经济数学基础作业1的答案
经济数学1参考答案
![经济数学1参考答案](https://img.taocdn.com/s3/m/532910c45727a5e9846a6165.png)
A. B. C. D. 参考答案: C
12、
A. k=0 B. k=1 C. k=2 D. -1/2 参考答案: C
13、
A. (n+1)阶无穷小 B. n阶无穷小 C. 同阶无穷小 D. 高阶无穷小 参考答案: A
14、
A. 不含有对数函数 B. 含有反三角函数 C. 一定是初等函数 D. 一定是有理函数 参考答案: C
一、单项选择题
1、
A. л B. 2л C. 4л D. 6л 参考答案: C
2、
A. -1 B. 0 C. 1 D. 不存在 参考答案: C
3、
A. 1 B. 2 C. 6 D. 1/6 参考答案: C
4、
A.
B. C. D. 参考答案: B
5、
A. B. C. D. 参考答案: C
6、
A. 5/6 B. 1/2 C. -1/2 D. 1 参考答案: A
A. [0,л] B. (0,л) C. [-л/4,л/4] D. (-л/4,л/4) 参考答案: C
26、 若函数f(x)在(a,b)内存在原函数,则原函数有( )
A. 一个 B. 两个 C. 无穷多个 D. 都不对 参考答案: C
27、
A. 必要条件 B. 充分条件 C. 充分必要条件 D. 无关条件 参考答案: A
7、
A.
B.
C. D.
参考答案: B
8、 若函数f(x)在(a,b)内存在原函数,则原函数有( )
A. 一个 B. 两个 C. 无. 参考答案: B
10、 数列有界是数列收敛的( )
A. 充分条件 B. 必要条件 C. 充要条件
D. 既非充分也非必要 参考答案: B
2022年经济数学基础形成性考核参考答案
![2022年经济数学基础形成性考核参考答案](https://img.taocdn.com/s3/m/5949d01ae97101f69e3143323968011ca300f77b.png)
经济数学基础形成性考核册作业(一)一、填空题1. 02. 13.:2321+=x y4. x 25. 2π- 二、单项选择题 .DBBBB 三、解答题 1.计算极限(1) 解:原式=)1)(1()2)(1(lim1-+--→x x x x x =12lim 1+-→x x x =211121-=+-(2) 解:原式=)4)(2()3)(2(lim2----→x x x x x =21423243lim 2=--=--→x x x(3)解:原式=)11()11)(11(lim+-+---→x x x x x =)11(11lim 0+---→x x x x =111lim 0+--→x x =21-(4)解:原式=31003001423531lim22=+++-=+++-∞→x x x x x(5)解:原式=53115355sin lim 33sin lim535355sin 33sin lim000=⨯=⨯=⨯→→→xx x xx x x x x x x (6)解:原式=414)2sin(2lim )2(lim )2sin()2)(2(lim222=⨯=--⨯+=--+→→→x x x x x x x x x 2.解:(1)由于)(x f 在0=x 处有极限存在,则有)(lim )(lim 00x f x f x x +-→→=又 b b xx x f x x =+=--→→)1sin (lim )(lim 00 1sin lim)(lim 00==++→→xxx f x x即 1=b因此当a 为实数、1=b 时,)(x f 在0=x 处极限存在. (2)由于)(x f 在0=x 处持续,则有 )0()(lim )(lim 00f x f x f x x ==+-→→又 a f =)0(,结合(1)可知1==b a 因此当1==b a 时,)(x f 在0=x 处持续. 3.计算下列函数旳导数或微分: (1)解:2ln 12ln 22x x y x ++=' (2)解:2)())(()()(d cx d cx b ax d cx b ax y +'++-+'+='=2)()()(d cx cb ax d cx a ++-+=2)(d cx bcad +- (3)解:2312121)53(23)53()53(21])53[(------='---='-='x x x x y(4)解:x x xxe e x xe x y --='-'='-212121)()((5)解:)(cos sin )()(sin sin )('+'='+'='bx bx e bx ax e bx e bx e y ax ax ax ax =bx be bx ae ax ax cos sin +dx bx be bx ae dx y dy ax ax )cos sin (+='=(6)解:212112312312323)1()()(x xe xx e x e y xx x +-=+'='+'='-dx x xe dx y y x)23(d 2121+-='=(7)解:222e 22sin )(e )(sin )e ()(cos 2x x x x xx x x x x y ---+-='--'-='-'='(8)解:)(cos )(sin )(sin )(sin ])[(sin 1'+'='+'='-nx nx x x n nx x y n nnx n x x n n cos cos )(sin 1+=- (9)解:)))1((1(11)1(11212222'++++='++++='x xx x x xx y=222212122111111)2)1(211(11xx x x x x x x x x +=+++⨯++=⨯++++- (10)解:)2()()()2(61211sin '-'+'+'='-x x y x06121)1(sin 2ln 265231sin -+-'=--x x x x652321sin 6121)1)(1(cos 2ln 2--+--=x x xx x652321sin 6121)1(cos 2ln 2--+-=x x x x x4.