matlab控制系统计算机仿真实验-完整版

合集下载

实验报告基于Matlab的控制系统仿真1

实验报告基于Matlab的控制系统仿真1

实验一 基于Matlab 的控制系统模型姓名 学号 班级机械一、实验目的1) 熟悉Matlab 的使用环境,学习Matlab 软件的使用方法和简单编程方法。

2) 学习使用Matlab 软件进行拉氏变换和拉式反变换的方法。

3) 学习使用Matlab 软件建立、转换连续系统数学模型的方法。

4) 学习使用Matlab 软件分析控制系统稳定性的方法。

二、实验原理1. 拉氏变换和反拉氏变换(1) 拉氏变换syms a w tf1=exp(-a*t)laplace(f1)f2=2laplace(f2)f3=t*exp(-a*t)laplace(f3)f4=sin(w*t)laplace(f4)f5=exp(-a*t)*cos(w*t)laplace t-t (f5)(2) 拉氏反变换syms s a wf 1=1/silaplace(f 1)f 2=1/(s+a)ilaplace(f 2)f 3=1/s^2ilaplace(f 3)f 4=w/(s^2+w^2)ilaplace(f 4)f 5=1/(s*(s+2)^2*(s+3))ilaplace(f 5)…2. 控制系统模型的建立和转化传递函数模型:112m 112+()+m m n n nb s b s b num G s den a s a s b --++==++…… 零极点增益模型:1212()()()()()()()m n s z s z s z G s k s p s p s p ---=--- (1) 建立系统传递函数模型22(1)()(2)(3)56s s s s G s s s s s ++==++++ num=[1,1,0]den=[1,5,6]Gs1=tf(num,den)(2) 建立系统的零极点模型z=[0,-1]p=[-2,-3]k=[1]Gs1=zpk(z,p,k)(3) 传递函数模型转化为零极点模型num=[1,1,0]den=[1,5,6]Gs1=tf(num,den)[z,p,k]=tf2zp(num,den)Gs2=zpk(z,p,k)(4) 零极点模型转化为传递函数模型z=[0,-1]p=[-2,-3]k=[1]Gs1=zpk(z,p,k)[num,den]=zp2tf(z',p',k)Gs2=tf(num,den)3. 用Matlab 进行传递函数部分分式展开5434321139+52s+26()1035+50s+241 2.530.5 1s+4s+3s+2s+1num s s s G s den s s s ++==++-=++++num=[1 11 39 52 26]den=[1 10 35 50 24][r,p,k]=residue(num,den)4. 连续系统稳定性分析已知传递函数,试求该系统的闭环极点并判断系统的稳定性。

MATLAB与控制系统仿真实验报告

MATLAB与控制系统仿真实验报告

MATLAB与控制系统仿真实验报告第一篇:MATLAB与控制系统仿真实验报告《MATLAB与控制系统仿真》实验报告2013-2014学年第 1 学期专业:班级:学号:姓名:实验三 MATLAB图形系统一、实验目的:1.掌握绘制二维图形的常用函数。

2.掌握绘制三维图形的常用函数。

3.熟悉利用图形对象进行绘图操作的方法。

4.掌握绘制图形的辅助操作。

二、实验原理:1,二维数据曲线图(1)绘制单根二维曲线plot(x,y);(2)绘制多根二维曲线plot(x,y)当x是向量,y是有一维与x同维的矩阵时,则绘制多根不同颜色的曲线。

当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。

(3)含有多个输入参数的plot函数plot(x1,y1,x2,y2,…,xn,yn)(4)具有两个纵坐标标度的图形plotyy(x1,y1,x2,y2)2,图形标注与坐标控制1)title(图形名称);2)xlabel(x轴说明)3)ylabel(y轴说明)4)text(x,y图形说明)5)legend(图例1,图例2,…)6)axis([xmin xmax ymin ymax zmin zmax])3, 图形窗口的分割 subplot(m,n,p)4,三维曲线plot3(x1,y1,z1,选项1,x2,y2,选项2,…,xn,yn,zn,选项n)5,三维曲面mesh(x,y,z,c)与surf(x,y,z,c)。

一般情况下,x,y,z是维数相同的矩阵。

X,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜色范围。

6,图像处理1)imread和imwrite函数这两个函数分别用于将图象文件读入matlab工作空间,以及将图象数据和色图数据一起写入一定格式的图象文件。

2)image和imagesc函数这两个函数用于图象显示。

为了保证图象的显示效果,一般还应使用colormap函数设置图象色图。

控制系统matlab仿真实验报告5

控制系统matlab仿真实验报告5

控制系统matlab仿真实验报告5实验内容:本实验主要学习控制系统中PI控制器的设计和仿真。

实验目的:1. 了解PI控制器的基本原理和控制算法;2. 学习控制系统建模的基本思路和方法;3. 通过matlab仿真实验掌握PI控制器的实现方法和调节技巧。

实验原理:PI控制器是一种比比例控制器更加完善的控制器,它是由比例控制器和积分控制器组成的复合控制器。

在控制器设计中,通常情况下采用PI控制器进行设计,因为PI控制器的设计参数比其他控制器更加简单,调整起来也更加方便。

PI控制器的输出信号u(t)可以表示为:u(t) = kP(e(t) + 1/Ti ∫e(τ)dτ)其中,kP是比例系数;Ti是积分时间常数;e(t)是控制系统的误差信号,表示偏差;∫e(τ)dτ是误差信号的积分项。

上式中,第一项kPe(t)是比例控制器的输出信号,它与偏差信号e(t)成比例关系,当偏差信号e(t)越大,则输出信号u(t)也越大;PI控制器的设计步骤如下:1. 根据控制系统的特性和要求,选择合适的控制对象,并进行建模;2. 选择比例系数kP和积分时间常数Ti,使系统具有良好的动态响应和稳态响应;3. 利用matlab仿真实验验证控制系统的性能,并进行参数调节和改进。

