角平分线ppt课件
合集下载
角的平分线课件(共16张PPT)
6.3.2.2 角的平分线
思考 如何能得到角平分线呢? 量角器度量、折叠.
在一张半透明的纸上通过折纸作角的平分线.
6.3.2.2 角的平分线
例1 把一个周角 7 等分,每一份是多少度的角 (精确到分)?
解:360°÷7 = 51° + 3°÷7 = 51° + 180'÷7 ≈ 51°26'.
精确到分,要先取到 小数点后 1 位,然后 再四舍五入.
6.3.2.2 角的平分线
2.如图,O 是直线AB 上一点,OC 是∠AOB 的平分线,若∠COD = 31°28',求∠AOD 的度数.
解:∵OC 是∠AOB 的平分线,∠AOB是平角. C
∴∠AOC = ∠AOB = × 180°=90°.
∴∠AOD = 12∠AOB - ∠COD.
D
=90°- 31°28' =89°60' - 31°28'
2
1
O
A
6.3.2.2 角的平分线
新知学习
思考
如图,如果∠1 =∠2,那么射线 OB 把∠AOC分成两个相等的角.你可
以写出∠AOC 和∠1 、∠2的关系式吗?
C B
∠AOC = 2∠1 = 2∠2, ∠1 = ∠2 = 1 ∠AOC
2
2
1
O
A
6.3.2.2 角的平分线
一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线, 叫作这个角的平分线.
注意:度、分、秒是60进制的,要把剩余的度数化成分.
6.3.2.2 角的平分线
随堂练习
1.如图,把一个蛋糕等分成8份,每份中的角是多少度?如果 要使每份中的角是15°,这个蛋糕应等分成多少份?
角平分线的性质ppt课件
B
P D●
C●
O
A
34
知识拓展
如图,在△ABC中,
A
AC=BC,∠C=90°,
AD是△ABC的角平分线,
DE⊥AB,垂足为E。
(1)已知CD=4cm,求 AC的长;
E
(2)求证:AB=AC+CD C
D
B
35
36
·D
何作图角度怎么画?
C·
7
试一试
由上面的探究可以得出作已知角的平分线的方法
已知:∠AOB.
求作:∠AOB的平分线.
A
作法:
⑴以O为圆心,任意长为半径作 弧,交OA于M,交OB于N. ⑵分别以M,N为圆心,大于 1 MN 的长为半径作弧,两弧在 2 ∠AOB的内部交于点C.
⑶作射线OC,
射线OC即为所求.
F
E
C
D
B
26
3、如图,△ABC中,∠C=90°,AC=CB, AD为∠BAC的平分线,DE⊥AB于点E。 求证:△DBE的周长等于AB。
C
D
A
EB
27
思考:
如图所示OC是∠AOB 的平分线,P 是OC上任意 一点,问PE=PD?为什么? O
EA PC
D
B
PD,PE没有垂直OA,OB,它们不是角 平分线上任一点这个角两边的距离, 所以不一定相等.
M C
B
N
0
温馨提示: 作角平分线是最基本的
尺规作图,大家一定要掌握噢! 8
探究2---做一做
• 将∠ AOB对折,再折出一个直角三角形(使 第一条折痕为斜边),然后展开,观察两次折 叠形成的三条折痕,你能得到什么结论? A
A
P D●
C●
O
A
34
知识拓展
如图,在△ABC中,
A
AC=BC,∠C=90°,
AD是△ABC的角平分线,
DE⊥AB,垂足为E。
(1)已知CD=4cm,求 AC的长;
E
(2)求证:AB=AC+CD C
D
B
35
36
·D
何作图角度怎么画?
C·
7
试一试
由上面的探究可以得出作已知角的平分线的方法
已知:∠AOB.
求作:∠AOB的平分线.
A
作法:
⑴以O为圆心,任意长为半径作 弧,交OA于M,交OB于N. ⑵分别以M,N为圆心,大于 1 MN 的长为半径作弧,两弧在 2 ∠AOB的内部交于点C.
⑶作射线OC,
射线OC即为所求.
F
E
C
D
B
26
3、如图,△ABC中,∠C=90°,AC=CB, AD为∠BAC的平分线,DE⊥AB于点E。 求证:△DBE的周长等于AB。
C
D
A
EB
27
思考:
如图所示OC是∠AOB 的平分线,P 是OC上任意 一点,问PE=PD?为什么? O
EA PC
D
B
PD,PE没有垂直OA,OB,它们不是角 平分线上任一点这个角两边的距离, 所以不一定相等.
