江苏省2014年高考数学二轮专题复习素材:训练21
专题12 正余弦定理妙解三角形问题和最值问题(11大核心考点)-2024年高考数学二轮复习讲练测
5.(2021•浙江)在中,∠ = °, = ,是的中点, = ,则 = ;
∠ = .
6.(2022•甲卷)已知中,点在边上,∠ = °, = , = .当 取得最小值时,
,得 = 2或 =
∈ 0, ,得sin = 1
7
− 2(舍),
− cos 2
2
2
15
4
=
=
2sin⋅cos
3 15
.
4
3
3
= sin,所以 = 6cos.
在 △ 中,再由余弦定理得 cos =
所以 6 =
15
,
4
所以△ 的面积 = 1 sin = 1 × 3 × 2 ×
2
=
3
= 0, ∴ ∠ = , =
2
2
3
7
1+4−2
7
,解得AD为
9
1
+
16
3
2
− )=
=
3
,cos∠
3
129
12
4
3 3
,sin∠ =
,
43
43
3
1
, sin∠ = ,
2
2
7 3
+ ∠) = 2 43,
cos∠ = −cos∠ = −
cos∠ = cos(
(2)在△ 中,由正弦定理得sin = sin ⇒ sin2 = sin ⇒
16+2 −9
2×4×
,解得 = 21.
2 + 2 − 2
2⋅
2014年江苏高考数学试题及详细答案(含附加题)
2014年江苏高考数学试题及详细答案(含附加题)D(1)求()sin 4απ+的值; (2)求()cos 26α5π-的值. 【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能 力. 满分14分. (1)∵()5sin 2ααπ∈π=,,, ∴225cos 1sin αα=-()210sin sin cos cos sin sin )444αααααπππ+=+=+=;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=, ∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=. 16.(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =. (1)求证:直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥PA ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴PA ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA ==∵E F ,为AC AB ,中点 ∴142EF BC == ∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF ∵//DE PA PA AC ⊥,,∴DE AC ⊥∵AC EF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC . 17.(本小题满分14 分)如图,在平面直角坐标系xOy中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC .(1)若点C 的坐标为()4133,,且22BF =求椭圆的方程; (2)若1FC AB ⊥,求椭圆离心率e 的值.【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运 算求解能力. 满分14分.(1)∵()4133C ,,∴22161999a b +=∵22222BFb c a =+=,∴22(2)2a==,∴21b =∴椭圆方程为2212x y +=(2)设焦点12(0)(0)()F c F c C x y -,,,,, ∵A C ,关于x 轴对称,∴()A x y -,∵2B F A ,,三点共线,∴b yb c x+=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即2xc by c -+=②①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b cb c --,∵C 在椭圆上,∴()()222222222221a c bc b c b c a b --+=,化简得225ca =,∴5c a = 5 18.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分. 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=- 解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d d r --==.因为O 和A 到圆M 上任意一点的距离均不少于80 m, 所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035d r -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =3,68053MD MD rMF OF OM d ===--所以68035d r -=.因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035d r -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.19.(本小题满分16分)已知函数()e e xxf x -=+其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数; (2)若关于x 的不等式()e 1xmf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得30()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.【答案】本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力.满分16分.(1)x ∀∈R ,()e e ()x xf x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x xm --+--≤∵(0)x ∈+∞,,∴e e10xx-+->,即e 1e e 1xxx m ---+-≤对(0)x ∈+∞,恒成立令e (1)xt t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立 ∴13m -≤(3)'()e e xxf x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增 令3()(3)h x a x x =-+,'()3(1)h x ax x =-- ∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减∵存在0[1)x ∈+∞,,使得30()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即()11e 2ea >+ ∵e-1e 111ln ln ln e (e 1)ln 1ea a a a a a ---=-=--+设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2e a m a a aa ---=-=>+, 当()11e e 12ea +<<-时,'()0m a >,()m a 单调增; 当e 1a >-时,'()0m a <,()m a 单调减因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<;当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=.20.(本小题满分16分)设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得nmS a =,则称{}na 是“H 数列”. (1)若数列{}na 的前n 项和2()nnS n *=∈N ,证明:{}na 是“H 数列”;(2)设{}na 是等差数列,其首项11a =,公差0d <.若{}na 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()nnna b c n *=+∈N 成立.【答案】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分. (1)当2n ≥时,111222nn n nnn a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}na 是“H 数列”(2)1(1)(1)22nn n n n Sna d n d --=+=+对n *∀∈N ,m *∃∈N 使nmSa =,即(1)1(1)2n n n d m d -+=+-取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =- (3)设{}na 的公差为d令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=- 1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+ 则1(1)n n n b c a n d a +=+-=,且{}{}n nb c ,为等差数列{}n b 的前n 项和11(1)()2nn n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}nb 为“H 数列”.{}n c 的前n项和1(1)()2nn n R a d -=+,令1(1)()n mc m ad R =-+=,则(1)12n n m -=+∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得nmR c =成立,即{}nc 为“H 数列”因此命题得证.数学Ⅱ(附加题)21.【选做题】本题包括A, B,C,D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,C 、 D 是圆O 上位于AB 异侧的两点证明:∠OCB =∠D .本小题主要考查圆的基本性质,考查推理论证能力.满分10分.证明:因为B , C 是圆O 上的两点,所以OB =OC . 故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D . 因此∠OCB =∠D .B.【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值.【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分.222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程为12x y ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24yx=交于A B ,两点,求线段AB 的长.【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.满分10分. 直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+= ∴交点(12)A ,,(96)B -,,故||AB =D.【选修4-5:不等式选讲】(本小题满分10分) 已知x >0, y >0,证明:(1+x +y 2)( 1+x 2+y )≥9xy.本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分.证明:因为x >0, y >0, 所以1+x +y 2≥0>,1+x 2+y ≥0>,所以(1+x +y 2)( 1+x 2+y )≥=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,,中的最大数,求X 的概率分布和数学期望()E X .22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况∴取出的2个球颜色相同的概率1053618P == (2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===3131453639C C C C 13(3)C 63P X +===11(2)1(3)(4)14P X P X P X ==-=-== ∴X 的概率分布列为故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯= 23.(本小题满分10分)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n fx -的导数,n *∈N .(1)求()()122222f f πππ+的值; (2)证明:对任意的n *∈N ,等式()()1444n nnff -πππ+成立. 23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.(1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得0()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nfx xf x x π-+=+对所有的n ∈*N 都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kfx xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()kk k f x fx +++(1)sin[]2k x π+=+.所以当n=k +1时,等式也成立. 综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+(n ∈*N ).。
2014高考数学二轮专题复习Word版 专题提升训练13
常考问题13 圆锥曲线的基本问题(建议用时:50分钟)1.(2013·陕西卷)双曲线x 216-y 2m =1(m >0)的离心率为54,则m 等于________.解析 由题意得c =16+m ,所以16+m 4=54,解得m =9. 答案 92.已知双曲线C ∶x 2a 2-y 2b21(a >0,b >0)的实轴长为2,离心率为2,则双曲线C的焦点坐标是________.解析 ∵2a =2,∴a =1,又ca =2,∴c =2,∴双曲线C 的焦点坐标是(±2,0).答案 (±2,0)3.(2013·徐州质检)已知双曲线C :x 2a 2y 2b2=1(a >0,b >0)的右顶点,右焦点分别为A ,F ,它的左准线与x 轴的交点为B ,若A 是线段BF 的中点,则双曲线C 的离心率为________.解析 ∵A 是B ,F 的中点,∴2a =-a 2c +c .∴e 2-2e -1=0,∵e >1,∴e =2+1. 答案2+14.(2013·新课标全国Ⅰ卷改编)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.解析 直线AB 的斜率k =0+13-1=12设A (x 1,y 1),B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b21 ①x 22a 2+y 22b 2=1, ②①-②得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.又x 1+x 2=2,y 1+y 2=-2,所以k =-b 2a 2×2-2,所以b 2a 2=12,③ 又a 2-b 2=c 2=9,④由③④得a 2=18,b 2=9.故椭圆E 的方程为x 218+y 29=1.答案 x 218+y 29=15.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为________.解析 由于抛物线y 2=4x 的焦点为F (1,0),即c =1,又e =c a =5,可得a =55,结合条件有a 2+b 2=c 2=1,可得b 2=45,又焦点在x 轴上,则所求的双曲线的方程为5x 2-54y 2=1.答案 5x 2-54y 2=16.(2013·福建卷)椭圆T :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆T 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析 直线y =3(x +c )过点F 1,且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2,在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c 2a =2cc +3c=3-1. 答案3-17.已知双曲线C 与椭圆x 216+y 212=1有共同的焦点F 1,F 2,且离心率互为倒数.若双曲线右支上一点P 到右焦点F 2的距离为4,则PF 2的中点M 到坐标原点O 的距离等于________.解析 由椭圆的标准方程,可得椭圆的半焦距c =16-12=2,故椭圆的离心率e 1=24=12,则双曲线的离心率e 2=1e 1=2.因为椭圆和双曲线有共同的焦点,所以双曲线的半焦距也为c =2.设双曲线C 的方程为x 2a -y 2b =1(a >0,b >0),则有a =c e 2=22=1,b 2=c 2-a 2=22-12=3,所以双曲线的标准方程为x 2-y 23=1.因为点P 在双曲线的右支上,则由双曲线的定义,可得|PF 1|-|PF 2|=2a =2,又|PF 2|=4,所以|PF 1|=6.因为坐标原点O 为F 1F 2的中点,M 为PF 2的中点. 所以|MO |=12|PF 1|=3.答案 38.(2012·南京、盐城模拟)设椭圆C ∶x 2a +y 2b=1(a >b >0)恒过定点A (1,2),则椭圆的中心到准线的距离的最小值________.解析 由题设知1a 2+4b 2=1,∴b 2=4a 2a 2-1,∴椭圆的中心到准线的距离d =a 2c ,由d 2=a 4c 2=a 4a 2-b 2=a 4a 2-4a 2a 2-1=a 2(a 2-1)a 2-5,令a 2-5=t (t >0)得d 2=(t +5)(t +4)t =t +20t +9≥9+45(当且仅当t =25时取等号)∴d ≥2+5即椭圆的中心到准线的距离的最小值2+ 5. 答案 2+ 59.在平面直角坐标系xOy 中,已知对于任意实数k ,直线(3k +1)x +(k -3)y -(3k +3)=0恒过定点F .设椭圆C 的中心在原点,一个焦点为F ,且椭圆C 上的点到F 的最大距离为2+ 3. (1)求椭圆C 的方程;(2)设(m ,n )是椭圆C 上的任意一点,圆O :x 2+y 2=r 2(r >0)与椭圆C 有4个相异公共点,试分别判断圆O 与直线l 1:mx +ny =1和l 2:mx +ny =4的位置关系.解 (1)由(3k +1)x +(k -3)y -(3k +3)=0整理 得(3x +y -3)k +(x -3y -3)=0,解方程组⎩⎨⎧3x +y -3=0,x -3y -3=0得F (3,0).设椭圆C 的长轴长、短轴长、焦距分别为2a,2b,2c ,则由题设知⎩⎨⎧c =3,a +c =2+ 3.于是a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)因为圆O :x 2+y 2=r 2(r >0)与椭圆C 有4个相异公共点,所以b <r <a ,即1<r <2.因为点(m ,n )是椭圆x 24+y 2=1上的点,所以m 24+n 2=1,且-2≤m ≤2. 所以m 2+n 2=34m 2+1∈[1,2]. 于是圆心O 到直线l 1的距离d 1=1m 2+n2≤1<r ,圆心O 到直线l 2的距离d 2=4m 2+n2≥2>r .故直线l 1与圆O 相交,直线l 2与圆O 相离.10.已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1. (1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的一点,OPOM =λ,求点M 的轨迹方程,并说明轨迹是什么曲线.解 (1)设椭圆长半轴长及半焦距分别为a ,c ,由已知得⎩⎨⎧a -c =1,a +c =7,解得⎩⎨⎧a =4,c =3.又∵b 2=a 2-c 2,∴b =7, 所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),其中x ∈[-4,4],由已知OP 2OM 2=λ2及点P 在椭圆C 上可得9x 2+11216(x 2+y 2)=λ2,整理得(16λ2-9)x 2+16λ2y 2=112,其中x ∈[-4,4].①当λ=34时,化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4).轨迹是两条平行于x 轴的线段.②当λ≠34时,方程变形为x 211216λ2-9+y 211216λ2=1,其中x ∈[-4,4].当0<λ<34时,点M 的轨迹为中心在原点、实轴在y 轴上的双曲线满足-4≤x ≤4的部分;当34<λ<1时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆满足-4≤x ≤4的部分;当λ≥1时,点M 的轨迹为中心在原点,长轴在x 轴上的椭圆.11.(2013·南京、盐城模拟)在平面直角坐标系xOy 中,过点A (-2,-1)椭圆C ∶x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,短轴端点为B 1、B 2,FB 1→·FB 2→=2b 2.(1)求a 、b 的值;(2)过点A 的直线l 与椭圆C 的另一交点为Q ,与y 轴的交点为R .过原点O 且平行于l 的直线与椭圆的一个交点为P .若AQ ·AR =3OP 2,求直线l 的方程. 解 (1)因为F (-c,0),B 1(0,-b ),B 2(0,b ),所以FB 1→=(c ,-b ),FB 2→=(c ,b ).因为FB 1→·FB 2→=2b 2, 所以c 2-b 2=2b 2.① 因为椭圆C 过A (-2,-1),代入得,4a 2+1b 2=1.②由①②解得a 2=8,b 2=2. 所以a =22,b = 2.(2)由题意,设直线l 的方程为y +1=k (x +2).由⎩⎪⎨⎪⎧y +1=k (x +2),x 28+y 221得(x +2)[(4k 2+1)(x +2)-(8k +4)]=0.因为x +2≠0,所以x +2=8k +44k 2+1,即x Q +2=8k +44k 2+1.由题意,直线OP 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,x 28+y 221,得(1+4k 2)x 2=8.则x 2P =81+4k 2, 因为AQ ·AR =3OP 2.所以|x Q -(-2)|×|0-(-2)|=3x 2P . 即⎪⎪⎪⎪⎪⎪8k +44k 2+1×2=3×81+4k 2.解得k =1,或k =-2.当k =1时,直线l 的方程为x -y +1=0, 当k =-2时,直线l 的方程为2x +y +5=0. 备课札记:。
专题16妙解离心率问题(12大核心考点)(课件)-2025年高考数学二轮复习讲练测(新教材新高考)
在Rt △ 中,由∠ = ,得 = sin =
2sin, = cos = 2cos,
1
所以2sin + 2cos = 2,所以 = sin+cos =
)
π
ቁ
4
∈
,
,
12 3
6
,
2
所以 =
π
,所以 + 4 ∈
= ( > , > )的左、右焦点,为双曲线上的任一点,
≥ �� − .