下列各方程中y 是x 旳隐函数,试求y '或y d (1)解:方程两边同步对x 求导得:)1()3()()()(22'='+'-'+'x xy y x 0322=+'--'+y x y y y x x y x y y ---='232 dx xy x y dx y y ---='=232d (2)解:方程两边同步对x 求导得: 4)()()cos(='⨯+'+⨯+xy e y x y x xy4)()1()cos(='+⨯+'+⨯+y x y e y y x xyxy xy ye y x xe y x y -+-=++')cos(4))(cos(xyxyxey x ye y x y ++-+-=')cos()cos(4 5.求下列函数旳二阶导数: (1)解:22212)1(11xx x x y +='++='2222222)1(22)1()20(2)1(2)12(x x x x x x x x y +-=++-+='+='' (2)解:212321212121)()()1(-----='-'='-='x x x x xx y2325232521234143)21(21)23(21)2121(------+=-⨯--⨯-='--=''x x x x x x y)4143()1(2325"--+=x x y ∣x=1=143=经济数学基础形成性考核册作业(二)一、填空题1. 22ln 2+x。
【经济数学基础】形成性考核册答案(附题目)
![【经济数学基础】形成性考核册答案(附题目)](https://img.taocdn.com/s3/m/9d72f573312b3169a451a4d4.png)
电大天堂【经济数学基础】形成性考核册答案电大天堂【经济数学基础】形考作业一答案:(一)填空题 1.___________________sin lim=-→xxx x .0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题1. 函数+∞→x ,下列变量为无穷小量是( C ) A .)1(x In + B .1/2+x xC .21xe - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .1/ 2xB .-1/2xC .x 1D .x1- (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
【经济数学基础】形成性考核册答案(附题目)4
![【经济数学基础】形成性考核册答案(附题目)4](https://img.taocdn.com/s3/m/ba2838f0dc88d0d233d4b14e852458fb760b3876.png)
电大天堂【经济数学基础】形成性考核册答案电大天堂【经济数学基础】形考作业一答案:(一)填空题 1.___________________sin lim=-→xxx x .0 2.设 , 在 处连续, 则 .答案: 13.曲线 在 的切线方程是 .答案:4.设函数 , 则 .答案:5.设 , 则 (二)单项选择题1.函数 , 下列变量为无穷小量是.... . A. B. C. D.2.下列极限计算正确的是....) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3.设 , 则 (..).......A. B. C. D.4.若函数.(x)在点x0处可导,则. . )是错误的.. A .函数f (x)在点x0处有定义 B . , 但C. 函数f (x)在点x0处连续D. 函数f (x)在点x0处可微 5.若 , 则 B )A. 1/B. -1/C.D. (三)解答题 1. 计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x(5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2. 设函数 ,问: (1)当 为何值时, 在 处有极限存在? (2)当 为何值时, 在 处连续.答案: (1)当 , 任意时, 在 处有极限存在; (2)当 时, 在 处连续。
3. 计算下列函数的导数或微分: (1) , 求 答案:2ln 12ln 22x x y x ++=' (2) , 求 答案:2)(d cx cbad y +-='(3) , 求 答案:3)53(23--='x y(4) , 求 答案:x x xy e )1(21+-='(5) , 求答案:dx bx b bx a dy ax )cos sin (e += (6) , 求 答案: (7) , 求 答案: (8) , 求答案:)cos cos (sin 1nx x x n y n +='- (9) , 求 答案:211xy +='(10) , 求答案:652321cot 61211sin2ln 2--+-='x x xx y x4.下列各方程中 是 的隐函数, 试求 或 (1) , 求 答案:x xy xy y d 223d ---=(2) , 求答案:)cos(e )cos(e 4y x x y x y y xy xy +++--='5. 求下列函数的二阶导数: (1) , 求答案:222)1(22x x y +-='' (2) , 求 及答案: ,电大天堂【经济数学基础】形考作业二答案:(一)填空题1.若 , 则 .答案:2. .答案:3.若 ,则........答案:4.设函数 .答案: 05.若 ,则 .答案: (二)单项选择题1.下列函数中, ....)是xsinx2的原函数...A. cosx2B. 2cosx2C. -2cosx2D. - cosx2 2.下列等式成立的是...)...... A. B.C. D.3.下列不定积分中,常用分部积分法计算的是( . )........A. ,B.C.D. 4.下列定积分计算正确的是. .. )... A. B. C. D.5.下列无穷积分中收敛的是...).. A. B. C. D.(三)解答题 1.计算下列不定积分(1)⎰x x xd e3答案: (2)⎰+x xx d )1(2答案:c x x x +++252352342(3)⎰+-x x x d 242 答案:c x x +-2212(4)⎰-x x d 211答案:c x +--21ln 21(5)⎰+x x x d 22答案:c x ++232)2(31(6)⎰x xx d sin答案:c x +-cos 2(7)⎰x xx d 2sin答案:c xx x ++-2sin 42cos 2(8)⎰+x x 1)d ln(答案:c x x x +-++)1ln()1( 2.