最新部编版人教初中数学七年级上册《第2章(整式的加减)全章导学案》精品优秀实用完整打印版导学单
七年级初一数学上册第二章整式的加减整式导学案新人教
2.1.3整式德育目标:、通过师生合作,体验教学活动充满着探索性和创造性,从而体会到学习中的成就感。
学习目的:1、理解整式的概念。
2、掌握整式在实际生活中的应用。
学习重点:整式的应用。
学习难点:整式的应用。
学习过程: 一、课堂引入:知识复习概念单项式多项式整式包括________ 和______常数项、多项式的次数。
二、自学教材:用整式表示下列实际问题中的数量关系。
一条河流的水流速度为2.5千米/时,如果一直船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、乙两条船在静水中的速度分别是20千米/时和35千米/时,则它们在这条河流中顺水行驶和逆水行驶的速度各是多少?二、例题讲解:例1、礼堂第1排有个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第3排呢?用式子表示第n排的座位数,如果第1排有20 个座位,计算第19排的座位数。
例2、一种商品生产成本a元,按成本价增加22%定出售价格,出售价多少元?后来因库存积压降价按原价的85%出售,现在售价多少元?每件还能盈利多少元?三、当堂练习: 1、填表整式—15ab4a 2b 2532yx 4x 2—3 a 4—2a 2b 2+b 4系数 次数 项2、列式表示: (1)比a 小3的数。
(2)某种苹果的售价是每千克x 元,用面值是50元的人民币购买6千克,应找回多少钱?(3)、两车同时、同地、同向出发,快车行驶速度是x 千米/时,慢车行驶速度是y 千米/时,3小时后两车相距多少千米?3、某种商品的进价为每件a 元,在销售过程中,商品售价比进价高30%,销售旺季过后,商品又以7折的价格开展促销活动,这时一件该商品的售价为多少?此时是盈还是亏?4、某市出租车收费标准为:起步价8元,3千米后每千米价1.8元,则某人乘坐出租车x (x>3)千米的付费为________元。
知识拓展题:5、3个球队进行单循环比赛(参加比赛的每一个队都与其他所有的队各赛一场),总的比赛场数是多少?4个队呢?5个队呢?n个队呢?6、如图,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?······························n=2 n=3 n=4 n=5板书设计 2、1整式例1、礼堂第1排有个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第3排呢?用式子表示第n排的座位数,如果第1排有20 个座位,计算第19排的座位数。
七年级初一数学上册第二章整式的加减整式的加减导学案新人教
2.2.1整式的加减(2)德育目标:、通过师生合作,体验教学活动充满着探索性和创造性,从而体会到学习中的成就感。
学习目的:1、合并同类项的方法2、整式的化简求值学习重点:整式的化简求值学习难点:合并同类项学习过程: 一、课堂引入: 复习定义:同类项合并同类项1、正确合并多项式 (1)合并同类项4x 2+2x+7+3x-8x 2-2(2)当x=2时,试求上式的值.二、自学课本P64 学生理解直接代入求值 或化简后求值的两种方法难易三、例题讲解:例2|、(1)求多项式2x2—5x +x 2+4x —3x 2—2的值,其中x =21(2)、求多项式3a+abc —31c 2—3a+31c 2的值,其中a= -61,b= 2, c= -3四、当堂训练:(A 组) 1、写出下列各式。
(1)x 的4倍与x 的5倍的和是多少?(2)x 的3 倍比x 的一半大多少?2、求下列各式的值(1)3a +2b —5a —b,其中a = —2, b=1(2)3x-4x 2+7 —3x+2x 2+1,其中X=—3(B 组)3、求多项式x 3+4x2—7x +5—4x 2+21x 3+8x —2,其中x =24、求多项式21xy 2—31yx 2+61xy 2—32xy 2—4+y x 2+2的值,其中x =—21,y =2(C 组)学生交流讨论5、把(b a 2+)看成一个字母,把代数式—2(b a 2+)2—1+(b a 2+)3+2(b a 2+)按(b a 2+)的指数从大到小排列6、讨论:如果多项式x 5—(2 a )x4+7x 2+(b —3)x —9中不含x 4和x 的项, 求b a ,的值拓展题: 7、多项式2a2—3a +4的值为6,则多项式32a 2—a —1的值为多少?板书设计: 2.2.1整式的加减(2) 一、合并同类项 化简求值例2|、(1)求多项式2x 2—5x +x 2+4x —3x 2—2的值,其中x =21 (2)、求多项式3a+abc —31c 2—3a+31c 2的值,其中a= -61,b= 2, c= -3五、学习反思七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知(x-m)(x+n )=x 2-3x-4,则mn 的值为( )A .4B .-4C .-3D .3 【答案】A【解析】根据多项式乘多项式法则把等式的左边展开,根据题意求出m 、n 的值,计算即可.【详解】(x-m)(x+n )=x 2 +nx-mx-mn= x 2+(n-m )x-mn,则mn=4故选A【点睛】此题考查多项式乘多项式,解题关键在于掌握运算法则2.如图,在四边形ABCD 中,AD BC ∥,B D ∠=∠,延长BA 至E ,连接CE 交AD 于F ,EAD ∠和ECD ∠的角平分线相交于点P .若60E ∠=︒,70APC ∠=︒,则D ∠的度数是( )A .80°B .75°C .70°D .60°【答案】A 【解析】由角平分线的定义可知,∠1=∠2,∠3=∠4,根据三角形的内角和定理,可得∠E+∠1=∠P+∠3,进而∠1-∠3=∠P-∠E=70°-60°=10°=∠2-∠4,同理∠2-∠4=∠D-∠P=10°,从而求出∠D 的度数.【详解】如图;由题意得:∠1=∠2,∠3=∠4,∠E=60°,∠P=70°,在△AME 和△PMC 中,由三角形的内角和定理得:∠E+∠1=∠P+∠3,∴∠1-∠3=∠P-∠E=70°-60°=10°=∠2-∠4, 同理:∠P+∠2=∠D+∠4,∴∠2-∠4=∠D-∠P=10°,∴∠D=80°.故选A.【点睛】考查三角形内角和定理和角平分线的定义,由等式的性质和等量代换可求答案,3.下列命题:①相等的角是对顶角;②两条直线被第三条直线所截,同旁内角互补;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一直线的两直线互相平行.其中假命题的个数是()A.1 B.2 C.3 D.4【答案】C【解析】利用对顶角的性质、平行线的性质、点到直线的距离的定义、平行公理分别判断后即可确定正确的选项.【详解】解:①相等的角是对顶角,故错误,是假命题;②两条平行直线被第三条直线所截,同旁内角互补,故错误,是假命题;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;④平行于同一直线的两直线互相平行,正确,是真命题.其中命题的个数是3,故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质、点到直线的距离的定义、平行公理等知识,难度不大.4.一个长方形的面积为4a2-6ab+2a,若它的一边长为2a,则它的周长为()A.4a-3b B.8a-6bC.4a-3b+1 D.8a-6b+2【答案】D4a﹣6ab+1a)【解析】首先利用面积除以一边长即可求得另一边长,则周长即可求解.另一边长是:(2÷1a=1a﹣3b+1,则周长是:1[(1a﹣3b+1)+1a]=8a﹣6b+1.故选D.考点:整式的运算.5.在中,,于,平分交于,则下列结论一定成立的是()A.B.C.D.【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.详解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选C.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.6.如图,某公园里一处长方形风景欣赏区ABCD,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,若AB=50米,BC=25米,小明沿着小路的中间从入口E处走到出口F处,则他所走的路线(图中虚线)长为()A.75米B.96米C.98米D.100米【答案】C【解析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD-1)×2,求出即可.【详解】利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB ,纵向距离等于(AD-1)×2,图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=25米,为50+(25-1)×2=98(米),故选C .【点睛】考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.7.如图,//AB CD ,150,2∠=︒∠的度数是( )A .50︒B .100︒C .130︒D .140︒【答案】C【解析】∵AB ∥CD ,∴∠3=∠1=50°,∴∠2=180°–∠3=130°.故选C .8.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A .第一天B .第二天C .第三天D .第四天【答案】B【解析】根据图象中的信息即可得到结论.【详解】由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,故选B .9.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ【答案】C【解析】根据三角形高线的定义即可解题.【详解】解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,故选C.【点睛】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.10.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO =100°,则∠C的度数为()A.40°B.41°C.42°D.43°【答案】A【解析】连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=100°,推出2∠DAO+2∠FBO=100°,推出∠DAO+∠FBO=50°,由此即可解决问题.【详解】如图,连接AO、BO.由题意EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°,∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO,∵∠CDO+∠CFO=100°,∴2∠DAO+2∠FBO=100°,∴∠DAO+∠FBO=50°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=140°,∴∠C=180°-(∠CAB+∠CBA)=180°-140°=40°,故选A.【点睛】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识,学会把条件转化的思想.二、填空题题11.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数n=____.【答案】1.【解析】根据多边形的内角和公式及外角的特征计算.【详解】多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故答案为:1.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.12.若a2-3b=4,则2a2-6b +2019=_____.