八年级数学上册第四章一次函数4一次函数的应用4-4-3复杂一次函数的应用教案(新版)北师大版

合集下载

北师大版八年级数学上册第四章一次函数第四节一次函数的应用教学设计

北师大版八年级数学上册第四章一次函数第四节一次函数的应用教学设计
3.设计一道关于一次函数应用的题目,要求包含至少两个变量,并包含优化问题(如最大值或最小值)。题目需简洁明了,解题步骤要详细。
4.写一篇学习心得,总结一次函数在实际问题中的应用,以及在本节课中学到的解题策略和技巧。要求不少于300字,重点突出自己的收获和感悟。
5.预习下一节课的内容,提前思考如何将一次函数的知识应用到更广泛的实际问题中。
四、教学内容与过程
(一)导入新课,500字
在导入新课的环节,我将利用学生已有的知识经验,通过生活中的实例,引发学生的思考,激发他们的学习兴趣。
“同学们,我们在前面的学习中已经了解了一次函数的概念和性质。那么,你们知道一次函数在实际生活中有哪些应用吗?”通过这个问题,让学生回顾一次函数的知识,并思考其与现实生活的联系。
5.总结反思,提升认识
课后,教师应引导学生对所学知识进行总结反思,提炼关键点,形成知识体系。同时,教师也要对课堂教学进行反思,了解学生的学习情况,不断调整教学策略,提高教学效果。
6.关注个体差异,因材施教
在教学过程中,教师应关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导。对于学习困难的学生,教师要有耐心,帮助他们克服困难,增强自信心;对于优秀生,则要适当提高要求,激发他们的潜能。
3.根据一次函数的性质,我们可以求出使总费用最低的小车数量。
(三)学生小组讨论,500字
在学生小组讨论环节,我将把学生分成若干小组,每组4-6人。针对以下问题进行讨论:
1.你还能想到生活中哪些问题可以用一次函数来解决?
2.在解决实际问题时,如何正确列出一次函数表达式?
3.如何利用一次函数的性质,找到实际问题的最优解?
接着,我展示一个实例:“假设我们班要组织一次郊游活动,需要租车。租车公司给出了如下收费标准:每辆小车租金100元,每辆大车租金200元。我们班共有50人,请同学们思考,如何选择车辆才能使总费用最低?”

北师大版数学八年级上册《4.4一次函数的应用》教案

北师大版数学八年级上册《4.4一次函数的应用》教案

北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。

教材中给出了丰富的实例,为学生提供了充足的学习材料。

二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。

但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。

因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。

三. 教学目标1.了解一次函数在实际生活中的应用。

2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。

3.培养学生的动手操作能力和解决实际问题的能力。

四. 教学重难点1.教学重点:一次函数在实际生活中的应用。

2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。

五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。

六. 教学准备1.准备与一次函数应用相关的实例。

2.准备教学课件。

七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。

让学生思考如何用数学模型来表示这个问题。

2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。

让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。

3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。

通过这个环节,巩固学生对一次函数模型的理解和应用。

北师大版数学八年级上册《4.4一次函数的应用》教学设计

北师大版数学八年级上册《4.4一次函数的应用》教学设计

北师大版数学八年级上册《4.4一次函数的应用》教学设计一. 教材分析北师大版数学八年级上册《4.4一次函数的应用》这一节的内容,主要让学生掌握一次函数在实际生活中的应用,培养学生的实际问题数学化能力。

教材通过生活实例,引导学生认识一次函数在实际生活中的重要性,并通过例题和练习,让学生学会如何用一次函数解决问题。

二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对函数有一定的认识和理解。

但是,将函数应用到实际问题中,可能还存在一定的困难。

因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,利用一次函数进行解答。

三. 教学目标1.了解一次函数在实际生活中的应用,培养学生的实际问题数学化能力。

2.学会用一次函数解决实际问题,提高学生的数学应用能力。

3.通过实例,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

四. 教学重难点1.一次函数在实际生活中的应用。

2.如何将实际问题转化为数学问题,并用一次函数解决。

五. 教学方法采用案例教学法,通过生活实例,引导学生认识一次函数在实际生活中的应用,然后通过例题和练习,让学生学会如何用一次函数解决问题。

在教学过程中,注重学生的参与和实践,提高学生的动手能力和实际问题数学化能力。

六. 教学准备1.准备相关的教学案例和实例。

2.准备PPT,用于展示和讲解。

3.准备练习题,用于巩固和拓展。

七. 教学过程1.导入(5分钟)通过一个生活实例,引出一次函数在实际生活中的应用。

例如,一家商店进行打折活动,打折力度与顾客购买的金额有关,可以设打折力度为一次函数,让学生思考如何表示这个关系。

2.呈现(10分钟)通过PPT,呈现一次函数在实际生活中的其他应用,如温度与海拔的关系、速度与时间的关系等。

引导学生认识到一次函数在生活中的重要性。

3.操练(10分钟)给出一个实际问题,让学生尝试用一次函数解决。

例如,一家工厂的生产成本与生产数量有关,可以设生产成本为一次函数,让学生求解在某一生产数量下的成本。

北师大版八年级数学上册:4.4《一次函数的应用》教学设计

北师大版八年级数学上册:4.4《一次函数的应用》教学设计

北师大版八年级数学上册:4.4《一次函数的应用》教学设计一. 教材分析《一次函数的应用》这一节的内容,主要让学生了解一次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。

北师大版八年级数学上册的教材,通过生动的实例,引导学生理解一次函数的定义,掌握一次函数的性质,并能够运用一次函数解决实际问题。

二. 学情分析八年级的学生已经学习了初中数学的前期内容,对数学知识的接受能力较强。

但是对于一次函数的应用,部分学生可能会觉得抽象难懂,因此,在教学过程中,需要教师通过生动的实例,让学生感受一次函数的实际意义,从而提高学生的学习兴趣和理解能力。

三. 教学目标1.理解一次函数的定义,掌握一次函数的性质。

2.能够运用一次函数解决实际问题,提高学生的应用能力。

3.通过实例,让学生感受数学与生活的紧密联系,提高学生的学习兴趣。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数在实际生活中的应用。

