2020年高考文科数学易错题《 基本初等函数》题型归纳与训练

合集下载

(晨鸟)2020年高考文科数学《基本初等函数》题型归纳与训练

(晨鸟)2020年高考文科数学《基本初等函数》题型归纳与训练

2020年高考文科数学《基本初等函数》题型归纳与训练【题型归纳】题型一幂函数的图像与性质例1 已知幂函数x f y的图象过点),(2221,则2log 2f 的值为( )A.21 B.21 C .1D.1【答案】A【解析】由幂函数ax xf 的图象过点),(2221,得22)21()21(f ,21a,则幂函数21x x f ,∴2122f ,∴212log 2f .故选A .【易错点】幂函数的运算法则,以及对数的运算公式.【思维点拨】熟练掌握幂函数的函数类型ax x f .例2 如果幂函数23212p p x x f Z p 是偶函数,且在,0上是增函数,求p 的值,并写出相应的函数x f 的解析式.【答案】1p ,2x xf .【解析】因为x f 在,0上是增函数,所以023212pp,,所以31p. 又因为x f 是偶函数且Z p ,所以1p,故2x xf .【易错点】易忘记Z p 这一关键条件,以及幂函数在,0递增时指数的特征.【思维点拨】熟练掌握幂函数的函数ax xf 的奇偶性特征,以及幂函数在,0上是单调递增时幂函数的指数恒为正数.题型二二次函数的图像和性质(最值)例1 已知532x xxf ,1,t t x,若x f 的最小值为t h ,写出t h 的表达式 .2【答案】)23(53)2325(429)25(15)(22ttttt t tt h 【解析】如图所示,函数图像的对称轴为23x(1)当231t,即25t时,1512t ttf t h .(2)当123tt,即2325t时,42923ft h . (3)当23t时,532tttf t h .综上可得22551,22953(),422335.2tt t h t t tt t≤≤【易错点】首先要注意二次函数的开口方向,然后才可以根据二次函数的对称轴去进行分类讨论.【思维点拨】所求二次函数解析式(所以图像也)固定,区间变动,可考虑区间在变动过程中,二次函数的单调性,从而利用二次函数的单调性求函数在区间上的最值.例2 已知函数020222xxxx x x x f ,若关于x 的不等式022bx af xf 恰有1个整数解,则实数a 的最大值是()A .2B .3C .5D .8【答案】D【解析】作出函数x f 的图象如图实线部分所示,由022bx af xf 得24242222ba axf ba a ,若0b ,则0x f 满足不等式,即不等式有2个整数解,不满足题意,所以0b ,所以0x f a ,且整数解x 只能是3,当42x时,08xf ,所以38a ,即a 的最大值为8,故选D .【易错点】这是二次函数的复合函数,务必理清楚和掌握函数的图像.【思维点拨】根据数型结合画出函数的图像,然后利用方程的求根公式进行解题.题型三指数函数例1 已知奇函数f x在R 上是增函数.若21log 5af ,2log 4.1bf ,0.82c f ,则,,a b c的大小关系为().A.a b c B.b a c C.c b a D.c a b【答案】C【解析】因为()f x 在R 上是奇函数,所以22211log log log 555a f f f ,又因为()f x 在R 上是增函数,且0.8222022log 4log 4.1log 5,所以0.82212log 4.1log 5f f f ,即c b a .故选C .【思维点拨】本题主要考查函数的奇偶性与指数、对数的运算,为基础题。

易错点03 基本初等函数(含答案解析)

易错点03 基本初等函数(含答案解析)
所以 天.
故选:B.
【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.
【易错警示】
易错点1.函数定义域理解不透
2.已知函数 的定义域为[0,1],求函数 的定义域
【答案】 .
【解析】
【分析】由 求解可得.
【详解】错解:由于函数 的定义域为[0,1],即 ,
∴ 的定义域是[1,2]
易错点7.公式运用不熟练没有得到最终解
8.已知log189=a,18b=5,用a、b表示log3645.
【答5= .
易错点8.关于方程根考虑不全面
9.已知 有且只有一根在区间(0,1)内,求 的取值范围.
【答案】 <-2.
【解析】
【分析】对参数 的取值情况进行分类讨论,再结合 再分类,即可求得参数范围.
【点睛】本题考查函数的奇偶性与单调性,解题时要注意函数的定义域,否则易出错.
易错点6.不理解符合函数的单调性
7.函数 在 上是x的减函数,则实数a的取值范围是______.
【答案】
【解析】
【分析】首先保证真数位置 在 上恒成立,得到 的范围要求,再分 和 进行讨论,由复合函数的单调性,得到关于 的不等式,得到答案.
【答案】A={x|2<x< }.
【解析】
【分析】由奇偶性把不等式变为f(x-3)<-f(x2-3)=f(3-x2),然后由单调性求出不等关系,同时要注意函数的定义域.
【详解】错解:∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),
又f(x)在(-3,3)上是减函数,
∴x-3>3-x2,即x2+x-6>0解得x>2或x<-3

2020年高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数(含答案)

2020年高考数学一轮复习考点与题型总结:第二章 函数的概念与基本初等函数(含答案)

第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发. (2)如果函数y =f (x )是用表格给出,则表格中x 的集合即为定义域.(3)如果函数y =f (x )是用图象给出,则图象在x 轴上的投影所覆盖的x 的集合即为定义域. (2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. (3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出; (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,②①×2-②,得3f (x )=2x +1-2-x .即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________. 解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1).答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x (x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f(x)单调递减,g(x)单调递减,则f(x)+g(x)是减函数;(3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反; (7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a⎝⎛⎭⎫1+1x -1, 则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52(3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________. 解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减, 所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3, 又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( ) A .(2,+∞) B .(-∞,2) C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a-3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( ) A .(-∞,0)∪(0,1] B .(-1,0)∪(0,1] C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数, 所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性偶函数奇函数定义如果对于函数f (x )的定义域内任意一个x都有f (-x )=f (x )❷,那么函数f (x )是偶函数都有f (-x )=-f (x )❷,那么函数f (x )是奇函数 图象特征关于y 轴对称关于原点对称函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0).(3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称. (2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x +1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x+1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1). [答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________. 解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R),可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14. 答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x1-x =-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.。