M C
B
N
0
温馨提示: 作角平分线是最基本的
尺规作图,大家一定要掌握噢! 8
探究2---做一做
• 将∠ AOB对折,再折出一个直角三角形(使 第一条折痕为斜边),然后展开,观察两次折 叠形成的三条折痕,你能得到什么结论? A
A
《角的平分线的性质》PPT优质课件
E B
∴∠AOP=∠BOP (全等三角形的对应角相等).
∴点P在∠AOB的平分线上.
探究新知
判定定理:
角的内部到角的两边的距离相等的点在角的平分线上.
应用所具备的条件:
(1)位置关系:点在角的内部;
(2)数量关系:该点到角两边的距离相等.
定理的作用:判断点是否在角平分线上.
应用格式: ∵ PD⊥OA,PE⊥OB,PD=PE. O ∴点P 在∠AOB的平分线上.
O
这个点应该在角的平分线
S
探究新知
知识点 1 角平分线的判定
叙述角平分线的性质定理.
角的平分线上的点到角的两边的距离相等.
回 几何语言描述:∵ OC平分∠AOB,且PD⊥OA, PE⊥OB.
顾 旧 知
∴ PD= PE. 不必再证全等
A D
P到OA的距离PD
C P
P是角平分线上的点
O
E
B P到OB的距离PE.
证明:∵OD平分∠AOB,∠1=∠2, 又∵OA=OB,OD=OD, ∴△AOD≌△BOD,∴∠3=∠4, 又∵PM⊥DB,PN⊥DA, ∴PM=PN.(角平分线上的点到角两边 的距离相等)
探究新知
素养考点 2 利用角平分线的性质求线段的长度
例2 如图,AM是∠BAC的平分线,点P在AM上,PD⊥AB, PE⊥AC,垂足分别是D,E,PD=4cm,则PE=___4___cm.
探究新知
猜想证明
已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,
PD=PE. 求证:点P在∠AOB的平分线上.
证明:作射线OP,∵PD⊥OA,PE⊥OB. ∴∠PDO=∠PEO=90°,
D
A
在Rt△PDO和Rt△PEO 中,
角平分线课件PPT
生活中有趣角平分线现象
建筑设计中的应用
在建筑设计中,角平分线常被用来确保建筑物的对称性和平衡感。例如,古希腊的帕特 农神庙就运用了角平分线的原理来设计其立面和柱子。
自然界的角平分线
在自然界中,角平分线的现象也很常见。例如,当阳光照射在树叶上时,树叶的脉络就 会呈现出角平分线的形状,这是因为树叶在生长过程中会自然地沿着角平分线的方向扩
例题2
已知在△ABC中,∠C=90° ,AD是∠BAC的平分线, DE⊥AB于E,F在AC上, BD=DF。求证:CF=EB 。
解析
过点D作DM⊥AC于M。 根据角平分线的性质,可 得DE=DM。在Rt△FCD 和Rt△EBD中,DF=BD, DE=DM。 ∴Rt△FCD≌Rt△EBD(HL )。∴CF=EB。
的两边分别与OA、OB相交于点C、D。求证: PC=PD。
输入 标题
解析
根据角平分线的性质和直角三角形的性质,可以证明 △OPC和△OPD全等,从而得出PC=PD。具体证明过 程略。
例题1
例题2
根据角平分线的性质和勾股定理,可以求出点D到AB 的距离。具体求解过程略。
解析
在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若 BC=32,且BD:CD=9:7,求点D到AB的距离。
04
角平分线在几何变换中应用
旋转对称性质及应用
旋转对称性质
角平分线将一个角分为两个相等的小角,且两个小角关于角平分线对称。当图形 绕角平分线旋转一定角度时,两个小角能够重合,具有旋转对称性。
应用
利用旋转对称性质,可以解决与角平分线相关的角度计算、线段长度等问题。例 如,通过旋转对称性质可以证明两个三角形全等或相似。
建筑设计中角平分线应用
角平分线性质课件(公开课)-图文
C 3处
D 4处
l2
l3
N
M
P
B
G
C
巩固
4.如图,△ABC的∠B的外角平分线BD 与∠C的外角平分线CE相交于点P。 求证:点P在∠A的平分线上。
D C
P
A
BG
巩固
5.如图,直线l1、 l2 、 l3 表示三条互相 交叉的公路,现要造一个垃圾中转站,
要求它到这三条公路的距离相等,则可
供选择的地址有( )
A 1处
l1
B 2处
O
A D
C P
EB
巩固
2.如图,要在S区建一个集贸市场,使 它到公路,铁路距离相等,离公路与 铁路的交叉处500米。这个集贸市场应 建于何处(在图上标出它的位置,比例尺 为1:20000)?