【答案】2027【解析】将a2-3b=4代入原式=2(a2-3b)+2019,计算可得.【详解】当a2−3b=4时,原式=2(a2−3b)+2019=2×4+2019=2027,故答案为2027.【点睛】本题考查有理数的加减运算,解题的关键是掌握整体代入法.13.已知21xy=⎧⎨=⎩是方程组221x aybx y+=⎧⎨+=⎩的解,则a b+=__________.【答案】-2【解析】解题关键是把方程组的解代入原方程组,使方程组转化为关于a 和b 的二元一次方程组,再解方程组.求出a 、b ,代入即可求值.【详解】解:把21x y =⎧⎨=⎩代入方程组221x ay bx y +=⎧⎨+=⎩, 得到关于a 和b 的二元一次方程组42211a b +=⎧⎨+=⎩, 解得20a b -⎧⎨⎩==. ∴a+b=-2+0=-2,故答案为:-2.【点睛】本题主要考查了二元一次方程组的解及解二元一次方程组,解方程组常用的方法是加减法和代入法. 14.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.【答案】48cm 2【解析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=48(cm 2)故答案为48 cm 2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算. 15.若点()2,1P m m -+在y 轴上,则点P 的坐标为______________.【答案】(0,3)【解析】根据点在坐标轴上的坐标特点,先求出m ,再确定坐标.【详解】解:由点()2,1P m m -+在y 轴上,则m-2=0,即m=2则P 的坐标为(0,3)【点睛】本题考查点在坐标轴上的特点,其关键是掌握:在x 轴上的点,纵坐标为0;在y 轴上的点,横坐标为0; 16.如图,OP 平分∠AOB ,∠BCP =40°,CP ∥OA ,PD ⊥OA 于点D ,则∠OPD =_____°.【答案】70º【解析】∵CP ∥OA ,∴∠AOB=∠BCP=40°,∵OP 平分∠AOB ,∴∠AOP=12∠AOB=20°,∵PD ⊥OA ,∴∠OPD=90°−20°=70°,故答案为70.点睛: 此题考查了角平分线的性质,平行线的性质,根据平行线的性质求出∠AOB ,根据角平分线的定义求出∠AOP ,根据垂直的定义、三角形内角和定理计算即可.17.不等式3253x x -≤+的负整数解为__________【答案】−2,−1【解析】根据不等式的基本性质求得不等式解集,再在解集内确定不等式的负整数解即可【详解】移项,得:3x−5x ⩽3+2,合并同类项,得:−2x ⩽5,系数化为1,得:x ⩾−2.5,∴不等式的负整数解为:−2,−1;故答案为:−2,−1.【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则三、解答题18.由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批,A B 两种不同型号口罩进行销售.下表是甲、乙两人购买,A B 两种型号口罩的情况:(1)求一个A 型口罩和一个B 型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A 型口罩数量不少于35个,且不多于B 型口罩的3倍,有几种购买方案?请写出购买方案.(3)在(2)的条件下,药店在销售完这批口罩后,总售价能否达到282元?【答案】 (1)一个A 型口罩的售价是5元,一个B 型口罩的售价是7元;(2)有三种方案,具体方案见解析;(3)总售价不能达到282元.【解析】(1)设一个A 型口罩的售价是a 元,一个B 型口罩的售价是b 元根据总售价即可得出关于a 、b 的二元一次方程组,解方程组即可得出结论;(2) 设购进A 型口罩x 个,则B 型口罩(50x -)个,根据“A 型口罩数量不少于35个,且不多于B 型口罩的3倍”即可得出关于x 的一元一次不等式,解不等式即可得出x 的取值范围,结合x 为正整数即可得出购货方案;(3)分别计算出三种方案的总售价即可判断.【详解】(1),依题意有:3263229a b a b +=⎧⎨+=⎩ 解得57a b =⎧⎨=⎩答:一个A 型口罩的售价是5元,一个B 型口罩的售价是7元.(2)设A 型口罩x 个,则B 型口罩(50x -)个,依题意有,3(50)x x -解得37.5x ≤,又因为35x ≥∴3537.5x ≤≤x 为整数,∴35x =,36,1.所以有三种方案,分别是:方案一:购买A 型口罩35个,购买B 型口罩15个;方案二:购买A 型口罩36个,购买B 型口罩14个;方案三:购买A 型口罩1个,购买B 型口罩13个.(3)方案一总售价:355157280⨯+⨯=元方案二总售价:365147278⨯+⨯=元方案三总售价:375137276⨯+⨯=元所以总售价不能达到282元.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)根据数量关系找出关于a 、b 的二元一次方程组;(2)根据数量关系找出关于x 的一元一次不等式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出方程组(或不等式)是关键.19.某文具店购进A 、B 两种文具进行销售.若每个A 种文具的进价比每个B 种文具的进价少2元,且用900元正好可以购进50个A 种文具和50个B 种文具,(1)求每个A 种文具和B 种文具的进价分别为多少元?(2)若该文具店购进A 种文具的数量比购进B 种文具的数量的3倍还少5个,购进两种文具的总数量不超过95个,每个A 种文具的销售价格为12元,每个B 种文具的销售价格为15元,则将购进的A 、B 两种文具全部售出后,可使总利润超过371元,通过计算求出该文具店购进A 、B 两种文具有哪几种方案?【答案】(1)每个A 种文具的进价为8元,每个B 种文具的进价为10元;(2)该五金商店有两种进货方案:①购进A 种文具67个,B 种文具24个;②购进A 种文具70个,B 种文具25个.【解析】(1)设每个A 种文具的进价为x 元,每个B 种文具的进价为y 元,根据“每个A 种文具的进价比每个B 种文具的进价少2元,且用900元正好可以购进50个A 种文具和50个B 种文具”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进B 种文具m 个,则购进A 种文具()35m -个,根据购进两种文具的总数量不超过95个且销售两种文具的总利润超过371元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为整数即可得出各进货方案.【详解】解:(1)设每个A 种文具的进价为x 元,每个B 种文具的进价为y 元,依题意,得: 25050900y x x y -=⎧⎨+=⎩解得:810x y =⎧⎨=⎩.答:每个A 种文具的进价为8元,每个B 种文具的进价为10元;(2)设购进B 种文具m 个,则购进A 种文具()35m -个,依题意,得:3595(128)(35)(1510)371m m m m +-≤⎧⎨--+->⎩ 解得:2325m <≤.∵m 为整数,∴24m =或25,3567m -=或70,∴该五金商店有两种进货方案:①购进A 种文具67个,B 种文具24个;②购进A 种文具70个,B 种文具25个.故答案为:(1)每个A 种文具的进价为8元,每个B 种文具的进价为10元;(2)该五金商店有两种进货方案:①购进A 种文具67个,B 种文具24个;②购进A 种文具70个,B 种文具25个.【点睛】本题考查二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.20.解不等式组()3522? 1? 2x x x x ⎧+≥+⎪⎨≥-⎪⎩①②,并写出其所有整数解. 【答案】不等式组的解集为:-1≤x≤2;不等式组的整数解为:-1,0,1,2.【解析】先按解一元一次不等式组的一般步骤求出原不等式组的解集,然后找出解集范围内的整数即可.【详解】解不等式①得: x≥−1 ;解不等式②得: x≤2 .∴不等式组的解集为-1≤x≤2,∴原不等式组的整数解为:-1,0,1,2.【点睛】熟练掌握“解一元一次不等式组的方法”是解答本题的关键.21.已知如图,FB =CE ,AB ∥ED ,AC ∥FD ,求证:AB =DE ,AC =DF .【答案】证明见解析【解析】根据FB=CE ,求出BC=EF ,根据平行线性质求出∠B=∠E ,∠ACB=∠DFE ,根据ASA 推出△ABC ≌△DEF 即可得出结论.【详解】证明:∵FB =CE ,∴FB+FC =CE+FC ,∴BC =EF ,∵AB ∥ED ,AC ∥FD ,∴∠B =∠E ,∠ACB =∠DFE ,∵在△ABC 和△DEF 中,B E BC EFACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ),∴AB =DE ,AC =DF .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,解题时注意:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.22.已知三角形的两边及其夹角,求作这个三角形.已知:线段a ,c ,α∠.求作:ABC ∆,使BC a =,AB c =,ABC α∠=∠.【答案】见解析【解析】先画出与α∠相等的角,再画出a,b 的长,连接AC,则△ABC 为所求的三角形.【详解】如图,△ABC 为所求.【点睛】此题主要考查尺规作图,解题的关键是熟知尺规作三角形的方法.23.已知xy2=1,先化简,再求(2xy2)2-(-2xy)2•xy4的值.【答案】4(xy2)2-4(xy2)3,1【解析】先算乘方,再算乘法,最后变形后代入,即可求出答案.【详解】解:(2xy2)2-(-2xy)2•xy4=4x2y4-4x2y2•xy4=4x2y4-4x3y6=4(xy2)2-4(xy2)3,当xy2=1时,原式=4-4=1.【点睛】本题考查整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键.24.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90°,D为BC中点,∴AD⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE≌△ADF(SAS),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D为BC中点,∴AD=BD ,AD⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF≌△DBE(SAS),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.25.计算:(1)4a(2a﹣b)﹣(2a+b)(2a﹣b)(2)(2x+1)2﹣2(x﹣1)(x+3)【答案】(1)4a2﹣4ab+b2;(2)2x2+1【解析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)根据完全平方公式和多项式乘多项式可以解答本题.【详解】解:(1)4a(2a﹣b)﹣(2a+b)(2a﹣b)=8a2﹣4ab﹣4a2+b2=4a2﹣4ab+b2;(2)(2x+1)2﹣2(x﹣1)(x+3)=4x2+4x+1﹣2x2﹣6x+2x+6=2x2+1.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了1 00个成年人,结果其中有15个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区只有85个成年人不吸烟C.样本是15个吸烟的成年人D.本地区约有15%的成年人吸烟【答案】D【解析】根据题意,随机调查100个成年人,是属于抽样调查,这100个人中85人不吸烟不代表本地区只有85个成年人不吸烟,样本是100个成年人,所以本地区约有15%的成年人吸烟是对的.故选D.2.