2020年高考数学复习:夯基础——熟练掌握基本初等函数

2020年高考数学复习:夯基础——熟练掌握基本初等函数

夯基础——熟练掌握基本初等函数[题型分析·高考展望] 基本初等函数的性质、图象及其应用是高考每年必考内容,一般为二至三个选择题、填空题,难度为中档.在二轮复习中,应该对基本函数的性质、图象再复习,达到熟练掌握,灵活应用.对常考题型进行题组强化训练,图象问题难度稍高,应重点研究解题技巧及解决此类问题的总体策略.常考题型精析题型一 指数函数的图象与性质指数函数性质:指数函数y =a x (a >0且a ≠1)为单调函数;当a >1时在(-∞,+∞)上为增函数,当0<a <1时,在(-∞,+∞)上为减函数;指数函数y =a x 为非奇非偶函数,值域y ∈(0,+∞).例1 (1)(2015·昆明模拟)设a =20.3,b =30.2,c =70.1,则a ,b ,c 的大小关系为( ) A.c <a <b B.a <c <b C.a <b <cD.c <b <a(2)若关于x 的方程|a x -1|=2a (a >0且a ≠1)有两个不等实根,则a 的取值范围是( ) A.(0,1)∪(1,+∞) B.(0,1) C.(1,+∞)D.⎝⎛⎭⎫0,12 点评 (1)指数函数值比较大小,除考虑指数函数单调性、值域外,还需考虑将其转化为幂函数,利用幂函数的单调性比较大小.(2)数形结合思想是解决函数综合问题的主要手段,将问题转化为基本函数的图象关系,比较图象得出相关变量的方程或不等关系,从而使问题解决.变式训练1 (1)(2015·山东)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A.a <b <c B.a <c <b C.b <a <cD.b <c <a(2)(2015·江苏)不等式2x 2-x <4的解集为________.题型二 对数函数的图象与性质y =log a x (a >0且a ≠1)基本性质:过定点(1,0);a >1时在(0,+∞)上单调递增,0<a <1时在(0,+∞)上单调递减; 0<a <1时,x ∈(1,+∞),y <0,x ∈(0,1),y >0; a >1时,x ∈(1,+∞),y >0,x ∈(0,1),y <0; y =log a x ,x ∈(0,+∞),y ∈R ,是非奇非偶函数.例2 (2014·福建)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是( )点评 对于含参数的指数、对数函数问题,在应用单调性时,要注意对底数进行讨论.解决对数函数问题时,首先要考虑其定义域,其次再利用性质求解.变式训练2 (1)(2015·四川)设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件D.既不充分也不必要条件(2)(2015·苏北四市联考)设函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,log 2(-x ),x <0,若f (-a )>f (a ),则实数a 的取值范围是________________. 题型三 幂函数的图象和性质例3 (2014·重庆)已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x , x ∈(0,1], 且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( ) A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12 C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23 D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 点评 在幂函数中,y =x -1非常重要,在高考中经常考查,要会画其函数作平移变换后的图象,并对其对称中心、单调性作深入研究.变式训练3 (1)(2015·湖南)设x ∈R ,则“x >1”是“x 3>1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件(2)已知定义域为R 的函数f (x )=⎩⎪⎨⎪⎧1|x -1|, x ≠1,1, x =1,若关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实根x 1,x 2,x 3,则x 21+x 22+x 23等于( )A.13B.2b 2+2b 2C.5D.3c 2+2c 2高考题型精练1.(2015·重庆)函数f (x )=log 2(x 2+2x -3)的定义域是( ) A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)2.(2015·课标全国Ⅰ)设函数y =f (x )的图象与y =2x+a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a 等于( ) A.-1 B.1 C.2D.43.(2014·山东)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<14.设a=log36,b=log510,c=log714,则()A.c>b>aB.b>c>aC.a>c>bD.a>b>c5.(2014·安徽)设a=log37,b=21.1,c=0.83.1,则()A.b<a<cB.c<a<bC.c<b<aD.a<c<b6.设a>0,b>0()A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则a<bC.若2a-2a=2b-3b,则a>bD.若2a-2a=2b-3b,则a<b7.(2015·北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1}D.{x|-1<x≤2}8.(2014·浙江)在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是()9.已知0<a <1,则函数f (x )=a x -|log a x |的零点个数为________.10.若函数y =⎝⎛⎭⎫12|1-x |+m 的图象与x 轴有公共点,则实数m 的取值范围是________.11.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.12.定义两个实数间的一种新运算“*”:x *y =ln(e x +e y ),x ,y ∈R .当x *x =y 时,x =*y .对任意实数a ,b ,c ,给出如下命题: ①a *b =b *a ;②(a *b )+c =(a +c )*(b +c ); ③(a *b )-c =(a -c )*(b -c ); ④(a *b )*c =a *(b *c ); ⑤*a *b ≥a +b 2.其中正确的命题有______.(写出所有正确的命题序号)答案精析专题3 函数与导数第6练 夯基础——熟练掌握基本初等函数常考题型精析 例1 (1)A (2)D解析 (1)由已知得a =80.1,b =90.1,c =70.1,构造幂函数y =x 0.1,根据幂函数在区间(0, +∞)上为增函数, 得c <a <b .(2)方程|a x -1|=2a (a >0且a ≠1)有两个实根转化为函数y =|a x -1|与y =2a 有两个交点. ①当0<a <1时,如图(1), ∴0<2a <1,即0<a <12.②当a >1时,如图(2),而y =2a >1不符合要求.综上,0<a <12.变式训练1 (1)C (2){x |-1<x <2}解析 (1)根据指数函数y =0.6x 在R 上单调递减可得0.61.5<0.60.6<0.60=1,根据指数函数y =1.5x 在R 上单调递增可得1.50.6>1.50=1,∴b <a <c .(2)∵2x 2-x <4=22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2.例2 B [题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.选项A 中,y =3-x =(13)x ,显然图象错误;选项B 中,y =x 3,由幂函数图象可知正确;选项C 中,y =(-x )3=-x 3,显然与所画图象不符;选项D 中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故选B.]变式训练2 (1)A (2)(-1,0)∪(1,+∞)解析 (1)若a >b >1,那么log 2a >log 2b >0;若log 2a >log 2b >0,那么a >b >1,故选A. (2)若a >0,则log 2a >log 12a ,即2log 2a >0,所以a >1.若a <0,则log 12(-a )>log 2(-a ),即2log 2(-a )<0,所以0<-a <1,解得-1<a <0,所以实数a 的取值范围是a >1或-1<a <0, 即a ∈(-1,0)∪(1,+∞).例3 A [作出函数f (x )的图象如图所示,其中A (1,1), B (0,-2).因为直线y =mx +m =m (x +1)恒过定点C (-1,0),故当直线y =m (x +1)在AC 位置时,m =12,可知当直线y =m (x +1)在x 轴和AC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与AC 重合但不能与x 轴重合),此时0<m ≤12,g (x )有两个不同的零点.当直线y =m (x +1)过点B 时,m =-2;当直线y =m (x +1)与曲线f (x )相切时,联立⎩⎨⎧y =1x +1-3,y =m (x +1),得mx 2+(2m +3)x +m +2=0,由Δ=(2m +3)2-4m (m +2)=0,解得m =-94,可知当y =m (x +1)在切线和BC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与BC 重合但不能与切线重合),此时-94<m ≤-2,g (x )有两个不同的零点.综上,m 的取值范围为(-94,-2]∪(0,12],故选A.]变式训练3 (1)C (2)C解析 (1)由于函数f (x )=x 3在R 上为增函数,所以当x >1时,x 3>1成立,反过来,当x 3>1时,x >1也成立.因此“x >1”是“x 3>1”的充要条件,故选C.(2)作出f (x )的图象,由图知,只有当f (x )=1时有3个不同的实根;∵关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实数解x 1,x 2,x 3,∴必有f (x )=1,从而x 1=1,x 2=2,x 3=0,故可得x 21+x 22+x 23=5,故选C.高考题型精练1.D [需满足x 2+2x -3>0,解得x >1或x <-3,所以f (x )的定义域为(-∞,-3)∪(1, +∞).]2.C [设f (x )上任意一点为(x ,y ),关于y =-x 的对称点为(-y ,-x ),将(-y ,-x )代入 y =2x +a ,所以y =a -log 2(-x ),由f (-2)+f (-4)=1,得a -1+a -2=1,2a =4,a =2.]3.D [由对数函数的图象和性质及函数图象的平移变换知0<a <1,0<c <1.]4.D [因为a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,显然a >b >c .]5.B [∵a =log 37,∴1<a <2.∵b =21.1,∴b >2. ∵c =0.83.1,∴0<c <1.故c <a <b ,选B.]6.A [对于x >0时有2x +2x <2x +3x 恒成立, 而要使2a +2a =2b +3b 成立,则必须有a >b .]7.C [令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1), 得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.]8.D [当a >1时,y =x a 与y =log a x 均为增函数,但y =x a 递增较快,排除C ;当0<a <1时,y =x a 为增函数,y =log a x 为减函数,排除A.由于y =x a 递增较慢,所以选D.]9.2 解析 分别画出函数y =a x (0<a <1)与y =|log a x |(0<a <1)的图象,如图所示,图象有两个交点.10.[-1,0) 解析 由题意得,函数y =⎩⎨⎧⎝⎛⎭⎫121-x +m ,x ≤1,⎝⎛⎭⎫12x -1+m ,x >1.首先作出函数y =⎩⎨⎧⎝⎛⎭⎫121-x ,x ≤1,⎝⎛⎭⎫12x -1,x >1的图象,如图所示.由图象可知要使函数y =⎩⎨⎧⎝⎛⎭⎫121-x +m ,x ≤1,⎝⎛⎭⎫12x -1+m ,x >1的图象与x 轴有公共点,则m ∈[-1,0).11.a >1解析 画出函数y =f (x )与y =a -x 的图象,如图所示,所以a >1.12.①②③④⑤解析 因为a *b =ln(e a +e b ),b *a =ln(e b +e a ),所以a*b=b*a,即①对;因为(a*b)+c=ln(e a+e b)+c=ln[(e a+e b)e c]=ln(e a+c+e b+c)=(a+c)*(b+c),所以②对;只需令②中的c为-c,即有结论(a*b)-c=(a-c)*(b-c),所以③对;因为(a*b)*c=[ln(e a+e b)]*c=ln[eln(e a+e b)+e c]=ln(e a+e b+e c),a*(b*c)=a*[ln(e b+e c)]=ln[e a+eln(e b+e c)]=ln(e a+e b+e c),所以(a*b)*c=a*(b*c),即④对;设*a*b=x,则x*x=a*b,所以ln(e x+e x)=ln(e a+e b),所以2e x=e a+e b,所以x=ln e a+e b2,即*a*b=lne a+e b2≥ln2e a·e b2=a+b2,故⑤对.故正确的命题是①②③④⑤.。

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。

此时,a 的n 次方根用符号 表示。

当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。

此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。

正的n 次方根与负的n 次方根可以合并成 (a>0)。

注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。

3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。

有理数指数幂的运算性质同样使用于无理数指数幂。

(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。

函数的概念与基本初等函数I-高考真题文科数学分项汇编(解析版)

函数的概念与基本初等函数I-高考真题文科数学分项汇编(解析版)

