山东省泰安市2018-2019学年高二下学期期末数学试题

合集下载

河北省张家口市第一中学2018-2019学年高二上学期期末考试数学(文)试题

河北省张家口市第一中学2018-2019学年高二上学期期末考试数学(文)试题

2018-2019学年上学期高二期末考试数学(文)试题一,选择题(本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.)1,已知全集{}2U 1x x =>,集合{}2430x x x A =-+<,则=A C U ( )A .()1,3B .()[),13,-∞+∞C .()[),13,-∞-+∞D .()(),13,-∞-+∞ 2,某校为了研究“学生地”和“对待某一活动地态度”是否相关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生与支持活动相关系”地犯错误地概率不超过A .0.1% B .1% C .99% D .99.9%附:)(02k K P ≥0.1000.0500.0250.0100.001k 02.7063.8415.0246.63510.8283,已知抛物线地焦点()F ,0a (0a <),则抛物线地标准方程是( )A .22y ax = B .24y ax = C .22y ax =- D .24y ax =-4,命题:p x ∃∈N ,32x x <。

命题:q ()()0,11,a ∀∈+∞ ,函数()()log 1a f x x =-地图象过点()2,0,则( )A .p 假q 真B .p 真q 假C .p 假q 假D .p 真q 真5,执行右边地程序框图,则输出地A 是( )A .2912 B .7029 C .2970 D .169706,在直角梯形CD AB 中,//CD AB ,C 90∠AB = ,2C 2CD AB =B =,则cos D C ∠A =( )A C D7,已知2sin 21cos 2αα=+,则tan 2α=( )A .43-B .43C .43-或0D .43或08,32212x x ⎛⎫+- ⎪⎝⎭展开式中地常数项为( )A .8- B .12- C .20- D .209.已知函数()f x 地定义域为2(43,32)a a --,且(23)y f x =-是偶函数.又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足款件地k 地个数为( )A .3 B .2 C .4 D .110,F 是双曲线C :22221x y a b-=(0a >,0b >)地右焦点,过点F 向C 地一款渐近线引垂线,垂足为A ,交另一款渐近线于点B .若2F F A =B,则C 地离心率是( )A B .2 C 11,直线y a =分别与曲线()21y x =+,ln y x x =+交于A ,B ,则AB 地最小值为( )A .3B .2C .3212,某几何体地三视图如图所示,则该几何体地表面积为( )A .4B .21+C .12+D 12二,填空题(本大题共4小题,每小题5分,共20分.)13,已知()1,3a =- ,()1,b t = ,若()2a b a -⊥,则b = .14,已知212(1)4k dx ≤+≤⎰,则实数k 地取值范围是_____.15,在半径为2地球面上有不同地四点A ,B ,C ,D ,若C D 2AB =A =A =,则平面CDB 被球所截得图形地面积为 .16,已知x ,R y ∈,满足22246x xy y ++=,则224z x y =+地取值范围为 .三,解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17,(本小题满分12分)设数列{}n a 地前n 项和为n S ,满足()11n n q S qa -+=,且()10q q -≠.()I 求{}n a 地通项公式。

2018-2019学年高二下学期期末考试数学试题(带答案)

2018-2019学年高二下学期期末考试数学试题(带答案)

2018-2019学年高二下学期期末考试一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B I =() A .{|12}x x -≤≤ B .{1,0,1,2}-C .{2,1,0,1,2}--D .{0,1,2}2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为() A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .1≤a ≤3 B .-1≤a ≤3 C .-3≤a ≤3D .-1≤a ≤14.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是()A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的() A .充分不必要条件 B .必要不充分条件 C.充要条件D .既不充分也不必要条件6.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( ) A.(1,-4,2)B.⎝⎛⎭⎫14,-1,12 C.⎝⎛⎭⎫-14,1,-12 D.(0,-1,1)7.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.138.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由K 2=n ad -bc 2a +bc +d a +c b +d算得,K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”11.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为() A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为()A .11(,)[,)88-∞-+∞UB .11[,0)(0,]48-U C.(0,8]D .11(,][,)48-∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=r ,(2,1)b =r,若向量2a b +r r 与(8,6)c =r 共线,则a r 和b r 方向上的投影为.14.将参数方程⎩⎨⎧x =a2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.15.已知随机变量X 服从正态分布N (0,σ2),且P (-2≤X ≤0)=0.4,则P (X >2)=________. 16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l 的参数方程为24,222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值18.(12分)设函数()1f x x x =+-的最大值为m .(1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.19.(12分)点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心. (1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(12分)2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21. (12分)已知椭圆x 2b 2+y 2a 2=1 (a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)是否存在实数m ,使直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆 x 2+y 2=5上?若存在,求出m 的值;若不存在,请说明理由.22. (12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题1-5:BBBDA 6-10:DBDBC 11-12:AD 二、填空题13.35514:x 2a 2-y 2b 2=1 . 15.0.1 16.[2,4]ππ三、解答题17.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得2220t t +=,解得10t =,222t =-.所以直线l 被圆C 截得的弦长为12||22t t -=. (2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l 的距离|22cos 2sin 4|2d θθ+--=|2cos()2|4πθ=+-,当cos()14πθ+=-时,d 取最大值,且d 的最大值为22+. 所以122(22)2222ABP S ∆≤⨯⨯+=+, 即ABP ∆的面积的最大值为22+.18.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13. 19.解:(1)延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =I , 所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,(3,0,0)B ,31(,,0)22O ,(0,1,2)P ,1(0,,0)2M ,则3(,0,0)2OM =-u u u u r ,31(,,2)22OP =-u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =r ,则30,23120,22n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩r u u u u r r u u u r 令1z =,得(0,4,1)n =-r . 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A =I ,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,,0)44CH =u u u r .设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅u u u r r u u ur r 2233|0410|251441739411616⨯-⨯+⨯=+⨯+. 20.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.21.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎨⎧a =2,c =1,b =1,故椭圆的方程为x 2+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,所以Δ=(2m )2-4×3×(m 2-2)>0,即m 2<3, 且x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3, 即M ⎝ ⎛⎭⎪⎫-m 3,2m 3,又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3,与m 2<3矛盾.故实数m 不存在.22. 解: (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x-1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,f ′(x )=-x1+x .所以,在区间(-1,0)上,f ′(x )>0; 在区间(0,+∞)上,f ′(x )<0. 故f (x )的单调递增区间是(-1,0), 单调递减区间是(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk>0.所以,在区间(-1,0)和(1-kk,+∞)上,f ′(x )>0;在区间(0,1-kk)上,f ′(x )<0.故f (x )的单调递增区间是(-1,0)和(1-kk,+∞),单调递减区间是(0,1-kk ).当k =1时,f ′(x )=x 21+x .故f (x )的单调递增区间是(-1,+∞).当k >1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk∈(-1,0),x 2=0.所以,在区间(-1,1-kk)和(0,+∞)上,f ′(x )>0;在区间(1-kk,0)上,f ′(x )<0.故f (x )的单调递增区间是(-1,1-kk)和(0,+∞),单调递减区间是(1-kk ,0).。

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。

2018-2019学年四川省广安市高二(上)期末数学试卷(理科)(解析版)

2018-2019学年四川省广安市高二(上)期末数学试卷(理科)(解析版)

2018-2019学年四川省广安市高二(上)期末数学试卷(理科)一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.(5分)已知空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),则|AB|=(()A.B.C.D.2.(5分)直线的倾斜角大小为()A.30°B.60°C.120°D.150°3.(5分)以x=1为准线的抛物线的标准方程为()A.y2=2x B.y2=﹣2x C.y2=4x D.y2=﹣4x 4.(5分)“若x<1,则x2﹣3x+2>0”的否命题是()A.若x≥1,则x2﹣3x+2≤0B.若x<l,则x2﹣3x+2≤0C.若x≥1,则x2﹣3x+2>0D.若x2﹣3x+2≤0,则x≥15.(5分)已知直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则a为()A.﹣B.C.D.﹣6.(5分)设某高中的学生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.67x ﹣60.9,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该高中某学生身高为170cm,则可断定其体重必为53kgD.若该高中某学生身高增加1cm,则其体重约增加0.67kg7.(5分)“2<m<6”是“方程+=1为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)从甲、乙两种棉花中各抽测了25根棉花的纤维长度(单位:mm)组成一个样本,得到如图所示的茎叶图.若甲、乙两种棉花纤维的平均长度分别用,表示,标准差分别用s1,s2表示,则()A.>,s 1>s2B.>,s1<s2C.<,s 1>s2D.<,s1<s29.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为()A.16B.18C.48D.14310.(5分)小华和小明两人约定在7:30到8:30之间在“思源广场”会面,并约定先到者等候另一人30分钟,过时离去,则两人能会面的概率是()A.B.C.D.11.(5分)双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),点A(﹣,0),点P为双曲线第二象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.16B.7+3C.14+D.1812.(5分)已知A,B是以F为焦点的抛物线y2=4x上两点,且满足=5,则弦AB 中点到准线距离为()A.B.C.D.二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)把二进制数10011(2)转化为十进制的数为.14.(5分)已知双曲线x2﹣y2=1,则它的右焦点到它的渐近线的距离是.15.(5分)若命题“∃x0∈R,x02+(a﹣1)x0+1<0”是假命题,则实数a的取值范围为.16.(5分)已知椭圆C:=1(a>b>0)的左右焦点分别为F1、F2,抛物线y2=4cx(c2=a2﹣b2且c>b)与椭圆C在第一象限的交点为P,若cos∠PF1F2=,则椭圆C的离心率为.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0.(Ⅰ)若l1∥l2,求l1,l2间的距离;(Ⅱ)求证:直线l1必过第三象限.18.(12分)已知命题p:实数m满m2﹣2am﹣3a2<0,其中a>0;命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部.(Ⅰ)当a=1,p∧q为真时,求m的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求a的取值范围.19.(12分)已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M,(Ⅰ)试求M点的轨迹C2方程;(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.20.(12分)随着2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮广安某社团调查了广安某校300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内,并按时间(单位:分钟)将学生分成六个组:[0,20),[20,40),[40,60),[60,80),[80,100),[100,120]经统计得到了如图所示的频率分布直方图.(Ⅰ)求频率分布直方图中a的值,并估计该校学生每天诵读诗词的时间的平均数和中位数.(Ⅱ)若两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.21.(12分)已知椭圆C:+y2=1(a>0),过椭圆C右顶点和上顶点的直线l与圆x2+y2=相切.(1)求椭圆C的方程;(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2(1+sin2θ)=2.(Ⅰ)求l的直角坐标方程和C的直角坐标方程;(Ⅱ)若l和C相交于A,B两点,求|AB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣1|,g(x)=|2x﹣4|.(Ⅰ)求不等式f(x)>g(x)的解集.(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,求实数a的取值范围.2018-2019学年四川省广安市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.【解答】解:∵空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),∴|AB|==.故选:B.2.【解答】解:由题意,直线的斜率为k=,即直线倾斜角的正切值是又倾斜角大于或等于0°且小于180°,故直线的倾斜角为30°,故选:A.3.【解答】解:以x=1为准线的抛物线,开口向左,可得p=2,所以抛物线的标准方程为:y2=﹣4x.故选:D.4.【解答】解:若p则q的否命题为若¬p则¬q,即命题的否命题为:若x≥1,则x2﹣3x+2≤0,故选:A.5.【解答】解:根据题意,直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则有=1,解可得:a=﹣;故选:D.6.【解答】解:根据y与x的线性回归方程为=0.67x﹣60.9,则b=0.67>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该高中某学生身高为170cm,则可预测其体重必为53kg,C错误;若该高中某学生身高增加1cm,则其体重约增加0.67kg,D正确.∴不正确的结论是C.故选:C.7.【解答】解:若方程+=1为椭圆方程,则,解得:2<m<6,且m≠4,故“2<m<6”是“方程+=1为椭圆方程”的必要不充分条件,故选:B.8.【解答】解:由茎叶图得:甲的数据相对分散,而乙的数据相对集中于茎叶图的右下方,∴<,s 1>s2.故选:C.9.【解答】解:初始值n=3,x=3,程序运行过程如下表所示:v=1i=2,v=1×3+2=5i=1,v=5×3+1=16i=0,v=16×3+0=48i=﹣1,不满足条件,跳出循环,输出v的值为48.故选:C.10.【解答】解:设记7:30为0,则8:30记为60,设小华到达“思源广场”为x时刻,小明小华到达“思源广场”为y时刻,则0≤x≤60,0≤y≤60,记“两人能会面”为事件A,则事件A:|x﹣y|≤30,由图知:两人能会面的概率是:==,故选:B.11.【解答】解:双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),可得,c==6,a=2,b=4.双曲线方程为,设双曲线的上焦点为F'(0,6),则|PF|=|PF'|+4,△P AF的周长为|PF|+|P A|+|AF|=|PF'|+2a+|P A|+AF,当P点在第二象限时,|PF'|+|P A|的最小值为|AF'|=7,故△P AF的周长的最小值为14+4=18.故选:D.12.【解答】解:设BF=m,由抛物线的定义知AA1=5m,BB1=m,∴△ABC中,AC=4m,AB=6m,kAB=,直线AB方程为y=(x﹣1),与抛物线方程联立消y得5x2﹣26x+5=0,所以AB中点到准线距离为+1=+1=.故选:A.二、填空题:本大题共4个小题,每小题5分,共20分.13.【解答】解:10011(2)=1+1×2+1×24=19故答案为:1914.【解答】解:双曲线x2﹣y2=1,可得a=1,b=1,c=,则右焦点(1,0)到它的渐近线y=x的距离为d==.故答案为:.15.【解答】解:∵命题“∃x0∈R,x+(a﹣1)x0+1<0”是假命题,∴命题“∀x∈R,x2+(a﹣1)x+1≥0”是真命题,即对应的判别式△=(a﹣1)2﹣4≤0,即(a﹣1)2≤4,∴﹣2≤a﹣1≤2,即﹣1≤a≤3,故答案为:[﹣1,3].16.【解答】解:抛物线y2=4cx的焦点为F2(c,0),如下图所示,作抛物线的准线l,则直线l过点F1,过点P作PE垂直于直线l,垂足为点E,由抛物线的定义知|PE|=|PF2|,易知,PE∥x轴,则∠EPF1=∠PF1F2,所以,=,设|PF1|=5t(t>0),则|PF2|=4t,由椭圆定义可知,2a=|PF1|+|PF2|=9t,在△PF1F2中,由余弦定理可得,整理得,解得,或.∵c>b,则c2>b2=a2﹣c2,可得离心率.当时,离心率为,合乎题意;当时,离心率为,不合乎题意.综上所述,椭圆C的离心率为.故答案为:.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:(Ⅰ)若l1∥l2,直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0,则有=≠,求得k=﹣4,故直线l1即:2x+y+6=0,故l1,l2间的距离为=.(Ⅱ)证明:直线l1:kx﹣2y+k﹣8=0(k∈R),即k(x+1)﹣2y﹣8=0,必经过直线x+1=0和直线﹣2y﹣8=0的交点(﹣1,﹣4),而点(﹣1,﹣4)在第三象限,直线l1必过第三象限.18.【解答】解:(Ⅰ)当a=1,命题p:m2﹣2m﹣3<0,﹣1<m<3,命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部,∴m2﹣4<0,∴﹣2<m<2,∵p∧q为真,∴m的取值范围为(﹣1,3)∩(﹣2,2)=(﹣1,2);(Ⅱ)命题p:(m﹣3a)(m+a)<0,∵a>0,∴﹣a<m<3a,设A=(﹣a,3a)命题q:﹣2<m<2,设B=(﹣2,2)∵¬p是¬q的充分不必要条件,∴¬p⇒¬q,¬q推不出¬p,∴q⇒p,p推不出q,∴B⊊A,∴,∴a≥2,∴a的取值范围为[2,+∞).19.【解答】解:(Ⅰ)设M(x,y),B(x′,y′),则由题意可得:,解得:,∵点B在圆C1:x2+(y﹣4)2=16上,∴(x′)2+(y′﹣4)2=16,∴(2x﹣4)2+(2y﹣4)2=16,即(x﹣2)2+(y﹣2)2=4.∴轨迹C2方程为(x﹣2)2+(y﹣2)2=4;(Ⅱ)由方程组,解得直线CD的方程为x﹣y﹣1=0,圆C1的圆心C1(0,4)到直线CD的距离为,圆C1的半径为4,∴线段CD的长为.20.【解答】解:(Ⅰ)由频率分布直方图得:(a+a+6a+8a+3a+a)×20=1,解得a=0.0025.该校学生每天诵读诗词的时间的平均数为:0.05×10+0.05×30+0.3×50+0.4×70+0.15×90+0.05×110=64.[0,60)的频率为:0.05+0.05+0.3=0.4,[60,80)的频率为:0.4,∴估计该校学生每天诵读诗词的时间的中位数为:60+=65.(Ⅱ)从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,则从每天诵读时间小于20分钟的学生中抽取:5×=1人,从每天诵读时间大于或等于80分钟的所有学生中抽取:5×=4人,现从这5人中随机选取2人,基本事件总数n==10,两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,选取的两人能组成一个“Team”包含的基本事件个数m==4.∴选取的两人能组成一个“Team”的概率p===.21.【解答】解:(1)椭圆C的右顶点(a,0),上顶点(0,1),设直线l的方程为:+y=1,化为:x+ay﹣a=0,∵直线l与圆x2+y2=相切,∴=,a>0,解得a=.∴椭圆C的方程为.(2)当直线AB的斜率不存在时,设A(x0,y0),则B(x0,﹣y0),由k1+k2=2得,得x0=﹣1.当直线AB的斜率存在时,设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),,得,∴,即,由m≠1,(1﹣k)(m+1)=﹣km⇒k=m+1,即y=kx+m=(m+1)x+m⇒m(x+1)=y﹣x,故直线AB过定点(﹣1,﹣1).[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵直线l的参数方程为(t为参数),∴l的直角坐标方程为+=0,∵曲线C的极坐标方程为ρ2(1+sin2θ)=2,即ρ2+ρ2sin2θ=2,∴C的直角坐标方程为x2+y2+y2=2,即=1.(2)联立,得7x2+12x+4=0,△=144﹣4×7×4=32>0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,∴|AB|==.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)由|x﹣1|>|2x﹣4|,得:x2﹣2x+1>4x2﹣16x+16,解得:<x<3,故不等式的解集是(,3);(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,即存在x∈R,使得2|x|+|2x﹣4|<ax+1成立,当x<0时,﹣4x+4<ax+1即a<﹣4在(﹣∞,0)上有解,故a<﹣4,当x=0时,4<1不成立,当0<x≤2时,4<ax+1即a>在(0,2]上有解,故a>,当x>2时,4x﹣4<ax+1即a>4﹣在(2,+∞)上有解,故a>,综上,a>或a<﹣4.。

山东省潍坊市高二下学期期末考试试题(含解析)