3、利用角度长度的大小建立不等关系. , 为椭圆 + = 的左、右焦点,为椭圆上的动点,若
∠ = ,则椭圆离心率的取值范围为 ≤ < .
4、利用题目不等关系建立不等关系.
+ = 的离心率分别为 , .若 = ,则
D.
= ( > , > )的离心率为 ,的一条渐近线与圆( − ) + ( − ) =
交于,两点,则|| = ( D )
A.
B.
C.
3.(2022•甲卷)椭圆: + = ( >
2sin(+ 4 )
,∴ sin( + 4 ) ∈
∴∈
3 − 1,
6
3
2+ 6,46 1+ 3, 2
2
.
.故选:A.
考点题型二:焦点三角形顶角范围与离心率
2
【例2】(2024·辽宁葫芦岛·高三统考期末)已知点1 ,2 分别是椭圆 2
+
2014年江苏高考数学真题及答案
2014年江苏高考数学真题及答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲.2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为▲.3. 右图是一个算法流程图,则输出的n 的值是▲.4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲.5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),zxxk 它们的图象有一个横坐标为3π的交点,则ϕ的值是▲.6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有▲株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是▲.8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是▲.9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为▲.10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是▲.11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数) zxxk 过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是▲.12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是▲.202>n组距13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是▲.14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分zxxk 别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .(第16题)PD C EFB A17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,学科网求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,学科网总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3} .2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21 .3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是 5 .4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.P=.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.的交点,可得.根据的交点,.,∴,+,..6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24 株树木的底部周长小于100cm.=7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是 4 .,=8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.=,,它们的侧面积相等,==..9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.=,=2=10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).,,解得﹣(﹣11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .(,(,,解得:12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22 .=3,=+,=﹣,=3,=2解:∵=3=+,=﹣,•=+)•(﹣|•﹣|••=22=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).|的图象如图:由图象可知,)14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.b=2c(bcosC==≥=≤cosC<的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.(﹣,=﹣=+cos+cos sin=∴sin(+.,.,∴cos(﹣=cos cos2+sin sin2=(.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.的中点,∴DE=PA=3的中点,∴EF=BC=417.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.的坐标为(,,即,(则椭圆的方程为x+b+﹣x=∵A(∴C()==×(.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?.,∴CE=OP=m∴PC=PQ=∴R=MQ=m=∴136﹣﹣x≥80.19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a ﹣1与a e﹣1的大小,并证明你的结论.m≤m≤,当且仅当.=e+﹣>)﹣,﹣=0①a∈(()20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.,,即,解得,则,三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.=BA=,向量==B,,∴x=﹣∴x+y=【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.的参数方程为∴|AB|==8【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.≥3,+y≥≥3(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).P=,P26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.代入式子求值;代入所给的式子求解验证.,∴xf代入上式得,)f))x+)对任意成立,则上式成立;,=,x+代入上式得,(f)(+=±,(f)都成立.。
高考数学二轮复习教案
高考数学二轮复习教案【篇一:高考数学二轮专题复习教案共23讲精品专题】专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. 理解集合中元素的意义是解决集合问题的关键:弄清元素是函数关系式中自变量的取值?还是因变量的取值?还是曲线上的点??2. 数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.3. 已知集合a、b,当a∩b=?时,你是否注意到“极端”情况:a=?或b=??求集合的子集时是否忘记??分类讨论思想的建立在集合这节内容学习中要得到强化.4. 对于含有n个元素的有限集合m, 其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.5. ?是任何集合的子集,是任何非空集合的真子集.2. 已知命题p:n∈n,2n>1 000,则p为________.3. 条件p:a∈m={x|x2-x0},条件q:a∈n={x||x|2},p是q的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4. 若命题“?x∈r,x2+(a-1)x+10”是假命题,则实数a的取值范围为________.【例1】已知集合a={x|x2-3x-10≤0},集合b={x|p+1≤x≤2p-1}.若b?a,求实数p的取值范围.【例2】设a={(x,y)|y2-x-1=0},b={(x,y)|4x2+2x-2y+5=0},c={(x,y)|y=kx+b},是否存在k、b∈n,使得(a∪b)∩c =??若存在,求出k,b的值;若不存在,请说明理由.则下列结论恒成立的是________.a. t,v中至少有一个关于乘法封闭b. t,v中至多有一个关于乘法封闭 c. t,v中有且只有一个关于乘法封闭 d. t,v中每一个关于乘法封闭【例4】已知a0,函数f(x)=ax-bx2.(1) 当b0时,若?x∈r,都有f(x)≤1,证明:0a≤b; (2) 当b1时,证明:?x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤b.①2 011∈[1];②-3∈[3];③z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是________个.1解:由f(x)为二次函数知a≠0,令f(x)=0解得其两根为x1=a12+a由此可知x10,x20,(3分)①当a0时,a={x|xx1}∪{x|xx2},(5分) 1a∩b≠?的充要条件是x2<3,即a②当a0时, a={x|x1xx2},(10分) 1a∩b≠?的充要条件是x21,即+a2+1,解得a-2,(13分) a62+3,解得a(9分) a712,x2=+aa6?.(14分) 综上,使a∩b≠?成立的实数a的取值范围为(-∞,-2)∪??7?一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语a. 57b. 56c. 49d. 8【答案】 b 解析:集合a的所有子集共有26=64个,其中不含4,5,6,7的子集有23=8个,所以集合s共有56个.故选b.m2y≤2m+1,x,y∈r}, 若a∩b≠?,则实数m的取值范围是________.1m12+2? 解析:由a∩b≠?得,a≠?,所以m2≥,m≥m≤0.【答案】 ??2?22|2-2m||2-2m-1|2当m≤0=22m>-m,且=2m>-m,又2+0=2>2m222|2-2m|1+1,所以集合a表示的区域和集合b表示的区域无公共部分;当m≥时,只要≤m22|2-2m-1|22或m,解得22≤m≤2+2或1-m≤1,所以实数m的取值范围222122?. 是??2?点评:解决此类问题要挖掘问题的条件,并适当转化,画出必要的图形,得出求解实数m的取值范围的相关条件.基础训练1. (-∞,3) 解析:a=(-∞,0]∪[3,+∞),b=(0,+∞),a∪b=(-∞,+∞),a∩b=[3,+∞).2. ?n∈n,2n≤1 0003. 充分不必要解析:m=(0,1)?n=(-2,2).例1 解:由x2-3x-10≤0得-2≤x≤5. ∴ a=[-2,5].①当b≠?时,即p+1≤2p-1?p≥2.由b?a得-2≤p+1且2p-1≤5.得-3≤p≤3.∴ 2≤p≤3.②当b=?时,即p+12p-1?p<2.b?a成立.综上得p≤3.点评:从以上解答应看到:解决有关a∩b=?,a∪b=a,a∪b=b 或a?b等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中全方位、多角度审视问题.变式训练设不等式x2-2ax+a+2≤0的解集为m,如果m?[1,4],求实数a的取值范围.??f?1?≥0且f?4?≥0,[x1,x2],m?[1,4]?1≤x1<x2≤4??-a+3≥0,??18-7a≥0,即?1≤a≤4,??a<-1或a>2,1818-1. 解得:2<a≤,综上实数a的取值范围是?7?7例2 解:∵ (a∪b)∩c=?,∵a∩c=?且b∩c=?,2??y=x+1,由 ? 得k2x2+(2bk-1)x+b2-1=0, ?y=kx+b?∴ 4k2-4bk+10,此不等式有解,其充要条件是16b2-160,即b21,①2??4x+2x-2y+5=0,∵ ? ?y=kx+b,?∴ 4x2+(2-2k)x+(5-2b)=0,∴ k2-2k+8b-190, 从而8b20,即b2.5,②?4k2-8k+1<0,??2 ?k-2k-3<0,?