专题02函数的概念与基本初等函数 I1.【2020年高考全国Ⅰ卷文数】设alog3 4 2,则4 aA. 116B. 19 C.1 D. 168【答案】B【解析】由alog3 4 2可得log3 4a 2,所以4a 9,所以有4 a 1,9故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.4x2.【2020年高考天津】函数y 的图象大致为x 12A BC D【答案】A4x【解析】由函数的解析式可得:f xxf x,则函数 f x为奇函数,其图象关于坐标原12点对称,选项CD错误;4当x 1时,y故选:A.2 0,选项B错误.1 1【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.3.【2020年高考全国Ⅱ卷文数】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成 1200份 订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已 知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能 完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于 0.95,则至少需要志愿 者 A .10名 B .18名C .24名D .32名【答案】B【解析】由题意,第二天新增订单数为5001600 1200 900,设需要志愿者 x 名,50900x0.95, x 17.1,故需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.【2020年高考全国Ⅲ卷文数】Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公 K布数据建立了某地区新冠肺炎累计确诊病例数 I(t)(t 的单位:天)的 Logistic 模型: I(t)=1e0.23(t53) ,其中 K 为最大确诊病例数.当 I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln19≈3) A .60 B .63C .66D .69【答案】CKK【解析】I t ,所以 It0.95K ,则e 0.23t5319,1 e 0.23t 531e 0.23t53353 66.0.23所以,0.23t53ln19 3,解得t故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 25.【2020年高考全国Ⅲ卷文数】设 a=log 32,b=log 53,c= ,则 3A .a<c<bB .a<b<cC .b<c<aD .c<a<b【答案】A 【解析】因为a 1log 3 2 1log 39 2 c ,b 1log 5 31log 5 252 c ,33 3 33 3 3 3所以 a c b .故选 A .【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.1 6.【2020年高考全国Ⅱ卷文数】设函数 f(x)=x 3 -3,则 f(x) xA .是奇函数,且在(0,+∞)单调递增 C .是偶函数,且在(0,+∞)单调递增 【答案】AB .是奇函数,且在(0,+∞)单调递减 D .是偶函数,且在(0,+∞)单调递减1【解析】因为函数 fxx所以函数 f x为奇函数.33定义域为x x 0,其关于原点对称,而f x fx ,x又因为函数 y x3在(0,+¥)上单调递增,在(-¥ ,0)上单调递增, 而 y13 x 3在(0,+¥)上单调递减,在(-¥ ,0)上单调递减,x13在(0,+¥)上单调递增,在(-¥ ,0)上单调递增. 所以函数 f xx 3x故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题. 7.【2020年高考全国Ⅱ卷文数】若 2 −2 <3 −3,则x y −x −y A .ln(y −x+1)>0 B.ln(y −x+1)<0 D .ln|x −y|<0C .ln|x −y|>0 【答案】 A 【解析】由 2 令 ft2 为 R 上的增函数, y 3x 为 R 上的减函数, f t 为R 上的增函数,2x y3x3 y 得:2x 3x2y 3y,t3t ,y 2xxy ,Q yx0,yx11,ln y x 10,则 A 正确,B错误;Q x y 与1的大小不确定,故 CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到x, y的大小关系,考查了转化与化归的数学思想.,b (1)0.8,c log 0.70.8,则a,b,c的大小关系为8.【2020年高考天津】设a 30.73A.a b c【答案】D B.b a c C.b caD.c a b【解析】因为a 3 0.7 1,0.8b1 3 30.8 0.7a,3c log0.7 0.8 log0.7 0.7 1,所以c 1 ab .故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:y ax,当a 1时,函数递增;当0 a 1时,函数递减;(2)利用对数函数的单调性:y log a x,当a 1时,函数递增;当0 a 1时,函数递减;(3)借助于中间值,例如:0或1等.9.【2020年新高考全国Ⅰ卷】基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t) e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A.1.2天C.2.5天【答案】B B.1.8天D.3.5天3.28 1【解析】因为R 0 3.28,T 6,R 0 1rT,所以r 0.38,所以I t e rte0.38t,6t设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1天,则e0.38( t t1) 2e0.38t,所以e0.38t1 2,所以0.38t1 ln2,所以t1 ln 20.38 0.690.381.8天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.10.【2020年新高考全国Ⅰ卷】若定义在R的奇函数f(x)在(,0)单调递减,且f(2)=0,则满足xf (x 1) 的x的取值范围是A.[1,1][3,) B.[3,1][0,1].[1,0][1,3]C.[1,0][1,)【答案】D【解析】因为定义在R上的奇函数f (x)在(,0)上单调递减,且 f (2) 0,所以f (x)在(0,)上也是单调递减,且 f (2) 0, f (0) 0,所以当x(,2) (0,2)时, f (x) 0,当x(2,0)(2,)时, f (x)0,x 0 x 0所以由xf (x 1) 0可得 2 x1 0或x1 2或0 x1 2或x1 2或x 0 解得1≤ x≤0或1 x 3,x所以满足xf (x 1) 0的的取值范围是[1,0][1,3],故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 11.【2020年新高考全国Ⅰ卷】信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为1,2,,n,n n且P(X i) p 0(i 1,2,,n),,定义X的信息熵H(X) p i log2 p i .ip i 1i 1 i 1A.若n=1,则H(X)=0B.若n=2,则H(X)随着p1的增大而增大C.若p i 1 (i 1,2,,n),则H(X)随着n的增大而增大nD.若n=2m,随机变量Y所有可能的取值为1,2,,m,且P(Y j) p j p2m1 j( j 1,2,,m),则H(X)≤H(Y)【答案】AC【解析】对于 A 选项,若n 1,则i 1, p 1 1,所以 H X1log 210,所以 A 选项正确.对于 B 选项,若n 2,则i 1,2, p 2 1 p 1,所以 H Xp 1 log 2 p 1 1p log 1 p, 1 21当 p 111 1 3 4 log2 4 43 时, H Xlog 2 4 ,4当p 1 33 3 1 H X log 24 4 log 24 4 1 时, , 4 两者相等,所以 B 选项错误.对于 C 选项,若 p i 1n i 1,2,,n ,则HX 1n log 2 1 nnlog 2 1nlog 2 n , n则 H X随着的增大而增大,所以 C 选项正确.对于 D 选项,若n 2m ,随机变量Y 的所有可能的取值为1,2,,m ,且 P Y j p j p 2m1 j( j 1,2,,m ).2m H X p i log 2 p i2m 1p i log 2 p i1i1i11p 2 m1log 2 p1p 2 m log1p 1log 2 p 1 p 2log 2 p 2. 2 p 2 m2 m1H Y111 p 1p 2mlog 2p 2p 2m 1log 2p mp m1log 2 p 1 p 2mp 2p 2m 1p m p m11 11 1 p 1log2 p 2 log 2p 2m1log 2p 2 mlog 2 . p 1 p 2m p 2 p 2m1 p 2p 2m1p 1 p 2m11,由于 p i0 i 1,2,,2m,所以pp i p 2m 1ii1 log 12 p i p 2m1i,所以 p ilog 1 p ilog 21 所以log,2 p i2 p ip i p 2m1i所以H XHY,所以 D 选项错误.故选:AC【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对 数运算和对数函数及不等式的基本性质的运用,属于难题. 12.【2020年高考天津】已知函数 f (x)x3,x 0,若函数 g(x)f (x)kx 2x (k R)恰有 4个零点,2x,x0.则k 的取值范围是 A .(, 1)(2 2, )B .(,1)(0,2 2) 22C .(,0)(0,2 2)D .(,0)(22,)【答案】D【解析】注意到 g(0)0,所以要使 g(x)恰有 4个零点,只需方程|kx 2 | f (x)| x |恰有 3个实根即可, 令 h(x)f (x),即 y |kx2|与h(x) f (x)| x || x |的图象有个不同交点.3x2, x 0 f (x)因为h(x),x1, x 0h(x) f (x)当k 0时,此时 y 2 ,如图 1, y 2与有个不同交点,不满足题意; 2| x | 当k0时,如图 2,此时 y |kx 2|与h(x)f|(xx|)恒有个不同交点,满足题意;3当k0时,如图 3,当 y kx 2与 y =x2相切时,联立方程得 x 2 kx 2 0, 令0得k 2 8 0,解得k2 2(负值舍去),所以k 2 2 . 综上,k 的取值范围为(,0)(2 2,).故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题. 13.【2020年高考北京】已知函数 f (x)2x x,则不等式 f (x) 0的解集是1 A. (1,1)B.(,1)(1,) D. (,0)(1,)C. (0,1) 【答案】Df x 2【解析】因为 x 1,所以 fx0等价于2xx 1, x在同一直角坐标系中作出 y 2x和 y x 1的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式2 x x1的解为x 0或x1.f x 0的解集为:,01,.故选:D.所以不等式【点睛】本题考查了图象法解不等式,属于基础题.14.【2020年高考浙江】函数y=xcos x+sin x在区间[–π,π]上的图象可能是【答案】A【解析】因为f x xcosx sin x,则 f x xcosx sin x即题中所给的函数为奇函数,函数图象关于坐标原点对称,f x,据此可知选项CD错误;且x 时,y cos sin 0,据此可知选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.15.【2020年高考浙江】已知a,b R且ab≠0,对于任意x≥0均有(x–a)(x–b)(x–2a–b)≥0,则A.a<0 B.a>0 C.b<0 D.b>0【答案】C【解析】因为ab 0,所以a 0且b≠0,设 f (x) (x a)(x b)(x 2a b),则 f (x)的零点为x1 a,x2 b,x3 2a b当a 0时,则x2 x3,x1 > 0,要使 f (x) 0,必有2a b a ,且 b 0,即 b a ,且 b 0,所以 b 0; 当 a 0时,则 x 2 x 3, x 1 0,要使 f (x) 0,必有 b 0.综上一定有 b 0. 故选:C【点晴】本题主要考查三次函数在给定区间上恒成立问题,考查学生分类讨论思想,是一道中档题. 16.【2019年高考全国Ⅰ卷文数】已知 a log 2 0.2,b 2 ,c0.20.2 0.3,则 A . a bcC . c ab【答案】BB . a c bD . b c a【解析】 a log 2 0.2 log 21 0, b 221,0.2 0c 0.2 0.20.3 01,即0 c 1,则 acb . 故选 B .【名师点睛】本题考查指数和对数大小的比较,考查了数学运算的素养.采取中间量法,根据指数函数 和对数函数的单调性即可比较大小.17.【2019年高考全国Ⅱ卷文数】设 f(x)为奇函数,且当 x ≥0时,f(x)=e x1,则当 x<0时,f(x)=A .e x1B .ex1C .e x1D .e x1【答案】D【解析】由题意知 f (x)是奇函数,且当 x ≥0时, f(x)=e x 1, 则当 x 0时,x 0,则 f (x) ex1f(x),e x 得f (x)1.故选 D .【名师点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利 用转化与化归的思想解题.18.【2019年高考全国Ⅲ卷文数】函数 f (x) 2sinx sin2x 在[0,2π]的零点个数为A .2B .3 D .5C .4 【答案】B 【解析】由 f (x) 2sin x sin 2x 2sin x 2sin xcos x 2sin x(1 cos x) 0,得sin x0或cosx 1,x 0,2π,x 0、π或2π.f (x)在0,2π的零点个数是3.故选 B .【名师点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养,直接求出函 数的零点可得答案.19.【2019年高考天津文数】已知 alog 2 7,b log 38,c0.30.2,则 a ,b ,c 的大小关系为 A . cb aC . b ca【答案】AB . ab cD . cab【解析】∵ c 0.31,0.2 00.3 a log 2 7 log 2 4 2,1b log 38 log 392,∴ cba .故选 A .【名师点睛】利用指数函数、对数函数的单调性时,要根据底数与1的大小进行判断. 20.【2019年高考北京文数】下列函数中,在区间(0,+)上单调递增的是1A . y x 2B .y=2xD . y1 C . ylog 1xx2【答案】A1【解析】易知函数y 2x, y log 1 x,y 在区间(0,)上单调递减,x21y x2在区间(0,)上单调递增.函数故选 A.【名师点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.sinx x21.【2019年高考全国Ⅰ卷文数】函数f(x)= 2在[,]的图像大致为cosx xA B.C.D .【答案】Dsin(x) (x)2 sin x x f (x),得f (x)【解析】由f (x) 是奇函数,其图象关于原点对称.cos(x) (x) cos x x21π又f (π) 2 42π 1, f (π) π 0,(π) π2 1π22 22可知应为D选项中的图象.故选D.【名师点睛】本题考查函数的性质与图象的识别,渗透了逻辑推理、直观想象和数学运算素养.