山东省潍坊市高二下学期期末考试试题(含解析)
7。孟德斯鸠认为:雅典民主制能够比较有效地防止个人独裁,但是,无法防止野心政客利用群众情绪,进行党派斗争,往往城邦政府是寡头政治或专制的。孟德斯鸠重在强调古代雅典
A. 内部斗争激烈
B。 直接民主缺乏理性
C。 政党政治盛行
D。 政府实行寡头政治
【答案】B
【解析】
【详解】依据材料结合所学可知,古代雅典民主政治是颇为原始的直接民主,其优点在于能够最大限度地激发人们参政的热情,使决策体现多数人的意愿。但群体决策也不可避免地存在某些弊端,在决策时难以避免自身条件、生活经历、价值观念以及当时情绪的影响,以至雅典人有时会在不自觉中受到误导,造成决策失误或被人利用。这说明古代雅典直接民主缺乏理性,因此B选项正确。A选项错误,材料中孟德斯鸠强调的是直接民主制的缺陷,并非重在说明雅典内部斗争激烈;C选项错误,党派斗争不等于政党政治,近代政党政治兴起于英国;D选项错误,古代雅典实行民主政治,不是寡头政治.故正确答案为B选项。
5.《马可波罗行记》记载:所有通至各省之要道上,每隔二十五迈耳,或三十迈耳,必有一驿.无人居之地,全无道路可通,此类驿站,亦必设立。……全国驿站计之,备马有三十万匹,专门钦使之用。”这说明,元朝设立驿站旨在
A。 显示元帝国的强盛
B. 推动东西方文化融合
C。 强化对地方的控制
D。 促进地区之间的交流
【答案】C
12.1871年德意志帝国宪法规定“联邦议会由联邦成员代表组成,其票权分配如下,普鲁士17票、巴伐利亚6票、萨克森4票、符腾堡4票、巴登3票、黑森3票、梅格棱堡-许威林2票、布伦瑞克2票.”这一规定
A。 使皇帝能够凌驾于联邦设会之上
B. 用法律的形式巩固了战争成果
C. 确保了联邦成员享有独立立法权
D. 适应了德意志经济发展的需要

2018-2019学年湖北省黄冈中学高二(下)期末数学试卷(理科)

2018-2019学年湖北省黄冈中学高二(下)期末数学试卷(理科)

2018-2019学年湖北省黄冈中学高二(下)期末数学试卷(理科)1.(单选题,5分)已知x→0f(1+x)−f(1)x=−2,则f′(1)的值是()A.1B.-1C.2D.-22.(单选题,5分)二项式(a+b)n展开式中,奇数项系数和是32,则n的值是()A.4B.5C.6D.73.(单选题,5分)一袋中有大小相同的2个白球,4个黑球,从中任意取出2个球,取到颜色不同的球的概率是()A. 29B. 49C. 415D. 8154.(单选题,5分)一批产品抽50件测试,其净重介于13克与19克之间,将测试结果按如下方式分成六组:第一组,净重大于等于13克且小于14克;第二组,净重大于等于14克且小于15克;…第六组,净重大于等于18克且小于19克.如图是按上述分组方法得到的频率分布直方图.设净重小于17克的产品数占抽取数的百分比为x,净重大于等于15克且小于17克的产品数为y,则从频率分布直方图中可分析出x和y分别为()A.0.9,35B.0.9,45C.0.1,35D.0.1,455.(单选题,5分)已知(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值是()A.1B.16C.41D.816.(单选题,5分)从6名团员中选出4人分别担任书记、副书记、宣传委员、组织委员四项职务,若其中甲、乙不能担任书记,则不同的任职方案种数是()A.280B.240C.180D.967.(单选题,5分)已知a n是多项式(1+x)2+(1+x)3+…+(1+x)n(n≥2,n∈N*)的展开式中含x2项的系数,则n→∞a nn3的值是()A.0B. 16C. 13D. 128.(单选题,5分)当点P在曲线y=sinx(x∈(0,π))上移动时,曲线在P处切线的倾斜角的取值范围是()A. [0,π2)B. (−π4,π4)C. (π4,3π4)D. [0,π4)∪ (3π4,π)9.(单选题,5分)暑期学校组织学生参加社会实践活动,语文科目、数学科目、外语科目小组个数分别占总数的12、13、16,甲、乙、丙三同学独立地参加任意一个小组的活动,则他们选择的科目互不相同的概率是()A. 136B. 112C. 16D. 353610.(单选题,5分)经过点(3,0)的直线l与抛物线y=x2交于不同两点,抛物线在这两点处的切线互相垂直,则直线l的斜率是()A. 112B. 16C. −112D. −1611.(填空题,5分)已知随机变量ξ~B(n,p),若Eξ=3,Dξ=2,则n的值是___12.(填空题,5分)已知limn→∞(2n-1)a n=1,则limn→∞na n=___ .13.(填空题,5分)设随机变量ξ~N(1,1),P(ξ>2)=p,则P(0<ξ<1)的值是___14.(填空题,5分)4名男生和2名女生共6名志愿者和他们帮助的2位老人站成一排合影,摄影师要求两位老人相邻地站,两名女生不相邻地站,则不同的站法种数是___15.(填空题,5分)已知函数f(x)={1x+1−3x3+1(x≠−1)b(x=−1)是(-∞,+∞)上的连续函数,则b的值是___16.(问答题,12分)已知二项式(x22√x )n(n∈N*)展开式中,前三项的二项式系数和是56,求:(Ⅰ)n的值;(Ⅱ)展开式中的常数项.17.(问答题,12分)某工厂生产两批产品,第一批的10件产品中优等品有4件;第二批的5件产品中优等品有3件,现采用分层抽样方法从两批产品中共抽取3件进行质量检验.(I)求从两批产品各抽取的件数;(Ⅱ)记ξ表示抽取的3件产品中非优等品的件数,求ξ的分布列及数学期望.18.(问答题,12分)已知数列{P n}满足:(1)P1=23,P2=79;(2)P n+2=23P n+1+13P n.(Ⅰ)设b n=P n+1-P n,证明数列{b n}是等比数列;(Ⅱ)求n→∞P n.19.(问答题,12分)已知函数f(x)=x2+1,其图象在点(0,-1)处的切线为l.x−1(I)求l的方程;(II)求与l平行的切线的方程.上位于第一象限内的一动点,20.(问答题,13分)如图,设点A(x0,y0)为抛物线y2=x2点B(0,y1)在y轴正半轴上,且|OA|=|OB|,直线AB交x轴于点P(x2,0).(Ⅰ)试用x0表示y1;(Ⅱ)试用x0表示x2;(Ⅲ)当点A沿抛物线无限趋近于原点O时,求点P的极限坐标.21.(问答题,14分)已知数列{a n}满足:(1)a1=3;(2)a n+1=2n2-n(3a n-1)+a n2+2(n∈N*).(Ⅰ)求a2、a3、a4;(Ⅱ)猜测数列{a n}的通项,并证明你的结论;(Ⅲ)试比较a n与2n的大小.。

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。

2018-2019学年四川省乐山市高二(下)期末数学试卷(理科)(含答案)

2018-2019学年四川省乐山市高二(下)期末数学试卷(理科)(含答案)

高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A. 随机抽样B. 分层抽样C. 系统抽样D. 以上都是2.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A. 4+8iB. 8+2iC. 4+iD. 2+4i3.从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A. 18B. 24C. 30D. 364.设i为虚数单位,则(x-i)6的展开式中含x4的项为()A. -15x4B. 15x4C. -20ix4D. 20ix45.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.6.曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为()A. (1,3)B. (-1,3)C. (1,3)和(-1,3)D. (1,-3)7.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x=0,则一开始输入的x的值为()A.B.C.D.8.p设η=2ξ+3,则E(η)的值为()A. 4B.C.D. 19.在区间[0,1]上任取两个实数a,b,则函数f(x)=x2+ax+b2无零点的概率为()A. B. C. D.10.根据如下样本数据,得到回归方程=bx+a,则()x345678y4.02.5-0.50.5-2.0-3.0A. a>0,b>0B. a>0,b<0C. a<0,b>0D. a<0,b<011.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A. (-∞,]B. (-∞,3]C. [,+∞)D. [3,+∞)12.已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)二、填空题(本大题共4小题,共20.0分)13.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为______.14.已知复数z满足(1+2i)z=4+3i,则|z|=______.15.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为______.16.若曲线C1:y=ax2(a>0)与曲线C2:y=e x在(0,+∞)上存在公共点,则a的取值范围为______.三、解答题(本大题共6小题,共70.0分)17.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R)(1)若函数f(x)的导函数为偶函数,求a的值;(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围18.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.数学888311792108100112物理949110896104101106(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.参考公式:方差公式:,其中为样本平均数==,=-19.已知函数,.(1)求f(x)在区间(-∞,1)上的极小值和极大值点;(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.20.如图,在矩形ABCD中,AB=4,AD=2,E是CD的中点,以AE为折痕将△DAE向上折起,D变为D',且平面D'AE⊥平面ABCE.(Ⅰ)求证:AD'⊥EB;(Ⅱ)求二面角A-BD'-E的大小.21.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图.(Ⅰ)这50个路段为中度拥堵的有多少个?(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.22.已知函数f(x)=(ax-1)e x(x>0,a∈R)(e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)当a=1时,f(x)>kx-2恒成立,求整数k的最大值.答案和解析1.【答案】C【解析】解:∵学生人数比较多,∵把每个班级学生从1到最后一号编排,要求每班编号是5的倍数的同学留下进行作业检查,这样选出的样本是采用系统抽样的方法,故选:C.学生人数比较多,把每个班级学生从1到最后一号编排,要求每班学号是5的倍数的同学留下进行作业检查,这样选出的样本是具有相同的间隔的样本,是采用系统抽样的方法.本题考查系统抽样,当总体容量N较大时,采用系统抽样,将总体分成均衡的若干部分即将总体分段,分段的间隔要求相等,系统抽样又称等距抽样.2.【答案】D【解析】解:因为复数6+5i,-2+3i对应的点分别为A(6,5),B(-2,3).且C为线段AB的中点,所以C(2,4).则点C对应的复数是2+4i.故选:D.写出复数所对应点的坐标,有中点坐标公式求出C的坐标,则答案可求.本题考查了中点坐标公式,考查了复数的代数表示法及其几何意义,是基础题.3.【答案】C【解析】解:根据题意,分2种情况讨论:①,选出的3人为2男1女,有C42C31=18种选法;②,选出的3人为1男2女,有C41C32=12种选法;则男女生都有的选法有18+12=30种;故选:C.根据题意,分2种情况讨论:①,选出的3人为2男1女,②,选出的3人为1男2女,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理,属于基础题.4.【答案】A【解析】解:(x-i)6的展开式的通项公式为T r+1=•x6-r•(-i)r,令6-r=4,求得r=2,故展开式中含x4的项为•(-i)2•x4=-15x4,故选:A.在二项式展开式的通项公式中,令x的幂指数等于4,求得r的值,可得展开式中含x4的项.本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.5.【答案】B【解析】【分析】这是一个古典概率模型,求出所有的基本事件数N与事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”包含的基本事件数n,再由公式求出概率得到答案本题是一个古典概率模型问题,解题的关键是理解事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”,由列举法计算出事件所包含的基本事件数,判断出概率模型,理解求解公式是本题的重点,正确求出事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件数是本题的难点.【解答】解:抛掷两颗骰子所出现的不同结果数是6×6=36事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件有(1,4),(2,3),(3,2),(4,1)共四种故事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”的概率是=,故选B.6.【答案】C【解析】解:设P的坐标为(m,n),则n=m3-m+3,f(x)=x3-x+3的导数为f′(x)=3x2-1,在点P处的切线斜率为3m2-1,由切线平行于直线y=2x-1,可得3m2-1=2,解得m=±1,即有P(1,3)或(-1,3),故选:C.设P的坐标为(m,n),则n=m3-m+3,求出函数的导数,求得切线的斜率,由两直线平行的条件:斜率相等,可得m的方程,求得m的值,即可得到所求P的坐标.本题考查导数的运用:求切线的斜率,考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,考查两直线平行的条件:斜率相等,属于基础题.7.【答案】C【解析】【分析】求出对应的函数关系,由题输出的结果的值为0,由此关系建立方程求出自变量的值即可.解答本题,关键是根据所给的框图,得出函数关系,然后通过解方程求得输入的值.本题是算法框图考试常见的题型,其作题步骤是识图得出函数关系,由此函数关系解题,得出答案.【解答】解:第一次输入x=x,i=1第二次输入x=2x-1,i=2,第三次输入x=2(2x-1)-1=4x-3,i=3,第四次输入x=2(4x-3)-1=8x-7,i=4>3,第五次输入x=2(8x-7)-1=16x-15,i=5>4,输出16x-15=0,解得:x=,故选:C.8.【答案】B【解析】解:由题意可知E(ξ)=-1×+0×+1×=-.∵η=2ξ+3,所以E(η)=E(2ξ+3)=2E(ξ)+3=+3=.故选:B.求出ξ的期望,然后利用η=2ξ+3,求解E(η)即可.本题考查有一定关系的两个变量之间的期望之间的关系,本题也可以这样来解,根据两个变量之间的关系写出η的分布列,再由分布列求出期望.9.【答案】B【解析】解:∵a,b是区间[0,1]上的两个数,∴a,b对应区域面积为1×1=1若函数f(x)=x2+ax+b2无零点,则△=a2-4b2<0,对应的区域为直线a-2b=0的上方,面积为1-=,则根据几何概型的概率公式可得所求的概率为.故选:B.函数f(x)=x2+ax+b2无零点的条件,得到a,b满足的条件,利用几何概型的概率公式求出对应的面积即可得到结论.本题主要考查几何概型的概率计算,根据二次函数无零点的条件求出a,b满足的条件是解决本题的关键.10.【答案】B【解析】解:由题意可知:回归方程经过的样本数据对应的点附近,是减函数,所以b <0,且回归方程经过(3,4)与(4,2.5)附近,所以a>0.故选:B.通过样本数据表,容易判断回归方程中,b、a的符号.本题考查回归方程的应用,基本知识的考查.11.【答案】C【解析】解:∵函数f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3,若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,∴t≥(x+)在[1,4]上恒成立,令y=(x+),由对勾函数的图象和性质可得:函数在[1,4]为增函数,当x=4时,函数取最大值,∴t≥,即实数t的取值范围是[,+∞),由题意可得f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,由二次函数的性质可得不等式组的解集.本题主要考查函数的单调性和导数符号间的关系,二次函数的性质,属于中档题.12.【答案】B【解析】【分析】本题主要考查函数的零点以及数形结合方法,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.先求导函数,函数f(x)=x(ln x-ax)有两个极值点,等价于f′(x)=ln x-2ax+1有两个零点,等价于函数y=ln x与y=2ax-1的图象由两个交点,在同一个坐标系中作出它们的图象.由图可求得实数a的取值范围.【解答】解:函数f(x)=x(ln x-ax),则f′(x)=ln x-ax+x(-a)=ln x-2ax+1,令f′(x)=ln x-2ax+1=0得ln x=2ax-1,函数f(x)=x(ln x-ax)有两个极值点,等价于f′(x)=ln x-2ax+1有两个零点,等价于函数y=ln x与y=2ax-1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax-1与y=ln x的图象相切,由图可知,当0<a<时,y=ln x与y=2ax-1的图象有两个交点.则实数a的取值范围是(0,).简解:函数f(x)=x(ln x-ax),则f′(x)=ln x-ax+x(-a)=ln x-2ax+1,令f′(x)=ln x-2ax+1=0得ln x=2ax-1,可得2a=有两个不同的解,设g(x)=,则g′(x)=,当x>1时,g(x)递减,0<x<1时,g(x)递增,可得g(1)取得极大值1,作出y=g(x)的图象,可得0<2a<1,即0<a<,13.【答案】【解析】解:根据题意,简单随机抽样中每个个体被抽到的概率是相等的,若在含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率P==;故答案为:.根据题意,由简单随机抽样的性质以及古典概型的计算公式可得个体m被抽到的概率P=,化简即可得答案.本题考查古典概型的计算,涉及随机抽样的性质,属于基础题.14.【答案】【解析】解:∵(1+2i)z=4+3i,∴z=,则|z|=||=.故答案为:.把已知等式变形,再由商的模等于模的商求解.本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.15.【答案】【解析】解:将三棱锥D1-EDF选择△D1ED为底面,F为顶点,则=,其==,F到底面D1ED的距离等于棱长1,所以=××1=S故答案为:将三棱锥D1-EDF选择△D1ED为底面,F为顶点,进行等体积转化V D 1-EDF=V F -D1ED后体积易求.本题考查了三棱柱体积的计算,等体积转化法是常常需要优先考虑的策略.16.【答案】[,+∞)【解析】解:根据题意,函数y=ax2(a>0)与函数y=e x在(0,+∞)上有公共点,令ax2=e x得:,设则,由f'(x)=0得:x=2,当x>2时,f'(x)>0,函数在区间(2,+∞)上是增函数,所以当x=2时,函数在(0,+∞)上有最小值,所以.故答案为:.由题意可得,ax2=e x有解,运用参数分离,再令,求出导数,求得单调区间、极值和最值,即可得到所求范围.本题考查导数的运用:求单调区间和极值、最值,考查函数方程的转化思想的运用,属于中档题.17.【答案】解:(1):f(x)=3x2+2(1-a)x-a(a+2),由题因为f(x)为偶函数,∴2(1-a)=0,即a=1.(2)∵曲线y=f(x)存在两条垂直于y轴的切线,∴关于x的方程f′(x)=3x2+2(1-a)x-a(a+2)有两个不相等的实数根,∴△=4(1-a)2+12a(a+2)>0,即4a2+4a+1>0,∴,∴a的取值范围为()∪().【解析】(1)求出导函数,利用函数的奇偶性求出a即可.(2)求出函数的导数,利用曲线y=f(x)存在两条垂直于y轴的切线,通过△>0求解即可.本题考查函数的导数的应用,切线方程的求法,考查计算能力.18.【答案】解:(1)根据题意,由表中的数据可得:=100+=100,=100+=100,则有,从而,故物理成绩更稳定;(2)由于x与y之间具有线性相关关系,则==0.5,则=100-0.5×100=50,则线性回归方程为=0.5x+50,当y=115时,x=130;建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高.【解析】(1)根据题意,由数据计算数学、物理的平均数、方差,进而分析可得答案;(2)根据题意,求出线性回归方程,据此分析可得答案.本题考查线性回归方程的计算,涉及数据的平均数、方差的计算,属于基础题.19.【答案】解:(1)当x<1时,f′(x)=-3x2+2x=-x(3x-2),令f′(x)=0,得x=0或x=.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,0) 0(0,)(,1)f′(x)- 0+ 0-f(x)极小值极大值∴当x=0时,函数f(x)取得极小值f(0)=0,函数f(x)取得极大值点为x=.(2)①当-1≤x<1时,f(x)=-x3+x2,由(1)知,函数f(x)在[-1,0]和[,1)上单调递减,在[0,]上单调递增.∵,∴f(x)在[-1,1)上的最大值为2.②当1≤x≤e时,f(x)=a ln x.当a≤0时,f(x)在[1,e],上单调递增,∴f(x)max=a.综上所述,当a≥2时,f(x)在[-1,e]上的最大值为a;当a<2时,f(x)在[-1,e]上的最大值为2.【解析】(1)当x<1时,求导函数,确定函数的单调性,可得f(x)在区间(-∞,1)上的极小值和极大值点;(2)分类讨论,确定函数的单调性,即可得到f(x)在[-1,e](e为自然对数的底数)上的最大值.本题考查导数知识的应用,考查函数的单调性与极值、最值,考查分类讨论的数学思想,属于中档题.20.【答案】证明:(Ⅰ)∵,AB=4,∴AB2=AE2+BE2,∴AE⊥EB,取AE的中点M,连结MD',则AD=D'E=2⇒MD'⊥AE,∵平面D'AE⊥平面ABCE,∴MD'⊥平面ABCE,∴MD'⊥BE,从而EB⊥平面AD'E,∴AD'⊥EB;解:(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,如图建立空间直角坐标系,则A(4,2,0)、C(0,0,0)、B(0,2,0)、,E(2,0,0),从而=(4,0,0),,.设为平面ABD'的法向量,则,取z=1,得设为平面BD'E的法向量,则,取x=1,得因此,,有,即平面ABD'⊥平面BD'E,故二面角A-BD'-E的大小为90°.【解析】(Ⅰ)推导出AE⊥EB,取AE的中点M,连结MD',则MD'⊥BE,从而EB⊥平面AD'E,由此能证明AD'⊥EB;(Ⅱ)以C为原点,CE为x轴,CB为y轴,过C作平面ABCE的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD'-E的大小.本题考查线线垂直的证明,考查二面角的求法,考查空间中线线、线面、面面的性质等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.21.【答案】解:(Ⅰ)(0.2+0.16)×1×50=18,这50路段为中度拥堵的有18个.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B至少一个路段严重拥堵”,则P=(1-P(A))3=0.729.P(B)=1-P()=0.271,所以三个路段至少有一个是严重拥堵的概率是0.271.(III)由频率分布直方图可得:分布列如下表:X30364260P0.10.440.360.1E(X)=30×0.1+36×0.44+42×0.36+60×0.1=39.96.此人经过该路段所用时间的数学期望是39.96分钟.【解析】(Ⅰ)利用(0.2+0.16)×1×50即可得出这50路段为中度拥堵的个数.(Ⅱ)设事件A“一个路段严重拥堵”,则P(A)=0.1,事件B至少一个路段严重拥堵”,则P=(1-P(A))3.P(B)=1-P()=0.271,可得三个路段至少有一个是严重拥堵的概率.(III)利用频率分布直方图即可得出分布列,进而得出数学期望.本题考查了频率分布直方图的应用、互斥事件的概率计算公式、数学期望,考查了推理能力与计算能力,属于中档题.22.【答案】解:(1)f′(x)=[ax-(1-a)]e x(x>0,a∈R),当a≥1时,f′(x)≥0,f(x)在(0,+∞)上递增;当0<a<1时,f(x)在(0,)上递减,在(,+∞)上递增;当a≤0时,f′(x)≤0,f(x)在(0,+∞)上递减.(2)依题意得(x-1)e x>kx-2对于x>0恒成立,方法一:令g(x)=(x-1)e x-kx+2(x≥0),则g′(x)=xe x-k(x≥0),当k≤0时,f(x)在(0,+∞)上递增,且g(0)=1>0,符合题意;当k>0时,易知x≥0时,g′(x)单调递增.则存在x0>0,使得,且g(x)在(0,x0]上递减,在[x0,+∞)上递增,∴,∴,,由得,0<k<2,又k∈Z,∴整数k的最大值为1.另一方面,k=1时,,g′(1)=e-1>0∴x0∈(,1),∈(1,2),∴k=1时成立.方法二:恒成立,令,则,令t(x)=(x2-x+1)e x-2(x>0),则t′(x)=x(x+1)e x>0,∴t(x)在(0,+∞)上递增,又t(1)>0,,∴存在x0∈(,1),使得,且h(x)在在(0,x0]上递减,在[x0,+∞)上递增,∴,又x0∈(,1),∴∈(1,),∴h(x0)∈(,2),∴k<2,又k∈Z,∴整数k的最大值为1.【解析】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,函数恒成立问题,是一道综合题.(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)方法一:令g(x)=(x-1)e x-kx+2(x≥0),通过讨论k的范围,求出g(x)的最小值,从而确定k的最大值;方法二:分离参数k,得到恒成立,令,根据函数的单调性求出k的最大值即可.。