∴ k=1,故存在自然数k=1,b=2,使得(a∪b)∩c=?.点评:把集合所表示的意义读懂,分辨出所考查的知识点,进而解决问题.???1-y=3变式训练已知集合a=??x,y???x+1?????,b={(x,y)|y=kx+3},若a∩b=?,??求实数k的取值范围.解:集合a表示直线y=-3x-2上除去点(-1,1)外所有点的集合,集合b表示直线y=kx+3上所有点的集合,a∩b=?,所以两直线平行或直线y=kx+3过点(-1,1),所以k=2或k=-3.例3 【答案】 a 解析:由于t∪v=z,故整数1一定在t,v两个集合中的一个中,不妨设1∈t,则?a,b∈t,另一方面,当t={非负整数},v={负整数}时,t关于乘法封闭,v关于乘法不封闭,故d不对;当t={奇数},v={偶数}时,t,v显然关于乘法都是封闭的,故b,c不对.从而本题就选a.例4 证明:(1) ax-bx2≤1对x∈r恒成立,又b>0, ∴a2-4b≤0,∴ 0<a≤b. (2) 必要性,∵ ?x∈[0,1],|f(x)|≤1恒成立,∴ bx2-ax≤1且bx2-ax≥-1,显然x=0时成立,111对x∈(0,1]时a≥bx-且a≤bx+f(x)=bxx∈(0,1]上单调增,f(x)最大值xxxf(1)=b-1.1111函数g(x)=bx+在?0,?上单调减,在?1?上单调增,函数g(x)的最小值为g?x?b????b?=2,∴ b-1≤a≤2b,故必要性成立;a2a2aa1122b4b2b2a2f(x)max=1,又f(x)是开口向下的抛物线,f(0)=0,f(1)=a-b,4bf(x)的最小值从f(0)=0,f(1)=a-b中取最小的,又a-b≥-1,∴-1≤f(x)≤1,故充分性成立;综上命题得证.变式训练命题甲:方程x2+mx+1=0有两个相异负根;命题乙:方程4x2+4(m-2)x+1=0无实根,这两个命题有且只有一个成立,求实数m的取值范围.2解:使命题甲成立的条件是: ??m>2.?x1+x2=-m<0?∴集合a={m|m2}.【篇二:高三数学二轮复习教案】高三数学二轮复习教案学校:寿县迎河中学汇编:龙如山第一部分:三角问题的题型与方法一、考试内容1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
江苏省2014年高考数学二轮专题复习素材:训练13
常考问题13 圆锥曲线的综合问题(建议用时:50分钟)1.(2013·济南模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与直线y =3x 无交点,则离心率e 的取值范围是________.解析 因为双曲线的渐近线为y =±b a x ,要使直线y =3x 与双曲线无交点,则直线y =3x 应在两渐近线之间,所以有ba ≤3,即b ≤3a ,所以b 2≤3a 2,c 2-a 2≤3a 2,即c 2≤4a 2,e 2≤4,所以1<e ≤2. 答案 (1,2]2.P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则PM -PN 的最大值为________.解析 设双曲线的两个焦点分别是F 1(-5,0)与F 2(5,0),则这两点正好是两圆的圆心,当且仅当点P 与M 、F 1三点共线以及P 与N 、F 2三点共线时所求的值最大,此时PM -PN =(PF 1+2)-(PF 2-1)=6+3=9 答案 93.已知椭圆x 24+y 2b 2=1(0<b <2)与y 轴交于A ,B 两点,点F 为该椭圆的一个焦点,则△ABF 面积的最大值为________.解析 不妨设点F 的坐标为(4-b 2,0),而|AB |=2b ,∴S △ABF =12×2b ×4-b 2=b 4-b 2=b 2(4-b 2)≤b 2+4-b 22=2(当且仅当b 2=4-b 2,即b 2=2时取等号),故△ABF 面积的最大值为2. 答案 24.设F 1是椭圆x 24+y 2=1的左焦点,O 为坐标原点,点P 在椭圆上,则PF 1→·PO →的最大值为________.解析 设P (x 0,y 0),依题意可得F 1(-3,0),则PF 1→·P O →=x 20+y 20+3x 0=x 2+1-x 204+3x 0=3x 204+3x 0+1=34⎝⎛⎭⎪⎫x 0+2332. 又-2≤x 0≤2,所以当x 0=2时,PF 1→·P O →取得最大值4+2 3. 答案 4+2 35.(2012·南通、泰州、扬州模拟)如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,B ,C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一个交点为D ,若cos ∠F 1BF 2=725,则直线CD 的斜率为________. 解析 由cos ∠F 1BF 2=725得cos ∠OBF 2=45=ba,进一步求得直线BD 的斜率为-43,由⎩⎪⎨⎪⎧y =-43x +b ,x 2a 2+y 2b 2=1⇒916(y -b )2a 2=b 2-y 2b 2⇒y +b y -b=-925,∴直线CD 的斜率为y +b x=y +b -34(y -b )=⎝ ⎛⎭⎪⎫-925×⎝ ⎛⎭⎪⎫-43=1225.答案 12256.在平面直角坐标系xOy 中,以椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点A 为圆心的圆与x 轴相切于椭圆的一个焦点,与y 轴相交于B 、C 两点,若△ABC 是锐角三角形,则该椭圆的离心率的取值范围是________.解析 由题意得,圆半径r =b 2a ,因为△ABC 是锐角三角形,所以cos 0>cos A 2=c r >cos π4,即22<c r <1,所以22<ac a 2-c 2<1,即22<e 1-e 2<1,解得e ∈⎝ ⎛⎭⎪⎫6-22,5-12. 答案 e ∈⎝ ⎛⎭⎪⎫6-22,5-127.(2013·镇江模拟)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是________. 解析 由题意知,△ABE 为等腰三角形.若△ABE 是锐角三角形,则只需要∠AEB 为锐角.根据对称性,只要∠AEF <π4即可.直线AB 的方程为x =-c ,代入双曲线方程得y 2=b 4a 2,取点A ⎝ ⎛⎭⎪⎫-c ,b 2a ,则|AF |=b 2a ,|EF |=a +c ,只要|AF |<|EF |就能使∠AEF <π4,即b 2a <a +c ,即b 2<a 2+ac ,即c 2-ac -2a 2<0,即e 2-e -2<0,即-1<e <2.又e >1,故1<e <2. 答案 (1,2)8.已知A 、B 是椭圆x 2a 2+y 2b 2=1(a >b >0)和双曲线x 2a 2-y 2b 2=1(a >0,b >0)的公共顶点.P 是双曲线上的动点,M 是椭圆上的动点(P 、M 都异于A 、B ),且满足AP→+BP →=λ(AM →+BM →),其中λ∈R ,设直线AP 、BP 、AM 、BM 的斜率分别记为k 1、k 2、k 3、k 4,k 1+k 2=5,则k 3+k 4=________.解析 设P (m ,n )、M (s ,t ),则m 2a 2-n 2b 2=1,m 2-a 2=a 2n 2b 2,s 2a 2+t 2b 2=1,s 2-a 2=-a 2t 2b2,由AP →+BP →=λ(AM →+BM →). 得OP →=λOM →,即n m =t s .k 1+k 2=n m +a +n m -a =2mn m 2-a 2=2mnb 2n 2a 2=5,∴n m =2b 25a 2,k 3+k 4=t s +a +t s -a =2st s 2-a 2=-2stb 2a 2t 2=-2b 2a 2·s t =-2b 2a 2·5a 22b 2=-5. 答案 -59.(2013·苏锡常镇模拟)在直角坐标系xOy 中,中心在原点O ,焦点在x 轴上的椭圆C 上的点(22,1)到两焦点的距离之和为4 3. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 作直线l 与椭圆C 分别交于A ,B 两点,其中点A 在x 轴下方,且AF→=3FB →.求过O ,A ,B 三点的圆的方程.解 (1)由题意,设椭圆C :x 2a 2+y 2b 2=1(a >b >0),则2a =43,a =2 3. 因为点(22,1)在椭圆x 2a 2+y 2b 2=1上,所以812+1b 2=1,解得b = 3. 所以所求椭圆的方程为x 212+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2)(y 1<0,y 2>0).点F 的坐标为F (3,0).则AF →=3FB →,得⎩⎨⎧3-x 1=3(x 2-3),-y 1=3y 2,即⎩⎨⎧x 1=-3x 2+12,y 1=-3y 2. ①又点A ,B 在椭圆C 上,所以⎩⎪⎨⎪⎧(-3x 2+12)212+(-3y 2)23=1,x 2212+y 223=1,解得⎩⎪⎨⎪⎧x 2=103,y 2=23.所以B ⎝ ⎛⎭⎪⎫103,23,代入①,得点A 的坐标为(2,-2).因为OA →·AB→=0,所以OA ⊥AB .所以过O ,A ,B 三点的圆就是以OB 为直径的圆. 其方程为x 2+y 2-103x -23y =0.10.(2013·浙江卷)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程. 解 (1)由题意得⎩⎨⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4, 故点O 到直线l 1的距离 d =1k 2+1, 所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0. 由⎩⎨⎧x +ky +k =0,x 2+4y 2=4.消去y ,整理得(4+k 2)x 2+8kx =0, 故x 0=-8k4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12|AB |·|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号.所以所求直线l 1的方程为y =±102x -1.11.(2013·郑州模拟)已知椭圆的焦点坐标为F 1(-1,0),F 2(1,0),过F 2垂直于长轴的直线交椭圆于P ,Q 两点,且|PQ |=3. (1)求椭圆的方程;(2)过F 2的直线l 与椭圆交于不同的两点M ,N ,则△F 1MN 的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 由焦点坐标可得c =1.由|PQ |=3,可得2b 2a =3. 又a 2-b 2=1,得a =2,b = 3. 故椭圆方程为x 24+y 23=1. (2)设M (x 1,y 1),N (x 2,y 2), 不妨令y 1>0,y 2<0,设△F 1MN 的内切圆的半径R ,则△F 1MN 的周长为4a =8,S △F 1MN =12(|MN |+|F 1M |+|F 1N |)R =4R , 因此要使△F 1MN 内切圆的面积最大,则R 最大,此时S △F 1MN 也最大. S △F 1MN =12|F 1F 2||y 1-y 2|=y 1-y 2,由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,得(3m 2+4)y 2+6my -9=0,得y 1=-3m +6m 2+13m 2+4,y 2=-3m -6m 2+13m 2+4,则S △F 1MN =y 1-y 2=12m 2+13m 2+4,令t =m 2+1,则t ≥1,则S △F 1MN =12m 2+13m 2+4=12t 3t 2+1=123t +1t .令f (t )=3t +1t ,则f ′(t )=3-1t 2, 当t ≥1时,f ′(t )>0,所以f (t )在[1,+∞)上单调递增, 有f (t )≥f (1)=4,S △F 1MN ≤124=3,当t =1,m =0时,S △F 1MN =3,又S △F 1MN =4R , ∴R max =34.这时所求内切圆面积的最大值为916π.故△F 1MN 内切圆面积的最大值为916π,且此时直线l 的方程为x =1. 备课札记:。
高考数学第二轮复习的构建与思考
( )过 0 作 0M ∥ 5
PA 交 PF 于 M .
I
l
0 = . 膜米 14 4 F : . 礴 M 14 、 4 米
如图 7 度量 出 0 , F
图6
图 7
( ) 合 . 当增 强 知识 的联 接 点 、 目的综 3综 适 题
合性 和灵 活性 . 重点 、 考题 型进 一步 强化 解法 对 常
定模 、 化 基 本 思 维 模 式 , 可 能 地 形 成 思 维 模 强 尽
块 , 进 思 维 的 集 约 化 , 而 完 成 能 力 的 “ 体 促 从 立
教.