实验步骤:1. 控制对象的建模a. 选择一个适当的控制对象,例如在本实验中选择一个RC电路。

b. 根据控制对象的特性和运行原理,建立控制对象的数学模型,例如在本实验中建立RC电路的微分方程模型。

a. 根据控制对象的特性和要求,选择合适的比例系数kP和积分时间常数Ti,例如在本实验中选择kP=1和Ti=0.1。

b. 根据PI控制器的输出信号,设计控制系统的反馈环路,例如在本实验中选择负反馈控制系统。

a. 在matlab环境下,利用matlab的控制系统工具箱,建立控制系统的仿真模型。

b. 运行仿真程序,并观察控制系统的时间响应和频率响应特性。

实验结果:本实验利用matlab环境下的控制系统工具箱,建立了RC电路的PI控制系统,并进行了仿真实验。

MATLAB实验报告3-控制系统仿真

MATLAB实验报告3-控制系统仿真

MATLAB 实验报告3 控制系统仿真1、一个传递函数模型: )6()13()5(6)(22++++=s s s s s G 将该传递函数模型输入到MATLAB 工作空间。

num=6*[1,5];den=conv(conv([1,3,1],[1,3,1]),[1,6]);tf(num,den)2、 若反馈系统为更复杂的结构如图所示。

其中2450351024247)(234231+++++++=s s s s s s s s G ,s s s G 510)(2+=,101.01)(+=s s H 则闭环系统的传递函数可以由下面的MATLAB 命令得出:>> G1=tf([1,7,24,24],[1,10,35,50,24]);G2=tf([10,5],[1,0]);H=tf([1],[0.01,1]);G_a=feedback(G1*G2,H)得到结果:Transfer function:0.1 s^5 + 10.75 s^4 + 77.75 s^3 + 278.6 s^2 + 361.2 s + 120 -------------------------------------------------------------------- 0.01 s^6 + 1.1 s^5 + 20.35 s^4 + 110.5 s^3 + 325.2 s^2 + 384 s + 1203、设传递函数为:61166352)(2323++++++=s s s s s s s G 试求该传递函数的部分分式展开num=[2,5,3,6];den=[1,6,11,6];[r,p,k]=residue(num,den)图 复杂反馈系统4、给定单位负反馈系统的开环传递函数为:)7()1(10)(++=s s s s G 试画出伯德图。

利用以下MATLAB 程序,可以直接在屏幕上绘出伯德图如图20。

>> num=10*[1,1];den=[1,7,0];bode(num,den)5、已知三阶系统开环传递函数为:)232(27)(23+++=s s s s G画出系统的奈氏图,求出相应的幅值裕量和相位裕量,并求出闭环单位阶跃响应曲线。

matlab自控仿真实验报告

matlab自控仿真实验报告

目录实验一 MATLAB及仿真实验(控制系统的时域分析) (1)实验二 MATLAB及仿真实验(控制系统的根轨迹分析) (4)实验三 MATLAB及仿真实验(控制系统的频域分析) (7)实验一 MATLAB 及仿真实验(控制系统的时域分析)学习利用MATLAB 进行以下实验,要求熟练掌握实验内容中所用到的指令,并按内容要求完成实验。

一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些?2、 如何判断系统稳定性?3、 系统的动态性能指标有哪些? 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性den=[1 3 4 2 7 2]; p=roots(den) 输出结果是:p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991有实部为正根,所以系统不稳定。

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。

二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。

本实验中我们选择了一个简单的比例控制系统模型。

2.设定输入信号我们需要为控制系统提供输入信号进行仿真。

在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。

本实验中,我们选择了一个阶跃信号作为输入信号。

3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。

MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。

4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。

常见的性能指标包括系统的稳态误差、超调量、响应时间等。

四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。

2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。

3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。

4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。

5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。

五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。

通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。

六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。

通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。

七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。

MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。

matlab控制系统计算机仿真实验-完整版

matlab控制系统计算机仿真实验-完整版

MALTAB 仿真实验指导书实验一实验题目:欧拉法&梯形法的MATLAB 实现实验目的:1.熟练掌握MATLAB 的使用方法2.牢记欧拉法、梯形法的计算过程3.熟悉欧拉法、梯形法以及实现二阶动态响应的程序编写 实验内容:已知被控对象的系数矩阵分别为A=[-5 -2 -1 -0.5;4 0 0 0;0 2 0 0;0 0 1 0 ]B=[1;0;0;0];C=[0 0 0.25 0.5];D=0;根据欧拉法、梯形法的递推公式,应用MATLAB 语言编写相应的仿真程实验要求:1.取计算步长65.0=h ,初值均为零,输入为阶跃信号,取25=u ,研究系统25秒的动态过程。

2.取计算步长01.0=h ,初值均为零,输入为阶跃信号,取25=u ,研究系统25秒的动态过程。

实验算法:欧拉法递推公式:),(1k k k k y t hf y y +=+梯形法的递推公式: )],(),([2),(011101++++++=+=k k k k k k k k k k y t f y t f h y y y t hf y y实验方法:利用所学过数值积分方法(欧拉法、梯形法),通过MATLAB 语言对给定的系统进行仿真实验步骤:1.了解并掌握基本数值积分的方法,即欧拉法、梯形法,并做比较,了解它们之间的联系与区别和优缺点,其中重点掌握梯形法。