人教版数学高三期末测试精选(含答案)3

人教版数学高三期末测试精选(含答案)3

【答案】A
15.设 Sn 为等差数列an 的前 n 项和,若 3S3 S2 S4 , a1 2 ,则 a5
A. 12
B. 10
C.10
D.12
【来源】2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)
【答案】B
16.若圆的半径为 4,a、b、c 为圆的内接三角形的三边,若 abc=16 2 ,则三角形的
b
c
a
A.都大于 2
B.都小于 2
C.至少有一个不大于 2
D.至少有一个不小于 2
【来源】2015-2016 湖南常德石门一中高二下第一次月考文科数学卷(带解析)
【答案】D
5. ABC 中, A 、 B 、 C 的对边的长分别为 a 、 b 、 c ,给出下列四个结论: ①以 1 、 1 、 1 为边长的三角形一定存在;
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中, a 2 3 0°或150
B. 60 或120
A.等腰直角三角形 B.直角三角形
C.等腰三角形
D.等边三角形
【来源】2013-2014 学年河南省郑州一中高二上学期期中考试文科数学试卷(带解析)
【答案】C
21.在△ABC 中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cosC 等于 ( )
2
A.
3
B. 2 3
【答案】D
10.在锐角 ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,a b cosC 3 c sin B , 3