公路
S
铁路
范例
例1.已知:如图,BE⊥AC于E, CF⊥
AB于F,BE、CF相交于D,BD=CD。
求证:AD平分∠BAC。
D C
P
A
BE
探究
如图,已知PD⊥OA于D, PE⊥OB于E ,请问:点P的位置有什么特殊性吗?
猜测: 点P在∠AOB的平分线上
O
你能证明你的猜测吗?
A D
P EB
归纳 角的平分线的判定:
到角的两边的距离相等的点在角的
平分线上。
A D
P
O
EB
OP是∠AOB的平分线。
新授
几何语言描述:
∵ PD⊥OA, PE⊥OB 且PD= PE, ∴ OC平∠AOB
角平分线性质课件(公开课)_图文.ppt
复习
角的平分线的性质:
角的平分线上的点到角的两边的距 离相等。
《角平分线的判定》课件
应用举例
在几何证明题中,常常利用角平分线的性质定理来证明线段相等或 角相等。
角平分线的判定定理的推论
推论1
到角的两边的距离相等的 点在角平分线上。
证明方法
利用反证法进行证明,假 设点不在角平分线上,通 过构造反例来证明假设不 成立。
应用举例
在解题过程中,可以利用 这个推论来寻找角平分线 上的点,从而解决问题。
《角平分线的判定》ppt课件
• 角平分线的定义 • 角平分线的判定方法 • 角平分线的应用 • 角平分线的相关定理和性质 • 练习题与答案
01
角平分线的定义
角平分线的描述
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分, 且与相对边相交的线段。
02
角平分线将角分为两个相等的角 ,这两个角的大小与原角相等。
提高练习题
提高练习题1
在三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF。求证:EB=FC。
提高练习题2
已知三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF,EF平行于BC。求证:EB=FC。
综合练习题与答案
综合练习题1
在三角形ABC中,AD是角BAC的平 分线,E、F分别是AB、AC上的点, 且DE=DF。EF交AD于G。求证: EG=FG。
角平分线与三角形面积的关系
01
角平分线可以将三角形分割成两个面积相等的子三角形。
面积分割定理
02
利用角平分线,可以证明面积分割定理,从而得出其他相关性
质和结论。
面积计算
03
通过角平分线,可以方便地计算三角形的面积,进一步用于解
决实际问题。
在几何证明题中,常常利用角平分线的性质定理来证明线段相等或 角相等。
角平分线的判定定理的推论
推论1
到角的两边的距离相等的 点在角平分线上。
证明方法
利用反证法进行证明,假 设点不在角平分线上,通 过构造反例来证明假设不 成立。
应用举例
在解题过程中,可以利用 这个推论来寻找角平分线 上的点,从而解决问题。
《角平分线的判定》ppt课件
• 角平分线的定义 • 角平分线的判定方法 • 角平分线的应用 • 角平分线的相关定理和性质 • 练习题与答案
01
角平分线的定义
角平分线的描述
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分, 且与相对边相交的线段。
02
角平分线将角分为两个相等的角 ,这两个角的大小与原角相等。
提高练习题
提高练习题1
在三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF。求证:EB=FC。
提高练习题2
已知三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF,EF平行于BC。求证:EB=FC。
综合练习题与答案
综合练习题1
在三角形ABC中,AD是角BAC的平 分线,E、F分别是AB、AC上的点, 且DE=DF。EF交AD于G。求证: EG=FG。
角平分线与三角形面积的关系
01
角平分线可以将三角形分割成两个面积相等的子三角形。
面积分割定理
02
利用角平分线,可以证明面积分割定理,从而得出其他相关性
质和结论。
面积计算
03
通过角平分线,可以方便地计算三角形的面积,进一步用于解
决实际问题。
16.3 角的平分线课件(共23张PPT)
归纳小结
角平分线的性质定理:
角平分线上的点到这个角的两边的距离相等.
角平分线性质定理的逆定理:
到角的两边距离相等的点在角平分线上.
尺规作图:作已知角的平分线
同学们再见!
授课老师:
时间:2024年9月15日
问题
发现:角是轴对称图形,角平分线所在的直线是它的对称轴.
新知探究
一起探究
知识点1 角平分线的性质定理
在一张半透明纸上画出一个角,将纸对折,使这个角的两边重合.你从中能得出什么结论?
思考
如图,OP是∠AOB的平分线,P是OP上的任一点,过点P分别作PC⊥OA,PD⊥OB,点D垂为足,点C为垂足. 你能猜想PC,PD长度间有什么关系吗?证明你的猜想.