采取性质法和赋值法,利用数形结合思想解题.22.【2019年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2 – m1 5 lg E1,其中星等为mEk的星的亮度为k(k=1,2).已知太阳的星等是–26.7,天狼2 E2星的星等是–1.45,则太阳与天狼星的亮度的比值为A.10C.lg10.110.1 B.10.1D.10 −10.1【答案】A【解析】两颗星的星等与亮度满足m 2m 1 5 lg E 1,E 22 令m 21.45,m 126.7, E 2m 2 m 1 2( 1.4526.7) 10.1, 则lg E15 5 2 E 110 10.1从而 E .2故选 A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及对 数的运算.23.【2019年高考浙江】在同一直角坐标系中,函数 y 1 x , ylog a (x 1) (a>0,且 a ≠1)的图象可能是a2【答案】D 1【解析】当0a 1时,函数 yax的图象过定点(0,1)且单调递减,则函数 y x 的图象过定点(0,1) aylog x 12的图象过定点(12,0)且单调递减,D 选项符合;且单调递增,函数a1当a1时,函数 y ax 的图象过定点(0,1)且单调递增,则函数 y x 的图象过定点(0,1)且单调递减, aylog x12的图象过定点(12,0)且单调递增,各选项均不符合.函数a综上,选 D.【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是a不能通过讨论的不同取值范围,认识函数的单调性. 24.【2019年高考全国Ⅲ卷文数】设 fx是定义域为 R 的偶函数,且在0,单调递减,则3223 1 A . f (log 3)> f (2 )> f (2 )) ) )4 2 33 21 )> f (2 B . f (log 3)> f (2 43 22 31 C . f (2 )> f (2 )> f (log 3)>f (log 3 42 33 2 1D . f (2 【答案】C )> f ( 21【解析】f x 是定义域为R 的偶函数,f (log3 4 ) f (log 3 4). 2 2 3 2 2,log 3 4 2323 2 3 2,log 3 4 log 3 3 1,12又 fx 在(0,+∞)上单调递减,∴ f (log 3 4) f 2 3f2223,3 2f 2 3 f log 3 2 1f 2 即. 4 故选 C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量 比较自变量的大小,最后根据单调性得到答案.2 x, 0 x 1,若关于 x 的方程 f (x) 1 xa(a R)恰25.【2019年高考天津文数】已知函数 f (x) 1 ,x 1. 4x有两个互异的实数解,则 a 的取值范围为 5 9 , 5 9 , A .4 4B .4 45 9 5 9 {1} 4 4 , {1}, D .C .4 4【答案】D2 x, 0 x1,f (x)【解析】作出函数的图象,1 ,x 1x以及直线y 1 x,如图,4关于x的方程 f (x) 1 x a(a R)恰有两个互异的实数解,4即为y f (x)和y 1 x a(a R)的图象有两个交点,4平移直线y 1 x,考虑直线经过点(1,2)和 a 9 a 5或,4 4(1,1)时,有两个交点,可得4考虑直线y 1 x a(a R)与y1 在x 1时相切,ax 1x 1,24 x 4由 a2 1 0,解得a 1(1舍去),5 9a , 491.所以的取值范围是故选 D.【名师点睛】根据方程实数根的个数确定参数的取值范围,常把其转化为曲线的交点个数问题,特别是其中一个函数的图象为直线时常用此法.26.【2018年高考全国Ⅲ卷文数】下列函数中,其图象与函数y ln x的图象关于直线x 1对称的是A.y ln 1xB.y ln 2xD.y ln 2xC.y ln 1x【答案】B【解析】函数y ln x过定点(1,0),(1,0)关于直线x=1对称的点还是(1,0),只有y ln 2 x的图象过此点.故选项B正确.【名师点睛】本题主要考查函数的对称性和函数的图象,属于中档题.求解时,确定函数y ln x过定点(1,0)及其关于直线x=1对称的点,代入选项验证即可.2x27.【2018年高考全国Ⅰ卷文数】设函数 f x,x 0,则满足f x 1 f 2x的x的取值范围1,x 0是A .,1B .0,D .,C .1,【答案】D【解析】将函数f x的图象画出来,2x 0观察图象可知会有2x x1,解得x 0,所以满足f x 1 f 2x的x 的取值范围是,0 .故选D.【名师点睛】该题考查的是通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图象,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,最后求得结果.28.【2018年高考全国Ⅱ卷文数】函数 f x e xe x的图像大致为x 2【答案】B【解析】x 0, f x e x e x f x, f x 为奇函数,舍去A; f 1 e e1 0,∴舍x 2去D; f xe x ex x2 ex e x 2xx 2 e x x 2 e x, x 2时,f x 0,f (x) x 4 x3单调递增,舍去C.因此选 B.【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性.29.【2018年高考全国Ⅲ卷文数】函数y xx 2的图像大致为4 2【答案】D【解析】函数图象过定点(0,2),排除A,B;2,2x 2x(2x令y f (x) xx4 2则f (x)4x3 21),由f (x) 0得2x(2x2 1) 0,得x2或0 x 2,此时函数单调递增,2 2由f (x) 0得2x(2x2 1) 0,得x2或22 x 0,此时函数单调递减,排除 C.2故选 D.【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单调性是解决本题的关键.30.【2018年高考浙江】函数y=2 x sin2x的图象可能是A.B.C.D.【答案】D【解析】令f x 2因为x R, f x 2 x sin2x 2 x sin2xf x ,所以f x 2 sin2x为奇函数,排除选项 A,B;x sin2x,xπ 因为 x 2 ,π时, f x0,所以排除选项 C ,故选 D .【名师点睛】先研究函数的奇偶性,再研究函数在π,π上的符号,即可判断选择.有关函数图象的识 2别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的周期性. 31.【2018年高考全国Ⅰ卷文数】设函数 fxxa 1x ax ,若 f x为奇函数,则曲线f x3 2在点0,0处的切线方程为A . y2x B . y xD . yxC . y2x【答案】D【解析】因为函数 f x 是奇函数,所以a 1 0,解得 a 1,所以 fxx 1,x , f x3x所以 f 0 1, f 0 0, 32 所以曲线 y f x 在点0,0处的切线方程为 yff0x ,化简可得 y x , 故选 D .【名师点睛】该题考查的是函数的奇偶性以及有关曲线 yf x在某个点x 0, f x 0处的切线方的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论:多项式函数中,奇函数不存 在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得 f x,借助于导数的几何意义,结合直线方程的点斜式求得结果. 32.【2018年高考全国Ⅱ卷文数】已知 f x 是定义域为,的奇函数,满足 f 1 x1 x .若f 12,则 f 1 f 2f 3f 50A .50C .2B .0 D .50【答案】C 【解析】因为 f x是定义域为,的奇函数,且 f 1 xf 1 x ,所以 f1 xfx 1, f3 xfx 1fx 1,T4, 因此 f1 f2 f3 f 5012f 1 f 2 f3f4f1f2,因为 f 3f1, f 4f2,所以 f 1 f 2 f3 f4 0,因为 f 2 f 0 0,从而 f 1 f 2 f 3 f 50f1 2.故选 C . 【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数 的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的 自变量转化到已知解析式的函数定义域内求解.133.【2018年高考天津文数】已知 a log 3 72 ,b 1 3 ,c log 1,则a,b,c 的大小关系为413 5 A . a b c C .c ba【答案】 DB . b a cD .c a b 【解析】由题意可知:log 3 3 log 3 72log 39,即1a2,111 1 3 1 ,即0 b 1,4 4 4log 1 1 log 35 log 3 72,即 c a ,3 5 综上可得:ca b .故本题选择 D 选项.【名师点睛】由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定 a,b,c 的大小 关系.对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指 数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小 比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.x,x34.【2019年高考浙江】已知a,b R,函数 f (x)13.若函数y f (x)axbx 31 (a 1)x2 ax,x 02恰有3个零点,则A.a<–1,b<0 B.a<–1,b>0D.a>–1,b>0C.a>–1,b<0【答案】C【解析】当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x ,th则y=f(x)﹣ax﹣b最多有一个零点;+ax﹣ax﹣b x当x≥0时,y=f(x)﹣ax﹣b x 3 t(a+1)x 2 3 t(a+1)x 2﹣b,y x (a1)x,2当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上单调递增,则y=f(x)﹣ax﹣b最多有一个零点,不合题意;当a+1>0,即a>﹣1时,令y′>0得x∈(a+1,+∞),此时函数单调递增,令y′<0得x∈[0,a+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:b∴ <0且 1 12 a 1(a 1)b 0,2th 3(a1)3解得 b <0,1﹣a >0,b > t (a+1)3 ,则 a>–1,b<0. 故选 C .【名师点睛】本题考查函数与方程,导数的应用.当 x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x﹣b 最多有一个零点;当 x ≥0时,y =f (x )﹣ax ﹣b x 3 t (a+1)x2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解. 2 35.【2020年高考江苏】已知 y=f(x)是奇函数,当 x ≥0时, f x x,则 f 8的值是▲ .3【答案】42 【解析】 f (8) 8 4,3因为 f (x)为奇函数,所以 f (8)f (8)4故答案为: 4【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题. 136.【2020年高考北京】函数 f (x) ln x 的定义域是____________. x 1【答案】(0,)x 0 【解析】由题意得 x 1 0,x故答案为:(0,)【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题. 37.【2019年高考江苏】函数 y76x x2的定义域是 ▲ .【答案】[1,7]【解析】由题意得到关于 x 的不等式,解不等式可得函数的定义域. 由已知得76xx0 ,即 x故函数的定义域为[1,7] . 22 6x7 0,解得1 x7,【名师点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然 后求出它们的解集即可.38.【2018年高考全国Ⅰ卷文数】已知函数 f xlog 2x2a ,若 f 3 1,则 a________.【答案】7 【解析】根据题意有 f3log 2 9a 1,可得9 a 2, 所以 a 7 . 故答案是7.【名师点睛】该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求 解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目. 39.【2018年高考江苏】函数 fxlog 2x 1的定义域为________.【答案】[2,+∞) 【解析】要使函数 f x 有意义,则需log 2x 1 0,解得 x 2, 即函数 fx的定义域为2, .【名师点睛】求给定函数的定义域往往需转化为解不等式(组)的问题.求解本题时,根据偶次根式下 被开方数非负列不等式,解对数不等式得函数定义域. 40.【2018年高考全国Ⅲ卷文数】已知函数 fxln 1 x 2 x 1, f a 4,则 f a____【答案】2【解析】由题意得 fxfx ln 1 x 2 x1ln 1 x 2 x1 ln 1 x 222,f af a2 ,则 fa2 .故答案为−2.【名师点睛】本题主要考查函数的性质,由函数解析式计算发现 f x f x2是关键,属于中档题.241.【2019年高考浙江】已知aR ,函数 f (x)ax 3x ,若存在tR ,使得| f (t 2) f (t)| ,则3实数a 的最大值是___________. 【答案】 43【解析】存在tR ,使得| f (t 2) f (t)| 2, 3即有| a(t 2) 化为| 2a 3t 3 (t 2) at3t | 2 , 3 6t 42| 22 ,3 可得 2 2a 3t 6t4 2 2 2 ,3 3 2 6t4 4 a 3t 2 即 , 3 311,可得0 a 4 . 由3t 2 6t 4 3(t 1)23 4 则实数a 的最大值是 3. 【名师点睛】本题考查函数的解析式及二次函数,结合函数的解析式可得t |2,去绝对值化简,结合二次函数的最值及不等式的性质可求解.| a(t2) 3(t2)at3342.【2019年高考北京文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为 60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销: 一次购买水果的总价达到 120元,顾客就少付 x 元.每笔订单顾客网上支付成功后,李明会得到支付 款的 80%.①当 x=10时,顾客一次购买草莓和西瓜各 1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则 x 的最大值为 __________. 【答案】①130;②15 【解析】① x10时,顾客一次购买草莓和西瓜各一盒,需要支付608010 130元.y②设顾客一次购买水果的促销前总价为元,当 y 120元时,李明得到的金额为 y 80%,符合要求; 当 y 120元时,有y x 80% y 70%恒成立,即8y x 7y,x8y,y因为 815,所以的最大值为15 . x min 综上,①130;②15. 【名师点睛】本题主要考查函数的最值,不等式的性质及恒成立,数学的应用意识,数学式子变形与运算求解能力.以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养. 43.【2018年高考浙江】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。

