题(解析版)

中考数学点对点-涉及圆的证明与计算问题(解析版)

专题27 涉及圆的证明与计算问题专题知识点概述圆的证明与计算是中考必考点,也是中考的难点之一。

纵观全国各地中考数学试卷,能够看出,圆的证明与计算这个专题内容有三种题型:选择题、填空题和解答题。

一、与圆有关的概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

2.圆心角:顶点在圆心上的角叫做圆心角。

圆心角的度数等于它所对弧的度数。

3.圆周角:顶点在圆周上,并且两边分别与圆相交的角叫做圆周角。

4. 外接圆和外心:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。

外接圆的圆心,叫做三角形的外心。

外心是三角形三条边垂直平分线的交点。

外心到三角形三个顶点的距离相等。

5.若四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。

6.和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

内心是三角形三个角的角平分线的交点。

内心到三角形三边的距离相等。

二、与圆有关的规律1.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。

2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

3.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

5.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.7.圆内接四边形的特征①圆内接四边形的对角互补;②圆内接四边形任意一个外角等于它的内对角。

(完整版)阿氏圆问题归纳

(完整版)阿氏圆问题归纳

阿氏圆题型的解题方法和技巧以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下:阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似【问题】在平面直角坐标系xOy 中,在x 轴、y 轴分别有点C(m ,0),D(0,n).点P 是平面内一动点,且OP=r ,求PC+kPD 的最小值.阿氏圆一般解题步骤:第一步:确定动点的运动轨迹(圆),以点O 为圆心、r 为半径画圆;(若圆已经画出则可省略这一步) 第二步:连接动点至圆心O(将系数不为1的线段的固定端点与圆心相连接),即连接OP 、OD ; 第三步:计算出所连接的这两条线段OP 、OD 长度; 第四步:计算这两条线段长度的比k ;第五步:在OD 上取点M ,使得OM:OP=OP:OD=k ;第六步:连接CM ,与圆O 交点即为点P .此时CM 即所求的最小值.习题【旋转隐圆】如图,在Rt △ABC 中,∠ACB=90°,D 为AC 的中点,M 为BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始终保持点M 为BD 的中点),若AC=4,BC=3,那么在旋转过程中,线段CM 长度的取值范围是___________.1.Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.2.如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.3.如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+1PC 的最小值为_________.6.如图,边长为47.如图,边长为4的正方形,点P 是正方形内部任意一点,且BP=2,则PD+21PC 的最小值为______;2PD+4PC 的最小值为______.8.在平面直角坐标系xOy 中,A(2,0),B(0,2),C(4,0),D(3,2),P 是△AOB 外部的第一象限内一动点,且∠BPA=135°,则2PD+PC 的最小值是_______.9.在△ABC 中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P 是⊙A 上的动点,连接PB 、PC ,则3PC+2PB 的最小值为_______.10.如图,在Rt △ABC 中,∠A=30°,AC=8,以C 为圆心,4为半径作⊙C . (1)试判断⊙C 与AB 的位置关系,并说明理由;(2)点F 是⊙C 上一动点,点D 在AC 上且CD=2,试说明△FCD ~△ACF ; (3)点E 是AB 上任意一点,在(2)的情况下,试求出EF+21FA 的最小值.11.(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求PD+21PC 的最小值和PD-21PC 的最大值; (2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD+32PC 的最小值为______,PD-32PC 的最大值为______. (3)如图3,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD+21PC 的最小值为______,PD-21PC 的最大值为________.2PA+PB 的最小值.【二次函数结合阿氏圆题型】13.如图1,抛物线y=ax ²+(a+3)x+3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M .(1)求a 的值和直线AB 的函数表达式; (2)设△PMN 的周长为C1,△AEN 的周长为C2,若5621=C C ,求m 的值; (3)如图2,在(2)条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A+32E ′B 的最小值.问题背景:如图1,在△ABC中,BC=4,AB=2AC.问题初探:请写出任意一对满足条件的AB与AC的值:AB=_____,AC=_______.问题再探:如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决:求△ABC的面积的最大值.1.小明的数学探究小组进行了系列探究活动.类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.探索理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA、DC,使四边形ABCD为邻等四边形;尝试体验:(2)如图2,邻等四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.解决应用:(3)如图3,邻等四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,BD=4.小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形,要求尽可能节约.你能求出这种四边形面积的最小值吗?如果能,请求出此时四边形ABCD面积的最小值;如果不能,请说明理由.2.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)如图2,等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC、BD为对角线,AC=2 AB,试探究BC,BD的数量关系.(3)如图3,等邻边四边形ABCD中,AB=AD,AC=2,∠BAD=2∠BCD=60°,求等邻边四边形ABCD 面积的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学圆的解题方法归纳总结及例题分析
1.遇到弦时(解决有关弦的问题时)
常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