计算下列定积分 (1)x x d 121⎰--答案:25(2)x xxd e2121⎰答案:e e - (3)x xx d ln 113e 1⎰+答案:2(4)x x x d 2cos 20⎰π答案:21-(5)x x x d ln e 1⎰答案:)1e (412+(6)x x x d )e 1(4⎰-+答案:4e 55-+电大天堂【经济数学基础】形考作业三答案:(一)填空题1.设矩阵 , 则 的元素 .答案: 32.设 均为3阶矩阵, 且 , 则 = .答案:3.设 均为 阶矩阵, 则等式 成立的充分必要条件........答案:4.设 均为 阶矩阵, 可逆,则矩阵 的解 .答案:A B I 1)(--5.设矩阵 , 则 .答案: (二)单项选择题1.以下结论或等式正确的是..).. A. 若 均为零矩阵, 则有 B .若 , 且 , 则 C. 对角矩阵是对称矩阵 D. 若 , 则2.设 为 矩阵, 为 矩阵,且乘积矩阵 有意义,则 为.. )矩阵...... A. B.C. D.3.设 均为 阶可逆矩阵,则下列等式成立的是( . )........ ` A . , B .C. D. 4.下列矩阵可逆的是. .. )... A. B. C. D.5.矩阵 的秩是. ...).. A. 0 B. 1 C. 2 D. 3三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02. 计算解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---142301112155 3. 设矩阵 , 求 。
经济数学基础形成性考核册及参考答案
![经济数学基础形成性考核册及参考答案](https://img.taocdn.com/s3/m/339dea8a680203d8ce2f2478.png)
(5) y = e ax sin bx ,求 dy
答案: dy = eax (a sin bx + b cos bx)dx
1
(6) y = e x + x x ,求 dy
答案: dy = ( 1
x−
1
1
e x )dx
2
x2
(7) y = cos x − e−x2 ,求 dy
答案: dy = (2xe− x2 − sin x )dx 2x
D. 1 dx = d x x
答案:C 3. 下列不定积分中,常用分部积分法计算的是( ).
A. ∫ cos(2 x +1)dx , ∫ B. x 1 − x2 dx C. ∫ x sin 2xdx
答案:C
4. 下列定积分计算正确的是(
).
∫ D. x dx
1+ x2
1
∫ A. 2xdx = 2 −1
x x →0+
1
C. lim x sin = 1
x→ 0
x
siБайду номын сангаас x
D. lim
=1
x x →∞
3. 设 y = lg2 x ,则 d y = ( ).答案:B
A. 1 dx 2x
B. 1 dx x ln10
C. ln10 dx x
D. 1 dx x
4. 若函数 f (x)在点 x0 处可导,则( )是错误的.答案:B
2 =2
12
0 −1 1 0 −1 0
123 1 2 3 B = 1 1 2 = 0 -1 -1 =0
011 0 1 1
所以 AB = A B = 2 × 0 = 0
⎡1 2 4⎤ 4.设矩阵 A = ⎢⎢2 λ 1⎥⎥ ,确定 λ 的值,使 r ( A) 最小。
电大【经济数学基础】形成性考核册答案(附题目)
![电大【经济数学基础】形成性考核册答案(附题目)](https://img.taocdn.com/s3/m/48c6977702768e9951e738d5.png)
电大在线【经济数学基础】形考作业一答案:(一)填空题 1.___________________sin lim=-→xxx x .0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题1. 函数+∞→x ,下列变量为无穷小量是( C ) A .)1(x In + B .1/2+x xC .21xe - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .1/ 2xB .-1/2xC .x 1D .x1- (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
2022年经济数学基础形成性考核册及参考答案word版本
![2022年经济数学基础形成性考核册及参考答案word版本](https://img.taocdn.com/s3/m/c33f3e37effdc8d376eeaeaad1f34693daef104d.png)
经济数学基本形成性考核册及参照答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处持续,则________=k .答案:1 3.曲线x y =在)1,1(旳切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单选题 1. 函数212-+-=x x x y 旳持续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算对旳旳是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误旳.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处持续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量旳是( ). 答案:CA .x 2B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21- (2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →=53(6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为什么值时,)(x f 在0=x 处有极限存在? (2)当b a ,为什么值时,)(x f 在0=x 处持续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处持续。