2.通过给定的系统,利用欧拉法、梯形法编写相应MATLAB 语言,实现仿真,得出相应的仿真曲线。

3.比较仿真实验结果,并得出结论。

4.撰写实验报告。

实验程序:1.欧拉法A=[-5 -2 -1 -0.5;4 0 0 0;0 2 0 0;0 0 1 0];B=[1;0;0;0];C=[0 0 0.25 0.5];D=0;x0=[0;0;0;0];% x0为状态变量的初值,此处以列向量表示;u=25;% u为输入向量;t0=0;% t0为仿真时间的起始时刻;tf=15;% tf为仿真时间的结束时刻;h=0.65;% h=0.01 h为仿真时所取的仿真步长;m=(tf-t0)/h;[r,c]=size(A);for i=1:mfor j=1:rx(j)=x0(j)+h*(A(j,:)*x0+B(j,:)*u);endy(i)=C*x';x0=x';t(i)=i*h;endplot(t,y)grid ontitle('useEuler')2.梯形法A=[-5 -2 -1 -0.5;4 0 0 0;0 2 0 0;0 0 1 0];B=[1;0;0;0];C=[0 0 0.25 0.5];D=0;x0=[0;0;0;0];% x0为状态变量的初值,此处以列向量表示;u=25;% u为输入向量;t0=0;% t0为仿真时间的起始时刻;tf=15;% tf为仿真时间的结束时刻;h=0.65;% h=0.01 h为仿真时所取的仿真步长;m=(tf-t0)/h;[r,c]=size(A);for i=1:mfor j=1:rx(j)=x0(j)+h*(A(j,:)*x0+B(j,:)*u);endx1=x';for k=1:rxx(k)=x0(k)+0.5*h*((A(k,:)*x0+B(k,:)*u)+(A(k,:)*x1+B(k,:)*u)); endy(i)=C*xx';x0=xx';t(i)=i*h;endplot(t,y)grid ontitle('useLadder')实验报告要求:1.书写实验报告,其中包括实验题目,实验目的,实验内容,实验要求,实验思路,实验方法,实验步骤,实验程序等。

基于MATLAB控制系统仿真实验报告

基于MATLAB控制系统仿真实验报告

tf 4
y0

0 1
6、求出 G1(s)
2 (s2 2s 1) 与 G2 (s)
1 (2s3

3s2
1)
的单位阶跃响应,并分别
求出状态空间模型。
解:(1) G1(s) 2 (s2 2s 1) 的状态空间模型求解如下:
function shiyan2 b1=[2];
D(z)

0.62(1 0.136z 1)(1 0.183z (1 0.045z 1)(1 0.53z 1)
1 )
分别用仿真算法得到系统在单位阶跃输入作用下的响应,系统在单位速度输
入是的输出响应。
解:(1)首先将 W1(s)转换为 W1(z),采样周期 T=0.2s,程序清单如下: function shiyan42 num=[10];den=[0.005 0.15 1 0]; ts=0.2;[nc,dc]=c2dm(num,den,ts)
INTRO(注意:intro 为一个用 MATLAB 语言编写的幻灯片程序,主要演示
常用的 MATLAB 语句运行结果。)
然后,根据现实出来的幻灯片右面按钮进行操作,可按 START——NEXT—
—NEXT 按钮一步步运行,观察。
3、自编程序并完成上机编辑,调试,运行,存盘:
(1)用 MATLAB 命令完成矩阵的各种运算,例如:
5、利用 ode23 或 ode45 求解线性时不变系统微分方程 y(t) Ay(t) ,并绘制出 y(t)
曲线,式中
A

0.5

1
1 0.5
t t0 t 如下: function xdot=fun21(t,x) A=[-0.5 1;-1 -0.5]; xdot=A*x; function fzsy22 t0=0;tf=4;tol=1e-6; x0=[0;1];trace=1; [t,x]=ode23('fun21',t0,tf,x0,tol,trace); plot(t,x) 得到的实验结果如下图所示:

控制系统计算机仿真(MATLAB) 全文-职业教育-文档在线

控制系统计算机仿真(MATLAB) 全文-职业教育-文档在线

强大方便的图形功能
1 、绘制二维 、三维曲线并对平面或空间多边形填 充;
2 、绘制三维曲面并对其进行复杂操作; 3 、通过开关参数实现曲面的透明 、消隐; 4 、利用缩放功能对图形的局部位置取景放大;
5 、调整观察与方位角考察空间曲面的不同侧面;
6 、用光照效果对曲面进行明暗处理以增强其立体 感。
7 、功能齐备的自动控制软件工具包。
பைடு நூலகம்
界面友好、用户使用方便
A、MATLAB具有良好的用户界面与易学易用的 帮助系统(help)。
B、MATLAB程序设计语言把编辑、编译、连接、 执行、调试等多个步骤融为一体。
C、MATLAB语言可设置中断点 ,存储多个中间 结果 , 除此以外 ,它还可以进行跟踪调试。
控制系统计算机仿真
(MATLAB)
课程安排
1 、理论教学:20学时 2 、上机实验: 20学时
选择教材:
1 、控制系统MATLAB语言计算及仿真 黄忠霖 国防工业出版社 2 、控制系统计算机辅助设计 蔡启仲 重庆大学出版社
现阶段学习MATLAB的重要性
1) 《自动控制理论》 中学习的结论及其所做 实验的验证; 2) 仿真《热工自动控制系统》 实验及进行课 程设计; 3) 仿真《电力拖动自动控制》 实验及进行课 程设计; 4) 毕业设计仿真主要用的软件工具。
1 、建立控制系统的数学模型; 2 、建立自动控制系统的仿真模型; 3 、编制自控系统仿真程序; 4 、进行仿真实验并输出仿真结果。
MATLAB的主要特点:
1 、功能强大 ,适用范围广泛; 2、编程效率高(M文件 ;Toolbox); 3 、界面友好 ,用户使用方便; 4 、扩充能力强(M;Mex); 5 、语句简单、 内涵丰富; 6 、强大方便的图形功能;