若3a﹣22和2a﹣3是实数m的平方根,且t 23x t-﹣32x t-≥512的解集为( )A.x≥910B.x≤910C.x≥811D.x≤811【答案】B【解析】先根据平方根求出a的值,再求出m,求出t,再把t的值代入不等式,求出不等式的解集即可.【详解】解:∵3a﹣22和2a﹣3是实数m的平方根,∴3a﹣22+2a﹣3=0,解得:a=5,3a﹣22=﹣7,所以m=49,t7,∵2x t3-﹣3x t2-≥512,∴2x73-﹣3x72-≥512,解得:x≤9 10.故选B.【点睛】本题考查算术平方根、解一元一次不等式和平方根,能求出t的值是解题关键.3.下列调查适合用抽样调查的是()A.了解中央电视台《朗读者》节目的收视率B.了解某校七年级班主任的身体健康情况C.了解某班学生对“叙利亚”局势关注情况D.对“解放军航母001A”下海前零部件的检查【答案】A【解析】分析: 由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解: A、调查中央电视台《朗读者》节目的收视率调查范围广适合抽样调查,故A符合题意;B、了解某校七年级班主任的身体健康情况适合普查,故B不符合题意;C、了解某班学生对“叙利亚”局势关注情况适合普查,故C不符合题意;D、对“解放军航母001A”下海前零部件的检查适合普查,故D不符合题意.故选:A.点睛: 本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.在式子:3x﹣y=6中,把它改写成用含x的代数式表示y,正确的是()A.y=3x﹣6 B.y=3x+6 C.x=13y+2 D.x=﹣13y+2【答案】A【解析】把x看作已知数,移项,系数化成1即可.【详解】解:3x﹣y=6,﹣y=6﹣3x,y=3x﹣6,故选:A.【点睛】本题考查了解二元一次方程,能正确根据等式的性质进行变形是解此题的关键.5.在平面直角坐标系中,点P(-2,+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵-20,+10,∴点P (-2,+1)在第二象限,6.已知ABC 中,A 70∠=,B 60∠=,则C (∠= )A .50B .60C .70D .80 【答案】A【解析】根据三角形的内角和定理得到A B C 180∠∠∠++=,然后把A 70∠=,B 60∠=代入计算即可.【详解】解:A B C 180∠∠∠++=,而A 70∠=,B 60∠=,C 180A B 180706050∠∠∠∴=--=--=.故选:A .【点睛】本题考查了三角形的内角和定理:三角形的内角和为180.7.将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A .10°B .15°C .20°D .25°【答案】A 【解析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF 的大小.【详解】由图可得,∠CDE=40° ,∠C=90°,∴∠CED=50°,又∵DE ∥AF ,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°−50°=10°,故选A.本题考查了平行线的性质,熟练掌握这一点是解题的关键.8.点P(2-4m,m-4)不可能在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】根据象限的坐标特点进行解答即可【详解】若在第二象限解得,m>4,若在第一象限解得,无解,∴p点不可能再第一象限故选A【点睛】此题考查点的坐标,解题关键在于分析点在各象限的特征.9.已知35m n m nx y+-与719m nx y-+-的和是单项式,则m,n的值分别是().A.m=-1,n=-7 B.m=3,n=1C.m=2910,n=65D.m=54,n=-2【答案】B【解析】由和为单项式可知两式是同类项,根据同类项的定义可得关于m、n的方程组,解方程组即可得.【详解】由题意得:71m n m m n n+=-⎧⎨-=+⎩,解得:31mn=⎧⎨=⎩,故选B.【点睛】本题考查了合并同类项,同类项的概念,二元一次方程组,由两个单项式的和仍是单项式判断出这两个单项式是同类项是解题的关键.A .笔记本B .3C .D .【答案】C 【解析】根据自变量的定义即可判断.【详解】一本笔记本3元,买本需要元,故y=3x,自变量为x,故选C.【点睛】此题主要考查函数的定义,解题的关键是熟知自变量的定义.二、填空题题11.将一批数据分成5组,列出频率分布表,其中第一组与第五组的频率之和是0.26,第二组与第四组的频率之和是0.55,那么第三组的频率是__________.【答案】0.19.【解析】根据频率的意义,各个小组的频率之和是1,已知其他小组的频率,计算可得第三组的频率.【详解】由频率的意义可知各个小组的频率之和是1,则第三组的频率是1−0.26−0.55=0.19;综上所述,第三组的频率为为0.19.【点睛】本题考查频率分布表,解决本题的关键是理解:在频率分布表中,各个小组的频率之和是1.12.如图,A ,B 的坐标分别为(2,0),(0,1),若将线段AB 平移至11A B ,则 a b 的值为________.【答案】2【解析】直接利用平移中点的变化规律求解即可.【详解】由B 点平移前后的纵坐标分别为1、2,可得B 点向上平移了1个单位,由A 点平移前后的横坐标分别是为2、3,可得A 点向右平移了1个单位,由此得线段AB 的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A. B 均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故答案为:2【点睛】此题考查坐标与图形变化-平移,难度不大13.如图所示,已知△ABC 的周长是18,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,则△ABC 的面积是_____.【答案】36【解析】过点O 作OE ⊥AB 于E,作OF ⊥AC 于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解【详解】如图,过点O 作OB ⊥AB 于E作OF ⊥AC 于F,∵OB 、OC 分別平分∠ABC 和∠ACB,OD ⊥BC∴OE=OD=OF=4△ABC 的面积=12×18×4=36 故答案为36【点睛】此题考查角平分线的性质,解题关键在于做辅助线14.如图,直线12l l //,直线AB 交1l ,2l 于D ,B 两点,AC AB ⊥交直线1l 于点C ,若14040∠=︒',则2∠=__________.【答案】130°40′【解析】先根据三角形外角的性质得出∠CDB 的度数,再由平行线的性质即可得出结论.【详解】∵AC ⊥AB 交直线1l 于C,∠1=40°40′,∴∠CDB=∠1+∠A=40°40′+90°=130°40′.∵直线12l l //,∴∠2=∠CDB=130°40′.故答案为:130°40′.【点睛】此题考查平行线的性质,度分秒的换算,解题关键在于得出∠CDB 的度数.15.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了__________道题.【答案】19【解析】设他做对了x 道题,则小英做错了(25-x )道题,根据总得分=4×做对的题数-1×做错的题数,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设他做对了x 道题,则他做错了(25-x )道题,根据题意得:4x-(25-x )=70,解得:x=19,故答案为:19.【点睛】本题考查了一元一次方程的应用,根据总得分=4×做对的题数-1×做错的题数列出关于x 的一元一次方程是解题的关键.16.计算:18262046''+=__________.【答案】3912'【解析】根据角度数的加减计算法则进行计算即可得到答案.【详解】18262046''+=3872、=3912'.【点睛】本题考查角度数的加减计算法则,解题的关键是掌握角度数的加减计算法则.17.四个电子宠物捧座位,一开始,小鼠、小猴、小兔、小猫分别坐在1.2,3,4号座位上(如图所示).以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次上下两排交换,第四次再左右两列交换…这样一直下去,则第2018次交换位置后,小兔了坐在_____号位上.【答案】1【解析】根据题意,不难发现:小鼠所在的号位的规律是4个一循环,由此规律可求解.【详解】因为1018÷4=504…1,即第1018次交换位置后,小鼠所在的号位与第三次交换的位置相同,即小鼠所在的座号是1,故答案为1.【点睛】此题主要考查了学生对图形的变化类这一知识点的理解和掌握,能够发现小鼠所在的号位的规律是4个一循环,是解答此题的关键,然后即可进行计算.三、解答题18.先化简,再求值已知|x﹣2|+(y+1)2=0,求2x2﹣[5xy﹣3(x2﹣y2)]﹣5(﹣xy+y2)的值.【答案】5x2﹣8y2,1【解析】先去括号、合并同类项化简原式,继而根据非负数的性质得出x,y的值,再将x,y的值代入计算可得.【详解】原式=2x2﹣5xy+3(x2﹣y2)﹣5(﹣xy+y2)=2x2﹣5xy+3x2﹣3y2+5xy﹣5y2=5x2﹣8y2,因为|x﹣2|+(y+1)2=0,所以x=2,y=﹣1,所以,原式=5×22﹣8×(﹣1)2=20﹣8=1.【点睛】本题考查了整式的加减,最后将非负性求得的值代入化简后的式子就可以求出结论.解决此类题目的关键19.解下面的不等式组5232121x xx x+≥+⎧⎨---⎩>(),并把它的解集在数轴上表示出来.【答案】不等式组的解集为1<x≤2,在数轴上表示见解析. 【解析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】523 2121x xx x+≥+⎧⎨---⎩①>()②∵解不等式①得:x≤2,解不等式②得:x>1,∴不等式组的解集为1<x≤2,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解答此题的关键.20.计算与求解:(13-85-53(2)解方程组:()()() 3x-1y55y-13x5⎧=+⎪⎨=+⎪⎩【答案】(1)-5;(2)57 xy=⎧⎨=⎩【解析】(1)原式利用立方根定义,绝对值的代数意义计算即可求出值;(2)方程组整理后,利用加减消元法求出解即可.【详解】(13-85-5325(35)=-2535=-+5=-(2)方程组整理得:383520x yx y-⎨⎩--⎧=①=②,①-②得:4y=28,解得:y=7,把y=7代入①得:x=5,。
七年级数学上册 第2章《整式的加减》导学案(新版)新人教版
【课后作 业】 (一 )必做题 1.计算 (1)
1 1 1 2 ab a 2 a 2 ( ab ) 3 4 3 3
(2) (3a ab 7) (4a 2ab 7)
2 2
(3 ) ( 2 x
第 2 章《整式的加减》
学习目标: 1.进一步熟悉去括号、合并同类项法则. 2.熟练掌握整式的加减运算,并能进行化简求值. 学习重点:整式的加减. 学 习难点:化简求值. 【学前准备】 计算:①
2x 2 y 3xy 3x 2 y 2xy 1
②
a (2a b) 2(a 2b)
【评价】 准确程度评价 书写整洁程度评价 【课后反思】 优 优 良 良 中 中 差 差
【导入】 【自主学习,合作交流】 计算: (1) 2 x 3 y 5x 4 y (2) 8a 7b 4a 5b
3.求
2 1 1 3 1 x 2( x y 2 ) ( x y 2 ) 的值,其中 x=-2, y . 3 2 3 2 3
【当堂测试】
1.计算: (1) 3xy 4 xy (2 xy)
(2) ( x 2x 2 5) (4x 2 3 6x)
2.已知 A= 3x 2 4xy 2 y 2 , B x 2 2xy 5 y 2 ,求 A-B
3.先化简,再求值: 5(3x2 y xy 2 ) ( xy 2 3x2 y) ,其中 x
2
1 1 3 x ) 4( x x 2 ) 2 2
(4) 3x [7 x (4 x 3) 2 x ]
2 2
(二)选做题 1.已知多项式 a 2a 的值是 3,求 4 2a 4a 的值.