五. 教学方法采用问题驱动的教学方法,通过实例引导学生理解一次函数的定义和性质,通过实际问题的解决,让学生掌握一次函数的应用。

同时,采用小组合作的学习方式,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的实例,如购物、出行等问题。

2.准备一次函数的图片或模型,帮助学生直观理解一次函数。

3.准备练习题,巩固学生对一次函数的应用。

七. 教学过程1.导入(5分钟)通过一个购物实例,引导学生思考如何用数学知识解决实际问题。

例如,一件商品原价80元,降价20%,求降价后的价格。

让学生感受数学与生活的紧密联系,激发学生的学习兴趣。

2.呈现(10分钟)呈现一次函数的定义和性质,通过图片或模型,让学生直观理解一次函数。

同时,引导学生发现生活中的线性关系,如速度、时间、路程的关系,加深学生对一次函数的理解。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用一次函数的知识解决问题。

例如,一组选择出行问题,一组选择购物问题。

北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例

北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例
2.利用多媒体课件、图片等资源,丰富教学手段,提高学生的学习积极性。
3.创设具有挑战性的问题情境,激发学生的思考,培养学生解决问题的能力。
(二)问题导向
1.引导学生提出问题,培养学生的问题意识。例如,在讲解商店促销活动时,引导学生思考:“购买不同数量的商品,费用如何变化?”
2.设计具有启发性的问题,引导学生进行思考、讨论,培养学生分析问题、解决问题பைடு நூலகம்能力。
(四)反思与评价
1.引导学生进行自我反思,总结一次函数在实际问题中的应用方法和规律。
2.组织学生进行互评、师评,评价学生在解决问题过程中的表现,给予鼓励和指导。
3.教师根据学生的表现,及时调整教学策略,提高教学质量。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示商店促销活动的图片,引导学生关注实际问题。
5.作业小结的个性化设计:本节课的作业小结具有个性化设计,让学生运用一次函数的知识解决实际问题,例如家庭用电费用计算、购物预算等。这种作业设计既能够巩固所学知识,提高学生的应用能力,还能够激发学生的创新意识。
3.引导学生掌握一次函数的解析式,学会用数学模型表示实际问题。
4.讲解一次函数的性质,例如斜率、截距等,让学生了解一次函数的变化规律。
(三)学生小组讨论
1.组织学生进行小组讨论,让学生分享各自对一次函数应用的理解。
2.讨论一次函数在实际问题中的变化规律,例如购买商品数量与费用的关系。
3.引导学生通过举例、绘制图像等方式,验证一次函数的性质。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例
一、案例背景
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例,主要针对八年级学生进行设计。本节课的主要内容是让学生掌握一次函数在实际生活中的应用,通过具体案例的分析,让学生了解一次函数在解决实际问题中的重要性。

八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案

八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案

第四章第四节一次函数的应用(2)一、教材分析本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第四章第四节,课题为《一次函数图象的应用》。

本节课为第2课时。

其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。

使学生体会到数学学习过程中“数形结合”思想的重要性。

在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。

二、教学目标及分析知识与能力目标:(1)能通过函数图象获取信息,发展形象思维。

(2)能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

过程与方法目标:(1)在亲身的经历与实践探索过程中体会数学问题解决的办法。

(2)初步体会方程与函数的关系,体会数形结合思想。

情感态度与价值观目标:(1)进一步体会数学知识与现实生活的密切联系,丰富数学情感。

(2)树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

难点:体会函数与方程的关系,发展“数形结合”的思想”。

三、教学对象分析学生已学习了一次函数及其图象,认识了一次函数的性质。

在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础。

但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。

四、教法学法根据本节课的特点、目标要求及学生的实际情况,在教法上主要采用探究式教学法,引导学生进行观察探索、合作交流、归纳总结等学习活动。

2024-2025学年北师版中学数学八年级上册第四章一次函数4.4一次函数的应用(第1课时)教案

2024-2025学年北师版中学数学八年级上册第四章一次函数4.4一次函数的应用(第1课时)教案

第四章一次函数4一次函数的应用第1课时确定一次函数表达式教学目标教学反思1.了解确定一次函数的条件,能用待定系数法求出一些简单的一次函数的表达式;2.能通过函数图象获取信息,解决简单的实际问题;3.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系.教学重难点重点:1.了解确定一次函数的条件;2.能用待定系数法求出一些简单的一次函数的表达式.难点:能利用一次函数解决简单的实际问题.教学过程导入新课知识回顾1.什么是一次函数?什么是正比例函数?2.一次函数的图象是什么?正比例函数的图象呢?3.表示函数的方法有哪些?4.画出y=-2x-4的图象,根据图象回答下列问题:(1)y的值随x值的增大而__________;(2)图象与x轴的交点坐标是________,与y轴的交点坐标是_________;(3)判断下列各点是否在函数y=-2x-4的图象上.A(1,-6);B(-3,1)学生思考,给出答案.1.若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.当b=0时,即y=kx,称y是x的正比例函数.2.一次函数的图象是一条直线;正比例函数的图象是过原点的一条直线.3.列表法、图象法和关系式法.4.(1)减小;(2)(-2,0),(0,-4);(3)A.探究新知假定甲、乙二人在一项赛跑中路程与时间的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.想一想:1.确定正比例函数的表达式需要几个条件?(1个)2.确定一次函数的表达式呢?(2个)例1某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t(s)的关系如图所示.(1)写出v与t之间的关系式.(2)下滑3秒时物体的速度是多少?【解】(1)设函数表达式为v=kt (k为常数且k≠0).∵(2,5)在图象上,把点(2,5)的坐标代入,得5=2k,∴ k=2.5,∴v=2.5 t.(2)当t=3s时,v=2.5×3=7.5(m/s).所以下滑3s时物体的速度是7.5 m/s.例2在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数,一根弹簧不挂物体时长14.5 cm;当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b(k≠0),由题意,得14.5=b, 16=3k+b,解得b=14.5 ,k=0.5.所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即当所挂物体的质量为4 kg时,弹簧长度为16.5 cm.教师总结:教学反思求一次函数表达式的步骤 :1.设——设一次函数表达式为y =kx +b (k ≠0);2.代——将点的坐标代入y =kx +b 中,列出关于k ,b 的方程组;3.解——解方程组求出k ,b 值;4.定——把求出的k ,b 值代回到表达式中即可.像这种求函数表达式的方法叫做待定系数法.课堂练习 1.若一次函数y =2x +b 的图象经过A (-1,1),则=b ,该函数图象经过点B (1, )和点C ( ,0).2.如图,直线l 是一次函数y =kx +b 的图象,填空:(1)=b ,=k ,所以函数关系式为___________;(2)当x =30时,=y ;(3)当y =30时,=x .3.如图,直线l 是一次函数y =kx +b 的图象,求它的表达式.4.已知一次函数的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的表达式.5.某市出租车计费方法如图所示,x (km )表示行驶里程,y (元)表示车费,请根据图象回答下列问题:(1)求出租车的起步价是多少元,并求当x >3时,y 关于x 的函数表达式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.参考答案1.3,5,-1.5教学反思2.(1)2,23-,y =23x -+2 (2)-18 (3)-423.解:y =-3x4.解:设一次函数的表达式为y =kx +b (k ≠0), ∵一次函数y =kx +b 的图象过点(0,2),∴ b =2.∵一次函数的图象与x 轴的交点是2,0k ⎛⎫- ⎪⎝⎭,∴ 12222k⨯-⨯=,解得k =1或-1.∴ 一次函数的表达式为y =x +2或y =-x +2. 5.解:(1)8,y =2x +2;(2)令y =32,则2x +2=32,x =15,∴ 这位乘客乘车的里程为15 km.课堂小结(学生总结,老师点评)用待定系数法确定一次函数表达式的步骤布置作业习题4.5 必做题:第2题 选做题:3,4题任选一题板书设计第四章 一次函数4 一次函数的应用第1课时 确定一次函数表达式用待定系数法确定一次函数表达式的步骤: 1.设—— 设一次函数表达式为y =kx +b (k ≠0);2.代—— 将点的坐标代入y =kx +b 中,列出关于k ,b 的方程组;3.解—— 解方程组求出k ,b 值;4.定—— 把求出的k ,b 值代回到表达式中即可.。