随堂练习
1.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,点F在AC上,BE=FC. 求证:BD=DF.
∵ AD平分∠BAC, DE⊥AB, DC⊥AC, ∴ DC=DE.
在△DCF和△DEB中,
证明: ∵ ∠C=90°, ∴ DC⊥AC.
∴ △DCF≌△DEB. (SAS) ∴ BD=DF.
∴ Rt△ APC ≌ Rt△ APD (HL),∴ AC= AD = BC.
3.如图所示,CD⊥AB,BE⊥AC,垂足分别为点 D,E,BE,CD 相交于点O,且 OB = OC.求证:点O在∠BAC的平分线上.
证明:∵CD⊥AB,BE⊥AC, ∴∠BDO=∠CEO=90°. 又∵ OB=OC,(已知) ∠BOD =∠COE,(对顶角相等) ∴△BOD≌△COE(AAS) ∴ OD = OE. ∴点O在∠BAC的平分线上.(角的内部到角两边距离相等的点在角的平分线上)
角平分线的性质定理:
角平分线上的点到这个角的两边的距离相等.
角平分线性质定理的逆定理:
到角的两边距离相等的点在角平分线上.
尺规作图:作已知角的平分线
同学们再见!
授课老师:
时间:2024年9月15日
问题
发现:角是轴对称图形,角平分线所在的直线是它的对称轴.
新知探究
一起探究
知识点1 角平分线的性质定理
在一张半透明纸上画出一个角,将纸对折,使这个角的两边重合.你从中能得出什么结论?
思考
如图,OP是∠AOB的平分线,P是OP上的任一点,过点P分别作PC⊥OA,PD⊥OB,点D垂为足,点C为垂足. 你能猜想PC,PD长度间有什么关系吗?证明你的猜想.
随堂练习
1.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,点F在AC上,BE=FC. 求证:BD=DF.
∵ AD平分∠BAC, DE⊥AB, DC⊥AC, ∴ DC=DE.
在△DCF和△DEB中,
证明: ∵ ∠C=90°, ∴ DC⊥AC.
∴ △DCF≌△DEB. (SAS) ∴ BD=DF.
∴ Rt△ APC ≌ Rt△ APD (HL),∴ AC= AD = BC.
3.如图所示,CD⊥AB,BE⊥AC,垂足分别为点 D,E,BE,CD 相交于点O,且 OB = OC.求证:点O在∠BAC的平分线上.
证明:∵CD⊥AB,BE⊥AC, ∴∠BDO=∠CEO=90°. 又∵ OB=OC,(已知) ∠BOD =∠COE,(对顶角相等) ∴△BOD≌△COE(AAS) ∴ OD = OE. ∴点O在∠BAC的平分线上.(角的内部到角两边距离相等的点在角的平分线上)
《角平分线》PPT教学课件
知识讲解
如图,是一个角平分仪,其中AB=AD,BC=DC.将点A放在角
的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就
是角平分线,你能说明它的道理吗?
两个三角形三边对应相等,两个三角形全
A C
等,两全等三角形的对应角相等.所以AE就
是角平分线 想一想:能够运用这种方法作出任意角的 角平分线吗?
B
(1)∵ 如图,AD平分∠BAC(已知)
× ∴ BD = CD ,
A
D C
( 角的平分线上的点到这个角的两边的距离相等)
理由: 没有垂直,不能确定BD,CD是点D到角两边的距离.
知识讲解
★ 练一练
(2)∵ 如图, DC⊥AC,DB⊥AB (已知).
× ∴ BD = CD ,
(角内任意一条线上的点到这个角的两边的距离相等 )
B
A
D
C
理由:无法确定点D在∠BAC的平分线上.
知识讲解
线段的垂直平分线的性质定理有逆定理,角的平分 线的性质定理是否也有逆定理呢?
如果一个点到角两边的距离相等,那么这个点在 角的平分线上.
知识讲解
角平分线性质定理的逆定理 到角的两边的距离相等的点在角的平分线上.
A
D C
P
O
E
B
用途: 证明点在角平分线上,即可以判定角平分线.
知识讲解
典例讲解 例题 如图,△ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB,BC,CA的距离相等.