控制系统matlab仿真实验报告1

控制系统matlab仿真实验报告1

r= 3.1583 -0.0831 + 2.9088i -0.0831 - 2.9088i -2.6044 -0.3876
4.创建两个字符串,并使用函数将两个字符串进行连接
>> a='Hello' a= Hello >> b=' World !' b= World ! >> c=strcat(a,b) c= Hello World ! %连接
>> E=A*B %矩阵相乘 E= 19 43 22 50 %矩阵乘方
>> F=A^2 F= 7 10 15 22
3.矩阵运算,方程组求解和多项式运算
1)求矩阵的逆,特征值和特征向量:创建一个2维矩阵,并求它的 逆,特征值和特征向量 >> A=rand(3,3) A= 0.8462 0.6721 0.6813 0.5252 0.8381 0.3795 0.2026 0.0196 0.8318 >> B=inv(A) %求逆 B= 2.9596 -2.3417 -1.3557 -1.5445 2.4281 0.1573 -0.6846 0.5132 1.5288 >> [X,d]=eig(A) X= %特征向量 -0.7510 -0.8135 -0.3483 -0.6246 0.5268 -0.6320 -0.2142 0.2464 0.6922
d= %对角线为特征值 1.5996 0 0 0 0.2046 0 0 0 0.7119 2)方程组求解:创建一个方程组,并用2种以上的方法求解 >> A=rand(3,3) A= 0.5028 0.7095 0.4289 0.3046 0.1897 0.1934 0.6822 0.3028 0.5417

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告实验报告:MATLAB与控制系统仿真引言在现代控制工程领域中,仿真是一种重要的评估和调试工具。

通过仿真技术,可以更加准确地分析和预测控制系统的行为和性能,从而优化系统设计和改进控制策略。

MATLAB是一种强大的数值计算软件,广泛应用于控制系统仿真。

实验目的本实验旨在掌握MATLAB在控制系统仿真中的应用,通过实践了解控制系统的建模与仿真方法,并分析系统的稳定性和性能指标。

实验内容1.建立系统模型首先,根据控制系统的实际情况,建立系统的数学模型。

通常,控制系统可以利用线性方程或差分方程进行建模。

本次实验以一个二阶控制系统为例,其传递函数为:G(s) = K / [s^2 + 2ζω_ns + ω_n^2],其中,K表示放大比例,ζ表示阻尼比,ω_n表示自然频率。

2.进行系统仿真利用MATLAB软件,通过编写代码实现控制系统的仿真。

可以利用MATLAB提供的函数来定义传递函数,并通过调整参数来模拟不同的系统行为。

例如,可以利用step函数绘制控制系统的阶跃响应图像,或利用impulse函数绘制脉冲响应图像。

3.分析系统的稳定性与性能在仿真过程中,可以通过调整控制系统的参数来分析系统的稳定性和性能。

例如,可以改变放大比例K来观察系统的超调量和调整时间的变化。

通过观察控制系统的响应曲线,可以判断系统的稳定性,并计算出性能指标,如超调量、调整时间和稳态误差等。

实验结果与分析通过MATLAB的仿真,我们得到了控制系统的阶跃响应图像和脉冲响应图像。

通过观察阶跃响应曲线,我们可以得到控制系统的超调量和调整时间。

通过改变放大比例K的值,我们可以观察到超调量的变化趋势。

同时,通过观察脉冲响应曲线,我们还可以得到控制系统的稳态误差,并判断系统的稳定性。

根据实验结果分析,我们可以得出以下结论:1.控制系统的超调量随着放大比例K的增大而增大,但当K超过一定值后,超调量开始减小。

2.控制系统的调整时间随着放大比例K的增大而减小,即系统的响应速度加快。

基于Matlab的计算机控制技术仿真实验

基于Matlab的计算机控制技术仿真实验

实验一 基于Matlab 的控制系统模型一、 实验目的1. 熟悉Matlab 的使用环境,学习Matlab 软件的使用方法和编程方法2. 学习使用Matlab 进行各类数学变换运算的方法3. 学习使用Matlab 建立控制系统模型的方法二、 实验器材x86系列兼容型计算机,Matlab 软件三、 实验原理1. 香农采样定理对一个具有有限频谱的连续信号f(t)进行连续采样,当采样频率满足max 2ωω≥S 时,采样信号f*(t)能无失真的复现原连续信号。

作信号t e t f 105)(-=和kT 10*5)(-=e t f 的曲线,比较采样前后的差异。

幅度曲线: T=0.05 t=0:T:0.5f=5*exp(-10*t) subplot(2,1,1) plot(t,f) gridsubplot(2,1,2) stem(t,f) grid请改变采样周期T ,观察不同的采样周期下的采样效果。

幅频曲线: w=-50:1:50F=5./sqrt(100+w.^2) plot(w,F) grid若|)0(|1.0|)(|max F j F =ω,选择合理的采样周期T 并验加以证 w=-400:20:400 ws=200 Ts=2*pi/wsF0=5/Ts*(1./sqrt(100+(w).^2)) F1=5/Ts*(1./sqrt(100+(w-ws).^2)) F2=5/Ts*(1./sqrt(100+(w+ws).^2)) plot(w,F0,w,F1,w,F2) grid请改变采样频率ws ,观察何时出现频谱混叠?2. 拉式变换和Z 变换使用Matlab 求函数的拉氏变换和Z 变换 拉式变换: syms a w t f1=exp(-a*t) laplace(f1) f2=tlaplace(f2) f3=t* exp(-a*t) laplace(f3) f4=sin(w*t)Z 变换: syms a k T f1=exp(-a*k*T) ztrans(f1) f2=k*T ztrans(f2)f3=k*T*exp(-a*k*T) ztrans(f3) f4=sin(a*k*T)laplace(f4)f5=exp(-a*t)*cos(w*t) laplace(f5)反拉式变换 syms s a f1=1/silaplace(f1) f2=1/(s+a) ilaplace(f2) f3=1/s^2 ilaplace(f3)f4=w/(s^2+w^2) ilaplace(f4)f5=1/(s*(s+2)^2*(s+3)) ilaplace(f5)ztrans(f4) f5=a^k ztrans(f5)反Z 变换 syms z a T f1=z/(z-1) iztrans(f1)f2=z/(z-exp(-a*T)) iztrans(f2) f3=T*z/(z-1)^2 iztrans(f3) f4=z/(z-a) iztrans(f4)f5=z/((z+2)^2*(z+3)) iztrans(f5)3. 控制系统模型的建立与转化传递函数模型:num=[b1,b2,…bm],den=[a1,a2,…an],nn n mm m b s a s a b s b s b den num s G ++++++==-- 121121)( 零极点增益模型:z=[z1,z2,……zm],p=[p1,p2……pn],k=[k],)())(()())(()(2121n m p s p s p s z s z s z s k s G ------=四、实验步骤1.根据参考程序,验证采样定理、拉氏变换和Z变换、控制系统模型建立的方法2.观察记录输出的结果,与理论计算结果相比较3.自行选则相应的参数,熟悉上述的各指令的运用方法五、实验数据及结果分析记录输出的数据和图表并分析六、总结实验二 基于Matlab 的离散控制系统仿真一、 实验目的1. 学习使用Matlab 的命令对控制系统进行仿真的方法2. 学习使用Matlab 中的Simulink 工具箱进行系统仿真的方法二、 实验器材x86系列兼容型计算机,Matlab 软件三、 实验原理1. 控制系统命令行仿真二阶系统闭环传递函数为22222554.025)54.02(51)54.02(5)(+⨯⨯+=⨯⨯++⨯⨯+=s s s ss s s G ,请转换为离散系统脉冲传递函数并仿真,改变参数,观察不同的系统的仿真结果。