北师大版数学八年级上册4《一次函数的应用》教案3

北师大版数学八年级上册4《一次函数的应用》教案3

北师大版数学八年级上册4《一次函数的应用》教案3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4章的内容。

本节课主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。

通过本节课的学习,学生能够理解一次函数的定义,掌握一次函数的图像特征,并能运用一次函数解决实际问题。

二. 学情分析学生在七年级时已经学习了平面直角坐标系,对坐标系中的点、直线有所了解。

但他们对一次函数在实际生活中的应用还不够明确,需要通过本节课的学习,让学生感受到数学与生活的紧密联系,提高他们学习数学的兴趣。

三. 教学目标1.了解一次函数在实际生活中的应用。

2.学会用一次函数解决实际问题。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.一次函数在实际生活中的应用。

2.如何引导学生将实际问题转化为一次函数问题。

五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握一次函数的应用。

六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)利用PPT展示生活中的一些场景图片,如购物、出行等,引导学生发现这些场景中存在数学问题。

让学生举例说明,并提问:如何用数学知识解决这些问题?2.呈现(10分钟)呈现一次函数的定义和图像特征,引导学生理解一次函数的概念。

通过PPT展示一次函数在实际生活中的应用案例,如购物问题、出行问题等,让学生直观地感受一次函数的应用。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试用一次函数解决。

教师巡回指导,帮助学生解决问题。

学生汇报解题过程和结果,教师点评并给予鼓励。

4.巩固(10分钟)出示一组练习题,让学生独立完成。

教师选取部分学生的作业进行点评,指出解题过程中的优点和不足,并进行讲解。

5.拓展(10分钟)让学生思考:一次函数在实际生活中还有哪些应用?引导学生从不同角度发现一次函数的应用,如环保、生产等。

北师大版八年级上册第四章一次函数第四节一次函数的应用教案

北师大版八年级上册第四章一次函数第四节一次函数的应用教案

第四章一次函数第四节一次函数的应用教案一次函数的应用教案一、教学目标1. 理解一次函数的应用问题,掌握如何将实际问题转化为数学模型。

2. 掌握一次函数的应用方法,能够运用其解决实际问题。

3. 培养学生的数学应用能力,提高学生的逻辑思维和解决问题的能力。

二、教学重点和难点1. 教学重点:一次函数的应用方法和实际应用。

2. 教学难点:将实际问题转化为数学模型,并能够正确运用一次函数解决实际问题。

三、教学过程1. 引入问题:通过实际问题的引入,让学生了解一次函数的应用背景和意义,激发学生解决问题的兴趣。

2. 分析问题:引导学生分析实际问题中的数量关系,将其转化为一次函数的形式,讲解一次函数的应用方法。

3. 探究模型:通过具体问题的解决,让学生了解如何将实际问题转化为数学模型,并能够通过模型求解问题的答案。

4. 拓展应用:举例说明一次函数在实践中的应用,例如,在物理学中的速度-时间问题、经济学中的成本与收益问题等,让学生理解其实际应用的价值。

5. 巩固练习:通过小组讨论、个人作业等方式,让学生进行练习和巩固,加深对知识的理解和掌握。

6. 课堂总结:回顾一次函数的应用方法、实际应用及数学建模的过程,强调其重要性和应用价值。

四、教学方法和手段1. 讲解法:通过讲解一次函数的应用方法和数学建模的过程,使学生理解其基本原理。

2. 实例分析法:通过分析具体问题的例子,帮助学生理解如何运用一次函数解决实际问题。

3. 图像观察法:引导学生观察一次函数的图像,通过观察和分析图像,让学生理解其性质和规律。

4. 小组讨论法:组织学生进行小组讨论,促进相互交流和学习,加深学生对知识的理解和应用。

5. 互动问答法:鼓励学生提出疑问,组织课堂讨论,激发学生的学习热情和参与意识。

五、课堂练习、作业与评价方式1. 基础练习:选择一些基本的应用题,让学生练习一次函数的应用方法和数学建模。

2. 提高练习:给出一些较为复杂的实际问题,让学生在课堂上进行小组讨论并解决。

北师大版数学:八年级上册教案4.4一次函数的应用

北师大版数学:八年级上册教案4.4一次函数的应用

4.4一次函数的应用(1)一、教学分析【教材分析】“一次函数的应用”是北师大版数学八年级上册第四章第四节,学生在七年级上册“整式及其加减”一章,让学生结合具体情境列出相应的代数式,实际上就是函数思想的初步渗透。