2020高考数学备考复习 易错题二:基本初等函数

2020高考数学备考复习 易错题二:基本初等函数

2020高考数学备考复习易错题二:基本初等函数一.单选题(共15题;共30分)1.已知是(-,+)上的增函数,那么a的取值范围是( )A. (1,+)B. (-,3)C. [,3)D. (1,3)【答案】C【考点】分段函数的解析式求法及其图象的作法,函数单调性的性质,对数函数的图像与性质【解析】【分析】因为函数是(-,+)上的增函数,所以,所以[,3)。

【点评】此题是易错题,错误的主要原因是:忘记限制条件。

2.已知函数,若,则等于()A. B. C. D.【答案】A【考点】函数奇偶性的判断,对数函数的单调性与特殊点【解析】【解答】即,=,所以,=,关系A。

【分析】典型题,通过考查的奇偶性,得到与的关系。

3.已知函数是R上的单调增函数且为奇函数,数列是等差数列,>0,则的值( )A. 恒为正数B. 恒为负数C. 恒为0D. 可正可负【答案】A【考点】函数单调性的性质,函数奇偶性的性质,等差数列的性质【解析】【解答】∵函数f(x)是R上的奇函数且是增函数数列,∴取任何x2>x1,总有f(x2)>f(x1)。

∵函数f(x)是R上的奇函数,∴f(0)=0,∵函数f(x)是R上的奇函数且是增函数,∴当x>0,f(0)>0,当x<0,f(0)<0.∵数列{a n}是等差数列,a1+a5=2a3,a3>0,∴a1+a5>0,则f(a1)+f(a5)>0,∵f(a3)>0,∴f(a1)+f(a3)+f(a5)恒为正数,故选A。

【分析】中档题,本题综合应用函数奇偶性及单调性,逐步确定得到满足的条件。

有一定综合性,较为典型。

4.(2015·重庆)函数的定义域是()A. B. C. D.【答案】D【考点】函数的定义域及其求法,一元二次不等式【解析】【解答】由解得或;故选D。

【分析】本题考查对函数的定义域与一元二不等式的解法,由对数的真数大于零得不等式求解。

本体属于基础题,注意不等式只能是大于零不能等于零。

5.(2015·湖北)函数的定义域为()A. B. C. D.【答案】C【考点】函数的定义域及其求法,函数的值,指数函数的定义、解析式、定义域和值域【解析】【解答】由函数的表达式可知,函数的定义或应满足条件:,解之得≠,JI既函数的定义或为,故应选C.【分析】本题看似是求函数的定义域,实质上是将根式、绝对值、对数和分式、交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.6.(2015·福建)若定义在R上的函数满足,其导函数满足,则下列结论中一定错误的是()A. B. C. D.【答案】C【考点】函数的定义域及其求法,导数的运算【解析】【解答】由已知条件,构造函数=-Kx,则=-k,故函数在R上单调递增,且>0,故g()>g(0),所以,,所以结论中一定错误的是C,选项D无法判断;构造函数h(x)=f(x)-x,则h'(x)=f'(x)-1>0,所以函数h(x)在R上单调递增,且,所以h()>h(0),即f()->-1,选项A,B无法判断,故选C。

专题4 基本初等函数--2020届高三数学江苏版一轮复习考点总结与专题训练含解析答案

专题4 基本初等函数--2020届高三数学江苏版一轮复习考点总结与专题训练含解析答案

专题4 基本初等函数【考点1】指数值、对数值的比较大小【备考知识梳理】 指数函数,当a 1>时,指数函数在(,)-∞+∞单调递增;当0a 1<<时,指数函数在(,)-∞+∞单调递减.对数函数,当a 1>时,对数函数在(0,)+∞单调递增;当0a 1<<时,对数函数在(0,)+∞单调递减.幂函数y x α=图象永远过(1,1),且当0α>时,在(0,)x ∈+∞时,单调递增;当0α<时,在(0,)x ∈+∞时,单调递减. 【规律方法技巧】指数值和对数值较大小,若指数值有底数相同或指数相同,可以考虑构造指数函数和幂函数和对数函数,通过考虑单调性,进而比较函数值的大小;其次还可以借助函数图象比较大小.若底数和指数不相同时,可考虑选取中间变量,指数值往往和1比较;对数值往往和0、1比较. 【考点针对训练】1.设则a ,b ,c 的大小关系是______________________.【答案】b a c <<2.设0<x ,且x x a b <<1,则,,0,1a b 的大小关系是 . 【答案】10<<<b a 【解析】∵x x a b <<1,0<x ,∴,∴指数函数为减函数,∴10<<<b a .【考点2】指数函数的图象和性质【备考知识梳理】【规律方法技巧】1、 研究指数函数性质时,一定要首先考虑底数a 的范围,分a 1>和0a 1<<两种情况讨论,因为两种情况单调性不同,相应地图象也不同.2、与指数函数有关的函数的图像的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.3、一些指数方程、不等式问题的求解,往往利用相应的指数型函数图像数形结合求解. 【考点针对训练】1.已知函数,其在区间[]0,1上单调递增,则a 的取值范围为 .【答案】[]1,1-2.函数在(,1]x ∈-∞上0y >恒成立,则a 的取值范围是 .【答案】(34-,+∞) 【解析】由题意得,令12x t =,则1[,)2t ∈+∞,因此,从而34a >-【考点3】对数的运算性质和对数函数的图象和性质【备考知识梳理】 1.对数的定义 如果,那么数x 叫做以a 为底N 的对数,记作a x log N =其中a 叫做对数的底数,N叫做真数.2.对数的性质与运算及换底公式 (1)对数的性质:①10a log =;②1a log a =;③a log Na N =(2)对数的换底公式基本公式(a ,c 均大于0且不等于1,b >0).(3)对数的运算法则: 如果,,那么 ①,②, ③(n R ∈).3.对数函数的图像与性质【规律方法技巧】1、 研究对数函数性质时,一定要首先考虑底数a 的范围,分a 1>和0a 1<<两种情况讨论,因为两种情况单调性不同,相应地图象也不同,同时要注意定义域.2、对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.3、一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. 【考点针对训练】1.若2,2a b >>,且,则___________. 【答案】2∴.2.已知函数()的图像如图所示,则a b +的值是 .【解析】由题意得【考点4】二次函数的图象和性质【备考知识梳理】 二次函数的图象和性质【规律方法技巧】1、分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.2、抛物线的开口,对称轴位置定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论.【考点针对训练】1.在区间(,]t -∞上存在x ,使得不等式成立,则实数t 的取值范围是 .【答案】[0,4]【解析】由二次函数图像知:当2t ≤时,,即02t ≤≤;当2t >时,,即24t <≤;综上实数t 的取值范围是[0,4]2.已知, 若且(a,b,c R ∈),则实数c 的取值范围是 .【答案】【考点5】幂函数的图象和性质【备考知识梳理】(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图象比较(3)幂函数的性质比较=【规律方法技巧】1.幂函数,其中α为常数,其本质特征是以幂的底x为自变量,指数α为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准.2.在()0,1上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数的图象与坐标轴相交,则交点一定是原点. 【考点针对训练】1.已知幂函数)(x f y =图像过点(,则该幂函数的值域是_____________.【答案】[0,)+∞【解析】设幂函数的解析式为αx y =因为幂函数)(x f y =图像过点(,所以,所以该幂函数的解析式为0≥=x y .2.设幂函数()f x kx α=的图象经过点1(2,则k a += .【答案】32专题训练1. 【镇江市2019届高三年级第一次模拟】已知函数1221+=+x x y 与函数xx y 1+=的图象共有k (*∈N k )个公共点:),(111y x A , ),(222y x A ,… ,),(k k k y x A ,则 .【答案】2【解析】函数1221+=+x x y 与函数x x y 1+=的图象都关于)1,0(对称,共有2个公共点:所以2. 【2019年高考原创押题预测卷03(江苏卷)】设函数()y f x =在是定义在R 上的周期为3T =的奇函数,若,则实数a 的取值范围为.【答案】2(1,)3-【解析】由题设可得,因,故2311a a -->+,即3201a a -<+,解之得213a -<<,故答案为:2(1,)3-.3. 【云南师大附中2019届高考适应性月考(八)】若偶函数()f x 在(],0-∞上单调递减,的大小关系是 .【答案】()f c <.4.【山东日照2019届高三下学期二模】函数为偶函数,且在()0,+∞单调递增,则的解集为 .【答案】5.【四川省成都市9校2019届高三第四次联合】已知函数(1x e e≤≤, e 为自然对数的底数)与()xg x e =的图象上存在关于直线y x =对称的点,则实数a 取值范围是 .【答案】11,e e⎡⎤+⎢⎥⎣⎦6. 若函数(0a >且1a ≠)的图像经过定点(,)P m n ,且过点的直线l被抛物线2:4C y x =截的弦长为5,则直线l 的斜率为___________________. 【答案】2±【解析】由已知可知(2,2),P 则(1,0)Q ,设将直线方程与抛物线方程联立,可得,得,所以截的弦长,解得2k =±.本题主要考了对数函数的性质,同时考查了直线与抛物线的位置关系,重点考查学生的分析和解决问题的能力.此题难度不大,综合性较强,体现高考小题综合化的特点,故选此题.7.函数)(x f 的定义域为D ,如果存在区间[]D n m ⊆,,使得)(x f 在区间[]n m ,上的值域仍为[]n m ,,那么我们就把函数)(x f 叫做“保值函数”.若函数为“保值函数”,则实数m 的取值范围为____.【答案】1(1,)ee本题考查新定义下函数的值域问题,指数函数的图象和性质,考查学生运用数形结合思想的能力和逻辑思维和推理的能力.本题通过新定,来研究指数函数的性质,出题角度新,故选此题.8.设函数,()f x ax =在(1,2)内有交点,则实数a 的取值范围是____________.【答案】31log 2,12⎛⎫⎪⎝⎭图像,可知实数a 的取值范围是31log 2,12⎛⎫⎪⎝⎭.学@科网本题考查考查函数的交点等基础知识,意在考查运用转化与化归思想、综合分析问题解决问题以及运算求解,数形结合思想的能力和逻辑思维和推理的能力.此题初看似乎无从下手,但对题目变形后,利用单调性,求出函数()f x 的值域,从而可求,难度不大,但题目灵活,故选此题.、9.函数的定义域为 ▲ . 分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则,解得2x ≥,即函数()f x 的定义域为[2,)+∞. 点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.10.已知函数, 其中e 是自然对数的底数. 若,则实数a 的取值范围是 ▲ . 【答案】1[1,]2-【考点】利用函数性质解不等式【名师点睛】解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内11.函数y =的定义域是 .【答案】[]3,1-【解析】试题分析:要使函数式有意义,必有,即,解得31x -≤≤.故答案应填:[]3,1-【考点】函数定义域 【名师点睛】函数定义域的考查,一般是多知识点综合考查,先“列”后“解”是常规思路.列式主要从分母不为零、偶次根式下被开方数非负、对数中真数大于零等出发,而解则与一元二次不等式、指(对)数不等式、三角不等式等联系在一起.。

高中数学基本初等函数知识点总结及习题解析!