《经济数学基础》习题答案及试卷(附答案)
![《经济数学基础》习题答案及试卷(附答案)](https://img.taocdn.com/s3/m/fc5e36230a4c2e3f5727a5e9856a561252d32107.png)
习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。
2020年最新电大《经济数学基础》考试题及答案 完整版
![2020年最新电大《经济数学基础》考试题及答案 完整版](https://img.taocdn.com/s3/m/15aabbd8a0116c175f0e48c0.png)
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设,则( ).答案:BA .B .C .D .4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x(3)2111lim0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim22=--→x x x 2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形成性考核册及参考答案
![经济数学基础形成性考核册及参考答案](https://img.taocdn.com/s3/m/162bf2e7856a561252d36f1f.png)
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:02.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:DA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =l g 2,则d y =().答案:BA .12d xx B .1d x x ln10 C .ln 10x x d D .1d xx4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:B A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x时,下列变量是无穷小量的是( ). 答案:CA .x2 B .xx sin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21- (2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x=)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim0535sin 33sin 5lim0x x x x x →=53(6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;(2)当1==b a时,)(x f 在0=x 处连续。
经济数学基础形成性考核册参考答案
![经济数学基础形成性考核册参考答案](https://img.taocdn.com/s3/m/94b14e3243323968011c924e.png)
经济数学基础形成性考核册参考答案经济数学基础作业1一、填空题: 1、0; 2、1;3、x -2y +1=0;4、2x ;5、-2π;二、单项选择题: 1、D ; 2、B ; 3、B ; 4、B ; 5、B ; 三、解答题 1、计算极限(1)解:原式=1lim→x )1)(1()2)(1(+---x x x x=1lim→x 12+-x x=21(2)解:原式=2lim→x )4)(2()3)(2(----x x x x=2lim→x 43--x x=-21(3)解:原式=0lim→s xx x )11(11+---=lim →s 111+--x=-21(4)解:原式=∞→s lim 22423531xx x x +++-=21(5)解:∵x 0→时,xx sm x x sm 5~53~3∴0lim→x xsm xsm 53=0lim→x xx53=53(6)解:2lim→x )2sin(42--x x =2lim →x 242--x x=2lim→x (x+2)=4 2、设函数: 解:0lim →x f(x)=0lim →x (sin x1+b)=b+→0lim x f(x)=+→0lim x xxsin 1≤(1)要使f(x)在x=0处有极限,只要b=1, (2)要使f(x)在x=0处连续,则-→0lim x f(x)=+→0lim x =f(0)=a即a=b=1时,f(x)在x=0处连续 3、计算函数的导数或微分: (1)解:y '=2x +2xlog 2+2log1x(2)解:y '=2)()()(d cx cb ax d cx a ++-+=2)(d cx bc ad +-(3)解:y '=[)53(21--x ]'=-21)53(23--x ·(3x-5)' =-23)53(23--x(4)解:y '=x21-(e x+xe x)=x21-e x -xe x(5)解:∵y '=ae ax sinbx+be ax cosbx =e ax (asmbx+bcosbx) ∴dy=e ax (asmbx+bcosbx)dx(6)解: ∵y '=-21xe x1+23x 21∴dy=(-21xex1+23x)dx(7)解:∵y '=-x21+sin x +xex22-∴dy=(xex22--x21 sin x )dx(8)解:∵y '=nsin n -1x+ncosnx∴dy=n(nsin n -1+ cosnx)dx(9)解:∵y '=)1221(1122xx xx ++++=211x+∴dxxdy 211+=(10)解:xxxxxotxxxxy y 652321cot226121116121ln 1csc1222--+-⋅='-++=4、(1)解:方程两边对x 求导得 2x+2yy '-y-xy '+3=0 (2y-x)y '=y -2x -3 y '=xy x y ---232∴dy=dxxy x y ---232(2)解:方程两边对x 求导得:Cos(x+y )·(1+y ')+e xy (y+xy ')=4 [cos(x+y)+xe xy ]y '=4-cos(x+y)-ye xy y '=xyxey x yexy y x ++-+-)cos()cos(45.