在八年级有学习了平面直角坐标系、一次函数的概念、一次函数的图象。

学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。

在此基础上引导学生根据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方法.【教学目标分析】根据《课程标准》的要求,结合本节课确定教学目标为:知识技能:1、经历分析实际问题中两个变量之间关系,并解决有关问题的过程,发展应用意识。

2、进一步发展数形结合的思想,发展数形结合解决问题的能力。

3、利用一次函数图象分析、解决简单的实际问题,发展几何直观。

4、初步体会函数与方程的联系。

数学思考:体会数形结合的思想,解决实际问题,体会几何直观。

问题解决:由现实背景确定一次函数,关注图象特征确定一次函数表达式。

情感态度:积极参与数学活动,养成独立思考的能力,培养合作交流的意识【教学重点难点】教学重点:一次函数图像的应用。

注重提高学生的数形结合的思想。

教学难点:从函数图像中正确读取信息,解决实际问题。

帮助学生建立转化的思想方法。

【我的思考】本节课是北师大版义务教育教科书八年级上第四章《一次函数》第四节的第一课时,主要内容是利用图象、表格等信息,确定一次函数的表达式.与原教材相比,新教材更注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想方法;并且让学生更加明确确定一次函数的表达式需要两个独立的条件,这个问题虽然简单,但它涉及数学对象的一个本质概念---基本量.值得一提的是确定一次函数表达式,需要根据两个条件列出关于k、b的方程组,而二元一次方程组是下一章的学习内容,因此本节所研究的一次函数,某个参数应较易于从所给条件中获得,从而转化为通过另一个条件确定另一个参数的问题.因此,在教学中要注意控制问题的难度,对于一般问题,可在下一章的学习中再加强训练.二、教学过程设计第一环节:复习旧知画出y=-2x-4的图象,根据图象回答下列问题:(1)y的值随x值的增大而________;(2)图象与x轴的交点坐标是_______,与y轴的交点坐标是_______;(3)判断下列各点是否在函数y=-2x-4的图象上.A (1,-6)B(-3,1)分析:将x的值代入函数表达式,如果等于y的值,这个点就在函数的图象上;否则,这个点不在函数的图象上.完成以上问题之后,和同学们一同复习一下关于一次函数的知识:提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?目的:学生回顾一次函数相关知识,温故而知新.第二环节:探索新知展示实际情境1:图片展示,从学生所体验过的冰滑梯开始。

北师大版八年级数学上册:4.4 《一次函数的应用》教案3

北师大版八年级数学上册:4.4 《一次函数的应用》教案3

北师大版八年级数学上册:4.4 《一次函数的应用》教案3一. 教材分析《一次函数的应用》是北师大版八年级数学上册第4章“一次函数”的最后一节内容。

本节课的主要内容是让学生掌握一次函数在实际问题中的应用,培养学生的实际问题解决能力。

教材通过生活实例引入一次函数的应用,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。

二. 学情分析学生在学习本节课之前,已经学习了初中阶段的一次函数、不等式和方程等基础知识,对一次函数的概念、性质和图象有一定的了解。

但学生对实际问题与一次函数之间的联系还需加强,本节课通过具体的生活实例,让学生将已学知识运用到实际问题中,提高学生解决问题的能力。

三. 教学目标1.让学生理解一次函数在实际问题中的应用,提高学生的实际问题解决能力。

2.培养学生运用数学知识描述生活现象的能力,感受数学与生活的紧密联系。

3.提高学生学习数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.一次函数在实际问题中的应用。

2.如何将实际问题转化为一次函数问题,找出合适的自变量和因变量。

五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。

以生活实例为载体,引导学生发现实际问题与一次函数之间的联系,通过小组合作、讨论交流,培养学生解决问题的能力。

六. 教学准备1.准备相关的生活实例,用于引导学生发现实际问题与一次函数之间的联系。

2.准备课件,展示一次函数在实际问题中的应用。

3.准备练习题,巩固学生对一次函数应用的理解。

七. 教学过程1.导入(5分钟)通过一个生活实例,如购物问题,引导学生发现实际问题中存在一种线性关系。

让学生思考如何用数学语言描述这种关系,引出一次函数的概念。

2.呈现(15分钟)呈现一组实际问题,如的身高与年龄的关系,让学生尝试用一次函数来表示。

引导学生找出合适的自变量和因变量,并解释为什么选择这两个变量。

3.操练(15分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数来表示。

八年级数学上册4.4一次函数的应用教案(新版)北师大版

八年级数学上册4.4一次函数的应用教案(新版)北师大版
3.重点难点解析:在讲授过程中,我会特别强调一次函数表达式y=kx+b的含义及其图像性质这两个重点。对于难点部分,如一次函数在实际问题中的应用,我会通过举例和图像分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如速度、时间和路程关系。
3.培养学生运用数学知识解决实际问题的能力,加强数学与现实生活的联系,提升学生的应用意识。
4.培养学生的团队协作能力,通过小组讨论、合作探究,提高沟通交流及合作解决问题的核心素养。
5.引导学生形成批判性思维,敢于对问题进行质疑、探究,培养创新意识和辩证思考的核心素养。
三、教学难点与重点
1.教学重点
(1)掌握一次函数的定义及表达式y=kx+b的含义,理解其中k、b的几何意义。
五、教学反思
在今天的课堂中,我发现学生们对一次函数的应用表现出很大的兴趣,这是非常令人欣慰的。通过引入日常生活中的实际问题,如速度、时间和路程的关系,学生们能够更直观地感受到数学与生活的紧密联系。在讲授过程中,我注意到有几个地方值得我们共同反思。
首先,一次函数的表达式y=kx+b对于部分学生来说,理解起来还是有一定难度的。在讲解这个概念时,我尽量用浅显易懂的语言和生动的例子来解释,但仍有部分学生显得有些迷茫。我想在今后的教学中,可以尝试运用更多的图像和实物模型来辅助教学,让学生更好地理解一次函数的内涵。
其次,在实践活动和小组讨论环节,学生们表现出了很高的积极性。他们能够主动参与到讨论中,提出自己的观点,这有助于培养他们的团队协作和沟通能力。但同时我也发现,有些学生在讨论过程中容易偏离主题,需要我适时引导他们回到正题。因此,在今后的教学中,我需要加强对学生讨论过程的监督和引导,确保讨论的有效性。