七年级初一数学上册第二章整式的加减整式的加减导学案新人教版
课题 2.2.1整式的加减 (1)德育目标:、通过师生合作,体验教学活动充满着探索性和创造性,从而体会到学习中的成就感。
学习目的:1、理解同类项和合并同类项的概念2、掌握合并同类项的法则,并会运用该法则;学习重点:合并同类项、同类项的概念学习难点:根据同类项概念在多项式中找同类项学习过程:一、课堂引入: 运用有理数的运算律计算100×2+252×2=____________100×(-2)+252×(-2)=____________二、自学课本 P62-P63探究,小组探讨乘法分配律在计算中的运用 由课本问题引出: 1、填空 (1)100t+252t=( )t(2)3x 2+2x 2= ( )x 2 (3)3ab 2—4ab 2=( )ab 2归纳: ___________________________________________,叫做同类项,几个常数项也是同类项。
__________________________,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的____,且___________ 不变。
理解同类项:两个相同①所含字母相同;②相同字母的指数分别相同;两者缺一不可;两个无关:(1)、同类项与系数大小无关;(2)、同类项与它们所含相同字母的顺序无关.三、例题讲解:例1:判断下列各组中的两项是否是同类项①-5ab 3与3a 3b , ②x 3与53, ③-xy 2z 与12zy 2x ,④3xy 与3x , ⑤53与35, ⑥3mn 与33mn例2:合并下列各式的同类项: (1)xy 2-51xy 2 (2)-3x 2y+2x 2y+3xy 2-2xy 2(3)4a 2+3b 2+2ab-4a 2-4b 2(4)4x 2+2x+7+3x-8x 2-2例3、当K 取何值时,y x y xk23-与是同类项?分析:要使y x y x k23-与是同类项,必须满足什么条件?四、当堂训练: (A 组) 1、下列两式是同类项的是( )A .32xyz 与32xy B. x1 与2x C.0.5x 3y 2和7x 2y 3 D.5m 2n 与-4 n m 22、下面计算正确的是( )A.3x 2-x 2=3B.3a 2+2a 3=5a 5C.3+x=3xD.-0.25ab+41ba=0 3、计算: (1)12x -20x ; (2)x+7x-5x ; (3)-5a+0.3a-2.7a ;(4)31y -32y +2y ; (5)-6ab+ba+8ab ; (6)10y 2-0.5y 2(B 组)4、请你在下面的横线上填上适当的内容,使两个单项式构成同类项。
七年级数学上册第二章整式的加减整式整式导学案新人教
2.1.1整式德育目标:、通过师生合作,体验教学活动充满着探索性和创造性,从而体会到学习中的成就感。
学习目标:1、借助生活中的实例引入用字母表示数,列式表示数量关系。
2、体会分类讨论的思想,并能理解不同得分类标准有不同的分类方法。
学习重点:用字母表示数,单项式的概念。
学习难点:单项式的系数和次数的确定。
学习过程:一、课堂引入: 1.长方形的面积公式是什么?2.路程、速度、时间的关系?二、自学教材:自学教材54----55页, 完成教材P56页思考,用含有字字母的式子填空,看看列出的式子有什么特点。
例1、(1)、苹果原价是每千克P元,按8折优惠出售,有式子表示现价(2)某产品前年的产量是n件,去年的产量是前年的m倍,用式子表示去年的产量(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积例2、(1)一条河的水流速度是2。
5千米/时,船在静水中的速度是V 千米/ 时,用式子表示船在河中顺水行驶和逆水行驶时的速度分别是、。
(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数(3)如课本P55 图1(34)如课本P55 图2 归纳定义:单项式:系数:单项式的次数:用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系表示出来。
三、例题讲解:例3、用单项式填空,并指出它们的系数和次数1、每包书有12册,n 包书有_________册2、底边长为a ,高为h 的三角形的面积是__________3、棱长为a cm 的正方体的体积是__________cm 3_4、一台电视机原价b 元,按原价的9折出售,这台电视机现在的售价为______元5、一个长方形的长是0.9米,宽是b 米,这个长方形的面积是_________平方米四、 当堂练习:1、 在代数式2n m +,2x 2y ,x1,-5,a 中,单项式有( ) A 、1个 B 、2个 C 、3个 D 、4个2、下列各式2xy ,x 2,2b a +,πy x 25,1,xy-1,m 中,单项式有( )个 A 3个 B 4个 C 5个 D 6个3、填空(1)全校学生总数是x ,其中女生占总数48%,则女生人数是______,男生人数是________。
最新部编版人教初中数学七年级上册《第二章 整式的加减 导学案》精品完美优秀实用导学单
前言:
该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)
课型回归复习课主备人审定人执教者
班级学习小组学生姓名
【复习目标】
1、熟练掌握单项式、多项式、整式及同类项等概念;
2、熟练掌握合并同类项法则和去括号法则;
3、熟练进行整式的加减运算。
【复习过程】
一、课前自主阅读教材《整式的加减》一章的内容。
二、知识梳理
1._________和__________统称整式.
⑴单项式:由与的乘积式子称为单项式.单独一个数或一个字母也是单项式,如a,5.
单项式的系数:单式项里的叫做单项式的系数
单项式的次数:单项式中叫做单项式的次数
⑵多项式:几个的和叫做多项式.其中,每个单项式叫做多项式的,不含字母的项叫做 .
多项式的次数:多项式里的次数,叫做多项式的次数.
2.同类项:必须同时具备的两个条件(缺一不可):
①所含的相同;②相同也相同;
- 1 -。
七年级数学上册第二章《整式的加减》代数式导学案新版新人教版
代数式( 1)班:座号:姓名:【学目】1.理解字母表示数的意,并能合解一些代数式的意,培养符号意;2.在情境中,能求出代数式的,并解它的意;3.在独立思虑的基上,极参加授课的,并能表自己的点.学重点:会列出代数式,并能解一些代数式的背景或几何意.学点:依照生活,代数式作出不同样解.【学前准】用字母代替数,能我的生生活来好多方便,如本章前言中的:学小价和字完成正字1.列在土地段的行速度是100 km/ h,依照速度、和行程之的关系:行程=速度,列 2 h行的行程是:100 2200 km列 5 h行的行程是:100 5500 km⋯⋯:列 t h 行的行程是:100 t _____ km(明:在含有字母的式子中若是出乘号,平常将乘号写作“.”或省略不写.比方: 100× t 能够写成 100 . t或100t;若是出除号,平常用分数代替,比方: a 2 写成a.)22.( 1)用运算符号把数和表示数的字母的式子叫做代数式;独的数字和字母也是代数式;( 2)判断以下各式哪些是代数式.① 3x 6y ;②s;③ m2 1 ;④6;⑤ a ;⑥x 6 0 ;⑦x y 6 .t其中是代数式有:.(填写序号即可)2.某种笔本价 3 元,( 1) 2 本的笔本需元;3本的笔本需元;( 2)x本的笔本需元.3.例子明朝数式6a 的意:.4.若是用x(米/秒)表示小明跑步的速度,用y(米/秒)表示小明走路的速度,那么小明先跑步10 秒再走路 5 秒所的行程米.5.公园的票价钱是:成人票每10 元,学生票每 5 元.( 1)若是一个旅游有成人x 个,学生 y 个,那么付票用元;( 2)若是旅游有成人35 个,学生10 个,那么付票用多少元?想一想:在本质生活中,代数式10x 5 y 还能够表示怎样的意义?【讲堂研究】例 1列代数式表示:(1) 棱长为 a 的正方体的表面积是,体积是 ________ ;(2) 铅笔的单价是 x 元,圆珠笔的单价是铅笔的 2.5 倍,则圆珠笔的单价是元;(3) a 与 b 的和的 -2 倍能够表示为 .(4)a 与b 的 -2 倍的和能够表示为.(5) 一辆长途汽车从杨柳村出发, 3h 后抵达出发地 s km 的溪河镇,这辆长途汽车的平均速度是 _____ km/ h ;(6) 一台电视机原价a 元,现按原价的 9 折销售,这台电视机现在的售价为________元;(7) 一个长方形的长是 0.9 ,宽是 a ,这个长方形的面积是 ________,.一个代数式能够表示不同样的含义,你还能够说出 0.9 a 表示的一个含义吗?【概括总结】总结书写代数式时要注意:若出现乘号,平常将乘号写作 “ ”或省略不写.比方, 100 x 能够写成 100x 或100x .数字与字母相乘,省略乘号并且把数字放在字母前面;如:2a , - 3 ( x+y ).各项前面的系数请使用假分数,不要写成带分数;如:7ab 不写成 21ab .a不写成33有除法运算时,用分数线代替除号.如:a 2 .2若结果是和、差形式的,请将结果添上括号,再写单位.如: ( 2a+30) 元【讲堂检测】1.列代数式表示:( 1) f 的 11 倍与 2 的和能够表示为;( 2)一个教室有 2 扇门和 4 个窗户, n 个这样的教室有扇门和个窗户;( 3)甲班共有x 名学生,女生人数占45%,那么男生人数共有人;乙班学生数比甲班多5%,则乙班有人;( 4)一个长方形的长是 a 米,宽是 b 米,这个长方形的周长是 _ 米.2. 在某地,人们发现在必然温度下某种蟋蟀叫的次数与温度之间有以下近似关系:用蟋蟀1min叫的次数除以7,此后再加上3,就近似地获得该地当时的温度(℃).( 1)用代数式表示该地当时的温度;( 2)蟋蟀1min叫的次数分别是84,140时,该地当时的温度.3.举例说明朝数式 2a 2b 所表示的意义.【讲堂拓展】出租车收费标准因地而异,甲城市收费标准为:起步价乙城市收费标准为:起步价(1) 请分别列式并比较10 元, 3 千米后每千米价为8 元, 3 千米后每千米价为: 在两市乘坐出租车的行程分别为1.5 元,每次加燃油费 1 元;2 元,每次加燃油费 2 元.2 千米, 5 千米, 6 千米时,哪个城市的车费更高些?(2) 在甲,乙两市乘坐出租车x ( x >3)千米时,分别付费多少元?【课后作业】1 .列代数式表示:( 1)a的5 倍与b的 10倍的和能够表示为.( 2)a、b的平方差能够表示为.( 3) a 与 b的和的平方能够表示为.2.( 1)34能够写成3104 ,那么79 能够写成;( 2)一个两位数的个位数字是 a ,十位数字是 b ( b0 ),这个两位数能够表示为.( 3)一个三位数的个位数字是 c ,十位数字是b,百位数字是 a (a0 )这个三位数能够表示为.3.举例说明以下各代数式所表示的意义.(1)4x(2) 1 8% x※ 4.某市出租车收费标准为:起步价 6 元(即行驶距离不高出3km 都付 6 元车费),高出3km 后,每增x km(x 为大于 3 的整数)行程.加 1km,加收 2.4 元(不足1km 按1km计算)。