们 时 的准 确性 和快 捷性 ; 二是 通过 练 习 、 测试 、 评 等活 动 内化 以至熟 讲
化 基本 的解 题 规 律 和 方法 , 以促 进 思 维 的 敏捷 性
和严谨 性 ;
使 用 时段 : 二轮 复 习 中后 期 ( 与单 元 基础 训练
对 接 ) 每周 2 3 训 练. . ~ 次
FPC 一 C PD , 以 APF — A BPD , 以 所 所 M 0F — A 0M F , 0l 一 故 F .
线 Y =2 x( p 户> 0 上有 点 P的切线 交 z轴 于A , ) 过 0作 OM ∥ P 交 PF 于 M , O = M . A 则 F= F = 通 过几何 画 板作 出 图形 :
综 合 训 练 材 料 及 使 用
规 律 的单一 的起点 高 、 合 性强 的传 统 复 习模式 , 综 积 极 推 行符 合 学 生 认 知 规律 , 阶段 、 阶梯 、 有 有 有
江苏省2014年高考数学二轮专题复习素材:阶段检测卷3
阶段检测卷(三)一、填空题(每小题5分,共70分)1.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=________.解析 由a 3a 11=16,得a 27=16,故a 7=4=a 5×22⇒a 5=1.答案 12.若{a n }为等差数列,S n 是其前n 项的和,且S 11=223π,则tan a 6=________. 解析 S 11=11(a 1+a 11)2=11a 6=223π,∴a 6=2π3,∴tan a 6=- 3. 答案 - 33.设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析 由已知得⎩⎨⎧a 1+a 1q =3a 1q +2, ①a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2, ②②-①得a 1q 2+a 1q 3=3a 1q (q 2-1),即2q 2-q -3=0.解得q =32或q =-1(舍). 答案 324.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________. 解 由题意S 9=S 4,得a 5+a 6+a 7+a 8+a 9=0,∴5a 7=0,即a 7=0,又a k +a 4=0=2a 7,a 10+a 4=2a 7,∴k =10. 答案 105.在等差数列{a n }中,a 8=12a 11+6,则数列{a n }前9项的和S 9等于________. 解析 设等差数列{a n }的公差为d ,则a 1+7d =12(a 1+10d )+6,即a 1+4d =a 5=12,∵S 9=9(a 1+a 9)2=9a 5=108.答案 1086.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n } 的前n 项和S n =________.解析 设等差数列{a n }的公差为d ,由已知得a 23=a 1a 6,即(2+2d )2=2(2+5d ),解得d =12,故S n =2n +n (n -1)2×12=n 24+7n 4. 答案 n 24+7n47.若-9,a ,-1成等差数列,-9,m ,b ,n ,-1成等比数列,则ab =________. 解析 由已知得a =-9-12=-5,b 2=(-9)×(-1)=9且b <0,∴b =-3,∴ab =(-5)×(-3)=15. 答案 158.已知实数a ,b ,c ,d 成等比数列,且函数y =ln(x +2)-x ,当x =b 时取到极大值c ,则ad 等于________.解析 由等比数列的性质,得ad =bc , 又⎩⎪⎨⎪⎧f ′(b )=1b +2-1=0,f (b )=ln (b +2)-b =c ,解得⎩⎨⎧b =-1,c =1,故ad =bc =-1.答案 -19.设y =f (x )是一次函数,f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )=________.解析 设f (x )=kx +b (k ≠0),又f (0)=1,所以b =1,即f (x )=kx +1(k ≠0).由f (1),f (4),f (13)成等比数列,得f 2(4)=f (1)·f (13),即(4k +1)2=(k +1)(13k +1).因为k ≠0,所以k =2,所以f (x )=2x +1,所以f (2)+f (4)+…+f (2n )=5+9+…+4n +1=n (5+4n +1)2=n (2n +3). 答案 n (2n +3)10.S n 是等比数列{a n }的前n 项和,a 1=120,9S 3=S 6,设T n =a 1a 2a 3…a n ,则使T n 取最小值的n 值为________.解析 设等比数列的公比为q ,故由9S 3=S 6,得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q =2,故T n T n -1=a n =120×2n -1,易得当n ≤5时,T nT n -1<1,即T n <T n -1;当n ≥6时,T n >T n -1,据此数列单调性可得T 5为最小值. 答案 511.已知数列{a n }的通项公式是a n =-n 2+12n -32,其前n 项和是S n ,对任意的m ,n ∈N *且m <n ,则S n -S m 的最大值是________.解析 由于a n =-(n -4)(n -8),故当n <4时,a n <0,S n 随n 的增加而减小,S 3=S 4,当4<n <8时,a n >0,S n 随n 的增加而增大,S 7=S 8,当n >8时,a n <0,S n 随n 的增加而减小,故S n -S m ≤S 8-S 4=a 5+a 6+a 7+a 8=a 5+a 6+a 7=10. 答案 1012.(2013·南京师大附中模拟)已知数列{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,若存在常数u ,v 对任意正整数n 都有a n =3log u b n +v ,则u +v =________.解析 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则⎩⎨⎧3+d =q ,3(3+4d )=q 2,解得d =6,q =9,所以a n =6n -3,b n =9n -1,6n -3=3n log u 9+v -3log u 9对任意正整数n 恒成立,所以⎩⎨⎧log u 9=2,v -3log u 9=-3,解得u =v =3,故u +v =6. 答案 613.(2012·宿迁联考)第30届奥运会在伦敦举行.设数列a n =log n +1(n +2)(n ∈N *),定义使a 1·a 2·a 3…a k 为整数的实数k 为奥运吉祥数,则在区间[1,2 012]内的所有奥运吉祥数之和为________.解析 因为a 1·a 2·a 3…a k =log 23×log 34×…×log k +1(k +2)=log 2(k +2),当log 2(k +2)=m (m ∈Z )时,k =2m -2∈[1,2 012](m ∈Z ),m =2,3,4,…,10,所以在区间[1,2 012]内的所有奥运吉祥数之和为(22-2)+(23-2)+…+(210-2) =(22+23+…+210)-18=211-22=2 026. 答案 2 02614.(2013·盐城模拟)在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m15对n ∈N *恒成立,则正整数m 的最小值为________. 解析 由题意可知a n =4n -3,且(S 2n +3-S n +1)-(S 2n +1-S n )=1a 2n +3+1a 2n +2-1a n +1=18n +9+18n +5-14n +1<0,所以{S 2n +1-S n }是递减数列,故(S 2n +1-S n )max=S 3-S 1=1a 2+1a 3=1445≤m 15,解得m ≥143,故正整数m 的最小值为5. 答案 5二、解答题(共90分)15.(本小题满分14分)已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n=(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (1)对任意实数λ,证明:数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.(1)证明 假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾,所以{a n }不是等比数列. (2)解 因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n ·(a n -3n +21)=-23b n .又b 1=-(λ+18),所以当λ=-18时, b n =0(n ∈N *),此时{b n }不是等比数列;当λ≠-18时,b 1=-(λ+18)≠0,由b n +1=-23b n . 可知b n ≠0,所以b n +1b n =-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.16.(本小题满分14分)已知数列{a n }的前n 项和是S n ,且S n +12a n =1. (1)求数列{a n }的通项公式;(2)记b n =log 3a 2n4,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n ·b n +2的前n 项和为T n ,证明:T n <316. (1)解 当n =1时,a 1=S 1,由S 1+12a 1=1,解得a 1=23.当n ≥2时,∵S n =1-12a n ,S n -1=1-12a n -1,∴S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ).∴a n =13a n -1.∴{a n }是以23为首项,13为公比的等比数列,其通项公式为a n =23×⎝ ⎛⎭⎪⎫13n -1=2×3-n . (2)证明 ∵b n =log 3a 2n4=2 log 33-n =-2n . ∴1b n ·b n +2=1(-2n )×[-2(n +2)]=14n (n +2)=18⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =18×⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -2-1n +⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=181+12-1n +1-1n +2=18⎝ ⎛⎭⎪⎫32-1n +1-1n +2<316. 17.(本小题满分14分)已知等差数列{a n }满足:a 2=5,a 4+a 6=22,数列{b n }满足b 1+2b 2+…+2n -1b n =na n ,设数列{b n }的前n 项和为S n . (1)求数列{a n },{b n }的通项公式; (2)求满足13<S n <14的n 的集合.解 (1)设等差数列{a n }的公差为d ,则a 1+d =5,(a 1+3d )+(a 1+5d )=22. 解得a 1=3,d =2.∴a n =2n +1.在b 1+2b 2+…+2n -1b n =na n 中,令n =1,则b 1=a 1=3,又b 1+2b 2+…+2n b n+1=(n +1)a n +1,∴2n b n +1=(n +1)a n +1-na n .∴2n b n +1=(n +1)(2n +3)-n (2n +1)=4n +3. ∴b n +1=4n +32n .∴b n =4n -12n -1(n ≥2).经检验,b 1=3也符合上式,则数列{b n }的通项公式为b n =4n -12n -1.(2)S n =3+7·12+…+(4n -1)·⎝ ⎛⎭⎪⎫12n -1,12S n =3·12+7·⎝ ⎛⎭⎪⎫122+…+(4n -5)·⎝ ⎛⎭⎪⎫12n -1+(4n -1)⎝ ⎛⎭⎪⎫12n.两式相减得12S n =3+4⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(4n -1)·⎝ ⎛⎭⎪⎫12n,∴12S n =3+4·12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(4n -1)⎝ ⎛⎭⎪⎫12n .∴S n =14-4n +72n -1.∴∀n ∈N *,S n <14. ∵数列{b n }的各项为正, ∴S n 单调递增.