控制系统计算机仿真(matlab)实验五实验报告

控制系统计算机仿真(matlab)实验五实验报告

实验五 控制系统计算机辅助设计一、实验目的学习借助MATLAB 软件进行控制系统计算机辅助设计的基本方法,具体包括超前校正器的设计,滞后校正器的设计、滞后-超前校正器的设计方法。

二、实验学时:4 学时 三、实验原理1、PID 控制器的设计PID 控制器的数学模型如公式(5-1)、(5-2)所示,它的三个特征参数是比例系数、积分时间常数(或积分系数)、微分时间常数(或微分系数),因此PID 控制器的设计就是确定PID 控制器的三个参数:比例系数、积分时间常数、微分时间常数。

Ziegler (齐格勒)和Nichols (尼克尔斯)于1942提出了PID 参数的经验整定公式。

其适用对象为带纯延迟的一节惯性环节,即:s e Ts Ks G τ-+=1)( 5-1式中,K 为比例系数、T 为惯性时间常数、τ为纯延迟时间常数。

在实际的工业过程中,大多数被控对象数学模型可近似为式(5-1)所示的带纯延迟的一阶惯性环节。

在获得被控对象的近似数学模型后,可通过时域或频域数据,根据表5-1所示的Ziegler-Nichols 经验整定公式计算PID 参数。

表控制器的参数。

假定某被控对象的单位阶跃响应如图5-4所示。

如果单位阶跃响应曲线看起来近似一条S 形曲线,则可用Ziegler-Nichols 经验整定公式,否则,该公式不适用。

由S 形曲线可获取被控对象数学模型(如公式5-1所示)的比例系数K 、时间常数T 、纯延迟时间τ。

通过表5-1所示的Ziegler-Nichols 经验整定公式进行整定。

如果被控对象不含有纯延迟环节,就不能够通过Ziegler-Nichols 时域整定公式进行PID 参数的整定,此时可求取被控对象的频域响应数据,通过表5-1 所示的Ziegler-Nichols 频域整定公式设计PID 参数。

如果被控对象含有纯延迟环节,可通过pade 命令将纯延迟环节近似为一个四阶传递函数模型,然后求取被控对象的频域响应数据,应用表5-1求取PID 控制器的参数。

控制系统仿真与工具(matlab)实验指导书精选全文

控制系统仿真与工具(matlab)实验指导书精选全文

可编辑修改精选全文完整版控制系统仿真与工具实验指导书目录实验一熟悉MATLAB语言工作环境和特点 (1)实验二图形绘制与修饰 (4)实验三系统的时间响应分析 (8)实验四系统的时间响应分析 (12)实验五SIMULINK仿真基础 (14)实验一熟悉MATLAB语言工作环境和特点一、实验目的通过实验使学生熟悉MA TLAB语言的工作环境,并了解MATLAB语言的特点,掌握其基本语法。

二、实验设备PC机MATLAB应用软件三、实验内容本实验从入门开始,使学生熟悉MA TLAB的工作环境,包括命令窗、图形窗和文字编辑器、工作空间的使用等。

1、命令窗(1)数据的输入打开MATLAB后进入的是MA TLAB的命令窗,命令窗是用户与MATLAB做人机对话的主要环境。

其操作提示符为“》”。

在此提示下可输入各种命令并显示出相应的结果,如键入:x1=sqrt(5),x2=1.35,y=3/x2显示结果为:x1=2.2361x2=1.3500y=2.2222上命令行中两式之间用逗号表示显示结果,若用分号,则只运行而不用显示运行结果。

如键入A=[1,2,3;4,5,6;7,8,9],则显示为说明:●直接输入矩阵时,矩阵元素用空格或逗号分隔,矩阵行用分号相隔,整个矩阵放在方括号中。

注意:标点符号一定要在英文状态下输入。

●在MA TLAB中,不必事先对矩阵维数做任何说明,存储时自动配置。

●指令执行后,A被保存在工作空间中,以备后用。

除非用户用clear指令清除它,或对它重新赋值。

●MATLAB对大小写敏感。

(2)数据的显示在MA TLAB工作空间中显示数值结果时,遵循一定的规则,在缺省的情况下,当结果是整数,MATLAB将它作为整数显示;当结果是实数,MATLAB以小数点后4位的精度近似显示。

如果结果中的有效数字超出了这一范围,MATLAB以类似于计算器的计算方法来显示结果。

也可通过键入适当的MA TLAB命令来选择数值格式来取代缺省格式。

MATLAB控制系统仿真实验模板新

MATLAB控制系统仿真实验模板新

MATLAB仿真实验报告册实验一 MATLAB/Simulink 仿真基础及控制系统模型的建立一、 实验目的1、 掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。

二、 实验工具电脑、MATLAB 软件三、 实验内容已知单位负反馈控制系统开环传递函数为)1)(5()(++=As s s Bs G ,其中,A表示自己学号最后一位数(可以是零),B 表示自己学号的最后两位数。