(1)解:∵y '=22212)1(11Xx x x+='+∙+2222)1(22)1(1)12(X XX X XX Y +∙-+='+=''=222)1()1(2X X +-(2)解:)()1(2121'-='-='-xxxx xy=x x21212123----)(212122'-=''---xx yx x41432325--+14143)1(=+=''y经济数学基础作业2一、填空题:1、2x ln 2+2 2、sinx+C3、-C x F +-)1(2124、ln(1+x 2)5、-211x+二、单项选择题: 1、D 2、C 3、C 4、D 5、B三、解答题:1、计算下列不定积分: (1)解:原式=⎰dx e x )3(= Cee x +3ln )3(=Cx e +-13ln )3((2)解:原式=dxXXXX X)21(2⎰++=Cxxx +++523422221(3)解:原式=⎰++-dxx x x 2)2)(2(=⎰-dx x )2( =Cx x+-222(4)解:原式=-⎰--)21(21121x d x=-x 21ln 21-+C (5)解原式=⎰+2212)2(21dxx=⎰++)2()2(212212x d x=C x ++232)2(31(6)解:原式=Z ⎰xd x sin=-2cos C x + (7)解:原式=-2⎰2cos x xd=-2xcos ⎰+dxx x 2cos 22 =-2xcos Cx smx ++242(8)解:原式=⎰++)1()1ln(x d x=(x+1)ln(x+1)-⎰++)1ln()1(x d x =(x+1)ln(x+1)-x+c2、计算下列积分 (1)解:原式=⎰⎰-+--dx x dx x )1(12)1(11=(x-12)2(11)222x xx-+-=2+21=25(2)解:原式=⎰-xde x 1121=121xe -=e e -(3)解:原式=⎰+x d xeln ln 1113=⎰++-)1(ln )ln 1(1213x d x e=1)ln 1(2321ex +=4-2 =2(4)解:原式=xxdsm 22102⎰π=⎰-xdxsm xxsm 2021022122ππ=02cos 412πx=21-(5)解:原式=⎰xx xde2ln 1=dxxx e e xx⎰--12211ln 22=⎰-dx xe e 2122=14222exe-=)414(222--ee=412+e(6)解:原式=⎰⎰-+dxxedx x404=4+⎰--x xde 04=⎰-----)(0444x d exexx=04444xee----=14444+----e e =455--e经济数学基础作业3一、填空题: 1. 3 2. -723. A 与B 可交换4. (I-B )-1A5. 3100210001-二、单项选择题:1.C2.A3.C4.A5.B三、解答题 1、解:原式=⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯-⨯+⨯-0315130501121102 =⎥⎦⎤⎢⎣⎡53212、解:原式=⎥⎦⎤⎢⎣⎡⨯-⨯⨯-⨯⨯+⨯⨯+⨯0310031002100210 =⎥⎦⎤⎢⎣⎡00003、解:原式=[]24)1(50231⨯+-⨯+⨯+⨯- =[]02、计算:解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142301215427401277197=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-------7724300012675741927 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423012121553、设矩阵:解:222321013211023210132)2(21)1(110111132=--=--+---=A011211321==B0=∙=∴B A AB4、设矩阵:解:A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110214742101112421λλ要使r (A )最小。
经济数学基础作业(一)答案
![经济数学基础作业(一)答案](https://img.taocdn.com/s3/m/34369a8da0116c175f0e48e9.png)
经济数学基础作业(一)答案一、填空题1、函数)1ln(4--=x xy 的定义域是 (1,2)∪(2,4〕;2、函数216)3ln(x x y -+-=的定义域是-4≤x <3;3、函数xx y --+=21)5ln(的定义域是-5<x <2; 4、函数24)2ln(1x x y -+-=的定义域是-2≤x <1; 5、函数⎩⎨⎧-+=12)(2x x x f 2005<≤<≤-x x 的定义域是-5≤x <2; 6、函数)1ln(1+=x y 的定义域是x >-1,且x ≠0; 7、1412-+-=x x y 的定义域是x ≥1,且x ≠2;8、已知34)1(2-+=+x x x f ,则=)(x f 622-+x x ;6)0(;621)1(2-=-+=f x x x f 。
9、已知54)(2-+=x x x f ,则0)1(;5)0(=-=f f ;54)(2--=-x x x f 。
10、已知52)1(2-+=+x x x f ,则6)(2-=x x f 。
11、已知2)(2+=x x f ,则32)1(;2)0(2++=+=x x x f f 。
12、已知函数1)(-=x xx f ,则x x x f 1)1(+=+。
13、已知x x x f +=+2)1(,则23)1(;)(2422+-=--=x x x f x x x f 。
14、生产某种产品的固定成本为2000元,每生产一个单位产品,成本增加4元,则生产x 个单位产品的总成本函数为x y 42000+=,此时的平均成本函数为42000+=x y 。
15、某商品的需求规律是P=25-2X (P 为商品价格,x 为需求量)供应规律是P=3X+5(P 为价格,x 为供应量),则均衡价格是 17,均衡数量是 4 。