2018-2019学年山东省青岛二中高二(下)期中数学试卷

2018-2019学年山东省青岛二中高二(下)期中数学试卷

2018-2019学年山东省青岛二中高二(下)期中数学试卷试题数:23,总分:451.(单选题,3分)已知集合A={x|x>1},集合B={x|x2<4},则A∩B=()A.{x|x>-2}B.{x|1<x<2}C.{x|1≤x<2}D.R2.(单选题,3分)在复平面内,复数z= 1+2ii对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(单选题,3分)命题“ ∃x0∈N∗,使得lnx0(x0+1)<1”的否定是()A.∀x∈N*,都有lnx(x+1)<1B.∀x∉N*,都有lnx(x+1)≥1C.∃x∈N*,都有lnx(x+1)≥1D.∀x∈N*,都有lnx(x+1)≥14.(单选题,3分)若函数f(x)= {2x,x<1−log2x,x≥1,则函数f(x)的值域是()A.(-∞,2)B.(-∞,2]C.[0,+∞)D.(-∞,0)∪(0,2)5.(单选题,3分)如果随机变量X~N(4,1),则P(X≤2)等于()(注:P(μ-2σ<X≤μ+2σ)=0.9544)A.0.210B.0.0228C.0.0456D.0.021 56.(单选题,3分)二中“时光胶囊”社团计划做3种与海军节有关的精美卡片,分别是“浪花白”、“辽宁号”、“深潜蓝”,将在每袋礼品中随机装入一张卡片,若只有集齐3种卡片才可获奖,则购买该礼品4袋,获奖的概率为()A. 316B. 38C. 49D. 897.(单选题,3分)函数f(x)=ln(|x|-1)+x的大致图象是()A.B.C.D.8.(单选题,3分)满足函数f(x)=ln(mx+3)在(-∞,1]上单调递减的一个充分不必要条件是()A.-4<m<-2B.-3<m<0C.-4<m<0D.-3<m<-19.(多选题,3分)若a>0,b>0,a+b=2,则对一切满足条件的a,b恒成立的有()A.ab≤1B. √a+√b≤√2C.a2+b2≥2D. 1a +1b≤1E. 2a + 1b≥210.(多选题,3分)给出下列命题,其中正确的命题有()A.若a∈R,则(a+1)i是纯虚数B.随机变量X~N(3,22),若X=2η+3,则D(η)=1C.公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有105种D.回归方程为ŷ=0.85x−85.71中,变量y与x具有正的线性相关关系E.P(A)=0.5,P(B)=0.3,P(AB)=0.2,则P(A|B)=0.411.(填空题,3分)已知函数f(x)的定义域为[2,4],则函数y=f(2x)lnx的定义域是___ .12.(填空题,3分)已知(1-2x)7=a0+a1x+a2x2+…+a7x7,那么a1+a2+…+a7=___ .13.(填空题,3分)若正数x,y满足x+4y-2xy=0,则x+y的最小值为___ .14.(填空题,3分)若随机变量X~N(2,32),且P(X≤1)=P(X≥a),则(x+a)2(ax-√x)5展开式中x3项的系数是___ .15.(填空题,3分)设m∈R,若函数f(x)=|x3-3x+2m|在[0,√3]上的最大值与最小值之差为2,则实数m的取值范围是___ .16.(问答题,0分)甲、乙两名同学参加投篮比赛,甲投中的概率为0.8,乙投中的概率为0.9,求:(1)2人都投中的概率;(2)2人至少有1人投中的概率?17.(问答题,0分)已知f(x)=4x-1-2x+5,x∈[0,2].(1)求f(x)的值域;(2)若f(x)<2m2-am+7对任意m∈(0,2]都成立,求a的取值范围.18.(问答题,0分)4月份的二中迎来了国内外的众多宾客,其中很多人喜欢询问MT团队模式,为了了解“询问MT团队模式”是否与性别有关,在4月期间,随机抽取了80人,得到如下所示的列联表:联表补充完整,并据此资料能否在犯错误的概率不超过0.05前提下,认为关心“MT团队”与性别有关系?(Ⅱ)若以抽取样本的频率为概率,从4月来宾中随机抽取4人赠送精美纪念品,记这4人中关心“MT团队”人数为X,求X的分布列和数学期望.附:K2=n(ad−bc)2(a+b)(a+d)(a+c)(b+d)19.(问答题,0分)青岛二中学生民议会在周五下午高峰时段,对公交321路甲站和375线乙站各随机抽取了50位乘客,统计其乘车等待时间(指乘客从等车到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按[5,10),[10,15),[15,20),…,[35,40]分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(1)此时段,从甲站的乘客中随机抽取1人,记为事件M ;从乙站的乘客中随机抽取1人,记为事件N .若用频率估计概率,求“两人乘车等待时间都小于20分钟”的概率;(2)此时段,从乙站[30,40]的乘客中随机抽取3人(不重复抽取),抽得在[35,40]的人数为X ,求随机变量X 的分布列与数学期望.20.(问答题,0分)某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了6次试验,得到数据如下: 零件数x/个102030405060加工时间Y/min64 70 77 82 90 97 x 的回归直线方程;(2)根据(Ⅰ)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?附:相关性检验的临界值表n-2 小概率0.050.01 3 0.878 0.959 4 0.811 0.917 5 0.754 0.874 60.7070.834∑(x i −x )(y i −y )n i=1√∑(x i −x )∑(y i −y )i=1i=1∑x i y i −nxyn i=1√(∑x i −nx 2i=1)√(∑y i −ny 2i=1)̂∑(x i −x )(y i −y )ni=1∑(x −x )2n ∑x i y i −nxyni=1∑x i 2−nx2n i=1 y ̂=a ̂+b̂x 参考数据: √1750≈42.0 ; √758≈27.521.(问答题,0分)已知函数f(x)=13ax3−12x2−x+b,a∈R.(1)讨论函数f(x)的单调性;(2)当a=2时,函数f(x)在区间[0,2]的最小值为f(x)min,试比较f(x)min与b2−lnb−56的大小.22.(填空题,0分)已知z,w∈C,|z+w|=1,|z2+w2|=4,则|zw|的最大值为___ .23.(填空题,0分)一种单人纸牌游戏的规则如下:将七对不相同的纸牌放入一个书包中,游戏者每次随机地从书包中取牌并放回,不过当取到成对的牌时,就将成对的牌放到一边.当游戏者每次总取三张牌(所剩的若不够三张牌就全部取完)时,若取到三张牌中两两互不成对,游戏就结束;否则,取牌继续进行,直到书包中没有纸牌为止.则书包空的概率为___ .2018-2019学年山东省青岛二中高二(下)期中数学试卷参考答案与试题解析试题数:23,总分:451.(单选题,3分)已知集合A={x|x>1},集合B={x|x2<4},则A∩B=()A.{x|x>-2}B.{x|1<x<2}C.{x|1≤x<2}D.R【正确答案】:B【解析】:先求出集合A,集合B,由此能求出A∩B.【解答】:解:∵集合A={x|x>1},集合B={x|x2<4}={x|-2<x<2},∴A∩B={x|1<x<2}.故选:B.【点评】:本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.(单选题,3分)在复平面内,复数z= 1+2ii对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【正确答案】:D【解析】:根据1=-i2将复数1+2ii进行化简成复数的标准形式,得到复数所对应的点,从而得到该点所在的位置.【解答】:解:1+2ii = −i2+2ii=-i+2所对应的点为(2,-1),该点位于第四象限故选:D.【点评】:本题主要考查了复数代数形式的运算,复数和复平面内的点的对应关系,属于基础题.3.(单选题,3分)命题“ ∃x0∈N∗,使得lnx0(x0+1)<1”的否定是()A.∀x∈N*,都有lnx(x+1)<1B.∀x∉N*,都有lnx(x+1)≥1C.∃x∈N*,都有lnx(x+1)≥1D.∀x∈N*,都有lnx(x+1)≥1【正确答案】:D【解析】:利用特称命题的否定是全称命题写出结果即可.【解答】:解:因为特称命题的否定是全称命题,所以,命题“ ∃x0∈N∗,使得lnx0(x0+1)<1”的否定是:∀x∈N*,都有lnx(x+1)≥1;故选:D.【点评】:本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.4.(单选题,3分)若函数f(x)= {2x,x<1−log2x,x≥1,则函数f(x)的值域是()A.(-∞,2)B.(-∞,2]C.[0,+∞)D.(-∞,0)∪(0,2)【正确答案】:A【解析】:分别结合指数函数,对数函数的性质求出函数的取值范围即可.【解答】:解:当x<1时,0<2x<2,当x≥1时,f(x)=-log2x≤-log21=0,综上f(x)<2,即函数的值域为(-∞,2),故选:A.【点评】:本题主要考查函数值域的计算,结合分段函数的解析式分别求出对应范围是解决本题的关键.5.(单选题,3分)如果随机变量X ~N (4,1),则P (X≤2)等于( ) (注:P (μ-2σ<X≤μ+2σ)=0.9544) A.0.210 B.0.0228 C.0.0456 D.0.021 5 【正确答案】:B【解析】:根据正态分布列的对称性可得:P (X≤2)= 12 [1-P (2<X≤6)],进而得出.【解答】:解:P (X≤2)= 12 [1-P (2<X≤6)]= 12 [1-P (4-2<X≤4+2)]= 12× (1-0.954 4)=0.022 8. 故选:B .【点评】:本题考查了正态分布列的性质,考查了推理能力与计算能力,属于基础题. 6.(单选题,3分)二中“时光胶囊”社团计划做3种与海军节有关的精美卡片,分别是“浪花白”、“辽宁号”、“深潜蓝”,将在每袋礼品中随机装入一张卡片,若只有集齐3种卡片才可获奖,则购买该礼品4袋,获奖的概率为( ) A. 316 B. 38 C. 49 D. 89【正确答案】:C【解析】:4个礼品袋中,所有可能情况结果为34,获奖时至多有两张卡片相同,且3种卡片都有,由此再利用古典概型的概率公式即可求出结果.【解答】:解:将3种不同的精美卡片随机放入4个礼品袋中,根据分布乘法计数原理可知共有34=81种不同放发,4个礼品袋中3种不同的卡片都有的放法共有3× C 42× A 22 =36种, 根据古典概型的概率公式得,能获奖的概率为 3681 = 49 ,故选:C.【点评】:本题主要考查了古典概型的概率公式,是中档题.7.(单选题,3分)函数f(x)=ln(|x|-1)+x的大致图象是()A.B.C.D.【正确答案】:A【解析】:化简f(x),利用导数判断f(x)的单调性即可得出正确答案.【解答】:解:f(x)的定义域为{x|x<-1或x>1}.f(x)= {ln(x−1)+x,x>1ln(−x−1)+x,x<−1,∴f′(x)= {1x−1+1,x>11x+1+1,x<−1,∴当x>1时,f′(x)>0,当x<-2时,f′(x)>0,当-2<x<-1时,f′(x)<0,∴f(x)在(-∞,-2)上单调递增,在(-2,-1)上单调递减,在(1,+∞)上单调递增.故选:A.【点评】:本题考查了函数图象的判断,函数单调性的判断,属于中档题.8.(单选题,3分)满足函数f(x)=ln(mx+3)在(-∞,1]上单调递减的一个充分不必要条件是()A.-4<m<-2B.-3<m<0C.-4<m<0D.-3<m<-1【正确答案】:D【解析】:根据复合函数的单调性,求出m的取值范围,结合充分不必要条件的定义进行求解即可.【解答】:解:若f(x)=ln(mx+3)在(-∞,1]上单调递减,则满足m<0且m+3>0,即m<0且m>-3,则-3<m<0,即f(x)在(-∞,1]上单调递减的一个充分不必要条件是-3<m<-1,故选:D.【点评】:本题主要考查充分条件和必要条件的判断,结合复合函数单调性之间的关系是解决本题的关键.9.(多选题,3分)若a>0,b>0,a+b=2,则对一切满足条件的a,b恒成立的有()A.ab≤1B. √a+√b≤√2C.a2+b2≥2D. 1a +1b≤1E. 2a + 1b≥2【正确答案】:ACE【解析】:已知a>0,b>0,a+b=2,根据基本不等式和柯西不等式,逐一判断即可.【解答】:解:若a>0,b>0,a+b=2,A,ab≤ (a+b2)2=1,当且仅当a=b时,取等号,故成立;B,由基本不等式a+b2≤√a2+b22,当且仅当a=b取等号,得√a+√b2≤√a+b2=1,√a+√b≤2,故不成立;C,由基本不等式a+b2≤√a2+b22,当且仅当a=b取等号,√a2+b2≥√22(a+b)=√2,故a2+b2≥2成立;D,不成立,比如a= 12,b=32,1a+1b=2+23≥1;E,利用柯西不等式(2a +1b)(a+b)≥(√2+1)2=3+2√2,故2a+1b≥3+2√22=32+√2>2,故成立.故选:ACE.【点评】:本题考查了基本不等式,柯西不等式的应用,考查了运算能力,中档题.10.(多选题,3分)给出下列命题,其中正确的命题有()A.若a∈R,则(a+1)i是纯虚数B.随机变量X~N(3,22),若X=2η+3,则D(η)=1C.公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有105种D.回归方程为ŷ=0.85x−85.71中,变量y与x具有正的线性相关关系E.P(A)=0.5,P(B)=0.3,P(AB)=0.2,则P(A|B)=0.4【正确答案】:BCD【解析】:A:举反例即可说明不成立;B:根据定义求解结论即可说明其是否成立;C:根据题意,分析可得每个乘客有5种下车的方式,由分步计数原理计算可得答案.D,根据对应的系数即可判断;E:直接代入条件概率计算公式即可.【解答】:解:A:若a∈R,当a=-1时,(a+1)i是实数;故A错;B:随机变量X~N(3,22),∴E(X)=3,D(X)=4;若X=2η+3⇒η= X−32,则D(η)=D( X 2 - 32 )= (12)2 D (X )= 14×4=1;B 对;C :根据题意,公共汽车沿途5个车站,则每个乘客有5种下车的方式,则10位乘客共有510种下车的可能方式;故C 对;D :因为 y ̂=0.85x −85.71 中,0.85>0,故量y 与x 具有正的线性相关关系,即D 对;E :因为P (A )=0.5,P (B )=0.3,P (AB )=0.2,则P (A|B )= P (AB )P (B ) = 0.20.3 = 23 ,故E 错. 故选:BCD .【点评】:本题考查了命题的真假判断与应用,其中涉及到线性回归方程,条件概率等知识点,是对知识的综合考查.11.(填空题,3分)已知函数f (x )的定义域为[2,4],则函数 y =f (2x )lnx 的定义域是___ . 【正确答案】:[1](1,2]【解析】:根据f (x )的定义域可得出函数 y =f (2x )lnx 需满足 {2≤2x ≤4x≠1,解出x 的范围即可.【解答】:解:∵f (x )的定义域为[2,4], ∴函数 y =f (2x )lnx 需满足 {2≤2x ≤4x≠1,解得1<x≤2,∴函数 y =f (2x )lnx的定义域是(1,2]. 故答案为:(1,2].【点评】:本题考查了函数定义域的定义及求法,已知f (x )的定义域求f[g (x )]的定义域的方法,考查了计算能力,属于基础题.12.(填空题,3分)已知(1-2x )7=a 0+a 1x+a 2x 2+…+a 7x 7,那么a 1+a 2+…+a 7=___ . 【正确答案】:[1]-2【解析】:本题由于是求二项式展开式的系数之和,故可以令二项式中的x=1,又由于所求之和不含a 0,令x=0,可求出a 0的值,代入即求答案.【解答】:解:令x=1代入二项式(1-2x )7=a 0+a 1x+a 2x 2+…+a 7x 7得,(1-2)7=a 0+a 1+…+a 7=-1,令x=0得a 0=1∴1+a 1+a 2+…+a 7=-1 ∴a 1+a 2+…+a 7=-2故答案为:-2【点评】:本题主要考查二项式定理的应用,一般再求解有二项式关系数的和等问题时通常会将二项式展开式中的未知数x赋值为1或0或者是-1进行求解.本题属于基础题型.13.(填空题,3分)若正数x,y满足x+4y-2xy=0,则x+y的最小值为___ .【正确答案】:[1] 92【解析】:由正数x,y满足x+4y-2xy=0,得到4x +1y=2,由柯西不等式得,(x+y)(4 x +1y)≥(2+1)2=9,再求出结论即可.【解答】:解:正数x,y满足x+4y-2xy=0,故4x +1y=2,由柯西不等式得,(x+y)(4x +1y)≥(2+1)2=9,当且仅当x=2y时,取等号,故x+y ≥92.【点评】:本题考查了柯西不等式的应用,考查运算能力,本题的关键是对式子的灵活变换,中档题.14.(填空题,3分)若随机变量X~N(2,32),且P(X≤1)=P(X≥a),则(x+a)2(ax-√x)5展开式中x3项的系数是___ .【正确答案】:[1]1620【解析】:根据正态分布的概率性质求出a的值,再化(x+a)2(ax-√x5=(x2+6x+9)(3x−√x )5;利用(3x−√x)5展开式的通项公式求出含x2的系数,即可求出对应项的系数.【解答】:解:随机变量X~N(2,32),均值是2,且P(X≤1)=P(X≥a),∴a=3;∴(x+a)2(ax-√x )5=(x+3)2(3x-√x5=(x2+6x+9)(3x√x)5;又(3x−√x )5展开式的通项公式为T r+1= C5r•(3x)5-r√x )r=(-1)r•35-r• C5r• x5−3r2,令5- 3r2 =1,解得r= 83,不合题意,舍去;令5- 3r2=2,解得r=2,对应x2的系数为(-1)2•23• C52 =270;令5- 3r2 =3,解得r= 43,不合题意,舍去;∴展开式中x3项的系数是6×270=1620.故答案为:1620.【点评】:本题考查了正态分布曲线的特点及其几何意义,也考查二项式系数的性质与应用问题,是基础题.15.(填空题,3分)设m∈R,若函数f(x)=|x3-3x+2m|在[0,√3]上的最大值与最小值之差为2,则实数m的取值范围是___ .【正确答案】:[1]m≤0或m≥1【解析】:求得y=x3-3x的导数,可得在[0,√3 ]的单调性,对m分类求y=x3-3x+2m的值域,进一步求得f(x)的最值,结合题意求得实数m的取值范围.【解答】:解:由y=x3-3x的导数为y′=3x2-3=3(x-1)(x+1),可得y=x3-3x在(0,1)递减,在(1,√3)递增,即有y=x3-3x在[0,√3]上的值域为[-2,0],当m≤0时,f(x)的最小值为-2m,最大值为2-2m,最大值与最小值之差为2,符合题意;当m≥1时,y=x3-3x+2m的值域为[-2+2m,2m],可得f(x)的最大值2m,最小值为2m-2,最大值与最小值之差为2,符合题意;当0<m ≤12,y=x3-3x+2m的值域为[-2+2m,2m],可得f(x)的最大值为2-2m,最小值为0,由2-2m=2,得m=0(舍去);当12<m<1时,y=x3-3x+2m的值域为[-2+2m,2m],可得f(x)的最大值为2m,最小值为0,由2m=1,得m=1(舍去).综上,实数m的取值范围是m≤0或m≥1.故答案为:m≤0或m≥1.【点评】:本题考查函数的最值的求法,注意运用导数求单调性和最值,考查分类讨论思想方法,考查运算求解能力,属于中档题.16.(问答题,0分)甲、乙两名同学参加投篮比赛,甲投中的概率为0.8,乙投中的概率为0.9,求:(1)2人都投中的概率;(2)2人至少有1人投中的概率?【正确答案】:【解析】:(1)利用相互独立事件概率计算公式能求出2人都投中的概率;(2)利用对立事件概率计算公式能求出2人至少有1人投中的概率.【解答】:解:(1)甲、乙两名同学参加投篮比赛,甲投中的概率为0.8,乙投中的概率为0.9,2人都投中的概率p=0.8×0.9=0.72.(2)2人至少有1人投中的概率为:P=1-(1-0.8)(1-0.9)=0.98.【点评】:本题考查概率的求法,考查利用互斥事件概率计算公式和对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.17.(问答题,0分)已知f(x)=4x-1-2x+5,x∈[0,2].(1)求f(x)的值域;(2)若f(x)<2m2-am+7对任意m∈(0,2]都成立,求a的取值范围.【正确答案】:t2-t+5,由二次函数在闭区间上的最值求【解析】:(1)可令t=2x,t∈[1,4],则g(t)= 14法,可得所求值域;)min,再由基(2)由题意可得2m2-am+7>5对任意m∈(0,2]都成立,即为a<2(m+ 1m本不等式可得其最小值,进而得到a的范围.【解答】:解:(1)f(x)=4x-1-2x+5,x∈[0,2],可令t=2x,t∈[1,4],则g(t)= 14 t2-t+5= 14(t-2)2+4,可得g(t)在[0,2]递减,则g(t)的值域为[4,5],即f(x)的值域为[4,5];(2)若f(x)<2m2-am+7对任意m∈(0,2]都成立,可得2m2-am+7>5对任意m∈(0,2]都成立,即为a<2(m+ 1m)min,由m+ 1m ≥2 √m•1m=2,当且仅当m=1∈(0,2]取得等号.则a<4,即a的取值范围是(-∞,4).【点评】:本题考查函数的值域的求法和函数恒成立问题解法,考查换元法和指数函数的单调性、参数分离法和基本不等式的运用:求最值,考查运算能力和推理能力,属于中档题.18.(问答题,0分)4月份的二中迎来了国内外的众多宾客,其中很多人喜欢询问MT团队模式,为了了解“询问MT团队模式”是否与性别有关,在4月期间,随机抽取了80人,得到如下所示的列联表:联表补充完整,并据此资料能否在犯错误的概率不超过0.05前提下,认为关心“MT团队”与性别有关系?(Ⅱ)若以抽取样本的频率为概率,从4月来宾中随机抽取4人赠送精美纪念品,记这4人中关心“MT团队”人数为X,求X的分布列和数学期望.附:K2=n(ad−bc)2(a+b)(a+d)(a+c)(b+d)【正确答案】:【解析】:(Ⅰ)根据所给数据得到列联表,利用公式求得K 2,与临界值比较,即可得到答案;(Ⅱ)X 的可能取值为0,1,2,3,4,求得相应的概率,即可得到X 的分布列和数学期望.【解答】:解:(Ⅰ)设80人中,男性人数为m ,按性别分层抽取一个容量为20的样本,男性应抽9人,则 m80 = 920 ,解得m=36.关心“MT 团队”不关心“MT 团队”合计 男性 241236 女性368 44 合计60 2080将列联表中的数据代入计算可得 K 2=80×(24×8−12×36)236×44×60×20≈2.424,由2.424<3.841,可得在犯错误的概率不超过0.05前提下,不能认为关心“MT 团队”与性别有关系; (Ⅱ)根据题意可得X 服从二项分布:X∽B (4, 34 ),则P (X=i )=C 4i ( 34 )i ( 14 )4-i ,i=0,1,2,3,4,故X 的分布列为: X 1 2 3 4 P1256 364 27128 2764 81256则E (X )=np=4× 34=3.【点评】:本题考查独立性检验中的计算K 2,以及离散型随机变量的分布列以及数学期望,考查分析能力和运算能力,属于中档题.19.(问答题,0分)青岛二中学生民议会在周五下午高峰时段,对公交321路甲站和375线乙站各随机抽取了50位乘客,统计其乘车等待时间(指乘客从等车到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按[5,10),[10,15),[15,20),…,[35,40]分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(1)此时段,从甲站的乘客中随机抽取1人,记为事件M;从乙站的乘客中随机抽取1人,记为事件N.若用频率估计概率,求“两人乘车等待时间都小于20分钟”的概率;(2)此时段,从乙站[30,40]的乘客中随机抽取3人(不重复抽取),抽得在[35,40]的人数为X,求随机变量X的分布列与数学期望.【正确答案】:【解析】:(1)设M表示事件“乘客A乘车等待时间都小于20分钟”,N表示“乘客B乘车等待时间都小于20分钟”,C表示“乘客A,B乘车等待时间都小于20分钟”,由题意得:P (A)=(0.012+0.040+0.048)×5=0.5,P(B)=(0.016+0.028+0.036)×5=0.4,由此能求出“乘客A,B乘车等待时间都小于20分钟”的概率;(2)X的可能取值为0,1,2,由古典概率的计算公式能求出随机变量X的分布列与数学期望.【解答】:解:(1)设M表示事件“乘客A乘车等待时间都小于20分钟”,N表示“乘客B 乘车等待时间都小于20分钟”,C表示“乘客A,B乘车等待时间都小于20分钟”,由题意得:P(A)=(0.012+0.040+0.048)×5=0.5,P(B)=(0.016+0.028+0.036)×5=0.4,∴“乘客A,B乘车等待时间都小于20分钟”的概率:P(C)=P(MN)=P(M)P(N)=0.5×0.4=0.2;(2)从乙站[30,40]的乘客5人中随机抽取3人(不重复抽取),而,在[30,35)的人数为3人,在[35,40]中的人数为2,X的可能取值为0,1,2,=0.1;P(X=0)= 1C53=0.6;P(X=1)= 2×310P(X=2)= 1×3=0.3,10∴X的分布列为:【点评】:本题考查概率、离散型随机变量的分布列、数学期望的求法,考查运算求解能力,是中档题.20.(问答题,0分)某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了6次试验,得到数据如下:x的回归直线方程;(2)根据(Ⅰ)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?附:相关性检验的临界值表i ii=1√∑(x i−x)∑(y i−y)i=1i=1i ii=1√(∑x i−nx2i=1)√(∑y i−ny2i=1)i ii=1∑(x−x)2ni ii=1∑x i2−nx2ni=1ŷ=â+b̂x参考数据:√1750≈42.0;√758≈27.5【正确答案】:【解析】:(1)由已知数据求得|r|,可得|r|=0.997>r0.05,从而有95%的把握认为x与y之间具有线性相关关系,然后求出b̂与â的值,可得线性回归方程;(2)在(1)中求得的线性回归方程中,取x=60求得y 值即可.【解答】:解:(1)由表格中的数据可得: ∑x i 6i=1y i =17950 , ∑x i 26i=1=9100 ,∑y i 26i=1=39158 ,x =35 , y =80 . ∴|r|= √9100−6×352×√39158−6×802 =0.997>r 0.05.从而有95%的把握认为x 与y 之间具有线性相关关系.b ̂ = ∑x i 6i=1y i −6xy ∑x i 26i=1−6x 2 =0.657, a ̂=y −b ̂x =57 . ∴线性回归方程为 y ̂=0.657x +57 ;(2)在 y ̂=0.657x +57 ,取x=60,得y=0.657×60+57=96.42.∴每小时加工零件的数量额定为96个比较合理.【点评】:本题考查相关系数与线性回归方程的求法,考查计算能力,是基础题.21.(问答题,0分)已知函数 f (x )=13ax 3−12x 2−x +b ,a∈R .(1)讨论函数f (x )的单调性;(2)当a=2时,函数f (x )在区间[0,2]的最小值为f (x )min ,试比较f (x )min 与 b 2−lnb −56 的大小.【正确答案】:【解析】:(1)由于f′(x )=ax 2-x-1,分a=0,- 14 <a <0,a≤- 14 ,a >0四类情况讨论,结合二次函数的单调性质及函数与导数之间的关系即可判断函数f (x )的单调性;(2)由(1)知,当a=2时,f (x )min =f (1)=- 56 +b ,令h (b )= b 2−lnb −56 -(- 56 +b )=b 2-lnb-b ,则h′(b )=2b- 1b -1=(2b+1)(b−1)b ,通过对b 取值范围的讨论即可比较f (x )min 与b 2−lnb −56 的大小.【解答】:解:(1)∵ f (x )=13ax 3−12x 2−x +b ,∴f′(x )=ax 2-x-1,① 若a=0,当x∈(-∞,-1)时,f′(x )>0,当x∈(-1,+∞)时,f′(x )<0,∴f(x)在(-∞,-1)上单调递增,在(-1,+∞)上单调递减;② 若a<0,△=1+4a,当- 14<a<0时,ax2-x-1=0的两根x1= 1+√1+4a2a<0,x2= 1−√1+4a2a<0,同理可得,f(x)在(-∞,1+√1+4a2a ),(1−√1+4a2a,+∞)上单调递减;在(1+√1+4a2a,1−√1+4a2a)上单调递增;当a≤- 14时,△≤0,即f′(x)≤0,f(x)在R上单调递减;③ 当a>0时,△=1+4a>0,ax2-x-1=0的两根x1= 1−√1+4a2a <0,x2= 1+√1+4a2a>0,同理可得,f(x)在(-∞,1−√1+4a2a ),(1+√1+4a2a,+∞)上单调递增;在(1−√1+4a2a,1+√1+4a2a)上单调递减;综上所述,当a≤- 14时,f(x)在R上单调递减;当- 14<a<0时,f(x)在(-∞,1+√1+4a2a),(1−√1+4a2a,+∞)上单调递减;在(1+√1+4a2a,1−√1+4a2a)上单调递增;当a=0时,f(x)在(-∞,-1)上单调递增,在(-1,+∞)上单调递减;当a>0时,f(x)在(-∞,1−√1+4a2a ),(1+√1+4a2a,+∞)上单调递增;在(1−√1+4a2a,1+√1+4a2a)上单调递减;(2)由(1)知,当a=2时,f(x)在[0,1]上单调递减,在[1,2]上单调递增;∴f(x)min=f(1)= 13 ×2×13- 12×12-1+b=- 56+b,令h(b)= b2−lnb−56 -(- 56+b)=b2-lnb-b,显然b>0.则h′(b)=2b- 1b -1= (2b+1)(b−1)b,当0<b<1时,h′(b)<0,当b>1时,h′(b)>0,∴当b=1时,h(b)取得极小值h(1)=0,∴h(b)≥h(1)=0,即b2−lnb−56≥f(1)min=- 56+b.【点评】:本题考查利用导数研究函数的单调性与最值,着重考查分类与整合思想、函数与方程思想的运用,考查二次函数的性质,考查综合运算能力和推理能力,属于难题.22.(填空题,0分)已知z,w∈C,|z+w|=1,|z2+w2|=4,则|zw|的最大值为___ .【正确答案】:[1] 52【解析】:由已知配方得|z 2+w 2|=|(z+w )2-2zw|=4,再由复数性质(z+w )2=|z+w|2=1,则|1-2zw|=4,利用复数性质|z 1-z 2|≥|z 1|-|z 2|可求出|zw|的最大值.【解答】:解;因为|z 2+w 2|=|(z+w )2-2zw|=4,又|z+w|=1,即(z+w )2=1,∴4=|1-2zw|≥|2zw|-1,即|zw|≤ 52∴|zw|的最大值为 52 .故答案为: 52 .【点评】:本题考查了复数模的运算法则,模的不等关系,配方等方法,是复数问题的小综合题.23.(填空题,0分)一种单人纸牌游戏的规则如下:将七对不相同的纸牌放入一个书包中,游戏者每次随机地从书包中取牌并放回,不过当取到成对的牌时,就将成对的牌放到一边.当游戏者每次总取三张牌(所剩的若不够三张牌就全部取完)时,若取到三张牌中两两互不成对,游戏就结束;否则,取牌继续进行,直到书包中没有纸牌为止.则书包空的概率为___ .【正确答案】:[1] 275005【解析】:设P (n )为开设时书包有n 对互不相同的牌,且按题意规则取牌而使书包空的概率,则P (2)=1,根据题意P (n )= 32n−1 P (n-1)(n≥3),反复利用此递推公式即可求出结果.【解答】:解:设P (n )为开设时书包有n 对互不相同的牌,且按题意规则取牌而使书包空的概率,则P (2)=1,设书包中有n (n≥2)对互不相同的牌,则前三张牌中有两张成对的概率为 C n 1C 2n−21C 2n 3 = 32n−1 , 由此,P (n )= 32n−1 P (n-1)(n≥3),反复利用此递推公式得P (n )= 32n−1•32n−3•……•35P (2) ,从而P (7)= 275005 ,故答案为: 275005 .【点评】:本题主要考查了古典概型的概率公式,是中档题.。

2023-2024学年山东省泰安市高二上学期期末数学试题(含解析)

2023-2024学年山东省泰安市高二上学期期末数学试题(含解析)