1、 用Simulink 建立该控制系统模型,分别用单踪、双踪示波器观察模型的阶跃响应曲线;分别用“To Workspace ”和“out1”模块将响应参数导入工作空间并在命令窗口绘制该模型的阶跃响应曲线;2、 在MATLAB 命令窗口分别建立该控制系统的传递函数模型和零极点模型,并实现模型之间的相互转换。

四、实验过程1.用Simulink 建立的系统模型如下:2、模型间的相互转换程序如下: z=[];p=[0,-5,-0.25];k=1; [num,den]=zp2tf(z,p,k); g_zpk=zpk(z,p,k);g_tf=tf(num,den);五、实验结论1、该模型的阶跃响应曲线如下:051015202530354045500.511.522.532、模型间的相互转换: (1)零极点模型:Zero/pole/gain: 1---------------- s (s+5) (s+0.25)(2)传递函数模型: Transfer function: 1----------------------- s^3 + 5.25 s^2 + 1.25 s实验二 控制系统时域分析的MATLAB 实现一、实验目的1、熟练应用MATLAB/Simulink 进行时域分析;2、能用MATLAB 软件进行时域性能指标的求取。

二、实验工具电脑、MATLAB 软件三、 实验内容已知单位负反馈控制系统开环传递函数为)5()(+=As s Bs G ,其中,A 表示自己学号最后一位数(可以是零),B 表示自己学号的最后两位数。

控制系统计算机仿真(matlab)仿真实验一实验报告

控制系统计算机仿真(matlab)仿真实验一实验报告

实验一MATLAB基本操作与矩阵运算一、实验目的1、熟悉Matlab软件的基本操作方法2、掌握Matlab矩阵和数组的基本运算3、了解Matlab的常用函数的使用方法二、实验学时:2学时三、实验原理MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。

打开MATLAB软件弹出如图1-1所示的图形窗口。

MATLAB有3种子窗口,即:命令窗口(Command Window)、m-文件编辑窗口(Edit Window)和图形窗口(Figure Window)。

图1-1 MATLAB R2008a基本界面1.命令窗口(The Command Window)当MATLAB 启动后,出现的最大的窗口就是命令窗口。

用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。

在MATLAB 中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。

在命令窗口中输入该文件名,这一连串命令就被执行了。

因为这样的文件都是以“.m ”为后缀,所以称为m-文件。

2.m-文件编辑窗口(The Edit Window )我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。

在MATLAB 主界面上选择菜单“File/New/M-file ”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open ”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。

3.图形窗口(The Figure Window )图形窗口用来显示MATLAB 程序产生的图形。

图形可以是2维的、3维的数据图形,或其它棒状图、极坐标图等。

MATLAB 常用操作命令和运算符如下:clear ——清除工作空间变量clc ——清除命令窗口内容path ——设置路径cd ——设置当前目录符+——矩阵的加法运算符-——矩阵的减法运算符*——矩阵的乘法运算符\——矩阵的左除运算符/——矩阵的右除运算符^——矩阵的乘方linspace ——产生线性等分向量inv ——矩阵求逆poly ——创建多项式polyval ——多项式求值polyfit ——多项式拟合四、实验内容1.自由练习Matlab 软件的操作2、已知矩阵 A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321。

本部《Matlab与控制系统仿真》实验报告

本部《Matlab与控制系统仿真》实验报告
三、实验记录
(1)画出调试好的数控机床进给系统的PI速度控制和PID位置控制的Simulink模块图。
(2)比较分析仿真结果。
实验编号:
实验七MATLAB数字控制器设计初步
姓名
指导教师
时间
地点
一、实验目的和要求
二、实验设备及材料
三、实验记录
(1)序列 ,的z变换结果。
(2)离散系统的系统函数 ,求其冲激响应h(k)
clear%清除变量
t =0:0.001:2*pi;
subplot(2,2,1);
polar(t, 1+cos(t))
subplot(2,2,2);
plot(cos(t).^3,sin(t).^3)
subplot(2,2,3);
polar(t,abs(sin(t).*cos(t)))
subplot(2,2,4);
实验编号:
实验五MATLAB控制系统工具箱使用
姓名
指导教师
时间
地点
一、实验目的和要求
二、实验设备及材料
三、实验记录
(1)写出传递函数 的部分展开式
(2)编程构建系统
(3)编程绘制单位负反馈的开环传递函数 的伯德图。
实验编号:
实验六数控机床SIMULINK仿真
姓名
指导教师
时间
地点
一、实验目的和要求
二、实验设备及材料
(3)画出离散系统的系统函数 ,的零极点图
(4)若描述离散系统的差分方程为 ,已知激励 ,初始状态y(-1)=1,y(-2)=0,求系统的零输入响应,零状态响应。
(5)已知 ,通过部分分式展开法求F(z)。
实验编号:
实验八MATLAB数字控制器设计

控制系统计算机仿真(matlab)实验四实验报告

控制系统计算机仿真(matlab)实验四实验报告

实验四控制系统计算机辅助分析一、实验目的1、掌握如何使用Matlab进行系统的时域分析2、掌握如何使用Matlab进行系统的频域分析3、掌握如何使用Matlab进行系统的根轨迹分析二、实验学时:2学时三、试验原理:1、稳定性的基本概念与必要条件根据李雅普诺夫稳定性理论,线性控制系统的稳定性可定义如下:如果线性控制系统在初始扰动的影响下,其动态过程随时间的推移逐渐衰减并趋于零(原平衡工作点),则称系统渐近稳定,简称稳定。

否则,若在初始扰动影响下,系统的动态过程随时间的推移而发散,则称系统不稳定。

线性系统稳定的充分必要条件是:闭环系统特征方程的所有根均具有负实部;或者说,闭环传递函数的极点均严格位于左半s平面。

由上述线性系统稳定性概念与系统稳定的充分必要条件可知,判定线性系统稳定性的最直接方法就是求出闭环系统特征方程的所有根或者全部闭环极点,根据特征方程所有根是否具有负实部或闭环极点是否全部位于左半s平面来判定系统的稳定性。