作用:①利用垂径定理;
②利用圆心角及其所对的弧、弦和弦心距之间的关系;
③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。

例1:
例2:
2.遇到有直径时
常常添加(画)直径所对的圆周角。

作用:利用圆周角的性质,得到直角或直角三角形。

3.遇到90°的圆周角时
常常连结两条弦没有公共点的另一端点。

作用:利用圆周角的性质,可得到直径。

例题:如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D;求证:BC是过A,D,C三点的圆的切线
解:(1)作出圆心O,
以点O为圆心,OA长为半径作圆
(2)证明:∵CD⊥AC,∴∠ACD=90°∴AD是⊙O的直径
连结OC,∵∠A=∠B=30°,∴∠ACB=120°,又∵OA=OC,∴∠ACO=∠A =30°
∴∠BCO=∠ACB-∠ACO =120°-30°=90°∴BC⊥OC,∴BC是⊙O的切线. 4.遇到弦时
常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。

作用:①可得等腰三角形;
②据圆周角的性质可得相等的圆周角。

如图,△ABC是⊙O的接三角形,AD是⊙O 的直径,若∠ABC=50°,求∠CAD的度数。

解:连接CD,∠ADC=∠ABC=50°,∵AD是⊙O 的直径,∴∠ACD=90°∴∠CAD+∠ADC=90°∴∠CAD=90°-∠ADC=90°-50°= 40°
5.遇到有切线时
(1)常常添加过切点的半径(连结圆心和切点)
作用:利用切线的性质定理可得到直角或直角三角形。

(2)常常添加连结圆上一点和切点
作用:可构成弦切角,从而利用弦切角定理。

例题:如图,AB是⊙O的直径,弦AC与AB成30°角,CP与⊙O切于C,交AB•的延长线于D,(1)求证:AC=CP.(2)若CP=6,求图中阴影部分的面积(结果精确到0.1)。

解:(1)连结OC,∵AO=OC,∴∠ACO=∠A=30°,∴∠COP=2∠ACO=60°
∵PC切⊙O于点C,∴OC⊥PC,∴∠P=30°,∴∠A=∠P,∴AC=PC。

6.遇到证明某一直线是圆的切线时
(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。

(2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。

7.遇到两相交切线时(切线长)
常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。

作用:据切线长及其它性质,可得到:①角、线段的等量关系;②垂直关系;
③全等、相似三角形。

例题:如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为12,则PA长为______________
答案∵PA,PB分别和⊙O切于A,B两点,∴PA=PB,∵DE是⊙O的切线,∴DA=DC,EB=EC,∵△PDE的周长为12,即
PD+DE+PE=PD+DC+EC+PE=PD+AD+EB+PE=PA+PB=2PA=12,∴PA=6.
8.遇到三角形的切圆时
连结心到各三角形顶点,或过心作三角形各边的垂线段。

作用:利用心的性质,可得:
①心到三角形三个顶点的连线是三角形的角平分线;
②心到三角形三条边的距离相等。

例题:△ABC的切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.
根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.
根据题意,得
x+y=9
y+z=14
x+z=13
解得
x=4
y=5
z=9
即AF=4cm、BD=5cm、CE=9cm.
9.遇到三角形的外接圆时
如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边.
如果三角形不是直角三角形
例1:已知:在△ABC中,AB=13,BC=12,AC=5,求△ABC的外接圆的半径.
解:∵AB=13,BC=12,AC=5,∴AB²=BC²+AC²,
∴∠C=90°,
∴AB为△ABC的外接圆的直径,
∴△ABC的外接圆的半径为6.5. 例2:
10.遇到三角形的外接圆和切圆时例题:。

相关文档
最新文档