2023-2024学年山东省泰安市高二上学期期末数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线1:1l y kx =+与直线2:3l y x =平行,则实数k 的值为()A.13-B.13C.3D.3【正确答案】D【分析】利用两直线平行斜率相等,求出实数k 的值.【详解】因为直线1:1l y kx =+与直线2:3l y x =平行,所以两直线斜率相等,即3k =.故选:D.2.已知等差数列{}n a 的首项13a =,公差2d =,则5a =()A.7B.9C.11D.13【正确答案】C【分析】根据等差数列的通项公式可算出答案.【详解】因为等差数列{}n a 的首项13a =,公差2d =,所以5143811a a d =+=+=故选:C本题考查的是等差数列的通项公式,较简单.3.已知椭圆2212516x y +=上的点P 到椭圆一个焦点的距离为7,则P 到另一焦点的距离为()A.2B.3C.5D.7【正确答案】B【分析】根据椭圆的定义列方程,求得P 到另一个焦点的距离.【详解】根据椭圆定义可知,P 到两个焦点的距离之和为22510a =´=,所以P 到另一个焦点的距离为1073-=.故选:B.本小题主要考查椭圆的定义,属于基础题.4.已知空间向量()2,1,2a =- ,()4,2,b x =- 满足a b ⊥,则实数x 的值是()A.5-B.4- C.4 D.5【正确答案】D【分析】由已知条件得出0a b ⋅=,结合空间向量数量积的坐标运算可求得实数x 的值.【详解】由已知条件得出()241222100a b x x ⋅=⨯--⨯+=-=,解得5x =.故选:D.5.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1 B.2C.3D.4【正确答案】B【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论.【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时||CP ==根据弦长公式得最小值为2==.故选:B.本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.6.我国古代数学著作《九章算术》中有如下问题:“今有女子善织,日自倍,五日织五尺…”其大意为:“有一位善于织布的女子,每天织的布都是前一天的2倍,5天共织了5尺布…”.那么该女子第一天织布的尺数为()A.431B.531C.631D.1031【正确答案】B【分析】设第一天织布的尺数为x ,则由题意有()234122225x ++++=,据此可得答案.【详解】设第一天织布的尺数为x ,则()234122225x ++++=52153152131x x x -⇒⋅==⇒=-.故选:B7.设A 、B 是y 轴上的两点,点P 的横坐标为2,且PA PB =,若直线PA 的方程为10x y -+=,则直线PB 的方程为()A.50x y +-= B.210x y --=C.270x y +-= D.30x y +-=【正确答案】A【分析】根据直线PA 的方程,确定出PA 的倾斜角,利用PA PB =且A 、B 在y 轴上,可得PB 的倾斜角,求出P 的坐标,然后求出直线PB 的方程.【详解】解:由于直线PA 的方程为10x y -+=,故其倾斜角为45︒,又||||PA PB =,且A 、B 是y 轴上两点,故直线PB 的倾斜角为135︒,又当2x =时,3y =,即(2,3)P ,∴直线PB 的方程为3(2)y x -=--,即50x y +-=.故选:A .8.,,PA PB PC 是从点P 出发的三条射线,每两条射线的夹角均为60︒,那么直线PC 与平面PAB 所成角的余弦值是() A.63B.33C.2D.12【正确答案】B【分析】作图,找到直线PC 在平面PAB 上的投影在构建多个直角三角形,找出边与角之间的关系,继而得到线面角;也可将,,PA PB PC 三条射线截取出来放在正方体中进行分析.【详解】解法一:如图,设直线PC 在平面PAB 的射影为PD,作CG PD ⊥于点G ,CH PA ⊥于点H ,连接HG ,易得CG PA ⊥,又,,CH CG C CH CG ⋂=⊂平面CHG ,则PA ⊥平面CHG ,又HG ⊂平面CHG ,则PA HG ⊥,有cos cos cos PH CPA PC PG PH PH CPD APD PC PG PC ⎧∠=⎪⎪⎨⎪∠⨯∠==⎪⎩故cos cos cos CPA CPD APD ∠=∠⨯∠.已知60,30APC APD ∠=︒∠=︒,故cos cos60cos cos cos303CPA CPD APD ∠︒=∠︒∠==为所求.解法二:如图所示,把,,PA PB PC 放在正方体中,,,PA PB PC 的夹角均为60︒.建立如图所示的空间直角坐标系,设正方体棱长为1,则(1,0,0),(0,0,1),(1,1,1),(0,1,0)P C A B ,所以(1,0,1),(0,1,1),(1,1,0)PC PA PB =-==-,设平面PAB 的法向量(,,)n x y z = ,则0n PA y z n PB x y ⎧⋅=+=⎪⎨⋅=-+=⎪⎩令1x =,则1,1y z ==-,所以(1,1,1)n =-,所以6cos ,3||||23PC n PC n PC n ⋅-〈〉===⋅⨯.设直线PC 与平面PAB 所成角为θ,所以6sin |cos ,|3PC n θ=〈〉=,所以23cos 1sin 3θθ=-=故选B .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.直线()24R y ax a a =-+∈必过定点()2,4B.直线310x y --=在y 轴上的截距为1C.过点()2,3-且垂直于直线230x y -+=的直线方程为210x y ++=D.直线310x +=的倾斜角为120°【正确答案】AC【分析】对于A ,整理直线方程,合并出参数的系数,令其等于零,建立方程,可得答案;对于B ,将0x =代入直线方程,结合截距的定义,可得答案;对于C ,根据直线之间的垂直关系,设未知直线方程,代入点,可得答案;对于D ,根据直线的一般式方程,明确直线的斜率,可得答案.【详解】对于A ,由直线方程24y ax a =-+,整理可得()24y a x =-+,当2x =时,4y =,故A 正确;对于B ,将0x =代入直线方程310x y --=,可得10y --=,解得1y =-,故B 错误;对于C ,由直线方程230x y -+=,则其垂线的方程可设为20x y C ++=,将点()2,3-代入上式,可得()2230C ⨯-++=,解得1=C ,则方程为210x y ++=,故C 正确;对于D,由直线方程10x ++=,可得其斜率为33-,设其倾斜角为θ,则3tan 3θ=-,解得150θ= ,故D 错误.故选:AC.10.已知椭圆22:142x y C +=内一点11,2M ⎛⎫ ⎪⎝⎭,过点M 的直线l 与椭圆C 交于A ,B 两点,且M是线段AB 的中点,椭圆的左,右焦点分别为1F ,2F ,则下列结论正确的是()A.椭圆C 的焦点坐标为()2,0,()2,0-B.椭圆C 的长轴长为4C.直线1MF 与直线2MF 的斜率之积为14- D.2153AB =【正确答案】BCD【分析】根据椭圆的几何性质、点差法、以及弦长公式求得正确答案.【详解】依题意,椭圆22:142x y C +=,所以2,a b c ===,所以焦点坐标为)()12,F F ,A 选项错误.长轴长24a =,B 选项正确.12111224MF MF k k ⋅==-,C 选项正确.设()()1122,,,A x y B x y ,则222211221,14242x y x y +=+=,两式相减并化简得12121212121212121212,,1412y y y y y y y y x x x x x x x x +----=⋅⋅=-=-+---,即直线AB 的斜率为1-,直线AB 的方程为()131,22y x y x -=--=-+,由2232142y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 并化简得261210x x -+=,所以121212,6x x x x +=⋅=,所以3AB ==.故选:BCD11.已知数列{}n a 的前n 项和()2*123N 43n S n n n =++∈,则下列结论正确的是()A.数列{}n a 是递增数列 B.数列{}n a 不是等差数列C.2a ,4a ,6a 成等差数列D.63S S -,96S S -,129S S -成等差数列【正确答案】BCD【分析】由n a 与n S 的关系推导出数列{}n a 的通项公式,判断选项A ,B ,分别计算出2a ,4a ,6a 和63S S -,96S S -,129S S -,结合等差数列的定义判断选项C ,D.【详解】()2*12S 3N 43n n n n =++∈ ,2n ∴≥时,()()22112121531134343212n n n a S S n n n n n -⎡⎤=-=++--+-+=+⎢⎥⎣⎦,1n =时,114712a S ==,即47,11215,2212n n a n n ⎧=⎪⎪=⎨⎪+≥⎪⎩,*N n ∈.2117471212a a =<= ,因此数列{}n a 不是单调递增数列,故A 错误;又1n =时,不满足15212n a n =+,∴数列{}n a 不是等差数列,故B 正确;21712a =,42912a =,64112a =,因此2a ,4a ,6a 成等差数列,故C 正确;()63456153545632124S S a a a -=++=⨯+++⨯=,()96789155378932124S S a a a -=++=⨯+++⨯=,()129101112157110111232124S S a a a -=++=⨯+++⨯=.6396129,,S S S S S S ∴---成等差数列,故D 正确.故选:BCD.12.平行六面体ABCD A B C D -''''中,各棱长均为2,设A AB A AD DAB θ''∠=∠=∠=,则下列结论中正确的有()A.当2πθ=时,AC '=B.AC '和BD 总垂直C.θ的取值范围为2(0,3πD.θ=60°时,三棱锥C C B D -'''的外接球的体积是【正确答案】ABC【分析】对于A ,求正方体对角线即可判断;对于B ,利用空间向量数量积运算即可判断;对于C ,由正三棱锥A A BD '-的高与斜高的关系即可计算判断;对于D ,求出正四面体C CB D -'''外接球体积判断作答.【详解】平行六面体ABCD A B C D -''''中,各棱长均为2,设A AB A AD DAB θ''∠=∠=∠=,对于A ,2πθ=时,该平行六面体为正方体,其体对角线长AC '=,A 正确;对于B ,AC AB AA AD '=++' ,BD AD AB =-,因此,22()()AC BD AB AA AD AD AB AD AB AA AD AA AB '⋅++--⋅'''=-⋅⋅=+ 22224cos 4cos 0θθ=-+=-,B 正确;对于C ,连接,,BD A B A D '',如图,依题意,A A BD '-为正三棱锥,取BD 中点E ,令O 为正A BD ' 的中心,连,,AE AO EO ,有AO ⊥平面A BD ',正三棱锥A A BD '-的斜高cos2cos 22AE AB θθ==,2sin 4sin 22BD AB θθ==,则33sin 632OE BD θ==,显然,AE OE >,即232cos sin232θθ>,则tan 32θ<锐角(0,)23θπ∈,从而得2(0,)3πθ∈,C 正确;对于D ,当60θ= 时,三棱锥C C B D -'''为正四面体,三棱锥A A BD '-也是正四面体,它们全等,由C 选项知,2222322(3)()33AO AE OE =-=-=A A BD '-的外接球球心在线段AO 上,设球半径为r ,则有222()r AO r OB =-+,整理得222(2)AO r AO OE ⋅=+,解得62r =,于是得三棱锥C C B D -'''外接球的体积346632V ππ=⨯=,D 不正确.故选:ABC关键点睛:几何体的外接球的表面积、体积计算问题,借助球的截面小圆性质确定出球心位置是解题的关键.三、填空题:本题共4小题,每小题5分,共20分.13.准线方程为2x =的抛物线的标准方程是_______.【正确答案】28y x=-【详解】抛物线的准线方程为2x =,说明抛物线开口向左,且224p =⨯=,所以抛物线的标准方程是28y x =-.14.已知双曲线C 的对称轴为坐标轴,中心是坐标原点,渐近线方程为43y x =±,请写出双曲线C 的一个离心率______.【正确答案】53(答案不唯一)【分析】分类讨论双曲线C 的焦点在x 轴、y 轴两种情况,结合双曲线的渐近线方程及离心率公式计算可得.【详解】当双曲线C 的焦点在x 轴时,其渐近线为by x a =±,则43b a =,所以离心率53c e a ====,当双曲线C 的焦点在y 轴时,其渐近线为a y x b =±,则43a b =,即34b a =,所以离心率54c e a ====,综上,可得双曲线的离心率为53或54.故53(答案不唯一).15.如图甲是第七届国际数学教育大会(简称7ICME -)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中11223781OA A A A A A A ===== ,如果把图乙中的直角三角形继续作下去,记12,,,n OA OA OA ⋅ 的长度构成数列{}n a ,则此数列的通项公式为n a =_____.【分析】由图可知1122378...1OA A A A A A A =====,由勾股定理可得2211n n a a -=+,利用等差数列的通项公式求解即可.【详解】根据图形1122378...1OA A A A A A A =====,因为122378...OA A OA A OA A ∆∆∆、都是直角三角形,2211n n a a -∴=+,2n a ∴是以1为首项,以1为公差的等差数列,()2111n a n n ∴=+-⨯=,n a ∴=.本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.16.已知过点()4,1P 的直线与椭圆22:142x y C +=相交于不同的两点A 和B ,在线段AB 上存在点Q ,满足AP QB AQ PB ⋅=⋅,则OQ 的最小值为______.【分析】设()11,A x y ,()22,B x y ,(),Q x y ,由,,,A P B Q 四点共线,用向量共线关系表示,A B 两点坐标,又点,A B 在椭圆上,把坐标代入椭圆方程,得出Q 点在一条定直线上,再求最短距离即可.【详解】设()11,A x y ,()22,B x y ,(),Q x y ,由AP QB AQ PB ⋅=⋅,记AP PB AQ QB =,又,,,A P B Q 四点共线,设PA AQ λ= ,则由已知0λ>,且1λ≠,PB BQ λ=-.由PA AQ λ=,得()()11114,1,x y x x y y λ--=--,解得114111x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,同理PB BQ λ=- ,得()()22224,1,x y x x y y λ--=---,解得224111x x y y λλλλ-⎧=⎪⎪-⎨-⎪=⎪-⎩,因为点A 在椭圆上,所以224111142x y λλλλ++⎛⎫⎛⎫ ⎪ ⎪++⎝⎭⎝⎭+=,即()()()22241142x y λλλ+++=+,①同理点B 在椭圆上,所以224111142x y λλλλ--⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭+=,即()()()22241142x y λλλ--+=-,②①-②得164442x yλλλ+=,因为0λ>所以220x y +-=,故点Q 在定直线220x y +-=上,OQ 的最小值为点O 到直线220x y +-=的距离255d ==.故答案为.5解析几何中线段定比分点问题方法点睛:1.在平面直角坐标系中,已知()11,A x y ,()22,B x y ,(),P x y ,且AP PB λ=,0λ≠,且1λ≠-,那么我们就说P 分有向线段AB 的比为λ,则有:121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,这就是定比分点坐标公式.当P 为内分点时,0λ>;当P 为外分点时,0λ<(1λ≠-).2.这个公式在解决解析几何中向量共线或者点共线问题有着很强大的作用,运用好往往可以几步就解决一个大题.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,直线2y x =-与抛物线22y x =相交于A ,B两点.(1)求线段AB 的长;(2)证明:OA OB ⊥.【正确答案】(1);(2)证明见解析.【分析】(1)联立直线的方程和抛物线的方程,结合根与系数关系求得AB .(2)根据根与系数关系、向量数量积等知识证得结论成立.【小问1详解】设()11,A x y ,()22,B x y ,由222y x y x=-⎧⎨=⎩,得2640x x -+=.126x x +=,124x x =,所以AB ==.【小问2详解】由(1)知:126x x +=,124x x =,所以()121212122240OA OB x x y y x x x x ⋅=+=-++=,所以OA OB ⊥ ,所以OA OB ⊥.18.如图,在三棱锥O ABC -中,OA ,OB ,OC 两两垂直,3OA OC ==,2OB =.(1)求点B 到直线AC 的距离;(2)求直线OB 与平面ABC 所成角的正弦值.【正确答案】(1)342(2)17【分析】(1)建立空间直角坐标系,利用点与直线距离的空间向量法计算可得.(2)利用直线与平面夹角的空间向量法计算可得【小问1详解】解:以O 为坐标原点,OB ,OC ,OA方向分别为x ,y ,z 轴正方向,建立如图所示的空间直角坐标系,则()0,0,3A ,()2,0,0B ,()0,3,0C ,所以()2,0,3AB =- ,()0,3,3AC =-,()2,0,0OB = .取()2,0,3a AB ==- ,220,,22AC u AC ⎛⎫==- ⎪ ⎪⎝⎭,则213a = ,322a u ⋅= ,所以点B 到直线AC ()229341322a a u-⋅=-=.【小问2详解】解:设(),,n x y z = 是平面ABC 的一个法向量,则00AB n AC n ⎧⋅=⎪⎨⋅=⎪⎩,所以230330x z y z -=⎧⎨-=⎩,取2z =,解得32x y =⎧⎨=⎩,所以()3,2,2n = .设直线OB 与平面ABC 所成角为θ,则317sin cos ,17217OB n OB n OB nθ⋅===⨯⋅ ,所以直线OB 与平面ABC 所成角的正弦值为31717.19.在数列{}n a 的首项为11a =,且满足132nn n a a ++=⋅.(1)求证:{}2nn a -是等比数列.(2)求数列{}n a 的前n 项和n S .【正确答案】(1)证明见解析;(2)1122,23,n n n n S n ++⎧-=⎨-⎩为偶数为奇数.【分析】(1)由132nn n a a +=-+⋅,化简得到11212n n nn a a ++-=--,结合等比数列的定义,即可求解;(2)由(1)求得(1)2nnn a =-+,分当n 为偶数和当n 为奇数,两种情况讨论,结合等比数列的求和公式,即可求解.【详解】(1)由题意,数列{}n a 满足132nn n a a ++=⋅,即132nn n a a +=-+⋅,则111232221222n n n n n n nn n nn n n a a a a a a +++--+⋅--===----,又由11a =,可得1121a -=-,所以数列{}2nn a -表示首项为1-,公比为1-的等比数列.(2)由(1)知121(1)(1)nn n n a --=-⨯-=-,所以(1)2n n n a =-+,所以12=222(1)1(1)nnn S ++++-+++- ,当n 为偶数时,可得12(12)=02212nn n S +-+=--;当n 为奇数时,可得12(12)=12312nn n S +--=--,综上可得,1122,23,n n n n S n ++⎧-=⎨-⎩为偶数为奇数.20.已知两个定点()1,0M -,()1,0N ,动点P满足MP =.(1)求点P 的轨迹方程;(2)若点N 到直线PM 的距离为1,求直线PN 的方程.【正确答案】(1)22610x y x +-+=(2)1y x =-或1y x =-+【分析】(1)设点(),P x y,后由MP =结合两点间距离公式可得轨迹方程;(2)由点N 到直线PM 的距离为1,可得30PMN ∠=︒,则可得直线PM 方程为()313y x =+或()313y x =-+,将直线方程与轨迹方程联立可得点P 坐标,后可得直线PN 方程.【小问1详解】设点P 的坐标为(),x y,因为MP =,=整理得22610x y x +-+=,所以点P 的轨迹方程为22610x y x +-+=.【小问2详解】因为点N 到直线PM 的距离为1,2MN =,所以30PMN ∠=︒,直线PM 的斜率为33或33-,所以直线PM 的方程为()313y x =+或()313y x =-+.联立轨迹方程与()13y x =±+,可得()222610410313x y x x x y x ⎧+-+=⎪⇒-+=⎨=+⎪⎩,解得2x =或2x =-.得直线PM 的方程为()313y x =+时,P的坐标为(2++或(21-.直线PM 的方程为()313y x =-+时,P 的坐标为(21+--或(2.当P的坐标为(2+时,直线PN的方程为:11y x ==-,即1y x =-.P的坐标为(21-+时,直线PN的方程为:11y x ==--,即1y x =-+.P的坐标为(21+--时,直线PN的方程为:11y x ==--,即1y x =-+.P的坐标为(2-时,直线PN的方程为:11y x ==-,即1y x =-.综上可得直线PN 的方程为1y x =-或1y x =-+21.歇山顶,即歇山式屋顶,为古代汉族建筑屋顶样式之一,宋朝称九脊殿、曹殿或厦两头造,清朝改称歇山顶,又名九脊顶,其屋顶(上半部分)类似于五面体形状.如图所示的五面体EF ABCD -的底面ABCD 为一个矩形,28AB EF ==,6AD =,//EF AB ,棱5EA ED FB FC ====,M ,N 分别是AD ,BC 的中点.(1)求证:平面EFNM ⊥平面ABCD ;(2)求平面BFC 与平面EFCD 夹角的余弦值.【正确答案】(1)证明见解析(2)2114【分析】(1)证明EM AD ⊥以及MN AD ⊥,根据面面垂直的判定定理即可证明结论;(2)建立空间直角坐标系,求得相关点坐标,求得平面BFC 与平面EFCD 法向量,根据向量的夹角公式即可求解.【小问1详解】因为EA ED =,M 为AD 的中点,所以EM AD ⊥.在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,所以MNAD ⊥.又EM MN M ⋂=,EM ,MN ⊂平面EFNM ,所以AD ⊥平面EFNM .又AD ⊂平面ABCD ,所以平面EFNM ⊥平面ABCD .【小问2详解】在平面EFNM 中,过F 作FH MN ⊥,H 为垂足.因为平面EFNM ⊥平面ABCD ,平面EFNM ⋂平面ABCD MN =,FH ⊂平面EFNM ,所以FH ⊥平面ABCD .过H 作BC 的平行线,交AB 于点S ,则3HS =,2HN =,3HF =,以H 为坐标原点,以HS ,HN ,HF方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系,则()3,2,0B ,()3,2,0C -,()3,6,0D --,(0,0,23F ,所以(3,2,3BF =-- ,()6,0,0BC =- ,(3,2,23CF =- ,()0,8,0CD =-.设平面EFCD 的一个法向量为(),,m x y z = ,则00CF m CD m ⎧⋅=⎪⎨⋅=⎪⎩,所以3223080x y z y ⎧-+=⎪⎨-=⎪⎩,取3z =,解得2x y =-⎧⎨=⎩,所以(3m =- ,同理可得平面BFC 的一个法向量为()3,1n =.设平面BFC 与平面EFCD 夹角为θ.则21cos cos ,14m n m n m nθ⋅=<>==⋅ ,所以平面BFC 与平面EFCD 夹角的余弦值为2114.22.已知双曲线()2222:10,0x y C a b a b-=>>的左,右顶点分别为A ,B ,过点()6,0D 且不与x 轴重合的动直线交双曲线C 于P ,Q 两点,当直线PQ 与x 轴垂直时,4PD BD ==.(1)求双曲线C 的标准方程;(2)设直线AP ,AQ 和直线x t =分别交于点M ,N ,若MD ND ⊥恒成立,求t 的值.【正确答案】(1)22142x y -=(2)14t =或103t =【分析】(1)由4PD BD ==可得a 的值,再将点()6,4P 代入即可求解;(2)设直线PQ 的方程为6x my =+,与双曲线方程联立,利用韦达定理求出直线AP 的方程,求出点,M N 的坐标,利用MD ND ⊥即可求出结果.【小问1详解】由题知,当PQ 与x 轴垂直时,4PD BD ==,所以642a OD BD =-=-=,()6,4P ,所以2236414b -=,解得22b =,所以双曲线C 的方程为22142x y -=.【小问2详解】设直线PQ 的方程为6x my =+,()11,P x y ,()22,Q x y ,由226142x my x y =+⎧⎪⎨-=⎪⎩,得()22212320m my y -++=,所以122122m y y m +=--,122322y y m =-.直线AP 的方程为()1122y y x x =++,与x t =联立,解得()112,2t y M t x +⎛⎫⎪+⎝⎭.同理可得()222,2t y N t x +⎛⎫⎪+⎝⎭.所以()1126,2t y DM t x +⎛⎫ ⎪⎝⎭=-+ ,()2226,2t y DN t x +=-+⎛⎫⎪⎝⎭,因为MD ND ⊥恒成立,所以0DM DN ⋅=恒成立,又()()()()2212126222y y DM DN t t x x ⋅=-++++ ()()()()2212126288y y t t my my =-++++()()()21222112262864m y y m y y y y t t ++=++-+()()221624t t =--+所以()()22462t t -=+,解得14t =或103t =.。