16、已知某产品当产量为x 时的成本为48643.0)(2++=x x x f ,且平均需求规律为 x = 200 – 5P (x 为销售量,P 为价格),则利润函数为4865.036)(2--=x x x f 。
经济数学基础作业(一)参考答案
![经济数学基础作业(一)参考答案](https://img.taocdn.com/s3/m/70aaed8e71fe910ef12df8ca.png)
经济数学基础作业(一)(一)填空题1.___________________sin lim0=-→xxx x . 答案:0解:x x x x sin lim 0-→=011sin lim 1)1(lim 00=-=-=-→→xxx simx x x因为2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 1k )0()(lim )(lim )0(,1)1(lim )(lim ,1)1(lim )(lim ox ox 2ox ox 2ox ox ---=====+==+=+++→→→→→→,所以是:而函数连续的充要条件解:f x f x f k f x x f x x f3.曲线x y =+1在(1,2)的切线方程是 . 答案:y=12x+32解:曲线)(x f y =在),(00y x 点的切线方程公式是))((00/0x x x f y y -=-2321),1(212-y ,21)1(,21)()(/21/21/+=-====-x y x f x x x f 即:所以有:4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 解:因为)1(+x f =4)1(41222++=+++x x x ,所以,4)(2+=x x f x x f 2)(/=5.设x x x f sin )(=,则__________)2π(=''f ..答案:2π-解:2π2π02πsin 2π2π2)2π(,sin 2)sin ()(,sin )(/////-=-=-=-=-+=+=con f x x conx x x conx conx x f xconx x x f (二)单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg 2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5./1(),()f x f x x==则( B ) A .21x B .—21xC .1xD .1x (三)解答题1.计算极限(1)、2112lim )1)(1(2)-1)(x -x (lim 123lim 11221-=+-=+-=-+-→→→x x x x x x x x x x 解: (2)、212143lim )4)(2()3-(x )2(lim 8665lim 22222=--=--=---=+-+-→→→x x x x x x x x x x x x 解:21111lim )1x -1(11lim )1x -1()1x -1(11lim 11lim).3(0000-=+--=+--=++--=--→→→→x x x x x x x x x x x )(解:(4)32423532lim 423532lim 423532lim 22222222=+++-=+++-=+++-∞→∞→∞→x x x x xx x x x x x x x x x x x 解:535355sin 1lim 33sin lim 535sin 533sin lim 5sin 3sin lim)5(0000=••=••=→→→→xx x x x x x x x x x x x x x x 解:42)2sin(lim )2(lim 2)2sin(2lim )2sin()2)(2(lim )2sin(4lim )6(222222=--+=--+=--+=--→→→→→x x x x x x x x x x x x x x x x 解:2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x x x a x b x x x f , 问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续..1)0()(lim )(lim 0)(21),(lim )(lim 0x )(,,1sin lim )(lim ,0lim 1sin lim )1sin(lim )(lim 1000000a b f x f x f x x f b x f x f x f xxx f b b b x x b x x x f x x x x x x x x x x ===========+=+=+=-+-+++----→→→→→→→→→→,即:点连续,所以在)因为(。
春国家开放大学《经济数学基础》任务1参考答案.pdf
![春国家开放大学《经济数学基础》任务1参考答案.pdf](https://img.taocdn.com/s3/m/44071dfe0b1c59eef8c7b4cd.png)
2017年春国家开放大学“经济数学基础”任务1 参考答案填空题必须手写答案后拍照上传!若直接将提供的电子文档答案截图上传, 则成绩按0分计算!!!切记,切记!!一、填空题 1.___________________sin lim 0=−→xx x x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =+1在)2,1(的切线方程是 .答案:1322y x =+ 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π−二、单项选择题1. 当x →+∞时,下列变量为无穷小量的是( D )A . ln(1)x +B .21x x +C .21x e −D .sin x x 2. 下列极限计算正确的是( B ) A.1lim 0=→x xx B.1lim 0=+→x x x C.11sin lim 0=→x x x D.1sin lim =∞→xx x 3. 设y x =lg2,则d y =( B ).A .12d x xB .1d x x ln10C .ln10x x dD .