八年级数学上册4.4.3一次函数的应用教案(新版)北师大版

八年级数学上册4.4.3一次函数的应用教案(新版)北师大版

课题:4.4.3一次函数的应用教学目标:1.提高学生的读图能力,解决与两个一次函数相关的图象信息题.2.进一步培养学生数形结合思想,以及分析、解决问题的能力,提高思维能力.3.通过小组合作学习,培养学生探究意识.教学重点与难点:重点:读懂图象,并从图象中获取已知条件解决问题.难点:同一坐标的两个函数的联系.课前准备:多媒体课件.教学过程:一、创设情境,引入新课课前小练(课件展示)一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系?(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?处理方式:学生独立完成,教师巡视,了解学生对知识的掌握情况,同时关注:学生在练习中的反映的问题,有针对性的讲解.设计意图:通过与上一课时相似的问题,回顾旧知,导入新知学习,为进一步研究一次函数图象和性质的应用做好铺垫.二、小组合作,共同探索如图,l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售量的关系,根据图象填空.①当销售量为2吨时,销售收入=_______元,销售成本=_____元;②当销售量为6吨时,销售收入=________元,销售成本=_____元;③当销售量等于______时,销售收入等于销售成本;④当销售量________时,该公司赢利(收入大于成本);当销售量_______时,该公亏损(收入小于成本);⑤l1对应的函数表达式是_______;L2对应的函数表达式是________________.处理方式:学生观察函数图象,先独立思考,再小组合作完成.教师利用动画展示解题过程,教师适时指导,培养学生对某个问题作出正确判断、合理决策的能力.师强调:当涉及两个函数问题时,要注意横纵轴对于每个函数的不同意义.1.横轴、纵轴表示的意义:横轴表示的是,纵轴表示的是.2.直线与坐标轴的交点表示的意义:⑴l1与坐标轴的交点坐标是,表示的意义是.⑵l2与坐标轴的交点坐标是,表示的意义是.解:(1)当销售量为2吨时,销售收入=2000元,销售成本为3000元(2)当销售量为6吨时,销售收入=6000元,销售成本=5000元;(3)当销售量等于4吨时,销售收入等于销售成本;(4)当销售量大于4号时,该公司赢利,当销售量小于4吨时,该公司亏损.(5)l1经过原点和(4,4000),设表达式为y=kx,把(4,4000)代入,得4000=4k,所以k=1000.所以l1的表达式为y=1000x,l 2经过点(0,2000)和(4,4000),设表达式为y=kx+b.根据题意,得b=2000 ①4k+b=4000 ②把①代入②,得4k+2000=4000,所以k=500所以l 2的表达式为y=500x+2000想一想上题中,l1对应的一次函数y=k1x+b1中,k1和b1实际意义各是什么?l1对应的一次函数y=k1x+b1中,k1和b1实际意义各是什么?处理方式:学生对应一次函数关系式观察函数图象,先独立思考,再小组合作完成.教师适时指导,培养学生对某个问题作出正确判断、合理决策的能力. 教师根据学生回答的结果适时纠错,并展示结果.k1的实际意义是:每销售1吨产品的销售收入,b1的实际意义是:未销售时,销售收入为0;k2的实际意义是:每销售1吨产品的销售成本,b2的实际意义是:未销售时,销售成本为2000元.设计意图:培养学生的识图能力和探究能力,调动学生学习的自主意识.利用该函数图象的特征解决这个问题.在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.三、学以致用,解决问题(投影例题)例3:我边防局接到情报,近海外有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,如下图:在下图中,l1,l2分别表示两船相对于海岸的距离S(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B 到海岸的距离与追赶时间之间的关系?(2)A 、B 哪个速度快? (3)15分内B 能否追上A ? (4)如果一直追下去,那么B 能否追上A ?(5)当A 逃到离海岸12海里的公海时,B 将无法对其进行检查.照此速度,B 能否在A 逃入公海前将其拦截?(6)l 1与l 2对应的两个一次函数y =k 1x +b 1与y =k 2x +b 2中,k 1,k 2的实际意义各是什么?可疑船只A 与快艇B 的速度各是多少?处理方式:学生先独立思考,然后在小组内交流合作.各组长巡视了解本组成员的意见,对于本组不会写与识图的学生实行“一帮一”互助,然后各派一名代表到黑板写出答案.教师观察小组内的合作交流情况,聆听学生的发言,适时给予点拨.每个组代表到黑板写出答案过程中,其他同学发现错误直接上来圈出并修改.解:(1)观察图象,得当0t =时,B 距海岸 0海里,即0S =,故1l 表示B 到海岸的距离与追赶时间之间的关系. 解:(2)从0增加到10时,l 2的纵坐标增加了2,而1l 的纵坐标增加了5,即10分内,A 行了2海里,B 行驶了5海里,所以B 的速度快.解:(3)延长1l l 2可以看出,当t =15时,1l 上对应点在l 2上对应点的下方,所以,15分时尚未追上A .l,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.解:(4)如图1l与l2交点P的纵坐标小于12,这说明在A逃入公海前,解:(5)从图中可以看出,1我边防快艇B能够追上A.解:(6)k1 表示的是快艇B的速度,k2表示的是可疑船只A的速度,可疑船只A的速度是0.2n mile/min,快艇B的速度是0.5n mile/min.设计意图:通过学生对问题串的展示、老师几个简单的提问、重音的强调使学生从视觉、听觉等多方位感知到直线与坐标轴交点的意义、两直线交点及表达式中k、b的实际意义、利用图象比较函数值的方法,使学生在教师的引导下逐步形成了良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.随堂练习:小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36 km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km /h .(1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km ?处理方式:教师点拨:当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法?然后学生独立做题,小组之间纠错,教师展示结果.解:设经过t 时,小聪与小慧离“古刹”的路程分别为S 1、S 2,由题意得:S 1=36t , S 2=26t +10将这两个函数解析式画在同一个直角坐标系上,观察图象,得⑴两条直线S 1=36t ,S 2=26t +10的交点坐标为(1,36)这说明当小聪追上小慧时,S 1= S 2=36 km ,即离“古刹”36 km ,已超过35 km ,也就是说,他们已经过了“草甸”⑵当小聪到达“飞瀑”时,即S 1=45 km ,此时S 2=42.5 km . 所以小慧离“飞瀑”还有45-42.5=2.5(km ).设计意图:设计本题,主要了解学生对知识的掌握情况和对知识的应用能力,以便查缺补漏,使教师的教和学生的学更具有针对性.本练习设计注意了问题的开放性,发散了学生思维.在学生争先恐后的抢答中,将本节课的教学推向高潮.对同学的回答,教师要及时给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心.四、回顾课堂,盘点收获请同学们自我小结本节课所学的知识和方法,和大家一起分享吧!处理方式:留给学生充分的时间进行交流,让学生畅谈自己的收获.教师要注重对学生的引导、评价,教学生学会反思,学会总结;教师展示本节课的知识点.设计意图:引导学生自己小结运用一次函数解决实际问题的主要方法;让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.五、快乐套餐,深化提高1.如右图,表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是( )A .轮船的速度为20千米/时B .轮船比快艇先出发2小时C .快艇的速度为40千米/时D .快艇不能赶上轮船2.今年春运会上,甲、乙两名同学同时参加了一项短跑比赛,路程 s (米)与时间 t (秒)的关系如右图所示,那么: (1)这是一次 m 赛跑;(2)甲、乙两人中 先到达终点; (3)乙在这次赛跑中的速度为 . 3.观察甲、乙两图,解答下列问题:(1)填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节.(2)根据1中所填答案的图象填写下表:(3)根据1中所填答案的图象求:①龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围); ②乌龟经过多长时间追上了免子,追及地距起点有多远的路程?处理方式:留给学生5~6分钟的时间独立做题,教师巡视,对于不甚明白知识点的学生给予帮助,同时批改完成同学的的检测题,及时收集具有代表性的错误,和好的解题方法.设计意图:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心.六、布置作业,课堂延伸必做题:习题4.7 第1、2题;选做题:习题4.7 第3题;拓展题:地到乙地行驶过程的函数图象,两地相距80千米,请根据图象解决下列问题:⑴l1是行驶过程的函数图象,l2是行驶过程的函数图象.⑵哪一个人出发早?早多长时间?哪一个人早到达目的地?早多长时间?⑶求出两个人在途中行驶的速度是多少?⑷分别求出表示自行车和摩托车行驶过程的函数解析式,并求出自变量x的取值范围.板书设计:。