山东省泰安市2021-2022学年高二上学期期末考试数学试题

山东省泰安市2021-2022学年高二上学期期末考试数学试题

高二数学试题第页(共4页)试卷类型:A高二年级考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.直线3x -y -1=0的倾斜角α=A.30° B.60° C.120° D.150°2.已知椭圆x 249+y 224=1的焦点分别为F 1,F 2,椭圆上一点P 与焦点F 1的距离等于6,则△PF 1F 2的面积为A.24B.36C.48D.603.在各项均为正数的等比数列{a n }中,若a 1a 7=9,则(a 2a 6)2-a 4=A.6 B.12 C.56 D.784.已知直线l 1:x +(1+a )y +a -2=0与l 2:ax +2y +8=0平行,则a 的值为A.1 B.-2 C.-23 D.1或-25.如图,在三棱锥S -ABC 中,E ,F 分别为SA ,BC 的中点,点G 在EF 上,且满足EG GF =2,若 SA =a , SB =b , SC =c ,则 SG =A.13a -12b +16c B.16a +13b +13c C.16a -13b +13c D.13a +12b +16c 2022.011高二数学试题第页(共4页)6.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且渐近线经过点(1,-2),则此双曲线的方程为A.x 24-y 216=1 B.x 24-y 2=1 C.x 2-y 24=1 D.x 216-y 24=17.中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文D.戊分得25文,己分得28文8.已知曲线C :y =-4-(x -1)2与直线l :mx +y -4m -2=0(m ∈R )总有公共点,则m 的取值范围是A.[25,125] B.[25,2] C.[-2,-25] D.[-125,-25]二、选择题:本题共4小题,每小题5分,共20分。