高中数学基本初等函数知识点总结及习题解析!

高中数学基本初等函数知识点总结及习题解析!一、基本初等函数1、幂函数一般地,函数 y = x^a (a 为常数,a∈Q) 叫做幂函数 .幂函数y = x^a (a∈Q) 的性质:① 所有幂函数在(0,+∞)上都有定义,并且图象都经过点(1,1).② 若 a > 0 , 幂函数图象都经过点(0 , 0)和(1 ,1)在第一象限内递增;若 a < 0 , 幂函数图象只经过点(1,1),在第一象限内递减 .③ 幂函数的图象最多只能同时出现在两个象限,且不经过第四象限;如果幂函数图象与坐标轴相交,则交点一定是坐标原点 .④ 画幂函数图象时,先画第一象限的部分,在根据函数的奇偶性完成整个图象 .⑤ 常见幂函数的图象常见幂函数的图象2、指数函数一般地,函数 y = a^x ( a > 0 且a ≠ 1 ) 叫做指数函数,自变量x 叫指数,a 叫底数 .指数函数的定义域是 R .指数运算法则:指数运算法则指数函数 y = a^x ( a > 0 且a ≠ 1 ) 的图象:指数函数图象(分两种情况)指数函数的主要性质:① 指数函数 y = a^x ( a > 0 且a ≠ 1 ) 定义域为 R ,值域(0,+∞);② 函数 y = a^x ( a > 1 ) 在 R 上递增,函数 y = a^x ( 0 < x <1 ) 在 R 上递减;③ 指数函数的图象经过点(0 , 1).3、反函数一般地,对于函数 y = f(x),设它的定义域为 D,值域为 A,如果对于 A 中任意一个值 y,在 D 中总有唯一确定的 x 值与它对应,且满足 y = f(x) ,这样得到的 x 关于 y 的函数叫做 y = f(x) 的反函数,记作 x = f-1(y) ,习惯上自变量常用x 来表示,而函数用 y 来表示,所以把它改写为 y = f-1(x) (x∈A) .(1) 反函数的判定:① 反函数存在的条件是原函数为一一对应函数;② 定义域上的单调函数必有反函数;③ 周期函数不存在反函数;④ 定义域为非单元素的偶函数不存在反函数 .(2) 反函数的性质:① 函数 y = f(x) 与函数 y = f-1(x) 互为反函数;原函数 y = f(x) 和反函数 y = f-1(x) 的图象关于直线 y = x 对称;② 若点(a , b)在原函数 y = f(x) 上,则点(b , a)必在其反函数 y = f-1(x) 上;③ 原函数 y = f(x) 的定义域是它反函数 y = f-1(x) 的值域;原函数 y = f(x) 的值域是它反函数 y = f-1(x) 的定义域,④ 原函数与反函数具有对应相同的单调性;⑤ 奇函数的反函数还是奇函数 .(3) 求反函数的步骤:① 用 y 表示 x ,即先求出 x = f-1(y) ;② x , y 互换,即写出 y = f-1(x);③ 确定反函数的定义域 .注:若函数 f(ax + b) 存在反函数,则其反函数为 y = 1/a [ f-1(x) - b ] , 而不是 y = f-1(ax + b) ,函数 y = f-1(ax + b) 是 y = 1/a [ f(x) - b ] 的反函数 .4、对数函数一般地,对数函数对数函数就是指数函数指数函数的反函数 .对数函数的性质:① 对数函数y = logax 的图象都在y 轴的右侧,定义域(0,+∞),值域 R ;② 对数函数 y = logax 的图象都经过点(1 , 0);③ 对数函数 y = logax (a > 1):当 x > 1 时,y > 0 ; 当 0 < x < 1 时,y < 0 ;对数函数 y = logax (0 < a < 1):当 x > 1 时,y < 0 ; 当 0 < x < 1 时,y > 0 .④ 对数函数 y = logax (a > 1)在(0,+∞)上是增函数,对数函数 y = logax (0 < a < 1)在(0,+∞)上是减函数 .二、习题检测【习题1】用定义证明:函数 f(x) = x + 1/x 在x∈[1 , +∞) 上是增函数 .【解析】【习题2】已知函数 f(x) = -x^2 + 2ax + 1 - a 在区间 [0 , 1] 有最大值 2,求实数 a 的值 .【解析】解:函数 f(x) = -x^2 + 2ax + 1 - a 的对称轴为 x = a ,① 当 a < 0 时,[0 , 1] 是函数 f(x) 的递减区间,f(x) max = f(0) = 1 -a = 2 , 解得a = -1 ;② 当 a > 1 时,[0 , 1] 是函数 f(x) 的递增区间,f(x) max = f(1) = a = 2 , 解得 a = 2 ;③ 当0 ≤ a ≤ 1 时,综上所述,a = -1 或 2 .【习题3】已知2^x ≤ 256 , log2x ≥ 1/2 , 求函数的最大值和最小值 .【解析】【习题4】已知 a > 0 且a ≠ 1 , 求使方程有解时的 k 的取值范围 .【解析】∴ 0 < k < 1 或 k < -1 .【习题5】某商品进货单价为 40 元,若销售价为 50 元,可卖出50 个,如果销售单价每涨 1 元,销售量就减少 1 个,为了获得最大利润,则此商品的最佳售价应为多少元 .【解析】解:设最佳售价为(50 + x ) 元,最大利润为 y 元,y = (50 + x)(50 - x) - (50 -x)×40= -x^2 + 40x + 500当 x = 20 时,y 取得最大值,∴ 应定价为 70 元 .。

高考数学中的基本初等函数题型总结

高考数学中的基本初等函数题型总结

高考数学中的基本初等函数题型总结作为全国高中生的普及性质考试,高考中必定会考到数学这个科目,而其中初等函数部分则是数学中的基础知识。

初等函数常常出现在多项式函数、指数函数、对数函数、三角函数、反三角函数等高中知识点当中。

因此,对于考生来说,掌握初等函数的知识点,对高考数学考试及日后的数学学习都非常重要。

本文就高考数学中的基本初等函数题型进行总结。

1. 最值问题求函数的最值是很常见的一种初等函数题型。

以一些典型的例子为参考,可更好地掌握这类题型。

例1:已知$f(x)=x^2-2x+2$,求$f(x)$的最小值。

解:首先,把$f(x)$变形为完全平方的形式。

即$$f(x)=(x-1)^2+1$$显然,当$x=1$时,$(x-1)^2$取最小值$0$。

故$f(x)$在$x=1$时取得最小值$1$。

例2:已知$f(x)=\dfrac{1}{2}x^2-3x+5$,求$f(x)$的最大值。

解:同样把$f(x)$变形为完全平方的形式。

即$$f(x)=\dfrac{1}{2}(x-3)^2+\dfrac{1}{2}$$显然,当$x=3$时,$(x-3)^2$取最小值$0$。

故$f(x)$在$x=3$时取得最大值$\dfrac{1}{2}$。

2. 解方程解初等函数的方程是另一种常见的题型。

以下为几个典型的例子,例3:已知$y=2^x-x$,求$y=0$时的$x$的值。

解:根据方程可得$$2^x-x=0$$$$x=2^x$$把函数$y=2^x-x$作图,可以看出在$x=1$时交于$y=0$。

因此,方程的解为$x=1$。

例4:已知$y=\dfrac{1}{2}\log_2(x-1)+2$,求$y=1$时$x$的值。

解:根据方程可得$$\dfrac{1}{2}\log_2(x-1)+2=1$$$$\log_2(x-1)=2$$$$x-1=2^2=4$$因此,方程的解为$x=5$。

3. 函数图像解题函数图像是初等函数题目中重要的一部分。

基本初等函数的题型归纳

基本初等函数的题型归纳

基本初等函数的题型归纳题型一:指对数的运算1.若210,5100==b a ,则b a +2=…………………………………………2.指数函数y=a x 的图像经过点(2,16)则a 的值是3.若329log =x ,则x 等于 4.5log 2139-的值是 5. 若y x y x lg lg )2lg(2+=-,则x 、y 的关系是题型二: 指对数的图像1.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是2.已知3.0log a 2=,3.02b =,2.03.0c =,则c b a ,,三者的大小关系是 题型三:求值1.已知(1),32121=+-a a求221,--++a a a a 的值 7 ,47 2.(2)若32121=+-xx ,求23222323-+-+--x x x x 的值. 18题型四 求范围 1.指数函数(2)x y a =-在定义域内是减函数,则a 的取值范围是2.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .3.函数)x 2x (log y 221-=的单调递减区间是_________________.4.在(2)log (5)a b a -=-中,实数a 的取值范围是 。

题型五 反函数1.设函数()[]()242,4f x x x =-∈,则()1f x -的定义域为 ( )2、函数y =1-1-x (x ≥1)的反函数是( ) A .y =(x -1)2+1,x ∈R B .y =(x -1)2-1,x ∈RC .y =(x -1)2+1,x ≤1D .y =(x -1)2-1,x ≤1 3.若f (x -1)= x 2-2x +3 (x ≤1),则f -1(4)等于( )A .2B .1-2C .-2D .2-函数与方程 零点题型一:零点的个数确定1、方程062=-+x x的实数解的个数有_______个. 2.已知定义在R 上的函数f(x)的图像是连续不断的,且有如下部分对应值表: x1 2 3 4 5 6 f(x) 136.135 15.552 -3.92 10.88 -52.488 -232.064可以看出函数至少有 个零点.题型二:零 点存在性定理的应用1. 函数2ln f x x x的零点所在的大致区间是 ( )A.1,2B.2,3C. 3,4D.,e 2.关于x 的方程27+=x x 的解所在的区间是( )A.0(,1)B.(1, 2)C.(2, 3)D.(3, 4)题型三:求参数的范围1.若一元二次方程2350x x a -+=的一根大于2-且小于0,另一根大于1而小于3,则实数a 取值范围 ( )A .()12,0-B .15,14⎛⎫-∞ ⎪⎝⎭C .15,14⎛⎫+∞ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭2.若关于x 的方程35+=a x 有根,则实数a 的取值范围是 .3. 若关于x 的方程210x ax -+=在1(,3)2x ∈上有实数根,则实数a 的取值范围是 4.已知函数2()(1)43f x a x ax =++-.当0a >时,若方程()0f x =有一根大于1,一根小于1,则a 的取值范围是。