北师大初中数学八年级上册第四章《 4.4一次函数的应用》教案

北师大初中数学八年级上册第四章《 4.4一次函数的应用》教案

北师大数学八年级上册《一次函数的应用》教案教学目标:1.了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题;2.经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法.教学重难点:重点:是探究确定一次函数表达式的方法;难点:是将所学的确定一次函数表达式的方法进行灵活运用教法与学法指导:本节课采用了“学导练 当堂清”的教学模式,首先通过对一次函数的复习,提出了本课时的学习任务:通过图像、实际情景和表格来确定一次函数的表达式,关键是真正让小组之间的合作交流起来,发挥集体智慧,通过相互间的合作与交流,发展学生合作交流的能力和数学表达能力;教师通过组织、点拨、引导,促进学生主动探索,积极思考,总结规律,充分发挥学生的主体作用.课前准备:制作课件和导学案;教学过程:一、 问题导入,复习回顾师:1.下列函数中是一次函数的是( )A .y =2x 2-1B .y =-x 1C .y =31 xD .y =3x +2x 2-1 2.什么是一次函数?一次函数定义中要注意什么?3.一次函数图像是什么形状?画一次函数图像至少要几个点?4.一次函数具有什么性质?(学生回答,教师给与及时的评价)师:我们知道,已知一次函数的表达式可以画出函数图像并得到它的有关性质,如果给你函数相关信息,能否求出函数的表达式呢?要确定一次函数表达式需要几个条件呢?今天就让我们一起来探究这个问题。

设计意图:本节主要的内容是确定表达式,以学生已掌握的知识为切入点,提出问题,使学生明确这节课的学习任务.二、 自主学习,合作探究1.通过图像确定正比例函数的表达式师:多媒体显示:某物体沿一个斜坡下滑,它的速度v (米/秒)与其下滑时间t (秒 )的关系如图所示.(1)写出v 与t 之间的关系式;(2)下滑3秒时物体的速度是多少? 分析:首先此函数的图象过原点可知是正比例函数,因此v 与t 满足的关系式为:v =kt .其次点(2,5)在直线上又知这点的坐标满足关系式,把t .=2,v =5代入v =kt .中即可求出k 的值.生:展示合作结果;生1:这道题是某物体速度与下滑时间的关系,2秒时速度为5米/秒,1秒的速度就是2.5米/秒,所以V =2.5t ,当t =3时,V =2.5×3=7.5(米/秒).师征求其他学生意见,然后示范解:(1)设V=kt;∵(2,5)在图象上 ∴5=2k k =2.5 ∴V =2.5t(2) 当t =3时,V =2.5×3=7.5(米/秒).师:大家思考一下,确定正比例函数的表达式只要根据条件求出k 的值就行,那么需要几个条件可以确定k 的值?生2:知道一个点就行.师:实际上就是知道一个自变量和相对应的因变量的值,然后代入关系式,解出k 的值,如何确定一个一次函数的表达式呢?设计意图:由学生参与正比例函数关系式的形成过程,教师应做好应有的预设,就是学生不太可能去用待定系数法去求函数关系式,所以教师允许学生去说自己所想,然后将待定系数的思想渗透到教学中去.2.通过具体情境确定一次函数的表达式师:课件出示“范例导航”例1 在弹性限度内,弹簧的长度y (厘米)是所挂物体的质量x (千克)的一次函数,当所挂物体的质量为0千克时,弹簧长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y 与x 之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.分析:生:认真读题后,小组展开讨论,探索出解题思路.然后各个小组派代表回答。