又计算得S 5=14-2716<13,S 6=14-3132>13, ∴满足13<S n <14的n 的集合为{n |n ≥6,n ∈N *}. 18.(本小题满分16分)已知函数f (x )=bx +cx +1的图象过原点,且关于点(-1,2)成中心对称.(1)求函数f (x )的解析式; (2)若数列{a n }满足a 1=2,a n +1=f (a n ),试证明数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n a n -1为等比数列,并求出数列{a n }的通项公式. (1)解 ∵f (0)=0,∴c =0. ∵f (x )=bx +cx +1的图象关于点(-1,2)成中心对称, ∴f (x )+f (-2-x )=4,解得b =2. ∴f (x )=2x x +1. (2)证明 ∵a n +1=f (a n )=2a na n +1,∴当n ≥2时,a na n -1a n -1a n -1-1=a n a n -1·a n -1-1a n -1=2a n -1a n -1+12a n -1a n -1+1-1·a n -1-1a n -1=2a n -1a n -1-1·a n -1-1a n -1=2. 又a 1a 1-1=2≠0,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n a n -1是首项为2,公比为2的等比数列,∴a na n -1=2n,∴a n =2n 2n -1.19.(本小题满分16分)已知数列{a n }的前n 项和为S n ,且满足S n =n 2,数列{b n }满足b n =1a n a n +1,T n 为数列{b n }的前n 项和.(1)求数列{a n }的通项公式a n 和T n ;(2)若对任意的n ∈N *,不等式λT n <n +(-1)n 恒成立,求实数λ的取值范围. 解 (1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1,验证当n =1时,也成立;所以a n =2n -1.b n =1a n a n +1=1(2n -1)(2n +1)=12[ 12n -1-12n +1],所以T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=n 2n +1].(2)由(1)得λ<(2n +1)[n +(-1)n ]n,当n 为奇数时,λ<(2n +1)(n -1)n =2n -1n -1恒成立, 因为当n 为奇数时,2n -1n -1单调递增, 所以当n =1时,2n -1n -1取得最小值为0, 此时,λ<0. 当n 为偶数时,λ<(2n +1)(n +1)n =2n +1n +3恒成立,因为当n 为偶数时,2n +1n +3单调递增,所以当n =2时,2n +1n +3取得最小值为152. 此时,λ<152.综上所述,对于任意的正整数n ,原不等式恒成立,λ的取值范围是(-∞,0).20.(本小题满分16分)已知数列{a n }满足a 1=a (a >0,a ∈N *),a 1+a 2+…+a n-pa n +1=0(p ≠0,p ≠-1,n ∈N *). (1)求数列{a n }的通项公式a n ;(2)若对每一个正整数k ,若将a k +1,a k +2,a k +3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k .①求p 的值及对应的数列{d k }. ②记S k 为数列{d k }的前k 项和,问是否存在a ,使得S k <30对任意正整数k 恒成立?若存在,求出a 的最大值;若不存在,请说明理由.解 (1)因为a 1+a 2+…+a n -pa n +1=0,所以n ≥2时,a 1+a 2+…+a n -1-pa n =0,两式相减,得a n +1a n =p +1p (n ≥2),故数列{a n }从第二项起是公比为p +1p 的等比数列,又当n =1时,a 1-pa 2=0,解得a 2=ap , 从而a n =⎩⎪⎨⎪⎧a (n =1),a p ⎝ ⎛⎭⎪⎫p +1p n -2(n ≥2).(2)①由(1)得a k +1=a p ⎝⎛⎭⎪⎫p +1p k -1, a k +2=a p ⎝⎛⎭⎪⎫p +1p k ,a k +3=a p ⎝ ⎛⎭⎪⎫p +1p k +1, 若a k +1为等差中项,则2a k +1=a k +2+a k +3, 即p +1p =1或p +1p =-2,解得p =-13; 此时a k +1=-3a (-2)k -1,a k +2=-3a (-2)k , 所以d k =|a k +1-a k +2|=9a ·2k -1,若a k +2为等差中项,则2a k +2=a k +1+a k +3, 即p +1p =1,此时无解;若a k +3为等差中项,则2a k +3=a k +1+a k +2, 即p +1p =1或p +1p =-12,解得p =-23, 此时a k +1=-3a 2⎝ ⎛⎭⎪⎫-12k -1,a k +3=-3a 2⎝ ⎛⎭⎪⎫-12k +1,所以d k =|a k +1-a k +3|=9a 8·⎝ ⎛⎭⎪⎫12k -1, 综上所述,p =-13,d k =9a ·2k -1或p =-23, d k =9a 8·⎝ ⎛⎭⎪⎫12k -1. ②当p =-13时,S k =9a (2k -1). 则由S k <30,得a <103(2k -1),当k ≥3时,103(2k -1)<1,所以必定有a <1,所以不存在这样的最大正整数. 当p =-23时,S k =9a 4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k ,则由S k <30,得a <403⎣⎢⎡1-⎝ ⎛⎭⎪⎫12k],因为403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k >403,所以a =13满足S k <30恒成立;但当a =14时,存在k =5,使得a >403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 即S k <30,所以此时满足题意的最大正整数a =13.。
江苏省2014届高考数学(文)三轮专题复习考前体系通关训练:倒数第1天
倒数第1天高考数学应试技巧经过紧张有序的高中数学总复习,高考即将来临,有人认为高考数学的成败已成定局,其实不然,因为高考数学成绩不仅仅取决于你现有的数学水平,还取决于你的高考临场发挥,所以我们要重视高考数学应试的策略和技巧,这样有利于我们能够“正常发挥”或者“超常发挥”.一、考前各种准备1.工具准备:签字笔、铅笔、橡皮、角尺、圆规、手表、身份证、准考证等.(注意:高考作图时要用铅笔作图,等确认之后也可以用签字笔描)2.知识准备:公式、图表强化记忆,查漏补缺3.生理准备:保持充足的睡眠、调整自己的生物钟、进行适度的文体活动4.心理准备:有自信心,有恰当合理的目标二、临场应试策略1.科学分配考试时间试卷发下来以后,首先按要求填涂好姓名、准考证号等栏目,完成以上工作以后,估计还未到考试时间,可先把试卷快速浏览一遍,对试题的内容、难易有一个大概的了解,做到心中有数,考试开始铃声一响,马上开始答题.2.合理安排答题顺序解题的顺序对考试成绩影响很大,试想考生如果先做最难的综合题,万一做不出,白白浪费了时间,还会对后面的考试产生不良的影响,考试时最好按照以下的顺序:(1)从前到后.高考数学试卷前易后难,前面填空题信息量少、运算量小,易于把握,不要轻易放过,解答题前三、四道也不太难,从前往后做,先把基本分拿到手,就能心里踏实,稳操胜券.(2)先易后难.先做简单题,再做综合题,遇到难题时,一时不会做,做一个记号,先跳过去,做完其它题再来解决它,但要注意认真对待每一道题,力求有效,不能走马观花,有难就退,影响情绪.(3)先熟后生.先做那些知识比较熟悉、题型结构比较熟悉、解题思路比较熟悉的题目,这样,在拿下熟题的同时,可以使思维流畅、达到拿下中高档题目的目的.3.争取一个良好开端良好的开端是成功的一半,从考试心理角度来说,这确实很有道理.拿到试题后,不要急于求成、立即下手解题,在通览一遍整套试题后,稳操一两个易题熟题,让自己产生“旗开得胜”的感觉,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高.4.控制好解题节奏考场上不能一味地图快,题意未清,条件未全,便急于解答,容易失误.应该有快有慢,审题要慢,解答要快.题目中的一些关键字可以用笔圈一下,以提醒自己注意.审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据.而思路一旦形成,则可尽量快速解答.5.确保运算准确,立足一次成功在规定的时间内要完成所有题,时间很紧张,不允许做大量细致的检验工作,所以要尽量准确运算,关键步骤,宁慢勿快,稳扎稳打,不为追求速度而丢掉准确度,力争一次成功.实现一次成功的一个有效措施是做完一道题后如果觉得没有把握随即检查一下(例如可逆代检验、估算检验、赋值检验、极端检验、多法检验).做完当即检查,思路还在,对题目的条件、要求等依然很熟悉,检查起来可以省时间.6.追求规范书写,力争既对又全卷面是考试评分的唯一依据,这就要求不但会而且要对、不但对而且要全,不但全而且要规范.会而不对,令人惋惜;对而不全,得分不高;表述不规范,处处扣分.要处理好“会做”与“得分”的关系.要用心揣摩阅卷时的得分点步骤,得分点步骤不能漏掉,一定要写好,写清楚.例如立体几何论证题,很多因条件不全被扣分.7.面对个别难题,争取部分得分高考成绩是录取的重要依据,相差一分就有可能失去录取资格.解答题多呈现为“一题多问”、难度递进式的“梯度题”,这种题入口宽,入手易,看似难做,实际上也有可得分之处,所以面对“难题”不要胆怯,不要简单放弃,应冷静思考,争取部分得分.那么面对不能全面完成的题目如何分段得分,下面有两种常用方法.①缺步解答.对难题,啃不动时,明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,能写几步就写几步,每写一步就可能得到一定分数.②跳步解答.解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途,如能得到预期结论,就再回头集中力量攻克这一过渡环节,若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;若题目有两问,第二问做不上,可将第一问作为“已知”,完成第二问,这样也可能得分.8.把握“最后10分钟”同学们一般都有这样的感觉,前面10分钟往往是得分的黄金时间,而最后的10分钟往往很难添分加彩,究其原因有两个,一是最后10分钟往往既要复查纠错,又想攻克难题,结果顾此失彼,两头落空;二是考试的最后时刻就象长跑的最后时刻,体力消耗大,思维有所迟钝.那么“最后10分钟”应该做什么呢?可以用来检查前面有疑问没把握的试题或者用来做前面未能解答的试题,但是一定要先解决把握性大一点、相对容易一点、得分可能性大的试题.总之,我们的应试策略是:(1)难易分明,决不耗时;(2)慎于审题,决不懊悔;(3)必求规范,决不失分;(4)细心运算,决不犯错;(5)提防陷阱,决不上当;(6)愿慢求对,决不出错;(7)思路遇阻,决不急躁;(8)奋力拼杀,决不落伍.。
2014高考数学二轮专题复习Word版 专题提升训练12