七年级数学上册 第二章 整式的加减 2.2 整式的加减 整
整式的加减运算【学习目标】1.通过实际情境体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.2.通过实例认识到数学是解决实际问题和进行交流的重要工具.【学习重点】正确进行整式的加减.【学习难点】总结出整式加减的一般步骤.行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.注意:在去括号时,可先去小括号,再去中括号,再去大括号.步骤:1.根据题意列出式子;2.将所有的式子进行化简.情景导入生成问题化简并回答下列问题.(1)(x+y)-(2x-3);解:原式=x+y-2x+3=-x+y+3;(2)2(a2-2b2)-3(2a2+b2).解:原式=2a2-4b2-6a2-3b2=-4a2-7b2.以上化简实际进行了哪些运算?怎样进行整式的加减运算?自学互研 生成能力知识模块一 整式加减的运算法则【自主学习】学习教材P 67例6的解法.【合作探究】计算下列各题并归纳整式加减的一般步骤:(1)(-x +2x 2+5)+(4x 2-3-6x );解:原式=-x +2x 2+5+4x 2-3-6x =6x 2-7x +2;(2)(8a -7b )-3(4a -5b );解:原式=8a -7b -12a +15b =-4a +8b ;(3)3x 2-[7x -(4x -3)-2x 2].解:原式=3x 2-[7x -4x +3-2x 2]= 3x 2-7x +4x -3+2x 2=5x 2-3x -3. 归纳:几个整式相加减,如果有括号就先去括号,然后再合并同类项.知识模块二 实际问题中整式的加减【自主学习】学习教材P 68例7和例8的解法.【合作探究】某公园的成人票价是20元/张,儿童票价是8元/张,甲旅行团有x 名成人和y 名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的12,求两个旅行团的门票总费用是多少? 解:由题意列式得,(20x +8y )+⎝⎛⎭⎪⎫20×2x +8×12y =20x +8y +40x +4y =60x +12y .答:两个旅行团的门票总费用是(60x +12y )元.提示:先将式子化简,再代入数值进行计算比较简便.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.归纳:1.在实际问题中,我们先仔细读题,然后根据题意列出含字母的式子,最后我们利用整式的加减法则化简;2.几个整式相加减,如果有括号就先去括号,然后再合并同类项.知识模块三整式的化简求值【自主学习】学习教材P69例9的解法.【合作探究】先化简,再求值:3a-{-2b+[a-(4a-3b)]},其中a=-1,b=3.解:原式=3a-[-2b+(a-4a+3b)]=3a-(-2b+a-4a+3b)=3a+2b-a+4a-3b=6a-b.当a=-1,b=3时,原式=6×(-1)-3=-9.变式:已知A=a2+b,B=-2a2-b,求2A-B的值,其中a=-2,b=1.解:2A-B=2(a2+b)-(-2a2-b)=2a2+2b+2a2+b=4a2+3b.当a=-2,b=1时,原式=4×(-2)2+3×1=19.交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一整式加减的运算法则知识模块二实际问题中整式的加减知识模块三整式的化简求值检测反馈达成目标【当堂检测】1.已知有一整式与2x 2+5x -2的和为2x 2+5x +4,则这个整式是( B )A .2B .6C .10x +6D .4x 2+10x +22.若(3x 2-3x +2)-(-x 2+3x -3)=Ax 2-Bx +C ,则A 、B 、C 的值为( D )A .4,-6,5B .4,0,-1C .2,0,5D .4,6,53.已知|a +2|与(2b -1)2互为相反数,求多项式2(6a 2-3ab -2b 2)-3(2a 2-5ab -4b 2)的值. 解:∵|a+2|与(2b -1)2互为相反数,∴|a +2|+|2b -1|2=0,即a =-2,b =12.2(6a 2-3ab -2b 2)-3(2a 2-5ab -4b 2)=12a 2-6ab -4b 2-6a 2+15ab +12b 2=6a 2+9ab +8b 2.当a =-2,b =12时,原式=6×(-2)2+9×(-2)×12+8×⎝ ⎛⎭⎪⎫122=24-9+2=17.【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
七年级数学上册第二章《整式的加减》导学案1(新版)新人教版
2.2.4 整式的加减(课时7) 班级: 座号: 姓名: 【学习目标】灵活运用整式的加减的步骤进行运算 【学习重点】整式的加减 【学习难点】总结出整式的加减的一般步骤.【学前准备】认真阅读课本P67---P69复习:1.计算:(1))5.0(12-x (2))511(5x -- (3))5(28b a b a --++ (4))2()35(b a b a ---思考:计算(1))45()32(y x y x ++-的实质是计算多项式 与 的和;(2))54()78(b a b a ---的实质是计算多项式 与 的差.归纳:(1)整式的加减实际上就是去括号,合并同类项;(2)一般步骤是先_____________,再__________________;(3)整式加减的结果还是______________.2.已知某多项式与5632+-x x 的差是6742-+x x ,求此多项式.3归纳整式加减步骤:几个整式相加减,通常用 把每一个整式括起来,再用加号(或减号)连接;然后 , .【课堂探究】例1计算: (1))724()73(22++--+-ab a ab a (2)]2)2(27[322x x x x ----例2化简求值:)3()3(52222y x xy xy y x +--,其中21=x ,31=y . 学习小组长评价和签字完成 订正签字例3一种笔记本的单价是x 元,圆珠笔的单价是y 元,小红买这种笔记本3个,买圆珠笔2支;小明买这种笔记本4个,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少元?【随堂练习】1.化简求值: )2(3)(62222222b a b a b a ---+-,其中31=a ,3=b .2.长方形的一边长为b a 32+,另一边比它小a b -, 求这个长方形的周长.3.已知23+=x A ,5-=x B ,求(1)B A -; (2)B A 23-.【归纳总结】几个整式相加减,通常用 把每一个整式括起来,再用加号(或减号)连接;然后 , .【课后作业】1.若一个整式减去22y x -的结果是22y x +,则这个整式是( )A.22yB.22y -C. 22xD.22x -2.下列运算正确的是( )A .ab b a 523=+B .03322=-ba b aC .532523x x x =+D . 14522=-y y3.若214y x m --与1+-n xy 是同类项,则n m +的值为( )A .1B . 2C .3D .44.化简:(1))2(43xy xy xy ---; (2))32(31413122ab a a ab --+--;(3))634()52(22x x x x --+++-; (4)ab b a a ab 3)3()2(3+--+-;(5))]3(4[)32(2b a a b a -+--.5.化简求值:)4123()43(32522y x y x x ++---,其中3-=x ,21-=y .6.已知代数式x x -2的值为3,则代数式7222--x x 的值为 . 7.已知 ,求(1)B A +; (2)B A -3. 225x 3x 4B 62++=-+-=,x x A8.某村小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻种植面积、玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?9.有这样一道题“已知222322c b a A -+=,22223c b a B --=,22232b a c C -+=,当1=a ,2=b ,3=c 时,求C B A +-的值.”有一学生说题中给出2=b ,3=c 是多余的,他说的有道理吗?为什么?【学后记】。
新人教版初中数学七年级上册《第二章整式的加减整式的加减运算》优课导学案_0
七年级上册《整式的加减》教学设计1.理解同类项、合并同类项的概念。
2.掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。
3.感受其中的“数式通性”和类比的数学思想。
【教学重点】理解同类项的概念;掌握合并同类项法则。
【教学难点】正确运用法则及运算律合并同类项。
【教学过程】一、知识链接1.运用运算律计算下列各题。
①6×20+3×20= ②6×(-20)+3×(-20)=2.口答。
8个人+5个人= 8只羊+5只羊=8个人+5只羊=[意图:①复习乘法分配律;②感受“同类”。
操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]二、探究新知探究一:一只蜗牛在爬一根竖立的竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?(1)请列式表示:,你能对上式进行化简计算吗?(2)说说化简计算的依据。
[意图:联系生活情境,探究新知。
操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]探究二:根据以上式子的运算,化简下列式子。
①100t-252t ②3x2+2x2②3ab2-4ab2 ④2m2n3-5m2n3(1)上述各多项式的项有什么共同特点?(2)上述多项式的运算有什么共同特点,有何规律?[意图:让学生经历动手、观察、猜想、归纳的学习过程,从而探究出新知。