年高考真题+高考模拟题 专项版解析汇编 文科数学——02 函数的概念与基本初等函数I(学生

年高考真题+高考模拟题  专项版解析汇编 文科数学——02 函数的概念与基本初等函数I(学生

专题02 函数的概念与基本初等函数I1.【2020年高考全国Ⅰ卷文数】设3log 42a =,则4a -= A .116B .19C .18D .162.【2020年高考天津】函数241xy x =+的图象大致为A BC D3.【2020年高考全国Ⅱ卷文数】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名B .18名C .24名D .32名4.【2020年高考全国Ⅲ卷文数】Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为(ln19≈3) A .60B .63C .66D .695.【2020年高考全国Ⅲ卷文数】设a =log 32,b =log 53,c =23,则 A .a <c <bB .a <b <cC .b <c <aD .c <a <b6.【2020年高考全国Ⅱ卷文数】设函数f (x )=x 3-31x ,则f (x ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减7.【2020年高考全国Ⅱ卷文数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<08.【2020年高考天津】设0.70.80.713,(),log 0.83a b c -===,则,,a b c 的大小关系为A .a b c <<B .b a c <<C .b c a <<D .c a b <<9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天10.【2020年新高考全国Ⅰ卷】若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞D .1,0]3][[1,-11.【2020年新高考全国Ⅰ卷】信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞13.【2020年高考北京】已知函数()21xf x x =--,则不等式()0f x >的解集是A. (1,1)-B. (,1)(1,)-∞-+∞C. (0,1)D. (,0)(1,)-∞⋃+∞14.【2020年高考浙江】函数y =x cos x +sin x 在区间[–π,π]上的图象可能是15.【2020年高考浙江】已知a ,b ∈R 且ab ≠0,对于任意x ≥0均有(x –a )(x –b )(x –2a –b )≥0,则 A .a <0B .a >0C .b <0D .b >016.【2020年高考江苏】已知y =f (x )是奇函数,当x ≥0时,()23f x x =,则()8f -的值是 ▲ .17.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.1.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f = A .16B .8C .4D .22.【2020·宜宾市叙州区第二中学校高三一模(文)】已知函数()32,0log ,0x x f x x x ⎧≤=⎨>⎩,则=f f ⎛⎫ ⎪ ⎪⎝⎭⎝⎭AB .12C .3log 2-D .3log 23.【安徽省2020届高三名校高考冲刺模拟卷数学(文科)试题】已知10.23121log 3,(),23a b c ===,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c4.【2020·重庆巴蜀中学高三月考(文)】已知定义在R 上的函数()f x 满足()12f =,对任意的实数1x ,2x 且12x x <,()()1212f x f x x x -<-,则不等式()1f x x ->的解集为A .(),2-∞-B .2,C .()(),11,-∞-⋃+∞D .()(),22,-∞-⋃+∞5.【2020届广东省惠州市高三6月模拟数学(文)试题】已知函数||()e ||x f x x =+,则满足1(21)3f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是A .12,33⎛⎫ ⎪⎝⎭B .12,33⎡⎫⎪⎢⎣⎭C .12,23⎛⎫ ⎪⎝⎭D .12,23⎡⎫⎪⎢⎣⎭6.【2020届广东省惠州市高三6月模拟数学(文)试题】函数πx x y x=的图象大致形状是A .B .C .D .7.【2020·重庆市育才中学高三开学考试(文)】若函数()23,121,1x ax a x f x ax x ⎧--≥=⎨-<⎩是R 上的增函数,则实数a 的取值范围是A .103⎡⎫-⎪⎢⎣⎭,B .103⎛⎤ ⎥⎝⎦,C .1,3⎛⎤-∞- ⎥⎝⎦D .13⎡⎫+∞⎪⎢⎣⎭,8.【贵州省黔东南州2019-2020学年高三高考模拟考试卷数学(文科)试题】已知函数()f x 的图象关于点()1,0对称,当1x >时,2()5f x x mx =-+,且()f x 在(,0)-∞上单调递增,则m 的取值范围为 A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞9.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是 A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦10.【2020·四川省成都外国语学校高三月考(文)】若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是 A .()1,+∞B .(1,8)C .(4,8)D .[4,8)R 11.【2020届山西省太原五中高三3月模拟数学(文)试题】函数ln ||cos ()sin x xf x x x⋅=+在[π,0)(0,π]-的图像大致为A .B .C .D .12.【2020·宜宾市叙州区第二中学校高三一模(文)】已知()f x 是定义在R 上的偶函数,在区间[0,)+∞上为增函数,且1()03f =,则不等式18(log )0f x >的解集为A .1(,2)2B .(2,)+∞C .1(0,)(2,)2+∞ D .1(,1)(2,)2+∞13.【2020·宜宾市叙州区第一中学校高三一模(文)】已知函数()()()1f x x ax b =-+为偶函数,且在0,上单调递减,则()30f x -<的解集为A .()2,4 B .()(),24,-∞+∞C .()1,1-D .()(),11,-∞-⋃+∞14.【天津市十二区县重点学校2020届高三下学期毕业班联考(一)数学试题】已知函数(2)y f x =-的图象关于直线2x =对称,在(0,)x ∈+∞时,()f x 单调递增.若()ln34a f =,e (2)b f -=,1ln πc f ⎛⎫= ⎪⎝⎭(其中e 为自然对数的底数,π为圆周率),则,,a b c 的大小关系为 A .a c b >>B .a b c >>C .c a b >>D .c b a >>15.【2020·山东省高三期末】函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =A .2x -B .2x -C .2x --D .2x16.【2020·山东省高三期末】函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是A .B .C .D .17.【2020届广东省化州市高三第四次模拟数学(文)试题】已知函数()()2,0,ln 1,0,x x f x x x ⎧⎪=⎨+>⎪⎩若不等式()10f x kx k -++<的解集为空集,则实数k 的取值范围为A .(222,0⎤-⎦B .(232,0⎤-⎦ C .222,0⎡⎤-⎣⎦D .[]1,0-18.【2020·山东省青岛第五十八中学高三一模】已知函数229,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的值可以是A .1B .2C .3D .419.【2020·山东省高三零模】已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则A .函数()y f x =是周期函数B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的偶函数D .函数()y f x =为R 上的单调函数20.【2020届上海市高三高考压轴卷数学试题】已知函数()223f x x ax =-++在区间(),4-∞上是增函数,则实数a 的取值范围是______.21.【福建省厦门外国语学校2020届高三下学期高考最后一次模拟数学(文)试题】已知函数2,0()(2),0x x f x f x x ⎧>=⎨+≤⎩,则(1)f -=_____________.22.【2020·陕西省交大附中高三三模(文)】设函数23(0)()(2)(0)x x x f x f x x ⎧+≥=⎨+<⎩,则()–3f =_____23.【2020·宜宾市叙州区第二中学校高三一模(文)】奇函数()f x 满足()()11f x f x +=-,当01x <≤时,()()2log 4f x x a =+,若1522f ⎛⎫=-⎪⎝⎭,则()a f a +=___________. 24.【2020届上海市高三高考压轴卷数学试题】函数()lg 2cos 21y x =-的定义域是______.25.【江苏省南京市金陵中学、南通市海安高级中学、南京市外国语学校2020届高三下学期第四次模拟数学试题】已知函数()02,2,2x f x f x x ≤<=-≥⎪⎩若对于正数()*n k n ∈N ,直线n y k x =与函数()y f x =的图象恰有21n 个不同的交点,则数列{}2nk 的前n 项和为________.。