A N PM
B
C
知识讲解
证明:
A
D
N
P
F M
B
C
E
知识讲解
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
问题引入
如图,浑南新区一个工厂,在公路西侧, 到公路的距离与到河岸的距离相等,并且与河 上公路桥较近桥头的距离为300米。你能尝试确 定工厂的位置吗?并说明理由。
北
比例尺1:20000
2
问题探究
角平分线性质
角的平分线上的点到这个角 的两边的距离相等。
3
已知:如图,OP是∠AOB的平分线,点P在OC上,
E
A
P
N
1
2
B
E' D C
E ''
1 23
11
12
结束寄语
?严格性之于数学家,犹如道德之于人. ?证明的规范性在于:条理清晰,因果 相应,言必有据.这是初学证明者谨记 和遵循的原则.
13
B
A
E
C
9
例3: 已知:如图所示:PA,PC分别是⊿ABC外角∠MAC与 ∠NCA平分线,它们交于P,PD⊥BM于M,PF⊥BN于F
求证: 点P在∠MBN的平分线上
M D
A P
E
B
C FN
10
活动与探究:
已知:如图,∠1=∠2,P为BN上一点,且PD⊥BC 于D,AB+BC=2BD
求证:∠BAP+∠BCP=180° M
PD⊥OA,PE⊥OB,垂足分别为D,E
A
求证:PD=PE
D
证明: ∵∠1=∠2 , OP=OP
∠PDO=∠PEO=90° ∴⊿PDO≌⊿PEO (AAS)
O1
2
P 边相等)
E B
定理 在角的平分线上的点到这个角的两 边的距离相等。
4
定理的逆命题该怎么说?
逆定理:在一个角的内部,且 到角的两边距离相
6
做一做 1
尺规作图
?用尺规作角的平分线. ?已知:∠AOB ?求作:射线OC,使∠AOC=∠BOC
7
例1: 实际问题
数学化
C
P
┒
O
数学问题源于生活实践,反过来数学又为生活实践服务
8
例2: 已知:如图, E是∠BAC平分线上的一点, EB⊥AB,EC⊥AC,B,C分别是垂足。你能 得到哪些结论?为什么?
等的点,在这个角的平分线上。
已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,
PD=PE.
求证:点P在∠AOB的平分线上
A
证明: 在Rt⊿ODP和 Rt⊿OEP中,
∠ODP=∠OEP=90° O
D P
OP=OP, PD=PE Rt⊿OPD≌Rt⊿OPE (HL)
E B
5
E G
O D
A C
H
F
B
问题引入
如图,浑南新区一个工厂,在公路西侧, 到公路的距离与到河岸的距离相等,并且与河 上公路桥较近桥头的距离为300米。你能尝试确 定工厂的位置吗?并说明理由。
北
比例尺1:20000
2
问题探究
角平分线性质
角的平分线上的点到这个角 的两边的距离相等。
3
已知:如图,OP是∠AOB的平分线,点P在OC上,
E
A
P
N
1
2
B
E' D C
E ''
1 23
11
12
结束寄语
?严格性之于数学家,犹如道德之于人. ?证明的规范性在于:条理清晰,因果 相应,言必有据.这是初学证明者谨记 和遵循的原则.
13
B
A
E
C
9
例3: 已知:如图所示:PA,PC分别是⊿ABC外角∠MAC与 ∠NCA平分线,它们交于P,PD⊥BM于M,PF⊥BN于F
求证: 点P在∠MBN的平分线上
M D
A P
E
B
C FN
10
活动与探究:
已知:如图,∠1=∠2,P为BN上一点,且PD⊥BC 于D,AB+BC=2BD
求证:∠BAP+∠BCP=180° M
PD⊥OA,PE⊥OB,垂足分别为D,E
A
求证:PD=PE
D
证明: ∵∠1=∠2 , OP=OP
∠PDO=∠PEO=90° ∴⊿PDO≌⊿PEO (AAS)
O1
2
P 边相等)
E B
定理 在角的平分线上的点到这个角的两 边的距离相等。
4
定理的逆命题该怎么说?
逆定理:在一个角的内部,且 到角的两边距离相
6
做一做 1
尺规作图
?用尺规作角的平分线. ?已知:∠AOB ?求作:射线OC,使∠AOC=∠BOC
7
例1: 实际问题
数学化
C
P
┒
O
数学问题源于生活实践,反过来数学又为生活实践服务
8
例2: 已知:如图, E是∠BAC平分线上的一点, EB⊥AB,EC⊥AC,B,C分别是垂足。你能 得到哪些结论?为什么?
等的点,在这个角的平分线上。
已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,
PD=PE.
求证:点P在∠AOB的平分线上
A
证明: 在Rt⊿ODP和 Rt⊿OEP中,
∠ODP=∠OEP=90° O
D P
OP=OP, PD=PE Rt⊿OPD≌Rt⊿OPE (HL)
E B
5
E G
O D
A C
H
F
B