操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]三、例题精炼例1.合并同类项。
4x2+2x+7+3x-8x2-2例2.求多项式-x2+4x+5x2-3x-4x2+3的值,其中x= 。
[意图:运用知识解决问题,突出重点。
操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]四、课堂小结这节课你学到了哪些知识?[意图:养成总结反思的好习惯。
新人教版七年级数学上册第二章整式的加减导学案
新人教版七年级数学上册第二章整式的加减导学案学习目标、重点、难点【学习目标】1.会用字母表示数,并会列式表示数量关系.2.理解并掌握单项式、多项式和整式的概念,明确它们之间的区别与联系.3.会确定一个单项式的系数和次数,一个多项式的项数和次数.4.不断提高分析问题的能力,体会数学知识间具体与抽象的内在联系和统一性.【重点难点】1. 单项式、多项式、整式的概念及它们的联系.2. 单项式的系数和次数.知识概览图新课导引我们已会用字母表示数和表示加法、乘法的运算律,用字母表示未知数、列方程,求解问题时比用算术法有较大的优越性.如图所示.本节中,通过学习“整式”,将进一步感受到用字母表示数的广泛应用,归纳出运算的一般规律.体会数学美的内涵,解决生产、生活中的问题.教材精华知识点1列式表示数量关系用字母或含有字母的式子表示数和数量关系,为我们今后的学习和研究带来了极大的方便. ★列式时要注意:(1)数与字母相乘或字母与字母相乘,可省略乘号.(2)数与字母相乘,数写在字母前面.(3)除法运算要用分数线,如1÷a 写成1a. 知识点2单项式、多项式、整式的概念及它们的联系(重点)★单项式:由数或字母的乘积组成的式子叫做单项式.如:12ab ,m 2,-x 2y .特别地,单独的一个数或一个字母也是单项式.★多项式:几个单项式的和叫做多项式,如:x 2+2xy +y 2,a 2-b 2.★整式:单项式与多项式统称整式,它们的关系可以用图表示.知识点3单项式的系数和次数(重点)单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数的和.如:13-πa 2b 的系数是13-π,次数是3. 拓展:(1)圆周率π是常数。
(2)当一个单项式的系数是1或-l 时,“1”通常省略不写,如:a 2,-m 2;次数为“1”时,通常也省略不写,如x .知识点4多项式的项和次数在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,多项式里次数最高项的次数,就是这个多项式的次数.拓展:(1)多项式的每一项包括它前面的符号.(2)像3n 4—2 n 2+ n +1,其中3 n 4叫四次项,类似地-2 n 2叫二次项,n 叫一次项, l 叫常数项.课堂检测基本概念题1、列式表示:(1)比a 的3倍小5的数;(2)数m 的一半与n 的平方的和;(3) a 与b 和的平方.基础知识应用题 2、指出下列各式中哪些是单项式;哪些是多项式.22227211210,61,,,25,,.37a b x y x xy m n x x a x x x++-+--+,,,综合应用题3、某市出租车的收费标准为:起步价为12.50元,3千米后每千米2.40元,某人乘坐出租车行驶x (x >3)千米.试用含x 的式子表示他应付的费用,并求当x =8时,这一式子的值.探索创新题4、有一个多项式为-a +2a 2-3a 3+4a 4-5a 5+…,按这样的规律加下去,第99项是 ,第2 010项是 ,第n 项是 .体验中考1、已知整式x 2-52x 的值为6,则2x 2-5x +6的值为( ) A .9 B .12 C .18 D .242、某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,请你推测第n 组应该取种子数是 粒.学后反思:附: 课堂检测及体验中考答案课堂检测1、分析:“和”用加法,“差”用减法,“倍”用乘法,“商”用除法.解:(1)3a -5;(2) 12m + n 2;(3)( a + b )2.2、分析:要分清哪些是单项式,哪些是多项式,关键要明确两者的概念,注意它们的联系与区别.解:单项式有:271,10,,.7x m n a - 多项式有:222161,,253a b x y xy x x x+++--,,. 点拨 单项式要包括它前面的“-”,多项式是n 个单项式的和,分母中含有字母的式子,如11,1x x +等都不是单项式或多项式.3、解:由题意,得此人应付的费用为[12.50+2.40(x -3)](x >3)元.当x =8时,12.50+2.40(x -3)=12.50+2.40×(8-3)=24.5(元).答:此人应付的费用可表示为[12.50+2.40(x -3)]元.当x =8时,他应付的费用为24.5元.提示 此题若没有给出x >3这一条件,则需分两种情况:一种是当x ≤3时,此人应付的费用为起步价12.50元;另一种就是本题的x >3时,此人应付的费用为起步价与超出3千米后的费用的和.4、答案:-99a 99 2 0l0a 2 010 (-1)n ·na n技巧 此题项的符号在第奇数个项时为“-”,第偶数个项时为“+”,特别要注意第n 项,要用(-1)n ·n 来确定它的系数,而不能直接写成n .体验中考1、C 解析:由x 2-52x =6,得2x 2-5x =12,代入得2x 2-5x +6=12+6=18.2、(2n +1) 解析:第1组取3粒,3=2×1+1,第2组取5粒,5=2×2+1,第3组取7粒,7=2×3-1,…,依此类推,第n 组取(2n +1)粒.2.2整式的加减学习目标、重点、难点【学习目标】1.理解同类项的概念,会合并同类项.2.掌握去括号的法则,会去括号.3.会用整式的加减运算法则,能熟练进行整式的加减运算、求值.【重点难点】1.同类项的概念,合并同类项.2.用整式的加减运算法则,能熟练进行整式的加减运算、求值.知识概览图新课导引前面我们学习了单项式、多项式和整式的概念,也学会了用字母表示实际生活中的一些数量关系,那么我们如何解决图中小明提出的问题呢?就让我们一起来学习整式的加减这一节吧!相信你通过这一节的学习,一定会帮助小明找到答案的.教材精华知识点1同类项(重点)★所含字母相同,并且相同字母的指数也相同的项叫做同类项.另外,所有的常数项都是同类项.★同类项要满足两个“同”,第一个“同”是所含字母相同,第二个“同”是相同字母的指数相同.注意:是不是同类项只与所含字母和字母的指数有关,而与该项系数无关(在系数不为零的前提下).如:-m2n与3m2n是同类项,x2y3与2y3x2是同类项.知识点2合并同类项(难点)★把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.为了更好地掌握合并同类项的法则,可记住以下口诀:合并同类项,法则不能忘,只求系数和,字母指数不变样.知识点3去括号(难点)★去括号的法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.★在去括号时需要注意:(1)去括号时,要将括号连同它前面的符号一起去掉;(2)在去括号时,首先要明确括号前是“+”还是“-”;(3)该变号时,各项都变号;不该变号时,各项都不变号.知识点4整式的加减(重点)★整式的加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.★应用整式的加减的运算法则进行化简求值时,一般先去括号、合并同类项,再代人字母的值进行计算,简记为“一化、二代、三计算”.课堂检测基本概念题1、若-5a3b m+1与13b2 a n+1是同类项,求(m-n)100的值.2、求下列代数式的值.(1)3(x2-2x-1)-4(3x-2)+2(x-1),其中x=-3;(2)2x-y+(2y2-x2)-(x2+2y2),其中x=l,y=-2.基础知识应用题3、化简:(32)[5(2)3]--+---+-.x y z x x y z x综合应用题4、一列火车上原有乘客(6a-2b)人,中途有一半乘客下车,又有若干乘客上车,此时车上共有乘客(10a-6b)人,则中途上车的乘客有多少人?当a=200,b=100时,中途上车的乘客有多少人?探索创新题5、规定两种新运算:a*b=a+b,a#b=a-b,其中a,b为有理数.化简(a2b)*(3ab)+(5a2b)#(4ab),并求出当a=5,b=3时的值是多少?体验中考1、当a=1,b=2时,代数式a2-ab的值是.2、把3+[3a-2(a-1)]化简得.学后反思附: 课堂检测及体验中考答案课堂检测1、分析:解:因为-5a 3b m +1与13 b 2 a n +1是同类项,所以12,1 3.m n +=⎧⎨+=⎩解得1001001,()(12) 1.2.m m n n =⎧-=-=⎨=⎩则2、分析:此题属于化简求值题,应先去括号,再合并同类项,最后代入求值.解:(1)3(x 2-2x -1)-4(3x -2)+2(x -1)=3x 2-6x -3-12x +8+2x -2=3x 2-16x +3.当x =-3时,原式=3×(-3)2-16×(-3)+3=27+48+3=78.(2)2x -y +(2y 2-x 2)-(x 2+2y 2)=2x -y +2y 2-x 2-x 2 -2y 2=-2x 2+2x -y .当x =1,y =-2时,原式=-2×12+2×1-(-2)=-2+2+2=2.3、 分析:去括号时,可以由里向外去,也可以由外向里去.解:(32)[5(2)3x y z x x y z x --+---+- 32(523)32(2)3224.x y z x x y z x x y z x y z x y z x y z x=-+---+--=-+--+-=-+---+=- 规律对这类题目而言,化简就是先去括号,然后合并同类项.去括号时,一方面注意括号前是“-”时,去掉括号,括号里各项都要改变符号;另一方面是括号前的系数要与括号里的每一项相乘,防止漏乘.4、解:由题意可知,中途上车的乘客人数为(10a-6b)-12(6a-2b)=10a-6b-3a+b=7a-5b.当a=200,b=100时,中途上车的乘客有7×200-5×100=900(人);答:中途上车的乘客有(7a-5b)人.当a=200,b=100时,中途上车的乘客有900人.点拨此题要分清以下几个数量关系:(1)车上原有乘客人数;(2)中途下车的人数;(3)中途上车后车上现有人数;(4)中途上车的人数等于车上现有人数减去中途下车后车上剩余的人数.明确这几个数量关系是解决本题的关键.5、解:(a2b)*(3ab)+(5a2b)#(4ab)=a2b+3ab+5a2b-4ab=6a2b-ab.当a=5,b=3时,原式=6×25×3-5×3=450-15=435.说明读懂规则是解答此题的关键,根据不同的规则,正确列出常规算式.体验中考1、-1 解析:当a=1,b=2时,a2-ab=12-1×2=-1.2、a+5解析:3+[3a-2(a-1)]=3+(3a-2a+2)=3+3a-2a+2=a+5.。