常考问题12 直线与圆(建议用时:50分钟)1.(2013·镇江期中)若圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是________.解析 因为圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R )对称,所以,点(-1,2)在直线2ax -by +2=0上,所以,a +b =1,ab =a (1-a )≤14.答案 ⎝ ⎛⎦⎥⎤-∞,142.(2013·南师附中模拟)已知直线x -y +a =0与圆x 2+y 2=1交于A 、B 两点,且向量OA →、OB →满足|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为______.解析 ∵|OA→+OB →|=|OA →-OB →|,∴OA →⊥OB →,∴△OAB 是等腰直角三角形,∴点O 到直线AB 的距离为22,即|0-0+a |2=22,∴a =±1.答案 ±13.(2013·青岛质检)已知圆(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,且与直线3x +4y +2=0相切,则该圆的方程为________.解析 因为抛物线y 2=4x 的焦点坐标为(1,0),所以a =1,b =0.又根据|3×1+4×0+2|32+42=1=r ,所以圆的方程为(x -1)2+y 2=1. 答案 (x -1)2+y 2=14.已知圆的方程为x 2+y 2-6x -8y =0,设该圆中过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积是________.解析 配方可得(x -3)2+(y -4)2=25,其圆心为C (3,4),半径为r =5,则过点(3,5)的最长弦AC =2r =10,最短弦BD =2r 2-12=46,且有AC ⊥BD ,则四边形ABCD 的面积为S =12AC ×BD =20 6.答案 20 65.若圆x 2+y 2=4与圆x 2+y 2+2ax -6=0(a >0)的公共弦的长为23,则a =________.解析 x 2+y 2+2ax -6=0(a >0)可知圆心为(-a,0),半径为6+a 2,两圆公共弦所在方程为(x 2+y 2+2ax -6)-(x 2+y 2)=-4,即x =1a ,所以有()6+a 22-⎝ ⎛⎭⎪⎫1a +a 2=()32解得a =1或-1(舍去). 答案 16.(2012·南师附中模拟)在平面直角坐标系中,设直线l :kx -y +2=0与圆C :x 2+y 2=4相交于A 、B 两点,OM →=OA →+OB →,若点M 在圆C 上,则实数k =________.解析 如图所示,OM →=OA →+OB →,则四边形OAMB 是锐角为60°的菱形,此时,点O 到AB 距离为1.由21+k 2=1,解出k =±1. 答案 k =±17.若直线ax +by =1过点A (b ,a ),则以坐标原点O 为圆心,OA 长为半径的圆的面积的最小值是________.解析 由题意知,ab =12,x 半径r =a 2+b 2≥2ab =1,故面积的最小值为π. 答案 π8.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间距离的最小值为________.解析 根据题意画出图形,如图所示,过点O 作OC ⊥AB 于C ,因为△AOB 为等腰直角三角形,所以C 为弦AB 的中点,又|OA |=|OB |=1,根据勾股定理得|AB |=2,∴|OC |=12|AB |=22. ∴圆心到直线的距离为12a 2+b 2=22,即2a 2+b 2=2,即a 2=-12b 2+1≥0.∴-2≤b ≤ 2.则点P (a ,b )与点(0,1)之间距离d =(a -0)2+(b -1)2=a 2+b 2-2b +1=12b 2-2b +2.设f (b )=12b 2-2b +2=12(b -2)2,此函数为对称轴为x =2的开口向上的抛物线,∴当-2≤b ≤2<2时,函数为减函数.∵f (2)=3-22,∴d 的最小值为3-22=(2-1)2=2-1. 答案2-19.已知点A (-3,0),B (3,0),动点P 满足|P A |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.解 (1)设点P 的坐标为(x ,y ),则(x +3)2+y 2=2(x -3)2+y 2,化简可得(x -5)2+y 2=16,即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图.由直线l 2是此圆的切线,连接CQ ,则|QM |=|CQ |2-|CM |2=|CQ |2-16,当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42,此时|QM |的最小值为32-16=4.10.已知以点C ⎝ ⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点. (1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程; (3)在(2)的条件下,设P ,Q 分别是直线l :x +y +2=0和圆C 上的动点,求|PB |+|PQ |的最小值及此时点P 的坐标.(1)证明 由题设知,圆C 的方程为(x -t )2+⎝ ⎛⎭⎪⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t ,则B ⎝ ⎛⎭⎪⎫0,4t ,∴S △AOB =12|OA |·|OB |=12|2t |·⎪⎪⎪⎪⎪⎪4t =4为定值. (2)解 ∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C ,H ,O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2.∴圆心为C (2,1)或(-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.(3)解 点B (0,2)关于直线x +y +2=0的对称点为B ′(-4,-2),则|PB |+|PQ |=|PB ′|+|PQ |≥|B ′Q |,又B ′到圆上点Q 的最短距离为|B ′C |-r =(-6)2+(-3)2-5=35-5=2 5.所以|PB |+|PQ |的最小值为25,直线B ′C 的方程为y =12x ,则直线B ′C 与直线x +y +2=0的交点P 的坐标为⎝ ⎛⎭⎪⎫-43,-23.11.(2012·南师附中模拟)已知双曲线x 2-y 23=1.(1)若一椭圆与该双曲线共焦点,且有一交点P (2,3),求椭圆方程.(2)设(1)中椭圆的左、右顶点分别为A 、B ,右焦点为F ,直线l 为椭圆的右准线,N 为l 上的一动点,且在x 轴上方,直线AN 与椭圆交于点M .若AM =MN ,求∠AMB 的余弦值;(3)设过A 、F 、N 三点的圆与y 轴交于P 、Q 两点,当线段PQ 的中点为(0,9)时,求这个圆的方程.解 (1)∵双曲线焦点为(±2,0),设椭圆方程为x 2a 2+y 2b 2=1(a >b >0). 则⎩⎪⎨⎪⎧a 2-b 2=4,4a 2+9b 2=1.∴a 2=16,b 2=12.故椭圆方程为x 216+y 212=1.(2)由已知,A (-4,0),B (4,0),F (2,0),直线l 的方程为x =8. 设N (8,t )(t >0). ∵AM =MN ,∴M ⎝ ⎛⎭⎪⎫2,t 2.由点M 在椭圆上,得t =6. 故所求的点M 的坐标为M (2,3).所以MA →=(-6,-3),MB →=(2,-3),MA →·MB →=-12+9=-3. cos ∠AMB =MA →·MB →|MA →|·|MB→|=-336+9·4+9=-6565.(3)设圆的方程为x 2+y 2+Dx +Ey +F =0,将A 、F 、N 三点坐标代入,得⎩⎨⎧16-4D +F =0,4+2D +F =0,64+t 2+8D +Et +F =0,得⎩⎪⎨⎪⎧D =2,E =-t -72t ,F =-8.圆的方程为x 2+y 2+2x -⎝ ⎛⎭⎪⎫t +72t y -8=0,令x =0,得y 2-⎝ ⎛⎭⎪⎫t +72t y -8=0.设P (0,y 1),Q (0,y 2),则y 1,2=t +72t ±⎝ ⎛⎭⎪⎫t +72t 2+322.由线段PQ 的中点为(0,9),得y 1+y 2=18,t +72t =18, 此时,所求圆的方程为x 2+y 2+2x -18y -8=0.。
高三数学二轮复习重点
高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
专题01集合和常用逻辑用语(6大核心考点)(课件)-2025年高考数学二轮复习讲练测(新教材新高考)
考点题型一:集合的基本概念
【对点训练1】(2023·重庆沙坪坝·高三重庆八中校考开学考试)若 2 , 0, −1 = , , 0 ,则的值是(
A.0
B.1
C.−1
D.±1
【答案】C
【解析】因为 2 , 0, −1 = , , 0 ,
2 =
2 =
所以①
或②
,
= −1
= −1
0}.若 ⊆ ,则实数组成的集合为(
A.
1 1
,
3 5
1 1
B. − 3 , 5
2 − 8 + 15 = 0 , = { − 1 =
)
1 1
1 1
C. 0, 3 , 5
D. 0, − 3 , 5
【答案】C
【规律总结】
【解析】由 2 − 8 + 15 = 0得: = 3或 = 5,
A.{| − 2 ⩽ < 1}
B.{| − 2 < ⩽ 1}
C.{| ⩾ −2}
D.{| < 1}
3.(2023•天津)已知集合 = {1,2,3,4,5}, = {1,3}, = {1,2,4},则∁ ( = ڂA )
A.{1,3,5}
B.{1,3}
C.{1,2,4}
故选:D.
D. ��∁ ڂ
)
考点题型三:集合的运算
【对点训练5】(2023·全国·高三专题练习)《九章算术》是中国古代第一部数学专著,成于公元1世纪左右.该书内容十分
丰富,全书总结了战国、秦汉时期的数学成就.某数学兴趣小组在研究《九章算术》时,结合创新,给出下面问题:现有
100人参加有奖问答,一共5道题,其中91人答对第一题,87人答对第二题,81人答对第三题,78人答对第四题,88人答对第
江苏省2014年高考数学二轮专题复习素材:阶段检测卷5
阶段检测卷(五)一、填空题(每小题5分,共70分)1.一支田径运动队有男运动员56人,女运动员42人;现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人. 解析 设抽取的女运动员有x 人,则856=x42,解得x =6. 答案 62.(2011·江苏卷)某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s 2=________.解析 由题意得该组数据的平均数为x =15(10+6+8+5+6)=7,所以方差为s 2=15[32+(-1)2+12+(-2)2+(-1)2]=3.2.答案 3.23.(2011·江苏卷)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析 从中取出两个数共有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}6种情况.其中一个数是另一个数的两倍的情况共有{1,2},{2,4}2种,∴p =26=13. 答案 134.(2010·江苏卷)盒子里共有大小相同的3只白球,1只黑球.若从中随机摸出两只球,则它们颜色相同的概率是________.解析 四个球取出两球有6种等可能基本事件:(黑,白1),(黑,白2),(黑,白3),(白1,白2),(白1,白3),(白2,白3).两只球颜色相同有3种:(白1,白2),(白1,白3),(白2,白3). 所以所求概率为P =36=12. 答案 125.(2013·南通调研)已知正四棱锥的底面边长是6,高为7,这个正四棱锥的侧面积是________.解析由于四棱锥的斜高h=(7)2+32=4,故其侧面积S=12×4×6×4=48.答案486.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________解析当x≥4时,89+89+92+93+92+91+947=6407≠91,∴x<4,∴89+89+92+93+92+91+x+907=91,∴x=1.答案 17.(2012·辽宁卷改编)在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20 cm2的概率为________.解析设线段AC的长为x cm,则线段CB的长为(12-x)cm,那么矩形的面积为x(12-x)cm2,由x(12-x)>20,解得2<x<10.又0<x<12,所以该矩形面积大于20 cm2的概率为2 3.答案2 38.(2013·辽宁卷改编)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.解析由频率分布直方图,低于60分的频率为(0.01+0.005)×20=0.3.所以该班学生人数150.3=50.答案509.(2012·南通模拟)给出如下10个数据:63,65,67,69,66,64,66,64,65,68.根据这些数据制作频率分布直方图,其中[64.5,66.5)这组所对应的矩形的高为________.解析落在区间[64.5,66.5)的数据依次为65,66,66,65,共4个,则矩形的高等于频率组距=41066.5-64.5=15.答案1 510.(2012·淮阴、海门、天一中学联考)在圆x2+y2=4所围成的区域内随机取一个点P(x,y),则|x|+|y|≤2的概率为________.解析|x|+|y|≤2表示的图形是正方形及其内部,用正方形的面积除以圆x2+y2=4的面积易得概率为2π.答案2π11.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD 的中点,点F在CD上,若EF∥平面AB1C,则线段EF 的长度等于________.