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠ C .函数f (x )在点x 0处连续 D .函数f (x )在点x 0处可微5.当1,()f x f x x ⎛⎫'==⎪⎝⎭则( B ). A .21x B .21x − C .1x D .1x −解答题必须手写解题步骤后拍照上传!若直接将提供的word 文档答案截图上传,则成绩按0分计算!!!切记,切记!!三、解答题1.计算极限(1)=−+−→123lim 221x x x x )1)(1()1)(2(lim 1+−−−→x x x x x = )1(2lim 1+−→x x x = 21− (2)8665lim 222+−+−→x x x x x =)4)(2()3)(2(lim 2−−−−→x x x x x = )4(3lim 2−−→x x x = 21 (3)x x x 11lim 0−−→=)11()11)(11(lim 0+−+−−−→x x x x x =)11(lim 0+−−→x x x x =21)11(1lim 0−=+−−→x x (4)=+++−∞→42353lim 22x x x x x 31423531lim 22=+++−∞→x x x x x (5)=→xx x 5sin 3sin lim 0535sin 33sin 5lim 0x x x x x →=53 (6)=−−→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=−+−→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x x x a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?(2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1) 要使()0f x x =在处极限存在,则必有+00lim ()lim ()x x f x f x −→→= 又+00sin lim ()lim 1x x x f x x−→→== --001lim ()lim sin x x f x x b b x →→⎛⎫=+= ⎪⎝⎭即b =1所以当a 为实数,b =1时,f (x )在x =0处极限存在(2)要使()0f x x =在处连续,则必有lim ()(0)=x f x f a →= 当1==b a 时,)(x f 在0=x 处连续。
经济数学基础答案
![经济数学基础答案](https://img.taocdn.com/s3/m/eea5f3b565ce0508763213db.png)
经济数学基础形成性考核册及参考答案作业(一)(一)填空题1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:DA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?答案:当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当b a ,为何值时,)(x f 在0=x 处连续. 答案:当1==b a 时,)(x f 在0=x 处连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济数学基础作业1的答案
一、填空题
1、1
2、1
3、y=12(x+1)
4、2x
5、-π2
二、单项选择题
1、D
2、B
3、B
4、B
5、C
三、解答题
1、计算极限
⑴x2-3x+2/x2-1 = (x-2)(x-1)(x+1)(x-1) = (x-2)(x+1)= — 12
⑵(x2-5x+6)(x2-6x+8)= (x-2)(x-3)(x-2)(x-4) = (x-3)(x-4) =12
⑶1-x-1x= (1-x-1)(1-x+1)x(1-x+1)= —11-x+1 = — 12
⑷(x2-3x+5)(3x2+2x+4)= (1-3x+5x2)(3+2x+4x2)= 13
⑸(Sin3x)( Sin5x) = 35( Sin3x3x )(Sin5x5x)= 35
⑹(x2-4) Sin(x-2)= (x+2) Sin(x-2)(x-2)= 4
2、b=1时,f(x)在x=0处有极限存在,a=b=1时,f(x)在x=0处连续
3、计算下列函数的导数或微分
⑴、y′= (x2)′+(2x) ′+ (㏒2x) ′-(22) ′= 2x+2x ln2+1x ln2
⑵y′=(ax+b)′(cx+d)- (cx+d) ′(ax+b)(cx+d)2=(ad-cb)(cx+d)2
⑶y′= (13x-5)′= —32(3x-5)-3/2
⑷y′=(x-xex) ′= (x)′+(xex) ′=12x-1/2 — (1+x)ex
⑸dy= (eax Sinbx)′dx=eax(asinbx+bcosbx)dx
⑹dy=(e1/x+xx)′dx=( -1x2e1/x+32x1/2)dx
⑺dy=(cosx-e-x2) ′dx=(2xe-x2 - 12xsinx)dx
⑻y′=n(sinx)n-1xcosx+ncos(nx)
⑼y′=ln(x+1+x2)′= (x+1+x2)′1 x+1+x2=(x)(1+x2) 1 x+1+x2
⑽y′= (2cot1/x) ′+(1x) ′+(x1/6) ′=2cot1/xln2x-2(sin1x)2 –12x-3/2+16x-5/6
4、下列各方程中y是的x隐函数,试求y′或dy
⑴dy=(y-2x-3)(2y-x)dx
⑵dy=(4-cos(x+y)-yexy)(cos(x+y)+xexy)dx
⑶y′′=(2-2x2)(1+x2)2
⑷y′′=34x-5/2+14x-3/2
y′′(1)=1
经济数学基础形成性考核册参考答案
经济数学基础作业1
一、填空题:
1.0
2.1
3.
4.
5.
二、单项选择:
1.D
2.B
3.B
4.B
5.C
三、计算题:
1、计算极限
(1)
(2). 原式=
(3). 原式=
=
=
(4).原式= =
(5).原式=
=
(6). 原式=
=
= 4
2.(1)
当
(2).
函数f(x)在x=0处连续.
3. 计算下列函数的导数或微分
(1).
(2).
(3).
(4).