北师大版数学八年级上册4.4.3 一次函数的应用 教学设计

北师大版数学八年级上册4.4.3 一次函数的应用 教学设计

第四章 一次函数4. 一次函数的应用(第3课时)一、学生起点分析在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.二、教学任务分析本节课是北师大版义务教育教科书八年级(上)第四章《一次函数》第四节的第3课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础. 教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣. 教学重点一次函数图象的应用 教学难点从函数图象中正确读取信息三、教法学法1.教学方法:“问题情境—建立模型—应用与拓展” 2.课前准备:教具:教材,课件,电脑学具:教材,练习本,铅笔,直尺四、教学过程:内容2:深入探究海 岸公 海AB例2 我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇 B 追赶(如图),下图中1l , 2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系. 根据图象回答下列问题:(1)哪条线表示B 到海岸的距离与时间之间的关系? 解:观察图象,得当0=t 时,B 距海岸0 n mile ,即0=S ,故1l 表示B 到海岸的距离与追赶时间之间的关系;(2)A ,B 哪个速度快?解:从0增加到10时,2l 的纵坐标增加了2,而1l 的纵坐标增加了5,即10 min 内,A 行驶了2海里,B 行驶了5 n mile ,所以B 的速度快.(3)15 min 内B 能否追上A ?解:可以看出,当15=t 时,1l 上对应点在2l 上对应点的下方,(4)如果一直追下去,那么B 能否追上A ? 解:如图1l ,2l 相交于点P .因此,如果一直追下去,那么B 一定能追上A .(5)当A 逃到离海岸2l 海里的公海时,B 将无法对其进行检查.照此速度,B 能否在A 逃到公海前将其拦截?解:从图中可以看出,1l 与2l 交点P 的纵坐标小于2l ,这说明在A 逃入公海前,我边防快艇B 能够追上A .活动目的:培养学生良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.说明:学生在教师的引导下,逐步形成了良好的识图能力.第三环节:反馈练习内容:观察甲、乙两图,解答下列问题1.填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节.3.根据1中所填答案的图象求:(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围); (2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程?4.请你根据另一幅图表,充分发挥你的想象,自编一则新的“龟免赛跑”的寓言故事,要求如下:(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。

北师大版数学八年级上册4.一次函数的应用(第3课时)课件

北师大版数学八年级上册4.一次函数的应用(第3课时)课件

y/元
6000 5000 4000 3000 2000 (0,2000)
l1
y=1000x
关系式设为y1=k1x,
l2
y=500x+2000 只需要一个点的坐标.
y=k1x 4000=4k, k=1000
(4,4000)
l2的图不过原点
y=1000x (0,2000)(4,4000)
1000 O
1 23
O
l2 A l1 B
2 4 6 8 10
t /分
即10分钟内,A行 驶了2海里,B行
P94例2 我边防局接到情报,近海处有一可疑船只A正向公海方向行驶, 边防局迅速派出快艇B追赶(如图).
快艇

B

A 可疑船


下图中 l1 ,l2 分别表示两船相对于海岸的距离s与追赶时间t之间
的关系.根据图象回答下列问题:
(1)哪条线表示快艇B到海岸的距离与追赶时间之间的关系?
s /海里
8 6 4 2
北师大版 数学 八年级上册
第四章 一次函数
4.4.3 一次函数的应用
第3课时 复杂一次函数的应用
学习目标
1.进 一 步 训 练 识 图 能 力 , 通 过 函 数 图 象 获 取 信 息 , 解 决 简单的实际问题。
2.在 函 数 图 象 信 息 获 取 过 程 中 , 进 一 步 培 养 数 形 结 合 意 识,发展形象思维。
该公司盈利(收入大于成 6000
本); 当销售量 小于4吨 时,
5000
该公司亏损(收入小于成 4000
本) ;
3000
2000
1000
O
销售收入

北师大版八年级上册4.4一次函数的应用(教案)

北师大版八年级上册4.4一次函数的应用(教案)
此外,学生在解决实际问题时,对于待定系数法的应用还不够熟练,这也是我需要在课后重点辅导的部分。我将通过更多具体例子的讲解,帮助他们理解待定系数法的原理,并能够灵活运用到解题过程中。
-强调将实际问题抽象成数学模型的过程。
2.教学难点
-待定系数法求解一次函数解析式的理解和应用。
-难点在于如何从实际问题中抽象出两个方程组成,进而求解k和b的值。
-通过具体例子,解释如何列出方程组,并指导学生进行求解。
-一次函数在实际问题中的应用,如最值问题、效益问题和路程问题。
-难点在于如何将实际问题转化为数学表达式,并找出函数的最大值或最小值。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率k和截距b这两个重点。对于难点部分,如待定系数法求解一次函数解析式,我会通过具体例子和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如归一问题或计算公式问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一次函数图象的绘制及其性质。
-通过案例分析,指导学生如何确定变量之间的关系,并求解最值。
-对一次函数性质的理解,尤其是斜率k对图象的影响。
-难点在于理解斜率k与函数增减性之间的关系。
-通过图象观察和实例分析,帮助学生理解斜率k的正负如何决定函数的增减性。
-数形结合的解题思路。
-难点在于如何将抽象的数学问题与直观的图象结合起来,以简化问题解决过程。
-在求解一次函数解析式的过程中,培养逻辑推理和数学运算能力
-通过对一次函数性质的学习,提升抽象逻辑思维能力
4.增强学生的几何直观和空间观念,提高数形结合的解题能力。

北师大版八年级数学上册4.4《一次函数的应用》教案 (2)

北师大版八年级数学上册4.4《一次函数的应用》教案 (2)