解析∵EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,∴EF∥AC,又∵E是AD的中点,∴F是CD的中点,即EF是△ACD的中位线,∴EF=12AC=12×22= 2.答案 212.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是________.解析①个位数为1,3,5,7,9时,十位数为2,4,6,8;个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个.②个位数为0时,十位数为1,3,5,7,9,共5个,个位数为0的概率是545=19.答案 1913.已知P 是△ABC 所在平面内一点, PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是________.解析 取边BC 上的中点D ,由PB →+PC →+2P A →=0,得PB →+PC →=2AP →,而由向量的中点公式知PB →+PC →=2PD →,则有AP →=PD →,即P 为AD 的中点,则S △ABC =2S △PBC ,根据几何概率的概率公式知,所求的概率为12. 答案 1214.(2013·安徽卷改编)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93①这种抽样方法是一种分层抽样;②这种抽样方法是一种系统抽样;③这五名男生成绩的方差大于这五名女生成绩的方差;④该班男生成绩的平均数小于该班女生成绩的平均数,则以上说法一定正确的是________.解析 若抽样方法是分层抽样,男生、女生分别抽取6人、4人,所以①错;由题目看不出是系统抽样,所以②错;这五名男生成绩的平均数,x 男=15(86+94+88+92+90)=90,这五名女生成绩的平均数x 女=15(88+93+93+88+93)=91,故这五名男生成绩的方差为s 2甲=15(42+42+22+22+02)=8,这五名女生成绩的方差为s 2乙=15(32+22+22+32+22)=6.显然③正确,④错. 答案 ③ 二、解答题(共90分)15.(本小题满分14分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,DC ∥AB ,∠BAD =90°,且AB =2AD =2DC =2PD =4,E 为P A 的中点.(1)求证:DE ∥平面PBC ;(2)求证:DE ⊥平面P AB .证明 (1)设PB 的中点为F ,连接EF 、CF ,EF ∥AB ,DC ∥AB ,所以EF ∥DC ,且EF =DC =12AB .故四边形CDEF 为平行四边形,可得ED ∥CF . 又ED ⊄平面PBC ,CF ⊂平面PBC , 故DE ∥平面PBC .(2)因为PD ⊥底面ABCD ,AB ⊂平面ABCD , 所以AB ⊥PD .又因为AB ⊥AD ,PD ∩AD =D ,AD ⊂平面P AD ,PD ⊂平面P AD ,所以AB ⊥平面P AD .ED ⊂平面P AD ,故ED ⊥AB .又PD =AD ,E 为P A 的中点,故ED ⊥P A ; P A ∩AB =A ,P A ⊂平面P AB ,AB ⊂平面P AB , 所以ED ⊥平面P AB .16.(本小题满分14分)(2013·南京、盐城模拟)如图,正方形ABCD 所在的平面与三角形CDE 所在的平面交于CD ,AE ⊥平面CDE ,且AB =2AE . (1)求证:AB ∥平面CDE ; (2)求证:平面ABCD ⊥平面ADE . 证明 (1)正方形ABCD 中,AB ∥CD , 又AB ⊄平面CDE ,CD ⊂平面CDE , 所以AB ∥平面CDE .(2)因为AE ⊥平面CDE ,且CD ⊂平面CDE ,所以AE ⊥CD ,又正方形ABCD 中,CD ⊥AD ,且AE ∩AD =A , AE 、AD ⊂平面ADE ,所以CD ⊥平面ADE , 又CD ⊂平面ABCD , 所以平面ABCD ⊥平面ADE .17.(本小题满分14分)(2013·苏州质检)如图,在直三棱柱ABC -A 1B 1C 1中,已知∠ACB =90°,M 为A 1B 与AB 1的交点,N 为棱B 1C 1的中点,(1)求证:MN∥平面AA1C1C;(2)若AC=AA1,求证:MN⊥平面A1BC.证明(1)连接AC1,因为M为A1B与AB1的交点,所以M是AB1的中点,又N为棱B1C1的中点.所以MN∥AC1,又因为AC1⊂平面AA1C1C,MN⊄平面AA1C1C,所以MN∥平面AA1C1C.(2)因为AC=AA1,所以四边形AA1C1C是正方形,所以AC1⊥A1C,又AC1∥MN,所以A1C⊥MN.又因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为BC⊂平面ABC,所以CC1⊥BC.又因为∠ACB=90°,所以AC⊥BC,因为CC1∩AC=C,所以BC⊥平面AA1C1C,又AC1⊂平面AA1C1C,所以BC⊥AC1,因为MN∥AC1,所以MN⊥BC,又MN⊥A1C,又BC∩A1C=C,所以MN⊥平面A1BC.18.(本小题满分16分)如图,在边长为4的菱形ABCD中,∠DAB=60°,点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(1)求证:BD ⊥平面POA ;(2)记三棱锥P -ABD 体积为V 1,四棱锥P -BDEF 体积为V 2,且V 1V 2=43,求此时线段PO 的长.(1)证明 在菱形ABCD 中,∵BD ⊥AC , ∴BD ⊥AO .∵EF ⊥AC ,∴PO ⊥EF ,∵平面PEF ⊥平面ABFED ,平面PEF ∩平面ABFED =EF ,且PO ⊂平面PEF . ∴PO ⊥平面ABFED , ∵BD ⊂平面ABFED , ∴PO ⊥BD .∵AO ∩PO =O ,AO ,PO ⊂平面POA . ∴BD ⊥平面POA . (2)解 设AO ∩BD =H由(1)知,PO ⊥平面ABFED ,PO =CO .∴PO 是三棱锥P -ABD 的高及四棱锥P -BDEF 的高 ∴V 1=13S △ABD ·PO ,V 2=13S 梯形BFED ·PO ∵V 1V 2=43∴S 梯形BFED =34S △ABD =34S △BCD∴S △CEF =14S △BCD∵BD ⊥AC ,EF ⊥AC ,∴EF ∥BD ,∴△CEF ∽△CDB ∴⎝ ⎛⎭⎪⎫CO CH 2=S △CEF S △BCD =14∴CO =12CH =12AH =12×23= 3 ∴线段PO 的长为 3.19.(本小题满分16分)(2013·扬州调研)如图,在三棱柱ABC -A 1B 1C 1中,底面△ABC 是等边三角形,D 为AB 中点.(1)求证:BC 1∥平面A 1CD ;(2)若四边形BCC1B1是矩形,且CD⊥DA1,求证:三棱柱ABC-A1B1C1是正三棱柱.证明(1)连接AC1,设AC1与A1C相交于点O,连接DO,则O为AC1中点,∵D为AB的中点,∴DO∥BC1∵BC1⊄平面A1CD,DO⊂平面A1CD∴BC1∥平面A1CD;(2)∵等边△ABC,D为AB的中点,∴CD⊥AB∵CD⊥DA1,DA1∩AB=D,∴CD⊥平面ABB1A1∵BB1⊂平面ABB1A1,∴BB1⊥CD,∵四边形BCC1B1是矩形,∴BB1⊥BC∵BC∩CD=C,∴BB1⊥平面ABC∵底面△ABC是等边三角形∴三棱柱ABC -A1B1C1是正三棱柱.20.(本小题满分16分)(2012·苏锡常镇调研)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE =4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.图1图2(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B -DEG的体积.(1)证明如图(1)∵CE=4,∠DCE=30°,过点D作AC的垂线交于点M,则DM=3,EM=1,∴DE=2,CD=2 3.则CD2+DE2=EC2,∴∠CDE=90°,DE⊥DC.在图(2)中,又∵平面BCD⊥平面ACD,平面BCD∩平面ACD=CD,DE⊂平面ACD,∴DE⊥平面BCD.图(1)图(2)(2)解在图(2)中,∵EF∥平面BDG,EF⊂平面ABC,平面ABC∩平面BDG=BG,∴EF∥BG.∵点E在线段AC上,CE=4,点F是AB的中点,∴AE=EG=CG=2.作BH⊥CD交于H.∵平面BCD⊥平面ACD,∴BH⊥平面ACD.由条件得BH=3 2.S△DEG=13S△ACD=13×12AC·CD·sin 30°= 3.三棱锥B -DEG的体积V=13S△DEG·BH=13×3×32=32.。
2014年高考二轮研讨会论文
临朐实验中学2014年高考二轮(数学)专题复习《函数与导数》复习计划临朐实验中学董雷波王昌建王晓文一、高考命题分析:函数是初等数学中最重要的内容之一,导数是研究函数的重要工具,因此该专题的内容是高考考查的重点内容,也是命题分量最重的一部分,命题的主要形式是以导数为工具,研究初等函数的图象与性质,命题范围几乎涵盖了与函数有关的所有方面的知识. 从近三年的高考试卷中一般是2~3道小题和一道解答题,分析如下:1、分段函数、函数的定义域、函数的性质等是历年高考必考的重点,考题所占分值稳中有增;试题多为选择题或填空题,难度适中。
2、函数的最值、值域,函数的奇偶性以及单调性的考察在高考中的变化呈现一定的规律性,其中对函数的奇偶性、单调性的考查逐年递增,对函数的值域、最值与周期性的考察变化较大,抽象函数的周期性命题往往会出现一些争议,所以可能有所变化。
3、导数的概念及几何意义主要以选择题、填空题的形式进行考查,也会在导数的综合应用中出现,题目比较简单。
(理科)对于定积分及其应用多以选择题或填空题的形式进行考查,主要考查应用定积分求解封闭图形的面积。
4、导数各知识点的考查综合性较强,函数的定义域、导数的基本运算等都会隐含在考题中;导数的综合应用的考查多与不等式的恒成立问题相结合。
(理科)定积分及其应用的考查有时与几何概型相结合。
二、高考特点:函数是中学数学最重要的主干知识之一;导数是研究函数的有力工具,函数与导数不仅是高中数学的核心内容,还是学习高等数学的基础,而且函数的观点及其思想方法贯穿于整个高中数学教学的全过程,高考对函数的考查更多的是与导数的结合,发挥导数的工具性作用,应用导数研究函数的性质、证明不等式问题等,体现出高考的综合热点.所以在高考中函数知识占有极其重要的地位,是高考考查数学思想、数学方法、能力和素质的主要阵地.函数与导数在高考试卷中形式新颖且呈现出多样性,既有选择题、填空题,又有解答题.其命题特点如下:1.全方位:近年新课标的高考题中,函数的知识点基本都有所涉及,虽然高考不强调知识点的覆盖率,但函数知识点的覆盖率依然没有减小.2.多层次:在近年新课标的高考题中,低档、中档、高档难度的函数题都有,且题型齐全.低档难度题一般仅涉及函数本身的内容,诸如定义域、值域、单调性、周期性、图象等,且对能力的要求不高;中、高档难度题多为综合程度较高的试题,或者函数与其他知识结合,或者是多种方法的渗透.3.巧综合:为了突出函数在中学数学中的主体地位,近年高考强化了函数与其他知识的渗透,加大了以函数为载体的多种方法、多种能力(甚至包括阅读能力、理解能力、表述能力、信息处理能力)的综合程度.4.变角度:出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考查,加大了函数应用题、探索题、开放题和信息题的考查力度,从而使函数考题显得新颖、生动、灵活。
专题02不等式与复数(6大核心考点)(课件)-2025年高考数学二轮复习讲练测(新教材新高考)
3
3
7.(2022•乙卷)已知 = 1 − 2,且 + ҧ + = 0,其中,为实数,则( A )
A. = 1, = −2
B. = −1, = 2
C. = 1, = 2 D. = −1, = −2
8.(多选题)(2022•新高考Ⅱ)若,满足 2 + 2 − = 1,则(BC )
1
1
= , = 时等号成立,所以D正确
2
4
故选:BCD
考点题型二:和式与积式
【对点训练4】(多选题)(2023·湖北·高三校联考期中)已知 > 1, > 1,且 + = 3,则(
A.3 + 3 ≤ 2 − 3 4
B.
2
2
≥ 2 −
2025
高考二轮复习讲练测
专题02 不等式与复数
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04
知识建构
方法技巧
真题研析
核心考点
01
考情分析
有关不等式的高考试题,是历年高考重点考查的知识点之一,其应用范围涉及高中
数学的很多章节,且常考常新,但考查内容却无外乎大小判断、求最值和求最值范围
等问题,考试形式多以一道选择题为主,分值5分.复数的代数运算、代数表示及其几
小于它们的几何平均数.
+
不等式可变形为:( + )2 ≥ 4 或 ≤ ( 2 )2 ,其
中 , ∈ + .