四、实验内容:(三题选做两题)1、时域分析(1)根据下面传递函数模型:绘制其单位阶跃响应曲线并从图上读取最大超调量,并求出单位脉冲响应曲线。

程序:s=tf('s');G=5*(s^2+5*s+6)/(s^3+6*s^2+10*s+8);step(G);grid;hold on;impulse(G);结果:超调量=(|3.75-4|)/4x100%=6.25%0123456-112345Step ResponseTime (sec)A m p l i t u d e(2)典型二阶系统传递函数为:当ζ=0.7,ωn 取2、4、6、8、10、12的单位阶跃响应。

程序: kesi=0.7for wn=2:2:12 num=wn^2;den=[1 2*kesi*wn wn^2]; G=tf(num,den); t=0:0.01:10; step(G); hold on; endtitle('wn 不同值下的单位阶跃响应'); xlabel('t');ylabel('阶跃响应'); grid; 结果:00.51 1.52 2.53 3.540.20.40.60.811.21.4w n 不同值下的单位阶跃响应t (sec)阶跃响应(3)典型二阶系统传递函数为:当ωn =6,ζ取0.2、0.4、0.6、0.8、1.0、1.5、2.0的单位阶跃响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MALTAB 仿真实验指导书实验一实验题目:欧拉法&梯形法的MATLAB 实现实验目的:1.熟练掌握MATLAB 的使用方法2.牢记欧拉法、梯形法的计算过程3.熟悉欧拉法、梯形法以及实现二阶动态响应的程序编写 实验内容:已知被控对象的系数矩阵分别为A=[-5 -2 -1 -0.5;4 0 0 0;0 2 0 0;0 0 1 0 ]B=[1;0;0;0];C=[0 0 0.25 0.5];D=0;根据欧拉法、梯形法的递推公式,应用MATLAB 语言编写相应的仿真程实验要求:1.取计算步长65.0=h ,初值均为零,输入为阶跃信号,取25=u ,研究系统25秒的动态过程。

2.取计算步长01.0=h ,初值均为零,输入为阶跃信号,取25=u ,研究系统25秒的动态过程。

实验算法:欧拉法递推公式:),(1k k k k y t hf y y +=+梯形法的递推公式: )],(),([2),(011101++++++=+=k k k k k k k k k k y t f y t f h y y y t hf y y实验方法:利用所学过数值积分方法(欧拉法、梯形法),通过MATLAB 语言对给定的系统进行仿真实验步骤:1.了解并掌握基本数值积分的方法,即欧拉法、梯形法,并做比较,了解它们之间的联系与区别和优缺点,其中重点掌握梯形法。

2.通过给定的系统,利用欧拉法、梯形法编写相应MATLAB 语言,实现仿真,得出相应的仿真曲线。

3.比较仿真实验结果,并得出结论。

4.撰写实验报告。

实验程序:1.欧拉法A=[-5 -2 -1 -0.5;4 0 0 0;0 2 0 0;0 0 1 0];B=[1;0;0;0];C=[0 0 0.25 0.5];D=0;x0=[0;0;0;0];% x0为状态变量的初值,此处以列向量表示;u=25;% u为输入向量;t0=0;% t0为仿真时间的起始时刻;tf=15;% tf为仿真时间的结束时刻;h=0.65;% h=0.01 h为仿真时所取的仿真步长;m=(tf-t0)/h;[r,c]=size(A);for i=1:mfor j=1:rx(j)=x0(j)+h*(A(j,:)*x0+B(j,:)*u);endy(i)=C*x';x0=x';t(i)=i*h;endplot(t,y)grid ontitle('useEuler')2.梯形法A=[-5 -2 -1 -0.5;4 0 0 0;0 2 0 0;0 0 1 0];B=[1;0;0;0];C=[0 0 0.25 0.5];D=0;x0=[0;0;0;0];% x0为状态变量的初值,此处以列向量表示;u=25;% u为输入向量;t0=0;% t0为仿真时间的起始时刻;tf=15;% tf为仿真时间的结束时刻;h=0.65;% h=0.01 h为仿真时所取的仿真步长;m=(tf-t0)/h;[r,c]=size(A);for i=1:mfor j=1:rx(j)=x0(j)+h*(A(j,:)*x0+B(j,:)*u);endx1=x';for k=1:rxx(k)=x0(k)+0.5*h*((A(k,:)*x0+B(k,:)*u)+(A(k,:)*x1+B(k,:)*u)); endy(i)=C*xx';x0=xx';t(i)=i*h;endplot(t,y)grid ontitle('useLadder')实验报告要求:1.书写实验报告,其中包括实验题目,实验目的,实验内容,实验要求,实验思路,实验方法,实验步骤,实验程序等。

2.将实验得出的仿真图画出,并进行比较。

3.通过比较得出两种数值积分方法的不同以及优缺点。

实验二实验题目:四阶龙格-库塔法的MATLAB 实现实验目的:1.熟练掌握MATLAB 的使用方法2.牢记四阶龙格-库塔法的计算过程3.熟悉四阶龙格-库塔法以及实现二阶动态响应的程序编写实验内容:已知被控对象的系数矩阵分别为A=[-5 -2 -1 -0.5;4 0 0 0;0 2 0 0;0 0 1 0 ]B=[1;0;0;0];C=[0 0 0.25 0.5];D=0;根据四阶龙格-库塔法的递推公式,应用MATLAB 语言编写相应的仿真程实验要求:1.取计算步长65.0=h ,初值均为零,输入为阶跃信号,取25=u ,研究系统25秒的动态过程。

2.取计算步长01.0=h ,初值均为零,输入为阶跃信号,取25=u ,研究系统25秒的动态过程。

实验算法:四阶龙格-库塔法的递推公式: ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++=++=++==++++=+),()2,2()2,2(),()22(6342312143211hK y h t f K K h y h t f K K h y h t f K y t f K K K K K h y y k k k k k k k k k k实验方法:利用所学过数值积分方法(四阶龙格-库塔法),通过MATLAB语言对给定的系统进行仿真实验步骤:1.了解并掌握基本数值积分的方法,即四阶龙格-库塔法,并与欧拉法、梯形法做比较,了解它们之间的联系与区别和优缺点,其中重点掌握梯形法和四阶龙格-库塔。