三、教学反思
本节课课前我研读课标和教材,编写了课堂练习,将知识形成体系,引导学生学习。在 教学中借助几何画板,演示,节省时间同时建立直观印象。在教学提到生活中的实例,沈阳 市棋盘山冰雪大世界的冰滑梯,激发学生爱家乡的热情。 本节课的重点是要学生了解正比例函数的确定需要一个条件, 一次函数的确定需要两个 条件, 能由条件利用待定系数法求出一些简单的一次函数表达式, 并能解决有关现实问题. 本 节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的 培养,为后继学习打下基础.突出重点、突破难点策略,探究的过程由浅入深,并利用了丰 富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应 用非常广泛.教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求一次函数表达 式的一般方法.教学中还注意到尊重学生的个体差异,使每个学生都学有所获. 根据本班 学生及教学情况可在教学过程中选择拓展资源中内容进行补充或拓展,也可留作课后作业.
第二环节:探索新知
展示实际情境 1:图片展示,从学生所体验过的冰滑梯开始。 某物体沿一个斜坡下滑,它的速度 v(米/秒)与其下滑时间 t(秒 )的关系如图所示. (1)写出 v 与 t 之间的关系式; (2)下滑 3 秒时物体的速度是多少? 分析:要求 v 与 t 之间的关系式,首先应观察图象,确 定函数的类型,然后根据函数的类型设它对应的解析式,再 把已知点的坐标代入解析式求出待定系数即可. 设计意图:利用函数图象提供的信息可以确定正比例 函数的表达式, 一方面让学生初步掌握确定函数表达式的方
法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景中 学生更可能更易写出函数关系式. 教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度, 再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法. 想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢? 目的:在实践的基础上学生加以归纳总结。这个问题涉及到数学对象的一个本质概念 ——基本量.由于一次函数有两个基本量 k 、 b ,所以需要两个条大版义务教育教科书八年级上第四章《一次函数》第四节的第一课时, 主要内容是利用图象、表格等信息,确定一次函数的表达式.与原教材相比,新教材更注重 与实际联系, 更加注重培养学生掌握数形结合这一重要的思想方法; 并且让学生更加明确确

八年级数学上册 第四章 一次函数 4 一次函数的应用 4.4.3 复杂一次函数的应用教案 北师大版

八年级数学上册 第四章 一次函数 4 一次函数的应用 4.4.3 复杂一次函数的应用教案 北师大版

一次函数的应用课题复杂一次函数的应用课时安排共〔 1 〕课时课程标准课本93-94学习目标1.进一步提高识图能力,通过函数图象获取信息.2.能利用函数图象解决较复杂的实际问题.教学重点两个一次函数图象的应用.教学难点通过函数图象解决实际问题.教学方法合作交流法教学准备让学生通过阅读教材后,独立完成“自学互研〞的所有内容,并要求做完了的小组长催促组员迅速完成.课前作业先自学课本94页教学过程教学环节课堂合作交流二次备课〔修改人:〕环节一思考:图4-10中,l1对应的一次函数y=k1x+b1中,k1和b1的实际意义各是什么?l2对应的一次函数y=k2x+b2中,k2和b2的实际意义各是什么?自学互研生成能力知识模块一两个一次函数图象在同一坐标系中的应用师生合作完成教材第94页例3的学习与探究.课中作业课本94页例4环节典例讲解:例:某单位急需用车,但不准备买车,他们准备和一个个体车主或一国有出租车公司中的一家签订合同,设汽车每月行驶xkm,应付给个二y1元,应付给国有出租车公司的月租费是y2元,y1、y2分别与x之间的函数关系的图象(两条射线)如下列图,观察图象,答复以下问题.(1)分别写出y1,y2与x之间的函数关系式;(2)每月行驶的路程在什么范围内时,租国有公司的车合算?(3)每月行驶的路程等于多少时,租两家车的费用一样?(4)如果这个单位估计平均每月行驶的路程为2300km,那么这个单位租哪家的合算?课中作业课本95页例3环节三仿例:如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.以下说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是( D )A.①②B.②③④C.②③D.①②③课中作业课本95页想一想课后作业设计:课本95页习题〔修改人:〕板书设计:如有侵权请联系告知删除,感谢你们的配合!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的应用
课题复杂一次函数的应用课时安排共( 1 )课时课程标准
课本93-94
学习目标1.进一步提高识图能力,通过函数图象获取信息.2.能利用函数图象解决较复杂的实际问题.
教学重点两个一次函数图象的应用.教学难点通过函数图象解决实际问题.教学方法合作交流法
教学准备让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.
课前作业先自学课本94页
教学过程
教学环节课堂合作交流
二次备课
(修改人:)
环节一
思考:
图4-10中,l1对应的一次函数y=k1x+b1中,k1和b1的实际意义各是什么?l2对应的一次函数y=k2x+b2中,k2和b2的实际意义各是什么?
自学互研生成能力
知识模块一两个一次函数图象在同一坐标系中的应用
师生合作完成教材第94页例3的学习与探究.
课中作业课本94页例4
环节二典例讲解:
例:某单位急需用车,但不准备买车,他们准备和一个个体车主或一国有出租车公司中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y1元,应付给国有出租车公司的月租费是y2元,y1、y2分别与x之间的函数关系的图象(两条射线)如图所示,观察图象,回答下列问题.
(1)分别写出y1,y2与x之间的函数关系式;
(2)每月行驶的路程在什么范围内时,租国有公司的车合算?
(3)每月行驶的路程等于多少时,租两家车的费用相同?
(4)如果这个单位估计平均每月行驶的路程为2300km,那么这个单位租哪家的合算?
课中作业
课本95页例3



仿例:如图是甲、乙两家商店销售同一种产品的销售价y (元)与
销售量x (件)之间的函数图象.下列说法:①售2件时甲、乙两家售
价一样;②买1件时买乙家的合算;③买3件时甲家的合算;④买乙
家的1件售价约为3元,其中正确的说法是( D ) A .①② B .②③④ C .②③ D .①②③ 课中作业
课本95页想一想
课后作业设计:
课本95页习题4.7
(修改人: )
板书设计:
两个一次函数的应用⎩⎪⎨⎪⎧实际生活中的问题几何问题 教学反思:
进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.。

相关文档
最新文档