新人教版初中数学七年级上册《第二章整式的加减整式的加减运算》优课导学案_0
《平方差公式》教案教学目标:1. 掌握平方差公式,灵活运用平方差公式进行运算。
2. 通过公式的推导过程,培养学生从特殊到一般的思维能力;引发和培养学生观察、分析和归纳能力,感悟数形结合和整体代换的思想。
3. 通过小组合作,培养学生动手操作能力, 让学生在合作探究学习的过程中体验成功的喜悦,培养学生之间的合作互助的团队精神。
教学重点:体会公式的发现和推导过程,能灵活用公式进行计算。
教学难点:准确理解和掌握公式的结构特征,从广泛意义上理解公式中的字母含义。
教学过程 一.情景导入:灰太狼开了租地公司,一天他把一边长为a 米的正方形土地租给慢羊羊种植.有一年他对慢羊羊说:“我把这块地的一边增加5米,另一边减少5米,再继续租给你, 你也没吃亏,你看如何?”慢羊羊一听觉得没有吃亏,就答应了.回到羊村,就把这件事对喜羊羊他们讲了,大家一听,都说道:“村长,您吃亏了!” 慢羊羊村长很吃惊…同学们,你能告诉慢羊羊这是为什么吗?5米5米a 米(a-5)(a+5)米相等吗?原来现在a2(a +5)(a -5)a 2a 2-25二、平方差公式推导 1、算一算,比一比,看谁算得又快又准①(x + 4)( x -4)②(1 + 2a)( 1-2a ) ③(m + 6n)( m -6n ) ④(5y + z)(5y -z ) 师生小结:(a+b)(a-b)=(a)2-(b)2相同为 a相反为b适当交换合理加括号平方差公式注:这里的两数可以是两个单项式也可以是两个多项式等等.口答下列各题:(l)(-a+b)(a+b)= _________(2)(a-b)(b+a)= __________(3)(-a-b)(-a+b)= ________(4)(a-b)(-a-b)=_________ 三、例题讲解例1:(多媒体示表格)(1+x )(1-x )(-3+a )(-3-a )(0.3x -1)(1+0.3x )(1+a )(-1+a )1、找一找、填一填a ba 2-b 21x -3a 12-x 2(-3)2-a 2a1a 2-120.3x1( 0.3x)2-12(a-b)(a+b)(2)(-7+2m 2)(-7-2m 2).解:原式=()2-(2)2= 49-4m 4ab例2 计算: (1) 102×98;(2) (y +2) (y -2) – (y -1) (y +5) . 四、巩固新知(1)(a+3b )(a -3b )=4 a 2-9;=4x 4-y 2.=(2a+3)(2a-3)=a 2-9b 2;=(2a )2-32=(-2x 2 )2-y 2=(50+1)(50-1)=502-12=2500-1=2499=(9x 2-16)-(6x 2+5x -6)=3x 2-5x -10=(a )2-(3b )2(2)(3+2a )(-3+2a )(3)51×49(5)(3x +4)(3x -4)-(2x +3)(3x -2)(4)(-2x 2-y )(-2x 2+y )相信自己我能行!利用平方差公式计算:2、利用平方差公式计算:(a-2)(a+2)(a 2+4)解:原式=(a 2-4)(a 2+4)=a 4-16五、课堂小结(a+b)(a-b)=(a)2-(b)2相反为b小结相同为a适当交换合理加括号b六.布置作业(多媒体示)1.应用公式:[试一试] 口答下列各题:(l) (x+3) (x-3); (2) (5-b)(5+b); (3)(2x-y)(2x+y); (4)(2x-3y)(2x+3y). 2.[评一评]下列计算对不对?如果不对,怎样改正?(1) (1+2x)(1−2x)=1−2x 2 (2) (2a+b)(2a −b)=2a 2−b 2 (3) (a+b)( a −b)=a 2-b 2 (4) (-a+b)(a+b)=b 2-a 2 (5) (-5x-2y)(5x-2y)=25x 2-4y 2 3.[练一练] 计算下列各题(l )(2x+y)(2x-y) (2)(x 21+ y 31)(x 21-y 31)(3)(b+2a)(2a-b) (4)(-4a-1)(4a-1) 4.能力拓展想一想计算下列各题 : 1.(y+2)(y-2)-(3-y)(3+y)2. )21)(41)(21(2-++x x x5.[比一比] 用最快的方法去计算:(1)102×98 (2)30.2×29.8。
新人教版第二章-整式的加减导学案
七年级上期数学第二章教案第二章整式教材内容本章的主要内容是单项式、多项式、整式等有关概念,合并同类项、去括号、整式的加减运算。
课本首先通过实例列式表示数量关系,介绍了单项式、多项式以及整式等有关概念,然后通过具体问题的解决,类比有理数的运算律,明确了同类项可合并的道理,明确了整式加减法的法则和去括号法则.这些内容也是对前一章内容的进一步认识。
本章在呈现形式上突出了整式加减产生的背景,使学生经历实际问题“符号化”的过程,发展符号感,为探索有关运算法则设置了归纳、类比等活动,力求学生对算理的理解和法则的掌握。
本教案处理去括号法则是直接运用乘法分配律去括号的;并对某些内容和例题作了小范围的调整和增删。
教学目标〔知识与技能〕1、理解单项式、多项式和整式及有关概念,弄清它们之间的区别和联系。
2、理解同类项的概念,能熟练的合并同类项。
3、掌握去括号法则,能准确地去括号。
4、熟练地进行整式的加减运算。
〔过程与方法〕1、通过丰富的实例,经历观察、分析、交流、概括出单项式、多项和整式等有关概念。
2、经历类比有理数的运算律,探索整式的加减运算法则。
3、发展有条理的思考及语言表达能力和用数学知识解决实际问题的能力。
〔情感、态度与价值观〕1、培养学生主动探究,合作交流的意识。
2、通过将数的运算推广到整式的运算,在整式的运算中又不断地运用数的运算,使学生感受到认识事物是一个由特殊到一般,由一般到特殊的辩证过程,培养学生初步的辩证唯物观念。
重点难点理解整式的概念,会进行整式的加减去处理运算是重点;正确区分单项式的次数与多项式的次数,括号前是负数时去括号是难点。
课时分配2.1整式…………………………………4课时2.2整式的加减………………………………………3课时本章小结…………………………………………2课时2.1 整式2.1.1单项式[教学目标]1、能用代数式表示实际问题中的数量关系;2、理解单项式、单项式的系数和次数等概念,会指出单项式的次数和系数。
新人教版七年级数学上册第二章《22整式的加减》导学案
新人教版七年级数学(shùxué)上册第二章《2.2整式的加减》导学案最新精品 Word 欢迎下载可修改学习目标知道什么是同类项,会合并同类项。
教学重点知道什么是同类项,会合并同类项教学难点找出同类项并正确的合并课型新授课课时1课时设计人审核人教学过程教学环节时间安排教学任务学生活动教师活动预见性问题及对策复习讲台上非常乱,有书本、卡片、零散的粉笔等东西,你会如何整理。
一副扑克牌少了一张,你如何找出缺少的是哪张牌?这又是一种什么想独立思考小组每人写出3个放在一起研究提出问题学生表述不够准确,教师可适当引导。
预习问题1:阅读教科书63-64页的两个探究并完成66页练习1、2、3题,通过阅读上述运算有什么共同特点?你发现什么规律?问题2:阅读教科书64页2、3段,你能说出什么是同类项?有什么特征?你能举出那些不同的例子?归纳:判断同类项:1.字母__;2.同字母的指数也__。
3.与__无关,与_无关。
问题3:阅读教科书64页4、5段(注意阅读贴纸内.......容)..,说出什么是合并同类项?问题4:合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?先分组讨论交流,再写出来师生共同交流、归纳组间巡视参与交流共同交流研习见学案明确任务小组探索分组展示点评追问参与展示教师精讲。
学生重点练习。
最新精品 Word 欢迎下载可修改最新 精品 Word 欢迎下载 可修改内容总结(1)新人教版七年级数学上册第二章《2.2整式的加减》导学案精习完成教科书71页1、7题 学生依案独立梳理,归纳学习所得,形成自己的知识结构。
以强调性、总结性精讲,参与交流。
课后反思。
人教版七年级上册数学:第二章《整式的加减》导学案(全套9学时)
第一学时整式(1)学习内容:教科书第54—56页,2. 1整式:1 •单项式。
学习目标:1 •理解单项式及单项式系数、次数的概念。
2 .会准确迅速地确定一个单项式的系数和次数。
3 •通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。
学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。
(1) 若正方形的边长为a,则正方形的面积是_________________ ;(2) 若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 _________________________ ;(3) 若x表示正方体棱长,则正方体的体积是___________________ ;(4) 若m表示一个有理数,则它的相反数是____________________ ;(5) 小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款_______________ 元。
2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。
[老师提示]单独一个数或一个字母也是单项式,如a, 5, 0。
4、练习:判断下列各代数式哪些是单项式?x 1(1) ;(2)abc;(3)b2; (4)- 5ab2; (5)y; (6)- xy2;⑺一5。
25、单项式系数和次数:观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。
单项式中的数字因数叫单项式的系数』项式中所有字母指数的和叫单项式的次数。
___________________1说说四个单项式a2h , 2 n r, abc,- m的数字因数和字母因数及各个字母的指数?3二、合作探究:1、教材p56例1:阅读例题,体会单项式及系数次数概念。
2、判断下列各代数式是否是单项式。
[最新]人教新课标版七年级上数学第二章《整式的加减》全套导学案(17页)
(2)、下列式子中,哪些是整式,哪些是单项式,哪些是多项式?
ab
c , ax2
bx
c,
5,
a
,
b,
3
.