=
(5). ∵
∴
(6). ∵
∴
(7).∵
=
∴
(8)
(9)
=
=
=
(10)
2. 下列各方程中y是x的隐函数,试求(1) 方程两边对x求导:
所以
(2) 方程两边对x求导:
所以
3.求下列函数的二阶导数:(1)
(2)
经济数学基础作业2
一、填空题:
1. 2. 3. 4. 0 5.
二、单项选择:
1.D
2.C
3.C
4.D
5.B
三、计算题:
1、计算极限
(1) 原式=
=
(2) 原式=
=
(3) 原式=
(4) 原式=
(5) 原式=
=
(6) 原式=
(7) ∵(+)
(-) 1
(+) 0
∴原式=
(8) ∵(+) 1
(-)
∴原式=
=
=
2.计算下列定积分:(1) 原式=
=
(2) 原式=
=
(3) 原式=
=
(4) ∵(+)
(-)1
(+)0
∴原式=
=
(5) ∵(+)
(-)
∴原式=
=
(6) ∵原式=
又∵(+)
(-)1 -
(+)0
∴
=
故:原式=
经济数学基础作业3
一、填空题
1. 3.
2. .
3. .
4. .
5. .
二、单项选择题
1. C.
2. A .
3.C.
4. A.
5. B .
三、解答题
1.
(1)解:原式=
(2)解:原式=
(3)解:原式=
2.解:原式= =
3.解:=
4.解:
所以当时,秩最小为2。
5.解:
所以秩=2
6.求下列矩阵的逆矩阵:
(1)
解:
所以。
(2)
解:
所以。
7.解:
四、证明题
1.试证:若都与可交换,则,也与可交换。
证明:∵,
∴
即,也与可交换。
2.试证:对于任意方阵,,是对称矩阵。
证明:∵
∴,是对称矩阵。
3.设均为阶对称矩阵,则对称的充分必要条件是:。
证明:充分性
∵,,
∴
必要性
∵,,
∴
即为对称矩阵。
4.设为阶对称矩阵,为阶可逆矩阵,且,证明是对称矩阵。
证明:∵,
∴
即是对称矩阵。
经济数学基础作业4
一、填空题
1. .
2. ,,小
3. .
4. 4 .
5. .
二、单项选择题
1. B.
2. C.
3. A .
4. D .
5. C .
三、解答题
1.求解下列可分离变量的微分方程:
(1)解:原方程变形为:
分离变量得:
两边积分得:
原方程的通解为:
(2)解:分离变量得:
两边积分得:
原方程的通解为:
2. 求解下列一阶线性微分方程:
(1)解:原方程的通解为:
*(2)解:原方程的通解为:
3.求解下列微分方程的初值问题:
(1) 解:原方程变形为:
分离变量得:
两边积分得:
原方程的通解为:
将代入上式得:
则原方程的特解为:
(2)解:原方程变形为:
原方程的通解为:
将代入上式得:
则原方程的特解为:
4.求解下列线性方程组的一般解:
(1)解:原方程的系数矩阵变形过程为:
由于秩( )=2<n=4,所以原方程有无穷多解,其一般解为:(其中为自由未知量)。
(2)解:原方程的增广矩阵变形过程为:
由于秩( )=2<n=4,所以原方程有无穷多解,其一般解为:
(其中为自由未知量)。
5.当为何值时,线性方程组
有解,并求一般解。
解:原方程的增广矩阵变形过程为:
所以当时,秩( )=2<n=4,原方程有无穷多解,其一般解为:
6.解:原方程的增广矩阵变形过程为:
讨论:(1)当为实数时,秩( )=3=n=3,方程组有唯一解;
(2)当时,秩( )=2<n=3,方程组有无穷多解;
(3)当时,秩( )=3≠秩( )=2,方程组无解;
7.求解下列经济应用问题:
(1)
解:①∵平均成本函数为:(万元/单位)
边际成本为:
∴当时的总成本、平均成本和边际成本分别为:
(万元/单位)
(万元/单位)
②由平均成本函数求导得:
令得唯一驻点(个),(舍去)
由实际问题可知,当产量为20个时,平均成本最小。
(2)解:由
得收入函数
得利润函数:
令
解得:唯一驻点
所以,当产量为250件时,利润最大,
最大利润:(元)
(3)解:①产量由4百台增至6百台时总成本的增量为(万元)
②成本函数为:
又固定成本为36万元,所以
(万元)
平均成本函数为:
(万元/百台)
求平均成本函数的导数得:
令得驻点,(舍去)
由实际问题可知,当产量为6百台时,可使平均成本达到最低。
(4)解:①求边际利润:
令得:(件)
由实际问题可知,当产量为500件时利润最大;
②在最大利润产量的基础上再生产50件,利润的增量为:(元)
即利润将减少25元。