【答案】D
【解析】因为2 + = −1,
高三数学第二轮专题复习系列:(6)不等式
高考数学第二轮专题复习系列(6)不等式一、本章知识结构:实数的性质二、高考要求(1)理解不等式的性质及其证明。
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用。
(3)分析法、综合法、比较法证明简单的不等式。
(4)掌握某些简单不等式的解法。
(5)理解不等式|a|﹣|b| ≤|a+b|≤|a| +|b|。
三、热点分析1.重视对基础知识的考查,设问方式不断创新.重点考查四种题型:解不等式,证明不等式,涉及不等式应用题,涉及不等式的综合题,所占比例远远高于在课时和知识点中的比例.重视基础知识的考查,常考常新,创意不断,设问方式不断创新,图表信息题,多选型填空题等情景新颖的题型受到命题者的青眯,值得引起我们的关注.2.突出重点,综合考查,在知识与方法的交汇点处设计命题,在不等式问题中蕴含着丰富的函数思想,不等式又为研究函数提供了重要的工具,不等式与函数既是知识的结合点,又是数学知识与数学方法的交汇点,因而在历年高考题中始终是重中之重.在全面考查函数与不等式基础知识的同时,将不等式的重点知识以及其他知识有机结合,进行综合考查,强调知识的综合和知识的内在联系,加大数学思想方法的考查力度,是高考对不等式考查的又一新特点.3.加大推理、论证能力的考查力度,充分体现由知识立意向能力立意转变的命题方向.由于代数推理没有几何图形作依托,因而更能检测出学生抽象思维能力的层次.这类代数推理问题常以高中代数的主体内容——函数、方程、不等式、数列及其交叉综合部分为知识背景,并与高等数学知识及思想方法相衔接,立意新颖,抽象程度高,有利于高考选拔功能的充分发挥.对不等式的考查更能体现出高观点、低设问、深入浅出的特点,考查容量之大、功能之多、能力要求之高,一直是高考的热点.4.突出不等式的知识在解决实际问题中的应用价值,借助不等式来考查学生的应用意识.不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用。
2014高考数学二轮专题复习Word版 专题提升训练15
常考问题15 空间中的平行与垂直(建议用时:50分钟)1.(2013·无锡模拟)对于直线m ,n 和平面α,β,γ,有如下四个命题:①若m ∥α,m ⊥n ,则n ⊥α;②若m ⊥α,m ⊥n ,则n ∥α;③若α⊥β,γ⊥β,则α∥γ;④若m ⊥α,m ∥n ,n ⊂β,则α⊥β.其中正确命题的序号是________.解析 n 有可能平行于α或在α内,所以①不正确;n 有可能在α内,所以②不正确;α可以与γ相交,所以③不正确.答案 ④2.设l ,m 是两条不同的直线,α是一个平面,有下列四个命题:①若l ⊥α,m ⊂α,则l ⊥m ;②若l ⊥α,l ∥m ,则m ⊥α;③若l ∥α,m ⊂α,则l ∥m ;④若l ∥α,m ∥α,则l ∥m .则其中正确命题的序号是________.解析 根据线面垂直的判定定理、性质定理可知①②正确.答案 ①②3.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B -B 1EF 的体积为________.解析 VB -B 1EF =VE -B 1FB =13S △B 1BF ·EB =13×12×2×1×1=13.答案 134.设a ,b 是两条直线,α,β是两个平面,则下列4组条件中所有能推得a ⊥b 的条件是________(填序号).①a ⊂α,b ∥β,α⊥β;②a ⊥α,b ⊥β,α⊥β;③a ⊂α,b ⊥β,α∥β;④a ⊥α,b ∥β,α∥β.解析 由①a ⊂α,b ∥β,α⊥β可能得到两直线垂直,平行或异面,②③④均能得到两直线垂直,故填写②③④.答案 ②③④5.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF的长度等于________.解析 ∵EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,又∵E 是AD 的中点,∴F 是CD 的中点,即EF 是△ACD 的中位线,∴EF =12AC =12×22=2.答案 26.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号______(写出所有真命题的序号).解析 ①②为课本上的结论,是真命题;③α和β不垂直时,α内也有一组平行直线垂直于l ;④l 与α内的两条直线垂直不能得出l 与α垂直,如α内的两条直线平行时,则不能推出l ⊥α.答案 ①②7.(2011·泰州模拟)在正方体ABCD -A 1B 1C 1D 1中,点M ,N 分别在AB 1,BC 1上(M ,N 不与B 1,C 1重合),且AM =BN ,那么①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1异面,以上4个结论中,正确结论的序号是________.解析 过M 作MP ∥AB 交BB 1于P ,连接NP ,则平面MNP ∥平面A 1C 1,所以MN ∥平面A 1B 1C 1D 1,又AA 1⊥平面A 1B 1C 1D 1,所以AA 1⊥MN .当M 与B 1重合,N 与C 1重合时,则A 1C 1与MN 相交,所以①③正确.答案 ①③8.(2011·苏中四市调研)在正三棱锥P -ABC 中,D ,E 分别是AB ,BC 的中点,下列结论:①AC ⊥PB ;②AC ∥平面PDE ;③AB ⊥平面PDE ,其中正确结论的序号是________.解析 如右图,设P 在面ABC 内射影为O ,则O 为正△ABC 的中心.①可证AC ⊥平面PBO ,所以AC ⊥PB ;②AC ∥DE ,可得AC ∥面PDE ;③AB 与DE 不垂直.答案 ①②9.(2013·苏州调研)如图,四边形ABCD 是矩形,平面ABCD ⊥平面BCE ,BE ⊥EC .(1)求证:平面AEC ⊥平面ABE ;(2)点F 在BE 上.若DE ∥平面ACF ,求BF BE 的值.(1)证明 因为ABCD 为矩形,所以AB ⊥BC .因为平面ABCD ⊥平面BCE ,平面ABCD ∩平面BCE =BC ,AB ⊂平面ABCD ,所以AB ⊥平面BCE .因为CE ⊂平面BCE ,所以CE ⊥AB .因为CE ⊥BE ,AB ⊂平面ABE ,BE ⊂平面ABE ,AB ∩BE =B ,所以CE ⊥平面ABE .因为CE ⊂平面AEC ,所以平面AEC ⊥平面ABE .(2)解 连接BD 交AC 于点O ,连接OF .因为DE ∥平面ACF ,DE ⊂平面BDE ,平面ACF ∩平面BDE =OF ,所以DE ∥OF .又因为矩形ABCD 中,O 为BD 中点,所以F 为BE 中点,即BF BE =12.10.(2012·泰州学情调研)如图,在四棱锥O -ABCD 中,底面ABCD 为菱形,OA ⊥平面ABCD ,E 为OA 的中点,F 为BC 的中点,求证:(1)平面BDO ⊥平面ACO ;(2)EF ∥平面OCD .证明 (1)∵OA ⊥平面ABCD ,BD ⊂平面ABCD ,所以OA⊥BD ,∵ABCD 是菱形,∴AC ⊥BD ,又OA ∩AC =A ,∴BD ⊥平面OAC ,又∵BD ⊂平面OBD ,∴平面BDO ⊥平面ACO .(2)取OD 中点M ,连接EM ,CM ,则ME ∥AD ,ME =12AD ,∵ABCD 是菱形,∴AD ∥BC ,AD =BC ,∵F 为BC 的中点,∴CF ∥AD ,CF =12AD , ∴ME ∥CF ,ME =CF .∴四边形EFCM 是平行四边行,∴EF ∥CM ,又∵EF ⊄平面OCD ,CM ⊂平面OCD .∴EF ∥平面OCD .11.(2013·盐城模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AC =4,CB =2,AA 1=2,∠ACB =60°,E 、F分别是A 1C 1,BC 的中点.(1)证明:平面AEB ⊥平面BB 1C 1C ;(2)证明:C 1F ∥平面ABE ;(3)设P 是BE 的中点,求三棱锥P -B 1C 1F 的体积.(1)证明 在△ABC 中,∵AC =2BC =4,∠ACB =60°,由余弦定理得: ∴AB =23,∴AB 2+BC 2=AC 2,∴AB ⊥BC ,由已知AB ⊥BB 1,又BB 1∩BC =B ,∴AB ⊥面BB 1C 1C ,又∵AB ⊂面ABE ,∴平面ABE ⊥平面BB 1C 1C .(2)证明 取AC 的中点M ,连接C 1M ,FM在△ABC ,FM ∥AB ,而FM ⊄平面ABE ,AB ⊂平面ABE ,∴直线FM ∥平面ABE在矩形ACC 1A 1中,E ,M 都是中点,∴C 1E 綉AM ,四边形AMC 1B 是平面四边形,∴C 1M ∥AE而C 1M ⊄平面ABE ,AE ⊂平面ABE ,∴直线C 1M ∥ABE又∵C 1M ∩FM =M ,∴平面ABE ∥平面FMC 1,而CF 1⊂平面FMC 1, 故C 1F ∥平面AEB .(3)解 取B 1C 1的中点H ,连接EH ,则EH ∥A 1B 1,所以EH ∥AB 且EH =12AB =3,由(1)得AB ⊥面BB 1C 1C ,∴EH ⊥面BB 1C 1C ,∵P 是BE 的中点,∴VP -B 1C 1F =12VE -B 1C 1F =12×13S △B 1C 1F ·EH = 3. 备课札记:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常考问题21 坐标系与参数方程
1.在极坐标系中,已知圆C 的圆心坐标为C ⎝ ⎛
⎭⎪⎫2,π3,半径R =5,求圆C 的极
坐标方程.
解 将圆心C
⎝ ⎛
⎭⎪⎫2,π3化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5.
再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5, 化简得ρ2
-4ρcos ⎝ ⎛⎭
⎪⎫
θ-π3-1=0.
此即为所求的圆C 的极坐标方程.
2.(2011·江苏卷)在平面直角坐标系xOy 中,求过椭圆⎩⎨⎧
x =5cos φ,
y =3sin φ(φ为参数)
的右焦点,且与直线⎩⎨⎧
x =4-2t ,
y =3-t
(t 为参数)平行的直线的普通方程.
解 由题意知,椭圆的长半轴长为a =5,短半轴长b =3,从而c =4,所以右焦点为(4,0),将已知直线的参数方程化为普通方程得x -2y +2=0,故所求的直线的斜率为12,因此所求的方程为y =1
2(x -4),即x -2y -4=0. 3.(2010·江苏卷)在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.
解 将极坐标方程化为直角方程,得圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,直线的方程为3x +4y +a =0.
由题设知,圆心(1,0)到直线的距离为1,即有|3×1+4×0+a |
32+4
2
=1, 解得a =-8或a =2, 故a 的值为-8或2.
4.已知曲线C 1:⎩⎨⎧ x =-4+cos t ,y =3+sin t (t 为参数),C 2:⎩
⎨⎧
x =8cos θ,y =3sin θ
(θ为参数).
(1)化C 1、C 2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C 1上的点P 对应的参数为t =π
2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎨⎧
x =3+2t ,
y =-2+t (t 为参数)距离的最小值.
解 (1)C 1:(x +4)2
+(y -3)2
=1,C 2:x 264+y 2
9=1.
C 1为圆心是(-4,3),半径是1的圆.
C 2为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π
2时,P (-4,4),Q (8cos θ,3sin θ), 故M ⎝ ⎛⎭
⎪⎫
-2+4cos θ,2+32sin θ.
C 3为直线x -2y -7=0,M 到C 3的距离 d =5
5|4cos θ-3sin θ-13|.
从而当cos θ=45,sin θ=-35时,d 取得最小值85
5
.
5.(2013·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧
x =4+5cos t ,
y =5+5sin t (t 为参数),
以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.
(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 解 (1)∵C 1的参数方程为⎩
⎨⎧
x =4+5cos t ,
y =5+5sin t ,
∴⎩⎨⎧
5cos t =x -4,
5sin t =y -5,∴(x -4)2+(y -5)2=25(cos 2t +sin 2t )=25, 即C 1的直角坐标方程为(x -4)2+(y -5)2=25, 把x =ρcos θ,y =ρsin θ代入(x -4)2+(y -5)2=25, 化简得:ρ2-8ρcos θ-10ρsin θ+16=0.
(2)C 2的直角坐标方程为x 2+y 2=2y ,
解方程组⎩⎨⎧ (x -4)2+(y -5)2
=25,x 2+y 2=2y ,得⎩⎨⎧ x =1,y =1或⎩⎨⎧
x =0,
y =2.
∴C 1与C 2交点的直角坐标为(1,1),(0,2). ∴C 1与C 2交点的极坐标为⎝ ⎛
⎭⎪⎫2,π4,⎝ ⎛⎭
⎪⎫2,π2.
6.(2013·辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫
θ-π4=2 2.
(1)求C 1与C 2交点的极坐标;
(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪
⎧
x =t 3+a ,y =b 2
t 3
+1(t ∈R 为参数),求a ,b 的值.
解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.
解⎩⎨⎧ x 2+(y -2)2
=4,x +y -4=0,得⎩⎨⎧ x 1=0,y 1=4,⎩⎨⎧
x 2=2,y 2=2.
所以C 1与C 2交点的极坐标为⎝ ⎛
⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4,
注:极坐标系下点的表示不唯一.
(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab
2+1, 所以⎩⎪⎨⎪⎧
b 2=1,-ab
2+1=2,解得⎩
⎨⎧
a =-1,
b =2.
备课札记:。