山东省烟台市2018-2019学年高二第二学期期中考试试题 数学【含解析】

山东省烟台市2018-2019学年高二第二学期期中考试试题 数学【含解析】

山东省烟台市2018-2019学年高二第二学期期中考试试题 数学一、选择题:本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求,第11~13题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分. 1.若复数ii 1iz -=+(i 为虚数单位),则||z =( ) A. 2 2C. 55【答案】D 【解析】 【分析】由已知可得(1)z i i i =++,求出z ,再由模长公式,即可求解. 【详解】(1)12,||5,1z i i i i i iz z i=++=-++∴-=∴=. 故选:D.【点睛】本题考查复数乘除法间的关系、乘法运算以及模长,属于基础题. 2.已知i 为虚数单位,则复数22(12i)1i++-的共轭复数是( ) A. 25i + B. 25i -C. 25i --D. 25i -+【答案】C 【解析】 【分析】由复数的乘除法运算法则,化简22(12i)1i++-,即可求出结论. 【详解】2222(1)(12)3425,2511i i i i z i i i+++=-++=-+∴=----. 故选:C.【点睛】本题考查复数的代数运算及共轭复数,属于基础题.3.某社团小组有2名男生和4名女生,现从中任选2名学生参加活动,且至少有1名男生入选,则不同的选法种数有( ) A. 8 B. 9C. 14D. 15【答案】B【解析】 【分析】用间接法求解,求出6名学生任选2人的不同选法,扣除2人都是女生的不同选法,即可求解【详解】6名学生任选2人的不同选法有2615C =,2人都是女生的不同选法有246C =,2∴人中至少有1名男生入选不同选法有9种.故选:B.【点睛】本题考查组合应用问题,“至多”“至少”考虑用间接法处理,也可用直接法求解,属于基础题. 4.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.为了了解该地区近几年蔬菜的产量,收集了近5年的统计数据,如表所示: 年份 2014 2015 2016 2017 2018 年份代码x 1 2 3 4 5 年产量y (万吨) 4.95.15.55.75.8根据上表可得回归方程ˆˆ0.2yx a =+,预测该地区2019年蔬菜的产量为( ) A. 5.5 B. 6C. 7D. 8【答案】B 【解析】 【分析】求出样本中心点坐标,代入回归方程,求出a ,即可求解. 【详解】3, 5.4x y ==,(3,5.4)在回归直线上,代入回归直线方程得5.40.23, 4.8,0.2 4.8a a y x =⨯+=∴=+,依题意2019年份代码为6,当6,6x y ==. 故选:B.【点睛】本题考查样本中心点与线性回归方程关系,以及线性回归方程的应用,属于基础题. 5.从0,2,4,6,8中任取2个数字,从1,3,5,7中任取1个数字,共可以组成没有重复数字的三位奇数的个数为( )A. 64B. 80C. 96D. 240【答案】A 【解析】 【分析】分类讨论从0,2,4,6,8中任取2个数字是否含有0,根据题意所取的奇数在个位,即可求解. 【详解】若从0,2,4,6,8中取2个数字不含0,满足条件的三位奇数有214448A C =,若从0,2,4,6,8中取2个数字含0,满足条件的三位奇数有114416A C =,所以可组成的三位奇数有64. 故选:A.【点睛】本题考查排列组合应用问题,要注意特殊元素的处理,属于基础题. 6.5211(1)x x ⎛⎫-- ⎪⎝⎭展开式中3x 的系数为( ) A. 11 B. 11-C. 9D. 9-【答案】D 【解析】 【分析】3x 为5(1)x -展开式中的3x 项与“1”相乘和5x 项与“21x-”相乘得到,根据二项展开式定理求出35,x x 的项,即可求解.【详解】5(1)x -通项公式为155()(1)k k k k k k T C x C x +=-=-, 5(1)x ∴-展开式中含35,x x 项分别为335555,C x C x --, 5211(1)x x ⎛⎫-- ⎪⎝⎭∴展开式中3x 的系数为9-. 故选:D.【点睛】本题考查二项展开式指定项的系数,掌握二项展开式通项是解题的关键,属于基础题. 7.甲、乙、丙3位大学毕业生去4个工厂实习,每位毕业生只能选择一个工厂实习,设“3位大学毕业生去的工厂各不相同”为事件A ,“甲独自去一个工厂实习”为事件B ,则(|)P A B =( )A. 23B.13C.34D.58【答案】A 【解析】 【分析】求出甲独自去一个工厂实习有1243C ⨯,3为大学毕业生去的工厂各不相同有34A ,根据条件概率公式,即可求解.【详解】“甲独自去一个工厂实习”为事件B ,事件B 包含的基本事件有124336C ⨯=,“3位大学毕业生去的工厂各不相同”为事件A ,事件A 包含的基本事件有3424A =,242(|)363P A B ==. 故选:A.【点睛】本题考查条件概率,确定基本事件个数是解题关键,属于基础题. 8.已知随机变量ξ服从正态分布()2,N μσ,(0)(4)P P ξξ<=>,且(3)0.4P ξ>=,则(1)P ξ≥=( ) A. 0.4 B. 0.5C. 0.6D. 0.1【答案】C 【解析】 【分析】根据正态分布曲线的对称性可得2μ=,有(3)(1)P P ξξ>=<,再由对立事件概率关系即可求解. 【详解】(0)(4),2P P ξξμ<=>∴=,(3)(1)0.4P P ξξ∴>=<=, (1)1(1)0.6P P ξξ∴≥=-<=.故选:C.【点睛】本题考查正态分布曲线的对称性、对立事件概率关系,属于基础题.9.随着互联网的发展,网络购物用户规模也不断壮大,网上购物越来越成为人们热衷的一种现代消费方式.假设某群体的20位成员中每位成员网购的概率都为p ,各成员的网购相互独立.设X 为该群体中使用网购的人数,() 4.8D X =,(9)(11)P X P X =<=,则p =( ) A. 0.3 B. 0.4C. 0.6D. 0.7【答案】C 【解析】 【分析】由已知可得随机变量X 满足二项分布(20,)XB p ,根据二项分布方差公式求出p ,再由(9)(11)P X P X =<=求出p 的取值范围,即可求出结论.【详解】依题意随机变量X 满足二项分布(20,)XB p ,9911111192020(9)(11),(1)(1)P X P X C p p C p p =<=-<-,22(1)p p -<,解得0.51p <<,() 4.820(1) 4.8D X p p ==-=,整理得20.240p p -+=,解得0.6p =或0.4p =(舍去). 故选:C.【点睛】本题考查二项分布方差、独立重复试验概率,熟记公式是解题关键,属于基础题.10.甲、乙两人进行乒乓球比赛,比赛规则为“5局3胜”,即先赢3局者为胜.根据经验,甲在每局比赛中获胜的概率为23,已知第一局甲胜,则本次比赛中甲获胜的概率为( ) A.49B. 427C. 827D. 89【答案】D 【解析】 【分析】对甲获胜比赛局数分类讨论,打3局甲获胜,甲连赢2,3局;打4局获胜则2,3局甲一胜一负,第4局胜;打5局获胜,则2,3,4局甲胜一局负两局,第5局胜,求出各种情况的概率,按照互斥事件概率关系,即可求解.【详解】甲在每局比赛中获胜的概率为23,第一局甲胜, 打3局甲获胜概率为22()349=;打4局甲获胜概率为122128()3327C ⋅=; 打5局获胜的概率为2223124()()3327C ⋅=,所以甲获胜的概率为4848927279++=. 故选:D.【点睛】本题考查相互独立同时发生的概率、互斥事件的概率,考查计算求解能力,属于基础题. 11.有关独立性检验的四个命题,其中正确的是( )A. 两个变量的2×2列联表中,对角线上数据的乘积相差越大,说明两个变量有关系成立的可能性就越大B. 对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的可信程度越小C. 从独立性检验可知:有95%的把握认为秃顶与患心脏病有关,我们说某人秃顶,那么他有95%的可能患有心脏病D. 从独立性检验可知:有99%的把握认为吸烟与患肺癌有关,是指在犯错误的概率不超过1%的前提下认为吸烟与患肺癌有关 【答案】ABD 【解析】 【分析】2K 观测值越大,两个变量有关系的可能性越大,选项A 正确;根据独立性检验,2K 观测值越小,两个有关系的可信度越低,选项B 正确;独立性检验的结论适合于群体的可能性,不能认为是必然情况,选项C 不正确;根据独立性的解释,选项D 正确.【详解】选项A ,两个变量的2×2列联表中,对角线上数据的乘积相差越大, 则2K 观测值越大,两个变量有关系的可能性越大,所以选项A 正确;选项B ,根据2K 的观测值k 越小,原假设“X 与Y 没关系”成立的可能性越大, 则“X 与Y 有关系”的可信度越小,所以选项B 正确;选项C ,从独立性检验可知:有95%的把握认为秃顶与患心脏病有关, 不表示某人秃顶他有95%的可能患有心脏病,所以选项C 不正确; 选项D ,从独立性检验可知:有99%的把握认为吸烟与患肺癌有关, 是指在犯错误的概率不超过1%的前提下认为吸烟与患肺癌有关, 是独立性检验的解释,所以选项D 正确. 故选:ABD.【点睛】本题考查独立性检验概念辨析、2K观测值与独立性检验的关系,意在考查概念的理解,属于基础题.12.某人参加一次测试,在备选的10道题中,他能答对其中的5道.现从备选的10题中随机抽出3题进行测试,规定至少答对2题才算合格.则下列选项正确的是()A. 答对0题和答对3题的概率相同,都为1 8B. 答对1题的概率为3 8C. 答对2题的概率为5 12D. 合格的概率为1 2【答案】CD【解析】【分析】根据古典概型的概率公式,结合组合数公式,逐项求出各事件的概率.【详解】选项A,答对0题和3题的概率为3531010112012CC==,所以选项A错误;选项B,答对1题的概率为1255310105512012 C CC⨯==所以选项B错误;选项C,答对2题的概率为1255310105512012C CC⨯==,所以选项C正确;选项D,至少答对2题的概率为511 12122+=,所以选项D正确.故选:CD.【点睛】本题考查古典概型概率、互斥事件的概率,要明确各事件的关系,利用组合数求出基本事件的解题的关键,属于基础题.13.某学校共有6个学生餐厅,甲、乙、丙、丁四位同学每人随机地选择一家餐厅就餐(选择到每个餐厅概率相同),则下列结论正确的是()A. 四人去了四个不同餐厅就餐的概率为518B. 四人去了同一餐厅就餐的概率为11296C. 四人中恰有2人去了第一餐厅就餐的概率为25216D. 四人中去第一餐厅就餐的人数的期望为23【答案】ACD 【解析】 【分析】根据互斥事件的概率,分别求出选项,,A B C 对应事件的概率,逐项验证;对于选项D ,根据每个学生随机选择一家餐厅,则选择去第一餐厅的概率为16,所以去第一餐厅就餐的人数X 服从二项分布1(4,)6XB ,即可求出期望,判断选项D 正确.【详解】四位同学随机选择一家餐厅就餐有46选择方法,选项A ,四人去了四个不同餐厅就餐的概率为4645618A =,所以选项A 正确;选项B ,四人去了同一餐厅就餐的概率为4616216=, 所以选项B 不正确;选项C ,四人中恰有2人去了第一餐厅就餐的概率为22445256216C ⨯=,所以选项C 正确; 选项D ,每个同学选择去第一餐厅的概率为16, 所以去第一餐厅就餐的人数X 服从二项分布1(4,)6XB ,12()463E X ∴=⨯=,所以选项D 正确.故选:ACD.【点睛】本题考查互斥事件概率、二项分布期望,应用排列组合、分步乘法原理求出基本事件个数是解题的关键,注意特殊分布的运用,属于中档题.二、填空题:本大题共有4个小题,每小题4分,共16分.14.若1021101211(2)(21)x x a a x a x a x +-=++++,则1211a a a +++=_________.【答案】1 【解析】 【分析】展开式中,令1x =,得到所有系数和,令0,x =得到常数项0a ,相减即可求出结论. 【详解】1021101211(2)(21)x x a a x a x a x +-=++++,令00,2x a ==,令012111,3a a a x a ++++==,12111a a a +++=.故答案为:1.【点睛】本题考查展开式系数和,应用赋值法是解题的关键,属于基础题.15.用红、黄、蓝三种颜色涂四边形ABCD 的四个顶点,要求相邻顶点的颜色不同,则不同的涂色方法共有_________种. 【答案】18 【解析】 【分析】先对A 顶点涂色有3种颜色可供选择,接着B 顶点有2种颜色可供选择,对C 顶点颜色可供选择2种颜色分类讨论,分为与A 同色和A 不同色情况,即可得到D 顶点涂色情况,即可求解. 【详解】如果,A C 同色涂色方法有321212⨯⨯⨯=, 如果,A C 不同色涂色方法有32116⨯⨯⨯=, 所以不同的涂色方法有12618+=种. 故答案为:18.【点睛】本题考查染色问题、分步乘法原理和分类加法原理,注意限制条件,属于基础题.16.为了解高三复习备考情况,某校组织了一次阶段考试.若高三全体考生的数学成绩近似服从正态分布()2100,17.5N .已知成绩在117.5分以上(含117.5分)的学生有80人,则此次参加考试的学生成绩不超过82.5分的概率为_________;如果成绩大于135分的为特别优秀,那么本次考试数学成绩特别优秀的大约有________人. (若()2~,X Nμσ,则()0.68P X μσμσ-<<+≈,(22)0.96)P X μσμσ-<<+≈【答案】 (1). 0.16; (2). 10人. 【解析】 【分析】根据已知100,17.5,82.5,117.5,(82.5)()P X P X μδμδμδμδ==-=+=≤=≤+,结合已知数据,可求出学生成绩不超过82.5分的概率,求出(117.5)()P X P X μδ≥=≥+,进而求出学生总人数,再由(135)(2)P X P X μδ>=>+,即可求解.【详解】(82.5)()0.12()6P X P X P X μδμσμσ≤=≤-=≈-<<+,(117.5)()0.12()6P X P X P X μδμσμσ≥=≥+=≈-<<+,成绩在117.5分以上(含117.5分)的学生有80人, 高三考生总人数有805000.16=人, (135)(2)0.02(22)2P P X P X x μσμσμδ≈->+>=+=<<,本次考试数学成绩特别优秀的大约有5000.0210⨯=人. 故答案为:0.16;10人.【点睛】本题考查正态分布曲线的性质及应用,运用概率估计实际问题,属于中档题.17.近两年来,以《中国诗词大会》为代表的中国文化类电视节目带动了一股中国文化热潮.某台举办闯关答题比赛,共分两轮,每轮共有4类题型,选手从前往后逐类回答,若中途回答错误,立马淘汰,若全部回答正确,就能获得一枚复活币并进行下一轮答题,两轮都通过就可以获得最终奖金.选手在第一轮闯关获得的复活币,系统会在下一轮答题中自动使用,即下一轮重新进行闯关答题时,在某一类题型中回答错误,自动复活一次,视为答对该类题型.若某选手每轮的4类题型的通过率均分别为910、89、34、13,则该选手进入第二轮答题的概率为_________;该选手最终获得奖金的概率为_________. 【答案】 (1). 15; (2). 2571800.【解析】 分析】选手要进入第二轮答题,则第一轮要全部回答正确,根据相互独立同时发生的概率,即可求出其概率;该选手要获得奖金,须两轮都要过关,获得奖金的概率为两轮过关的概率乘积,第二轮通过,答题中可能全部答对四道题,或答错其中一道题,分别求出概率相加,即可得出结论. 【详解】选手进入第二轮答题,则第一轮中答题全部正确,概率为98311109435⨯⨯⨯=, 第二轮通过的概率为11831913198119832510943109431094310943+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯ 1111225754540155360=++++=, 该选手最终获得奖金的概率为125725753601800⨯=.故答案为:15;2571800.【点睛】本题考查相互独立同时发生的概率以及互斥事件的概率,考查计算求解能力,属于中档题. 三、解答题:本大题共6个小题,共82分.解答应写出文字说明、证明过程或演算步骤.18.已知复平面内的点A ,B 对应的复数分别为1i z m m =-,()222212i z m m =-+-(m ∈R ),设AB 对应的复数为z .(1)当实数m 取何值时,复数z 是纯虚数;(2)若复数z 在复平面上对应的点位于第四象限,求实数m 的取值范围. 【答案】(1)12m =-;(2)122m -<<-. 【解析】 【分析】(1)求出21z z z =-,z 是纯虚数,虚部不为0,实部为0,即可求解; (2)根据z 的值,求出对应点到坐标,根据已知列出不等式,即可求出结论. 【详解】点A ,B 对应的复数分别为()2212i,212i z m m z m m =-=-+-,AB ∴对应的复数为z ,222121(2)z z z m m m m i ∴=-=--++-,(1)复数z 是纯虚数,2221020m m m m ⎧--=∴⎨+-≠⎩,解得11221m m m m ⎧=-=⎪⎨⎪≠-≠⎩或且, 12m ∴=-;(2)复数z 在复平面上对应的点坐标为22(21,2)m m m m --+-,位于第四象限,2221020 m mm m⎧-->∴⎨+-<⎩,即11221m mm⎧-⎪⎨⎪-<<⎩或,122m∴-<<-.【点睛】本题考查复数的代数表示法、几何意义、复数的分类,属于基础题.19.受传统观念的影响,中国家庭教育过程中对子女教育的投入不遗余力,基础教育消费一直是中国家庭教育的重头戏,升学压力的逐渐增大,特别是对于升入重点学校的重视,导致很多家庭教育支出增长较快,下面是某机构随机抽样调查某二线城市2012-2018年的家庭教育支出的折线图.(附:年份代码1-7分别对应的年份是2012-2018)(1)从图中的折线图看出,可用线性回归模型拟合y与t的关系,请求出相关系数r(精确到0.001),并指出是哪一层次的相关性?(相关系数||[0.75,1]r∈,相关性很强;||[0.30,0.75)r∈,相关性一般;||[0,0.25]r∈,相关性较弱).(2)建立y关于t的回归方程;(3)若2019年该地区家庭总支出为10万元,预测家庭教育支出约为多少万元?附注:参考数据:71259iiy==∑,711178i iit y==∑()72127iiy y=-=∑,()()71126i iit t y y=--=∑,7 2.646≈.参考公式:()()()()12211niii nni i i i t t y y r t ty y===--=--∑∑∑ˆˆˆybt a =+, 其中()()()121ˆniii nii tty y btt==--=-∑∑,ˆˆay bt =- 【答案】(1)详见解析;(2) 4.519y t =+;(3)5.5万元. 【解析】 【分析】(1)由折线图中的数据及已知求出y 与t 的相关系数的近似值,对照参考数据,即可得出结论; (2)由已知结合公式求出b 及a ,可得y 关于t 的回归方程;(3)将2019对应的8t =代入回归方程,求出y ,进一步求得2019年该地区家庭教育支出. 【详解】(1)由折线图中数据及题中给出的参考数据, 可得()2174,28ii t tt==-=∑,所以()()()()1221777170.8822727iii i i i i t t y y r t t y y ===--===≈⨯--∑∑∑, 即y 与t 的相关系数近似值为0.882,所以相关性很强; (2)由71259ii y==∑,得259377y ==, 又()()()71721126ˆ 4.528iii ii tty y btt==--===-∑∑, ˆˆ37 4.5419ay bt =-=-⨯=, 所以y 关于t 的回归方程为 4.519y t =+;(3)将2019年对应的8t =代入回归方程 4.519y t =+,得 4.581955y =⨯+=,所以预测2019年该城市家庭教育支出将达到家庭总支出的55%, 因此当家庭总支出为10万元时,家庭教育支出为1055% 5.5⨯=(万元).【点睛】本题考查线性相关关系、线性回归方程及应用,考查计算求解能力,属于中档题. 20.已知1(21)n x +展开式的二项式系数和比(31)nx -展开式的偶数项的二项式系数和大48,求22nx x ⎛⎫- ⎪⎝⎭的展开式中:(1)二项式系数最大的项; (2)系数的绝对值最大的项.【答案】(1)8064-;(2)415360x --. 【解析】 【分析】(1)分别求出1(21)n x +展开式的二项式系数和,(31)nx -展开式的偶数项的二项式系数和,利用两者差48列方程,解方程求出n 的值,22nx x ⎛⎫- ⎪⎝⎭二项式系数最大项为第1n +,即可求解;(2)设第1k +项系数绝对值最大,化简二项展开式的通项公式,利用系数绝对值最大项比前后两项的系数绝对值都大列不等式组,解不等式组求得k 的取值范围,由此求得k 的值 【详解】(1)依题意112248,232,5n n n n +--==∴=,102x x ⎛⎫- ⎪⎝⎭的展开式中第6项二项式系数最大,即5556102()8064T C x x=-=-;(2)设第1k +项的系数的绝对值最大, 则10102110102()(1)2kkk k k k k k T C xC x x--+=⋅⋅-=-⋅⋅⋅,1110101110102222k k k k k k k k C C C C --++⎧⋅≤⋅∴⎨⋅≥⋅⎩,得110101101022k k k k C C C C -+⎧≤∴⎨≥⎩, 即2221202k k k k -≥⎧⎨+≥-⎩,1922,733k k ∴≤≤∴=, 所以系数的绝对值最大的是第8项,即77744810(1)215360T C x x --=-⋅⋅=-.【点睛】本题考查二项式系数和、二项式系数最大项、系数绝对值最大项,考查计算求解能力,属于中档题.21.为考察高中生的性别与是否喜欢数学课程之间的关系,某校在高中生中随机抽取100名学生进行了问卷调查,得到如下列联表: 喜欢数学 不喜欢数学 合计 男生 40 女生 30 合计 50100(1)请将上面的列联表补充完整;(2)能否在犯错误的概率不超过0.001的前提下认为“喜欢数学”与性别有关?说明你的理由; (3)若在接受调查的所有男生中按照“是否喜欢数学”进行分层抽样,现随机抽取6人,再从6人中抽取3人,求至少有1人“不喜欢数学”的概率. 下面的临界值表供参考:()2P K k ≥ 0.050.010 0.005 0.001 k3.8416.6357.87910828(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++).【答案】(1)详见解析;(2)详见解析;(3)45. 【解析】 【分析】(1)结合题中所给的条件完成列联表即可;(2)结合(1)中的列联表结合题意计算2K 的观测值,即可确定喜欢数学是否与性别有关;(3)随机抽取6人中,根据列联表中数据按照分层抽样原则,分别求出喜欢数学和不喜欢数学的人数,用间接法求出3人都喜欢数学的概率,进而得出结论.【详解】(1)列联表补充如下: 喜欢数学 不喜欢数学 合计 男生 40 20 60 女生 10 30 40 合计 5050100(2)由列联表值的的结论可得2K 的观测值为:28505100(40301020)16.6106047006.82k ⨯⨯=>⨯⨯-⨯≈,则在犯错误的概率不超过0.001的前提下认为“喜欢数学”与性别有关; (3)在接受调查的所有男生中按照“是否喜欢数学”进行分层抽样, 现随机抽取6人,喜欢数学的有4人,不喜欢数学2人, 从6人中抽取3人,记至少有1人“不喜欢数学”为事件A ,则34364114(),()120555C P A P A C ===∴=-=, 所以从6人中抽取3人,记至少有1人“不喜欢数学”的概率为45. 【点睛】本题考查了列联表与独立性检验问题,也考查了分层抽样与对立事件求概率,属于基础题. 22.小明下班回家途经3个有红绿灯的路口,交通法规定:若在路口遇到红灯,需停车等待;若在路口没遇到红灯,则直接通过.经长期观察发现:他在第一个路口遇到红灯的概率为45,在第二、第三个道口遇到红灯的概率依次减小,在三个道口都没遇到红灯的概率为245,在三个道口都遇到红灯的概率为845,且他在各路口是否遇到红灯相互独立.(1)求小明下班回家途中至少有一个道口遇到红灯的概率; (2)求小明下班回家途中在第三个道口首次遇到红灯的概率; (3)记ξ为小明下班回家途中遇到红灯的路口个数,求数学期望E ξ. 【答案】(1)4345;(2)145;(3)95. 【解析】 【分析】(1)根据对立事件的概率关系结合已知,即可求解; (2)设第二、三个道口遇到红灯的概率分别为12214,,5p p p p <<,根据已知列出关于12,p p 方程组,求得12,p p ,即可求出结论;(3)ξ的可能值为0,1,2,3分别求出概率,得出随机变量的分布列,由期望公式,即可求解.【详解】(1)因为小明在三个道口都没遇到红灯的概率为245, 所以小明下班回家途中至少有一个道口遇到红灯的概率为4345;(2)设第二、三个道口遇到红灯的概率分别为12214,,5p p p p <<, 依题意121212(1)(1)54548545p p p p ⎧--=⎪⎪⎨⎪=⎪⎩解得122313p p ⎧=⎪⎪⎨⎪=⎪⎩或121323p p ⎧=⎪⎪⎨⎪=⎪⎩(舍去),所以小明下班回家途中在第三个道口首次遇到红灯的概率111153345⨯⨯=;(3)ξ的可能值为0,1,2,3,2(0)45P ξ==, 41212211113(1)53353353345P ξ==⋅⋅+⋅⋅+⋅⋅=,42212141122(2)53353353345P ξ==⋅⋅+⋅⋅+⋅⋅=,8(3)45P ξ==,ξ∴分布列为ξ1 2 3p245 1345 2245 8452132289()0123454545455E ξ=⨯+⨯+⨯+⨯= 【点睛】本题考查互斥事件、对立事件概率关系,考查相互独立同时发生的概率,以及离散型随机变量分布列和期望,属于中档题.23.已知甲箱中装有3个红球,2个黑球,乙箱中装有2个红球,3个黑球,这些球除颜色外完全相同,某商场举行有奖促销活动,规定顾客购物1000元以上,可以参与抽奖一次,设奖规则如下:每次分别从以上两个箱子中各随机摸出2个球,共4个球,若摸出4个球都是红球,则获得一等奖,奖金300元;摸出的球中有3个红球,则获得二等奖,奖金200元;摸出的球中有2个红球,则获得三等奖,奖金100元;其他情况不获奖,每次摸球结束后将球放回原箱中.(1)求在1次摸奖中,获得二等奖的概率;(2)若3人各参与摸奖1次,求获奖人数X的数学期望()E X;(3)若商场同时还举行打9折促销活动,顾客只能在两项促销活动中任选一项参与.假若你购买了价值1200元的商品,那么你选择参与哪一项活动对你有利?【答案】(1)625;(2)219100;(3)详见解答.【解析】【分析】(1)设“在1次摸奖中,获得二等奖”为事件A,利用互斥事件概率计算公式能求出在1次摸奖中,获得二等奖的概率;(2)设“在1次摸奖中,获奖”为事件B,求出()P B,每个人获奖的概率相等,获奖人数X服从二项分布(3,())X P B,求出X可能值0,1,2,3的概率,由此求出X的分布列,应用二项分布期望公式即可求出结论;(3)求出中奖的期望,设中奖的的金额为η,η可能值为300,200,100,0,求出相应的概率,列出分布列,进而求出期望,与打9折的优惠金额对比,即可得出结论.【详解】(1)设“在1次摸奖中,获得二等奖”为事件A,则21111232323222556 ()25C C C C C CP AC C+==,所以在1次摸奖中,获得二等奖的概率6 25;(2)设“在1次摸奖中,获奖”为事件B,则获得一等奖的概率为2232122553100C CPC C==,获得三等奖的概率为2211112233322322222552350C C C C C C C CPC C++==,所以362373 ()1002550100P B=++=,每个人摸奖是相互独立,且获奖概率相等, 获奖人数X 服从二项分布73(3,)100X, 3373270,1,2,3,()()(),0,1,2,3100100i i iX P X i C i -====,X 分布列为: X12 3p327()1001237327()100100C ⋅⋅ 2237327()100100C ⋅⋅ 373()10073219()3100100E X =⨯=; (3)如果选择抽奖,设中奖的的金额为η,η可能值为300,200,100,0,36(300),(200)10025P P ηη====, 23(100)50P η==,1122112223232323225527(0)100C C C C C C C C P C C η++===,η的分布列为: η300200100p31006252350271003244627()3002001000103100100100100E η=⨯+⨯+⨯+⨯=, 如果购买1200选择打九折,优惠金额为120103>,∴选择打九折更有利.【点睛】本题考查互斥事件概率、离散型随机变量分布列期望、二项分布期望,考查计算求解能力,属于中档题.。

河北省石家庄市2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析

河北省石家庄市2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析

石家庄市2018~2019学年度第一学期期末考试试题高二数学(文科)第Ⅰ卷(选择题,共60分)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.命题“若则”地逆否命题是()A. 若则B. 若则C. 若则D. 若则【结果】B【思路】本题主要考查命题及其关系。

逆否命题是将原命题地款件与结论否定,然后再将否定后地款件和结论互换,故命题“若则”地逆否命题是“若,则”。

故选2.一个年级有22个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为19地学生留下进行交流,这里运用地是A. 分层抽样法B. 抽签法C. 随机数表法D. 系统抽样法【结果】D【思路】【思路】依据系统抽样地定义进行判断即可.【详解】每个班同学以1﹣50排学号,要求每班学号为19地同学留下来交流,则数据之间地间距差相同,都为50,所以依据系统抽样地定义可知,这里采用地是系统抽样地方式.故选:D.【点睛】本题主要考查抽样地定义和应用,要求熟练掌握简单抽样,系统抽样和分层抽样地定义,以及它们之间地区别和联系,比较基础.3.抛物线地焦点坐标是A. B. C. D.【结果】B【思路】【思路】先将方程化简为标准形式,即可得焦点坐标.【详解】由抛物线可得x2=4y,故焦点坐标为(0,1)故选:B.【点睛】本题主要考查抛物线地简单性质,属于基础题.4.已知命题:,。

命题:,,则下面表达中正确地是A. 是假命题B. 是真命题C. 是真命题D. 是假命题【结果】C【思路】【思路】先判断命题地真假,进而求得复合命题真假判断真值表得到结果.【详解】命题p,,即命题p为真,对命题q,去 ,所以命题q为假,为真所以是真命题故选:C.【点睛】(1)对于一些简单命题,判断为真,许推理证明,若判断为假,只需找出一个反例即可。

(2)对于复合命题地真假判断应利用真值表。

(3)也可以利用“互为逆否命题”地等价性,通过判断其逆否命题地真假来判断原命题地真假.5.阅读下边地程序框图,运行相应地程序,则输出地值为A. -1B. 0C. 3D. 4【结果】D【思路】【思路】直接依据程序框图计算得出结果.【详解】由程序框图可知。

2018-2019学年高二(下)期末数学试卷(含答案)

2018-2019学年高二(下)期末数学试卷(含答案)