3 m2
三、合作探究
1、下列多项式中,是四次三项式的是(
A、1 x4
B、 x2 y 2 2xy3 3xyz2
)
C、 x4 3x 2 y 2 z2 4
解:( 1)
3
5y
2
4 xy
2
3x y
3
x
3
2
2
3
(2) 5 y 4xy 3x y x
三、合作探究
1、下列各式按 a 的降幂排列的是( A. 6 3a 5 a 4 44a 3 7a
)
B. 3a 5 a 4 4a 3 7 a 6
C. 6 7a 4a 3 a 4 3a 5
2、下列各式按 x 的升幂排列的是(
精品精品
资料精 品精品 资料
第二章 整式的加减
《 2.1 整式 -- 单项式》
班级 _______姓名 ___________小组 _______小组评价 _________ 教师评价 _______
一、学习目标
1、会用含有字母的式子表示数量关系,理解字母表示数的意义; 2、理解并掌握单项式的有关概念; 3、能用单项式表示具体问题中的数量关系。
4、.把 3x2 x3 1 2 x 按 x 的降幂排列可排成 x3 3x2
,这种排法的第三项
的系数是 ______________
5、已知多项式 3 x2 y 3 xy 2 5x 4 y y 5 7 y 4 ,回答下列问题:
人教版七年级上册数学第二章《整式的加减》全章导学案
第一章整式的加减全章导学案【知识点】一、单项式:(1)由数与字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;(2)单项式中的数字因数叫做这个单项式的系数;(3)单项式中,所有字母的指数的和叫做这个单项式的次数.【典型例题】疫情期间,口罩的原材料提价,因而厂家决定对口罩进行提价,现有三种方案:(1)第一次提价5%,第二次提价10%;(2)第一次提价10%,第二次提价5%;(3)第一、二次提价均为7.5%,三种方案哪种提价最多,下列说法正确的是()A.方案(1)B.方案(2)C.方案(3)D.三种方案相同【巩固练习】1、下列代数式符合书写要求的是()A.7xy B.ab×9C.D.1÷a2、下列关于单项式﹣的说法正确的是()A.系数是1B.系数是C.系数是﹣1D.系数是﹣3、整式﹣0.3x2y,0,,﹣22abc2,,,ab2﹣a2b中单项式的个数有()A.6个B.5个C.4个D.3个4、单项式﹣5πa2b的系数是.5、如图是一个娱乐场,其中半圆形休息区和长方形游泳池以外的地方都是绿地,已知娱乐场的长为3a,宽为2a,游泳池的长、宽分别是娱乐场长、宽的一半,且半圆形休息区的直径是娱乐场宽的一半,则绿地的面积为.(用含a的代数式表示,将结果化为最简)【知识点】二、多项式:(1)几个单项式的和叫做多项式;(2)多项式中每个单项式叫做多项式的项,不含字母的项叫做常数项;(3)多项式里次数:最高项的次数,叫做多项式的次数.3、整式:单项式和多项式统称为整式.在多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项.注意:(1)判断几个单项式(或多项式中的项)是否是同类项有两个条件:①所含字母相同;②相同字母的指数分别相同,同时具备这两个条件者是同类项,二者缺一不可.(2)同类项与系数无关,与字母的排列无关.(3)常数项都是同类项.【典型例题】如图,阴影部分是一个长方形截去两个四分之一的圆后剩余的部分,则它的面积是(其中a>2b)()A.ab﹣B.ab﹣C.ab﹣D.ab﹣【巩固练习】1、小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,公交车的速度为45千米每小时,小明先步行x分钟,再乘车y分钟,则小明家离书店的路程是()千米.A.45x+4y B.4x+45y C.4x+y D.x+y2、在代数式:x2,3ab,x+5,,﹣4,,a2b﹣a中,整式有()A.4个B.5个C.6个D.7个3、若代数式2x2﹣3x的值是6,则代数式1+x﹣x2的值是()A.﹣2B.4C.﹣4D.84、如图,一个大正方形的两个角被两个大小相同的小正方形覆盖,用图中所给的a,b来表示未被覆盖的阴影部分面积与空白部分面积的差为()A.4ab﹣3b2B.2a2﹣b2C.3a2﹣2ab D.4ab﹣a2﹣b25、把多项式2m3﹣m2n2+3﹣5m按字母m的升幂排列是.6、已知(x2﹣x+1)6=a12x12+a11x11+a10x10+…+a1x+a0,则a11+a9+a7+…+a1+a0的值为.【知识点】三、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为结果的系数,字母和字母的指数不变.注意:①只能把同类项合并成一项,不是同类项不能合并;②如果两个同类项的系数互为相反数,合并同类项后,结果为0;③只要不再有同类项,就是最后结果,结果可能是单项式,也可能是多项式.【典型例题】张师傅下岗后做起了小生意,第一次进货时,他以每件a元的价格购进了20件甲种小商品,以每件b元的价格购进了30件乙种小商品(a>b).根据市场行情,他将这两种小商品都以元的价格出售.在这次买卖中,张师傅的盈亏状况为()A.赚了(25a+25b)元B.亏了(20a+30b)元C.赚了(5a﹣5b)元D.亏了(5a﹣5b)元【巩固练习】1、若2x+y=1,﹣y+2z=﹣3,则x+y﹣z的值是()A.1B.2C.3D.42、若多项式3x2﹣kxy﹣5与12xy﹣y2+3的和中不含xy项,则k的值是.3、若﹣4x a+5y3+x3y b=﹣3x3y3,则ab的值是.4、若关于x,y的多项式2x2+abxy﹣y+6与2bx2+3xy+5y﹣1的差的值与字母x所取的值无关,则代数式a2﹣2b2﹣(a3﹣3b2)=.【知识点】四、去括号1、如果括号外的因数是正数,去括号后原括号内每一项的符号与原来的符号相同.2、如果括号外的因数是负数,去括号后原括号内每一项的符号与原来的符号相反.3、(1)a+(b+c)= a+b+c;(2)a(b+c)=ab+ac.4、去多重括号含有多重括号的多项式,去括号的一般方法是由内到外,即依次去掉小、中、大括号.也可由外到内去括号:去大括号时,把中括号看成一项;去中括号时,把小括号看成一项;最后去小括号.不论用哪种方法,都要边去括号边合并同类项.注意问题:1、要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.2、去括号时应将括号前的符号连同括号一起去掉.3、要注意,括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.5、遇到多层括号一般由里到外,逐层去括号,也可由外到里.数符号"-"的个数确定结果的符号.6、乘除法去括号法则的依据实际是乘法分配律中的一种.【典型例题】计算:(1)7﹣(﹣2)+4+(﹣3);(2)﹣13+(﹣2)÷(﹣)﹣|﹣5|;(3)x2y﹣x2y;(4)(3a﹣2)﹣3(a﹣5).【巩固练习】1、已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣52、若|a﹣2|+(b+3)2=0,则式子(a+5b)﹣(3b﹣2a)﹣1的值为()A.﹣11B.﹣1C.11D.13、某同学在做计算A+B时,误将A+B看成了A﹣B,求得的结果是8x2+3x﹣5,已知B=﹣3x2+2x+4,则A+B=.4、如果多项式2a2﹣6ab与﹣a2﹣2mab+b2的差不含ab项,则m的值为.5、如果一个多项式与另一多项式m2﹣2m+3的和是多项式3m2+m﹣1,则这个多项式是.【知识点】五、整式加减计算整式的运算顺序是先去括号,再合并同类项.1、整式的加减,实质上就是去括号和合并同类项.整式加减运算的一般步骤是:(1)根据去括号法则去掉括号;(2)准确找出同类项,按照合并同类项法则合并同类项.2、求多项式的值时,一般先合并同类项,再求值.3、需要注意的几个问题①整式(既单项式和多项式)中,分母一律不能含有字母.②π不是字母,而是一个数字,③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算.④去括号时,要特别注意括号前面的因数.4、数学思想方法(1)整体思想:整体的思想方法就是将一些相互联系的量作为整体来处理的思维方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新精品
最新部编版人教初中七年级数学上册第2章《整式的加减》
优
秀
导
学
案
(全章完整版)
前言:
该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)
第二章整式的加减
2.1有用字母表示数量系
2.1单项式
【学习目标】:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
【重点难点】
重点:掌握单项式及单项式的系数、次数的概念。
难点:区别单项式的系数和次数
【导学指导】:
一.知识链接:
1.列代数式
(1)若边长为a的正方体的表面积为________,体积为;
(2)铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,圆珠笔的单价是元;
(3) 一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米;
(4) 设n是一个数,则它的相反数是________.
2.请学生说出所列代数式的意义。
3.请学生观察所列代数式包含哪些运算,有何共同运算特征。
(由小组讨论后,经小组推荐人员回答)
二、自主学习:
1.单项式:
通过上述特征的描述,从而概括单项式的概念,:
单项式:即由_________与______的乘积组成的代数式称为单项式。
补充: 单独_________或___________也是单项式,如a ,5。
2.练习:判断下列各代数式哪些是单项式? (1)2
1 x ; (2)abc ; (3)b 2; (4)-5ab 2; (5)y+x ; (6)-xy 2; (7)-5。
解:是单项式的有(填序号):________________________
3.单项式系数和次数: 四个单项式1a 2h ,2πr ,a bc ,-m 中,请说出它们的数字因数和字母因数分别是什么?
小结:一个单项式中,单项式中的数字因数称为这个单项式的________一个单项式中,_____________的指数的和叫做这个单项式的次数
4.学生阅读课本56页,完成例3
【当堂训练】:
1.课本p57:1,2。
2.判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②
x 1; ③πr 2; ④-23a 2b 。
答:
3.下面各题的判断是否正确?
①-7xy 2的系数是7;( ) ②-x 2y 3与x 3没有系数;( )
③-ab 3c 2的次数是0+8+2;( ) ④-a 3的系数是-1;( )
⑤-32x 2y 3的次数是7;( ) ⑥31πr 2h 的系数是3
1。
( )
【课堂小结】:
1. 单项式:
2. 单项式系数和次数:
3.通过例题及练习,应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1” 通常省略不写,如x 2,-a 2b 等;
③单项式次数只与字母指数有关
【拓展训练】:
1、 a 3
,x +1, -2,3b
-, 0.72xy ,各式中单项式的个数是( )
A. 2个
B.3个
C.4个
D.5个
2、单项式-x 2yz 2的系数、次数分别是( )
A. 0,2
B. 0, 4 .
C. -1,5
D.1,4
【总结反思】:
2.1 多项式
【学习目标】:
1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。
2.能确定一个多项式的项数及其次数。
【重点难点】
重点:多项式的定义、多项式的项和次数,以及常数项等概念。
难点:多项式的次数。
【导学指导】:
一、温故知新:
1.下列说法或书写是否正确:
①1x ②-1x ③a ×3 ④a ÷2 ⑤ 241
1xy
⑥b 的系数为1,次数为0 ⑦ R π2的系数为2,次数为2
2.列代数式:
(1)长方形的长与宽分别为a 、b ,则长方形的周长是 ;
(2)某班有男生x 人,女生21人,则这个班共有学生 人;
(3)一个数比数x 的2倍小3,则这个数为_________;
(4)鸡兔同笼,鸡a 只,兔b 只,则共有头 个,脚 只。
2.观察以上所得出的四个代数式与上节课所学单项式有何区别。
(由小组讨论后,经小组推荐人员回答)
二、自主探究:
1.多项式:
学生阅读课本58页完成下列问题:
上面这些代数式都是由几个单项式相加而成的。
像这样,_______________的和叫做多项式。
在多项式中,每个单项式叫做多项式的___。
其中,不含字母的项,叫做_______。
例如,多项式5
x有_____项,它们是______________。
其中常数项是________。
-x
32+
2
一个多项式含有几项,就叫几项式。
多项式里________________________,叫做这个多项式的次数。
例如,多项式5
x是一个____次______项式。
2
-x
32+
问题:
(1)多项式的次数是所有项的次数之和吗?
(2)多项式的每一项都包括它前面的符号吗?
例题讲解
例1:指出下列多项式的项和次数:
(1)3x-1+3x2; (2)4x3+2x-2y2。
例2:已知代数式3x n-(m-1)x+1是关于x的三次二项式,求m、n的条件。
2、自学书本例4(教师指导)
注:__________与___________统称整式。