2.通过给定的系统,利用四阶龙格-库塔法编写相应MATLAB语言,实现仿真,得出相应的仿真曲线。

3.比较仿真实验结果,并得出结论。

4.撰写实验报告。

实验程序:龙格-库塔法A=[-5 -2 -1 -0.5;4 0 0 0;0 2 0 0;0 0 1 0];B=[1;0;0;0];C=[0 0 0.25 0.5];D=0;x0=[0;0;0;0];% x0为状态变量的初值,此处以列向量表示;u=25;% u为输入向量;t0=0;% t0为仿真时间的起始时刻;tf=15;% tf为仿真时间的结束时刻;h=0.65;% h=0.01 h为仿真时所取的仿真步长;m=(tf-t0)/h;for i=1:mK1=A*x0+B*u;K2=A*(x0+0.5*h*K1)+B*u;K3=A*(x0+0.5*h*K2)+B*u;K4=A*(x0+h*K3)+B*u;x=x0+(h/6)*(K1+2*K2+2*K3+K4);y(i)=C*x;x0=x;t(i)=i*h;endplot(t,y)grid ontitle('useRK')实验报告要求:1.书写实验报告,其中包括实验题目,实验目的,实验内容,实验要求,实验思路,实验方法,实验步骤,实验程序等。

2.将实验得出的仿真图画出,并进行比较。

3.通过比较得出三种数值积分方法的不同以及优缺点。

实验三实验题目:面向结构图的系统仿真实验目的:1. 进一步熟悉MATLAB 语言的使用方法2. 熟悉连续系统结构图法的计算方法及步骤3. 掌握基于connect 连接函数的系统仿真实验内容:1. 在下图中,若各环节传递函数已知为;01s .010044.0)s (G9;01s .011.0)s (G8;s 130)s (G7;15s.0121.0)s (G6;0067s .0170)s (G5;051s .015s .01G4(s);01s.011G3(s);085s .017s .01)s (2G ;s 01.011)s (1G +=+==+=+=+=+=+=+= G10(s)=0.212; 列写联接矩阵W,W0和非零元素阵Wij ,编写程序,求出y7响应曲线。

2.运用connect 连接函数对上面的结构图进行系统仿真,建立系统中间状态模型、连接矩阵Q,编写程序,并求出y7响应曲线。

实验算法:四阶龙格-库塔法⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++=++=++==++++=+),()2,2()2,2(),()22(6342312143211hK y h t f K K h y h t f K K h y h t f K y t f K K K K K h y y k k k k k k k k k k 实验方法:利用关联矩阵以及connect 函数结合所学过的数值积分方法(四阶龙格-库塔法),通过MATLAB 语言对给定的系统进行仿真。

实验步骤:1.了解并掌握利用关联矩阵以及connect 函数建立面向结构图的系统仿真,了解这两种方法的优缺点。

2.通过给定的系统,利用关联矩阵以及connect函数编写相应MATLAB语言,实现仿真,得出相应的仿真曲线。

3.比较仿真实验结果,并得出结论。

4.撰写实验报告。

实验程序:p=[1 0.01 1 0;0 0.085 1 0.17;1 0.01 1 0;0 0.051 1 0.15;1 0.0067 70 0;1 0.15 0.21 0;0 1 130 0;1 0.01 0.1 0;1 0.01 0.0044 0];WIJ=[1 0 1;2 1 1;2 9 -1;3 2 1;4 3 1;4 8 -1;5 4 1;6 5 1;6 7 -0.212;7 6 1;8 6 1;9 7 1];n=9;y0=1;yt0=[0 0 0 0 0 0 0 0 0];h=0.01;T=0;T0=0;Tf=10;nout=7;A=diag(p(:,1));B=diag(p(:,2));C=diag(p(:,3));D=diag(p(:,4));m=length(WIJ(:,1));w0=zeros(n,1);w=zeros(n,n);for k=1:mif (WIJ(k,2))==0;w0(WIJ(k,1))=WIJ(k,3);else w(WIJ(k,1),WIJ(k,2))=WIJ(k,3); end;end;Q=B-D*w;Qn=inv(Q);R=C*w-A;V1=C*w0;Ab=Qn*R;b1=Qn*V1;Y=yt0';y=Y(nout);t=T0;N=round((Tf-T0)/h);for i=1:Nk1=Ab*Y+b1*y0;k2=Ab*(Y+h*k1/2)+b1*y0;k3=Ab*(Y+h*k2/2)+b1*y0;k4=Ab*(Y+h*k3)+b1*y0;Y=Y+h*(k1+2*k2+2*k3+k4)/6;y=[y,Y(nout)];T=[T,t+h];t=t+h;end;[T',y'];plot(T,y)基于connect函数的仿真程序:nblocks=10;n1=1;d1=[0.01 1];n2=[0.17 1];d2=[0.085 0];n3=1;d3=[0.01 1];n4=[0.15 1];d4=[0.051 0];n5=70;d5=[0.0067 1];n6=0.21;d6=[0.15 1];n7=130;d7=[1 0];n8=-0.1;d8=[0.01 1];n9=-0.0044;d9=[0.01 1];n10=-0.212;d10=1;blkbuild;Q=[1 0 0;2 1 9;3 2 0;4 3 8;5 4 0;6 5 10;7 6 0;10 7 0;8 6 0;9 7 0];inputs=1;outputs=7;[A,B,C,D]=connect(a,b,c,d,Q,inputs,outputs);step(A,B,C,D)实验报告要求:1.书写实验报告,其中包括实验题目,实验目的,实验内容,实验要求,实验思路,实验方法,实验步骤,实验程序等。

相关文档
最新文档