高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.()A. 5B. 5iC. 6D. 6i2.( )B.3.某校有高一学生n名,其中男生数与女生数之比为6:5,为了解学生的视力情况,若样本中男生比女生多12人,则n=()A. 990B. 1320C. 1430D. 15604.(2,k(6,4是()A. (1,8)B. (-16,-2)C. (1,-8)D. (-16,2)5.某几何体的三视图如图所示,则该几何体的体积为()A. 3πB. 4πC. 6πD. 8π6.若函数f(x)a的取值范围为()A. (-5,+∞)B. [-5,+∞)C. (-∞,-5)D. (-∞,-5]7.设x,y z=x+y的最大值与最小值的比值为()A. -1B.C. -28.x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为()A. 2B. 1 D. 49.等比数列{a n}的前n项和为S n,若S10=10,S30=30,则S20=()A. 20B. 10C. 20或-10D. -20或1010.当的数学期望取得最大值时,的数学期望为()A. 211.若实轴长为2的双曲线C:4个不同的点则双曲线C的虚轴长的取值范围为( )12.已知函数f(x)=2x3+ax+a.过点M(-1,0)引曲线C:y=f(x)的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则f(x)的极大值点为()二、填空题(本大题共4小题,共20.0分)13.(x7的展开式的第3项为______.14.已知tan(α+β)=1,tan(α-β)=5,则tan2β=______.15.287212,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C面积则椭圆C的标准方程为______.16.已知高为H R的球O的球面上,若二面4三、解答题(本大题共6小题,共70.0分)17.nn的通项公式.18.2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如表格:(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.19.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b sin A cos C+a sin C cos B A.(1)求tan A的值;(2)若b=1,c=2,AD⊥BC,D为垂足,求AD的长.20.已知B(1,2)是抛物线M:y2=2px(p>0)上一点,F为M的焦点.(1,M上的两点,证明:|FA|,|FB|,|FC|依次成等比数列.(2)若直线y=kx-3(k≠0)与M交于P(x1,y1),Q(x2,y2)两点,且y1+y2+y1y2=-4,求线段PQ的垂直平分线在x轴上的截距.21.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PB=PC,E为线段BC的中点,F为线段PA上的一点.(1)证明:平面PAE⊥平面BCP.(2)若PA=AB,二面角A-BD=F求PD与平面BDF所成角的正弦值.22.已知函数f(x)=(x-a)e x(a∈R).(1)讨论f(x)的单调性;(2)当a=2时,F(x)=f(x)-x+ln x,记函数y=F(x1)上的最大值为m,证明:-4<m<-3.答案和解析1.【答案】A【解析】故选:A.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.2.【答案】C【解析】【分析】本题考查元素与集合的关系,子集与真子集,并集及其运算,属于基础题.先分别求出集合A与集合B,再判别集合A与B的关系,以及元素和集合之间的关系,以及并集运算得出结果.【解答】解:A={x|x2-4x<5}={x|-1<x<5},B={2}={x|0≤x<4},∴∉A,B,B⊆A,A∪B={x|-1<x<5}.故选C.3.【答案】B【解析】解:某校有高一学生n名,其中男生数与女生数之比为6:5,样本中男生比女生多12人,设男生数为6k,女生数为5k,解得k=12,n=1320.∴n=1320.故选:B.设男生数为6k,女生数为5k,利用分层抽样列出方程组,由此能求出结果.本题考查高一学生数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:∴k=-3;∴(-16,-2)与共线.k=-3考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定理.5.【答案】A【解析】解:由三视图知,几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,∴,故选:A.几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,根据体积公式得到结果.本题考查由三视图求几何体的体积,考查由三视图还原直观图,本题是一个基础题,题目的运算量比较小,若出现是一个送分题目.6.【答案】B【解析】解:函数f(x)x≤1时,函数是增函数,x>1时,函数是减函数,由题意可得:f(1)=a+4≥,解得a≥-5.故选:B.利用分段函数的表达式,以及函数的单调性求解最值即可.本题考查分段函数的应用,函数的单调性以及函数的最值的求法,考查计算能力.7.【答案】C【解析】解:作出不等式组对应的平面区域如图:A(2,5),B-2)由z=-x+y,得y=x+z表示,斜率为1纵截距为Z的一组平行直线,平移直线y=x+z,当直线y=x+z经过点A时,直线y=x+z的截距最大,此时z最大值为7,经过B时则z=x+y的最大值与最小值的比值为:.故选:C.作出不等式对应的平面区域,利用z的几何意义,利用直线平移法进行求解即可.本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.【解析】解:由题意,对任意的∈R,都有f(x1)≤f(x)≤f(x2)成立,∴f(x1)=f(x)min=-3,f(x2)=f(x)max=3.∴|x1-x2|min∵T=4.∴|x1-x2|min=.故选:A.本题由题意可得f(x1)=f(x)min,f(x2)=f(x)max,然后根据余弦函数的最大最小值及周期性可知|x1-x2|min本题主要考查余弦函数的周期性及最大最小的取值问题,本题属中档题.9.【答案】A【解析】解:由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,(30-S20),解得S20=20,或S20=-10,∵S20-S10=q10S10>0,∴S20>0,∴S20=20,故选:A.由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,列式求解.本题考查了等比数列的通项公式和前n项和及其性质,考查了推理能力与计算能力,属于中档题.10.【答案】D【解析】解:∴EX取得最大值.此时故选:D.利用数学期望结合二次函数的性质求解期望的最值,然后求解Y的数学期望.本题考查数学期望以及分布列的求法,考查计算能力.11.【答案】C【解析】【分析】本题考查了双曲线的性质,动点的轨迹问题,考查了转化思想,属于中档题.设P i(x,y)⇒x2+y2(x2。

江西师范大学附属中学2018-2019学年高二上学期期末考试数学(文)试题

江西师范大学附属中学2018-2019学年高二上学期期末考试数学(文)试题

2018—2019学年度上学期期末考试高二数学(文)试题一,选择题(每小题5分,共12小题,共60分)1.若复数Z 满足(1)34i Z i +=+,则Z 地实部为( )A .32-B .52- C .32D .522. 若函数xe x x y -++=23log ,则='y ( ).A .x e x x -++2ln 1414 B .x e x x --+2ln 1414 C .x e x x --+2ln 132D .xe x x -++2ln 1323. 直线y =kx +b 与曲线31y x ax =++相切于点()2,3 ,则b 地值为 ( )A. -15B. -7C. -3D. 94. 下面表达正确地是( )A .“若x 2=1,则x =1,或x =-1”地否定是“若x 2=1则x ≠1,或x ≠-1”B .a ,b 是两个命题,假如a 是b 地充分款件,那么⌝a 是⌝b 地必要款件.C .命题“∃x 0∈R,使得20010x x ++<”地否定是:“∀x ∈R,均有x 2+x +1<0”D .命题“若α=β,则sin α=sin β”地否命题为真命题5. 已知/()(1)ln f x f x x =+,则()f e 是( )A .1e +B .eC .2e +D .36. 设抛物线24y x =地焦点为F ,不过焦点地直线与抛物线交于1(A x ,1)y ,2(B x ,2)y两点, 与y 轴交于点C (异于坐标原点)O ,则ACF ∆与BCF ∆地面积之比为( )A .12x xB .1211x x ++C .2122x x D .212211x x ++7,已知定义在R 上地函数f (x )满足f (4)=f (﹣2)=1,f′(x )为f (x )地导函数,且导函数y=f′(x )地图象如图所示.则不等式f (x )<1地解集是()A .(﹣2,0)B .(﹣2,4)C .(0,4)D .(﹣∞,﹣2)∪(4,+∞)8,设=)(x f 3,x x x +∈R ,当02πθ≤≤时,0)1()sin (>-+m f m f θ恒成立,则实数m 地取值范围是( )A .(0,1)B .)0,(-∞C .21,(-∞D .)1,(-∞9,直线2by x a=与双曲线22221x y a b -=(a >0,b >0)地左支,右支分别交于A,B 两点,F 为右焦点,若AB ⊥BF,则该双曲线地离心率为( )A B C D .210.设函数()f x 是定义在(),0-∞上地可导函数,其导函数为()f x ',且有x x f x x f <'+)()(,则不等式0)2(2)2014()2014(>-+++f x f x 地解集为( )A .(),2012-∞-B .()20120-,C .(),2016-∞-D .()20160-,11.已知函数21(),()2ln 2,()f x kx g x x e x e e==+≤≤,若()f x 与()g x 地图象上分别存在点M,N,使得MN 有关直线y e =对称,则实数k 地取值范围是( )A .224[,e e-- B .2[,2]e e -C .24[,2]e e- D .24[,)e-+∞12. 已知当()1,x ∈+∞时,有关x 地方程()ln 21x x k xk+-=-有唯一实数解,则k 值范围是()A .()3,4B .()4,5C .()5,6D .()6,7二,填空题(每小5分,共4小题,共20分)13. 定义运算11a b ,b a b a a b 122122-=则函数()21331x xxx f x +=地图象在点⎪⎭⎫ ⎝⎛31,1处地切线方程是__________.14. 复数z 1=1-2i,|z 2|=3,则|z 2-z 1|地最大值是___________.15.语文中有回文句,如:“上海自来水来自海上”,倒过来读完全一样。

湖南省邵阳市邵东县第一中学2018_2019学年高二数学上学期期末考试试题理

湖南省邵阳市邵东县第一中学2018_2019学年高二数学上学期期末考试试题理

湖南省邵东一中2018年下学期高二年级期末考试试题数学(理)分值:150分 时量:120分钟 一选择题:(本题共12小题,每小题5分,共60分。

在每小题所给出地四个选项中,只有项是符合题目要求地。

)1,等差数列中{}n a 中,15410,7a a a +== ,则数列{}n a 地公差为( )A ,1 B ,2 C ,3 D ,42,三角形ABC 中,1,a b ==( )A ,60°B ,30°或150°C ,60°或120°D ,120°3已知命题p :彐x ∈R,x 2-x +1≥0,命题q :若a 2<b 2,则a <b ,下面命题为真命题地是( )A p q ∧ B. ()p q ∧⌝ C. p q ⌝∨ D. ()()p q ⌝∧⌝4若双曲线22221x y a b-=地一款渐近线经过点(3,— 4),则此双曲线地离心率为( )B. 54C. 43D.535,下面命题为真命题地个数是( )。

①{|x x x ∀∈是无理数},2x 是无理数。

②命题“∃x 0∈R,x 20+1>3x 0”地否定是“∀x ∈R,x 2+1≤3x ”。

③命题“若220x y +=,x R y R ∈∈,则0x y ==”地逆否命题为真命题。

④ (2x xe e --')=2。

A .1 B.2C.3D.46,与圆221x y +=及圆22870x y x +-+=都外切地圆地圆心在( )。

A .一个圆上B. 一个椭圆上C.双曲线地一支上D.抛物线上7,平行六面体ABCD -A ′B ′C ′D ′中,若AC → ′=xAB → +2yBC → -3zCC →′,则x +y +z =( )。

A .1B .76C .56D .238,已知点P (x ,y )地坐标满足款件11350x y x x y ≥⎧⎪≥-⎨⎪+-≤⎩那么点P 到直线3x -4y -13=0地距离地最小值为( )。

河北省成安县第一中学2018-2019学年高二上学期期末考试数学(文)试题

河北省成安县第一中学2018-2019学年高二上学期期末考试数学(文)试题

2018-2019学年上学期期末考试高二数学试题(文)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时长120分钟第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知集合A={x|2x2﹣5x﹣3≤0},B={x∈Z|x≤2},则A∩B中地圆素个数为( )A.2B.3C.4D.52.设复数z=1+i,i是虚数单位,则+()2=( )A.1﹣3i B.1﹣i C.﹣1﹣i D.﹣1+i3.命题“∃x0∈(0,),cosx0>sinx0”地否定是( )A.∃x0∈(0,),cosx0≤sinx0B.∀x∈(0,),cosx≤sinxC.∀x∈(0,),cosx>sinx D.∃x0∉(0,),cosx0>sinx04.设各项均为正数地等差数列{a n}地前n项和为S n,且a4a8=32,则S11地最小值为A.244 C.22 D.4422 B.25.已知向量,满足•(﹣)=2,且||=1,||=2,则与地夹角为( )A.B.C.D.6.如图为教育部门对辖区内某学校地50名儿童地体重(kg)作为样本进行思路而得到地频率分布直方图,则这50名儿童地体重地平均数为( )A.27.5B.26.5C.25.6D.25.7 7.已知sin()=,则cos(2)=( )A.﹣B.﹣C.D.8.在一线性回归模型中,计算相关指数20.96R ,下面哪种表达不够妥当?( )A.该线性回归方程地拟合效果较好B.解释变量对于预报变量变化地贡献率约为96%C.随机误差对预报变量地影响约占4%D.有96%地样本点在回归直线上9.如图,B ,D 是以AC 为直径地圆上地两点,其中,,则=( )A .1B .2C .tD .2t10.已知实数x,y 满足款件|x ﹣1|+|y ﹣1|≤2,则2x+y 地最大值为( )A .3B .5C .7D .911.设函数()f x 在R 上可导, ()()2'23,f x x f x =-则()1f -与()1f 地大小关系是( )A. ()(1)1f f -=B. ()()f f ->11C. ()(1)1f f -<D.不确定12.抛物线y 2=2px (p >0)地焦点为F,已知点A,B 为抛物线上地两个动点,且满足∠AFB=120°.过弦AB 地中点M 作抛物线准线地垂线MN,垂足为N,则地最大值为( )A .B .1C .D .2 第Ⅱ卷(非选择题)二.填空题(共4题每题5分满分20分)13.已知双曲线=l (a >0,b >0)地一款渐近线与直线2x+y ﹣3=0垂直,则该双曲线地离心率为 .14.已知正四面体ABCD 地棱长为l,E 是AB 地中点,过E 作其外接球地截面,则此截面面积地最小值为 .15.若函数2()2ln f x x x =-在其定义域内地一个子区间(1,1)k k -+内不是单调函数,则实数k 地取值范围是16.设函数y=地图象上存在两点P,Q,使得△POQ 是以O 为直角顶点地直角三角形(其中O 为坐标原点),且斜边地中点恰好在y 轴上,则实数a 地取值范围是 .三.解答题:(解答题应写出必要地文字说明和演算步骤,17题10分,18-22每题12分)17.已知a,b,c 分别为△ABC 地三个内角A,B,C 地对边,a=2且(2+b )(sinA ﹣sinB )=(c ﹣b )sinC(1)求角A 地大小。

江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)一,选择题(每小题5分,共12小题60分)1.已知命题,下面命题中正确地是( )A. B.C. D.【结果】C【思路】试题思路:命题,使地否定为,使,故选C.考点:特称命题地否定.2.若,且,则实数地值是()A. B. C. D.【结果】D【思路】试题思路:由得,,∴,故.考点:向量垂直地充要款件.3.对于简单随机抽样,每个个体每次被抽到地机会( )A. 相等B. 不相等C. 无法确定D.与抽取地次数相关【结果】A【思路】【思路】依据简单随机抽样地概念,直接选出正确选项.【详解】依据简单随机抽样地概念可知,每个个体每次被抽到地机会相等,故选A.【点睛】本小题主要考查简单随机抽要地概念,属于基础题.4.如图,在三棱柱中,为地中点,若,则下面向量与相等地是( )A. B. C. D.【结果】A【思路】【思路】利用空间向量加法和减法地运算,求得地表达式.【详解】由于是地中点,所以.故选A.【点睛】本小题主要考查空间向量加法和减法地运算,考查化归与转化地数学思想方式,属于基础题.5.如图是2013年某大学自主招生面试环节中,七位评委为某考生打出地分数地茎叶统计图,去掉一个最高分和一个最低分后,所剩数据地平均数和众数依次为()A. B. C. D.【结果】A【思路】【思路】先去掉最高分和最低分,然后计算出平均数和众数.【详解】去掉最高分,去掉最低分,剩余数据为,故众数为,平均数为,故选A.【点睛】本小题主要考查平均数地计算,考查众数地识别,考查阅读理解能力,属于基础题. 6.计算机执行下面地算法步骤后输出地结果是( )A. 4,-2B. 4,1C. 4,3D. 6,0【结果】B【思路】【思路】依据程序运行地顺序,计算出输出地结果.【详解】运行程序,,,,输出,故选B.【点睛】本小题主要考查计算程序输出结果,考查程序语言地识别,属于基础题.7.过点且与抛物线只有一个公共点地直线有()A. 1款B. 2款C. 3款D. 4款【结果】C【思路】【思路】画出图像,依据图像判断符合题意地公共点个数.【详解】画出图像如下图所示,由图可知,这两款直线与抛物线只有一个公共点,另外过点还可以作出一款与抛物线相切地直线,故符合题意地直线有款,故选C.【点睛】本小题主要考查直线和抛物线地位置关系,考查直线和抛物线交点个数问题,属于基础题.8.一个均匀地正方体玩具地各面上分别标以数(俗称骰子),将该玩具向上抛掷一次,设事件A表示向上地一面出现奇数(指向上地一面地数是奇数),事件B表示向上地一面地数不超过3,事件C表示向上地一面地数不少于4,则()A. A与B是互斥事件 B. A与B是对立事件C. B与C是对立事件D. A与C是对立事件【结果】C【思路】【思路】分别求得事件所包含地基本事件,由此判断正确选项.【详解】依题意可知,,.故不是互斥事件,不是对立事件,是对立事件,不是对立事件.故选C.【点睛】本小题主要考查互斥事件和对立事件地概念,属于基础题.9.有下面调查方式:①学校为了解高一学生地数学学习情况,从每班抽2人进行座谈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21. 甲、乙两人进行象棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的 概率为 ,乙获胜的概率为 ,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率; (2)用X表示比赛决出胜负时的总局数,求随机变量X的分布列和均值.
22. 已知函数
5
内为优质品.从两个企业生产的零件中各随机抽出了
乙企业: 分组
频数 5
5
(1)已知甲企业的 件零件质量指标值的样本方差
,该企业生产的零件质量指标值X服从正态分布
,其中μ近似为质量指
标值的样本平均数 (注:求 时,同一组中的数据用该组区间的中点值作代表), 近似为样本方差 ,试根据企业的抽样数据,估计所生
, , ,其中正确的个数为________.
山东省泰安市2018-2019学年高二下学期期末数学试题
15. 从1、3、5、7中任取2个数字,从0、2、4、6中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有________个.(用数 字作答)
16. 已知函数
,若函数 存在唯一零点 ,且
,则实数a的取值范围是________.
三、解答题
17. 已知复数 与 (1)求复数 ; (2)若复数z满足
都是纯虚数,复数
,其中i是虚数单位.
,求z.
18. 已知函数f(x)=ln .
(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)对于x∈[2,6],f(x)=ln >ln
恒成立,求实数m的取值范围.
19. 已知 (1)求a的值; (2)讨论函数

,曲线
的图象与直线
在点
处的切线平分圆C:
的交点个数.
的周长.
山东省泰安市2018-2019学年高二下学期期末数学试题
20. 甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在 件,测量这些零件的质量指标值,得结果如下表: 甲企业:
分组
频数

(1)若
(2)当 时,证明:
.
,当
时,求函数
.
的极值.
A.性别与是否喜欢理科有关 B.女生中喜欢理科的比为 C.男生不喜欢理科的比为 D.男生比女生喜欢理科的可能性大些
4. 下列等式不正确的是( ) A. C.
山东省泰安市2018-2019学年高二下学期期末数学试题
B. D.
5. 在某个物理实验中,测得变量x和变量y的几组数据,如下表: x y
则下列选项中对x,y最适合的拟合函数是( )
性回归方程为
,则 为( )
x 2 4 5 68
y 25 35 60 55 75
A.
B.
C.
D.5
9. 函数 A.
图象的大致形状是( ) B.
山东省泰安市2018-2019学年高二下学期期末数学试题
C.
D.
10. 已知二项式 A.14
的展开式中第2项与第3项的二项式系数之比是2︰5,则 的系数为( )
B.
C.240
D.
11. 已知函数 A.

,若
B.

,使得
C.
,则实数a的取值范围是( ) D.
12. 已知函数
是偶函数 (
取值范围是( )
A.
C.

)的导函数,
,当
时,
B. D.
二、填空题
13.
=______.
,则使不等式
成立的x的
14. 已知X的分布列如图所示,则
X
-1
0
1
P
0.2 0.3
a
(1) (2) (3)
A.
B.
C.
D.
6. 已知函数
,当 取得极值时,x的值为( )
A.
B.
C.
D.
7. 同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数小于4”为事件A,“两颗骰子的点数之和等于7”为事件B,则 ()
A.
B.
C.
D.
8. 某家具厂的原材料费支出x(单位:万元)与销售量y(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y与x的线
产的零件中,质量指标值不低于 的产品的概率.(精确到

(2)由以上统计数据完成下面 列联表,并判断能否在犯错误的概率不超过
的前提下认为两个业生产的零件的质量有差异.
甲厂
乙厂
总计
优质品
非优质品
总计
附: 参考数据: 参考公式:若
, ,则 ,
, ;
山东省泰安市2018-2019学年高二下学期期末数学试题
一、单选题
1. 已知复数 A.
山东省泰安市2018-2019学年高二下学期期末数学试题
在复平面内对应的点在第一象限,则实数m的取值范围是( )
B.
C.
D.
2. 设函数
的定义域A,函数
的值域为B,则
()
A.
B.
C.
D.
3. 如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,由图得到结论不正确的为( )
相关文档
最新文档