高三数学易错函数的概念与基本初等函数多选题 易错题难题测试综合卷学能测试试题

高三数学易错函数的概念与基本初等函数多选题 易错题难题测试综合卷学能测试试题

高三数学易错函数的概念与基本初等函数多选题 易错题难题测试综合卷学能测试试题一、函数的概念与基本初等函数多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC .【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”; 对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.3.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2nnx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.4.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==> ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n 是互质的正整数),则1()1mm f p f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >, 综上对所有正实数x ,有()1f x >,C 正确,设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-,∴()()()()()()()()()()()()10102246201620182020222210102020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++=+++=⨯=个,D 正确. 故选:BCD . 【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.5.已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0,]x a ∈时,()f x 的最小值为1,则5[1,]2a ∈D.若关于x的方程3 ()2f x=和()f x m=的所有实数根之和为零,则32m=-【答案】AC【分析】根据奇函数()()f x f x-=-,利用已知定义域的解析式,可得到对称区间上的函数解析式,然后结合函数的图象分析各选项的正误,即可确定答案【详解】函数是奇函数,故()f x在R上的解析式为:222,22322,20()0,022,022,223xxx x xf x xx x xxx⎧<-⎪+⎪----≤<⎪⎪==⎨⎪-+<≤⎪⎪>⎪-⎩绘制该函数的图象如所示:对A:如下图所示直线1l与该函数有7个交点,故A正确;对B:当1211x x-<<<时,函数不是减函数,故B错误;对C :如下图直线2:1l y =,与函数图交于5(1,1),(,1)2, 故当()f x 的最小值为1时有5[1,]2a ∈,故C 正确对D :3()2f x =时,函数的零点有136x =、212x =+、212x =-; 若使得其与()f x m =的所有零点之和为0, 则32m =-或38m =-,如图直线4l 、5l ,故D 错误故选:AC 【点睛】本题考查了分段函数的图象,根据奇函数确定对称区间上函数的解析式,进而根据函数的图象分析命题是否成立6.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222ttt ty -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.7.对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有()()()()00f x h x mh x g x m⎧<-<⎪⎨<-<⎪⎩,则称直线:l y kx b =+为曲线()y f x =与()y g x =的“分渐近线”.给出定义域均为{}|1D x x =>的四组函数,其中曲线()y f x =与()y g x =存在“分渐近线”的是( )A .()2f x x =,()g x =B .()102xf x -=+,()23x g x x-=C .()21x f x x+=,()ln 1ln x x g x x +=D .()221x f x x =+,()()21xg x x e -=--【答案】BD 【分析】根据分渐近线的定义,对四组函数逐一分析,由此确定存在“分渐近线”的函数. 【详解】解:()f x 和()g x 存在分渐近线的充要条件是x →∞时,()()0,()()f x g x f x g x -→>.对于①,()2f x x =,()g x =当1x >时,令()()()2F x f x g x x =-=,由于()20F x x '=->,所以()h x 为增函数,不符合x →∞时,()()0f x g x -→,所以不存在分渐近线; 对于②,()1022xf x -=+>,()232,(1)x g x x x-=<> ()()f x g x ∴>,2313()()10210xx x f x g x x x--⎛⎫-=+-=+ ⎪⎝⎭,因为当1x >且x →∞时,()()0f x g x -→,所以存在分渐近线;对于③,21()x f x x+=,ln 1()ln x x g x x +=,21111111()()ln ln ln x x nx f x g x x x x x x x x x++-=-=+--=-当1x >且x →∞时,1x 与1ln x 均单调递减,但1x的递减速度比1ln x 快,所以当x →∞时,()()f x g x -会越来越小,不会趋近于0,所以不存在分渐近线;对于④,22()1x f x x =+,()()21xg x x e -=--,当x →∞时,22()()220+1222+1x x x f x g x x e x x e--=-+++=→,且()()0f x g x ->,因此存在分渐近线.故存在分渐近线的是BD . 故选:BD . 【点睛】本小题主要考查新定义概念的理解和运用,考查函数的单调性,属于难题.8.已知函数1()xx f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()x x f x e'=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <,因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.二、导数及其应用多选题9.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项.【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫= ⎪⎝⎭,()10f =,()2227f =>,结合()f x 的单调性可知, 方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦, 则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.10.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x R x =∈,()()10g x x x=<,()2eln h x x =(e 为自然对数的底数),则下列结论正确的是( ) A .()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增 B .()f x 和()g x 之间存在“隔离直线,且b 的最小值为4 C .()f x 和()g x 间存在“隔离直线”,且k 的取值范围是(]4,1-D .()f x 和()h x 之间存在唯一的“隔离直线”e y =- 【答案】AD 【分析】求出()()()m x f x g x =-的导数,检验在x ⎛⎫∈ ⎪⎝⎭内的导数符号,即可判断选项A ;选项B 、C 可设()f x 、()g x 的隔离直线为y kx b =+,2x kx b ≥+对一切实数x 都成立,即有10∆≤,又1kx b x≤+对一切0x <都成立,20∆≤,0k ≤,0b ≤,根据不等式的性质,求出k 、b 的范围,即可判断选项B 、C ;存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,则隔离直线的方程为(y e k x -=,构造函数求出函数的导数,根据导数求出函数的最值.【详解】对于选项A :()()()21m x f x g x x x =-=-,()212m x x x'=+,当x ⎛⎫∈ ⎪⎝⎭时,()2120m x x x '=+>, 所以函数()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增;故选项A 正确 对于选项BC :设()f x 、()g x 的隔离直线为y kx b =+,则2x kx b ≥+对一切实数x 都成立,即有10∆≤,即240k b +≤,又1kx b x≤+对一切0x <都成立,则210kx bx +-≤,即 20∆≤,240b k +≤,0k ≤,0b ≤,即有24k b ≤-且24b k ≤-,421664k b k ≤≤-,可得40k -≤≤,同理可得:40b -≤≤,故选项B 不正确,故选项C 不正确;对于选项D :函数()f x 和()h x的图象在x =()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k,则隔离直线的方程为(y e k x -=,即y kx e =-,由()f x kx e ≥-,可得20x kx e -+≥对于x ∈R 恒成立,则0∆≤,只有k =y e =-,下面证明()h x e ≤-,令()2n ()l G x e h x e x e =--=--,()x G x x'=,当x =()0'=G x,当0x <<时,()0'<G x,当x >()0G x '>,则当x =()G x 取到极小值,极小值是0,也是最小值.所以()()0G x e h x =--≥,则()h x e ≤-当0x >时恒成立.所以()f x 和()g x 之间存在唯一的“隔离直线”e y =-,故选项D 正确. 故选:AD 【点睛】本提以函数为载体,考查新定义,关键是对新定义的理解,考查函数的导数,利用导数求最值,属于难题.。

高三数学精选函数的概念与基本初等函数多选题 易错题难题同步练习

高三数学精选函数的概念与基本初等函数多选题 易错题难题同步练习

高三数学精选函数的概念与基本初等函数多选题 易错题难题同步练习一、函数的概念与基本初等函数多选题1.已知函数()()124,01,21,1,x x f x af x x ⎧--≤≤⎪=⎨⎪->⎩其中a R ∈,下列关于函数()f x 的判断正确的为( ) A .当2a =时,342f ⎛⎫=⎪⎝⎭B .当1a <时,函数()f x 的值域[]22-,C .当2a =且[]()*1,x n n n ∈-∈N时,()1212242n n f x x --⎛⎫=-- ⎪⎝⎭D .当0a >时,不等式()122x f x a -≤在[)0,+∞上恒成立 【答案】AC 【分析】对于A 选项,直接代入计算即可;对于B 选项,由题得当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,进而得当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,故()f x 的值域(]2,2-;对于C 选项,结合B 选项得当2a =且[]()*1,x n n n ∈-∈N时,()()121n f x f x n -=-+进而得解析式;对于D 选项,取特殊值即可得答案.【详解】解:对于A 选项,当2a =时,3111222442222f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 选项正确; 对于B 选项,由于当01x ≤≤,函数的值域为[]0,2,所以当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,由于(]0,1x m -∈,所以()[]0,2f x m -∈,因为1a <,所以()1,1m a ∈-,所以当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,综上,当1a <时,函数()f x 的值域(]2,2-,故B 选项错误;对于C 选项,由B 选项得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,故当2a =且[]()*1,x n n n ∈-∈N时,()()1112122412n n f x f x n x n --⎛⎫=-+=--+- ⎪⎝⎭1112122422422n n n x n x --⎛⎫⎛-⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭,故C 选项正确;对于D 选项,取812a =,34x =,则331241442f ⎛⎫=--= ⎪⎝⎭,122x a-=()311142482488111222222222---⎛⎫⎛⎫==⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,不满足式()122x f x a -≤,故D选项错误. 故选:AC. 【点睛】本题考查函数的综合应用,考查分析能力与运算求解能力,是难题.本题解题的关键在于根据题意得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,且当01x ≤≤,函数的值域为[]0,2,进而利用函数平移与伸缩变换即可求解.2.已知函数()221,0log 1,0xx f x x x ⎧+≤⎪=⎨->⎪⎩,则方程()()22210f x f x a -+-=的根的个数可能为( ) A .2 B .6 C .5 D .4【答案】ACD 【分析】先画出()f x 的图象,再讨论方程()()22210f x f x a -+-=的根,求得()f x 的范围,再数形结合,得到答案. 【详解】画出()f x 的图象如图所示:令()t f x =,则22210t t a -+-=,则24(2)a ∆=-,当0∆=,即22a =时,1t =,此时()1f x =,由图1y =与()y f x =的图象有两个交点,即方程()()22210f x f x a -+-=的根的个数为2个,A 正确;当>0∆时,即22a <时,212t a =-,则2022a <-≤故211212a <+-≤212121a ≤-<,当212t a =-2()12f x a =--(1,1)∈-,则x 有2解, 当212t a =-t (1,2]∈,则x 有3解;若t (2,12]∈+,则x 有2解,故方程()()22210f x f x a -+-=的根的个数为5个或4个,CD 正确;故选:ACD 【点睛】本题考查了函数的根的个数问题,函数图象的画法,考查了分类讨论思想和数形结合思想,难度较大.3.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<, 又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确. 对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.4.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .12x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数, 则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<,122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.5.下列说法中,正确的有( ) A .若0a b >>,则b a a b>B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx x x f x -+-=-==+++,则()()()()()()21212212122212221x x x x x x x xf x f x --------====-+⋅++, 所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.6.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++ ⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点,当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.7.已知函数()22,21ln 1,1x x f x x x e +-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是( ) A .3- B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭.令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-. 因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈-⎥⎝⎦, 即()()212x x f x -⋅的取值范围是5,02⎛⎤- ⎥⎝⎦, 故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.8.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,12)01,1(x x x x x x x x x g x ⎧++>⎪⎪⎪-++<⎨⎪⎪--<-⎩=⎪当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x >设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x 在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.二、导数及其应用多选题9.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( ) A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减 B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈【答案】AC 【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax=-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2xm x+=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln xf x x-'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确; 对于B 选项,由于函数()ln xf x x=在区间(),e +∞上单调递减,且4e π>>, 所以,()()4f f π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误; 对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-,则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立,即1ln xa x+≥对任意的()0,x ∈+∞恒成立, 令()1ln x t x x +=,其中0x >,()2ln xt x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增; 当1x >时,()0t x '<,此时函数()t x 单调递减.所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-,由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2xm x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点, 当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.10.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a cb d -+-的值可能是( ) A .7 B .8C .9D .10【答案】BCD 【分析】由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=-由1121cd c d -=⇒=-+-,令()2g x x =-+ 则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y 由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD. 【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。

高三数学精选函数的概念与基本初等函数多选题 易错题难题专项训练检测

高三数学精选函数的概念与基本初等函数多选题 易错题难题专项训练检测

高三数学精选函数的概念与基本初等函数多选题 易错题难题专项训练检测一、函数的概念与基本初等函数多选题1.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:1212a b ⎧-=⎪⎪⎨⎪=⎪⎩. 故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故140mm+>⎧⎨-≥⎩,解得1,04m⎛⎤∈- ⎥⎝⎦,故C正确.对D,若()212f x x x=-+存在“3倍跟随区间”,则可设定义域为[],a b,值域为[]3,3a b.当1a b<≤时,易得()212f x x x=-+在区间上单调递增,此时易得,a b为方程2132x x x-+=的两根,求解得0x=或4x=-.故存在定义域[]4,0-,使得值域为[]12,0-.故D正确.故选:ABCD.【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.2.已知函数222,0()log,0x x xf xx x⎧--≤⎪=⎨>⎪⎩,若x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则下列结论正确的是()A.x1+x2=-1 B.x3x4=1C.1<x4<2 D.0<x1x2x3x4<1【答案】BCD【分析】由解析式得到函数图象,结合函数各分段的性质有122x x+=-,341x x=,341122x x<<<<,即可知正确选项.【详解】由()f x函数解析式可得图象如下:∴由图知:122x x+=-,121x-<<-,而当1y=时,有2|log|1x=,即12x=或2,∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.3.1837年,德国数学家狄利克雷(P .G.Dirichlet ,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x Q D x x Q ∈⎧=⎨∈⎩(Q 表示有理数集合),关于此函数,下列说法正确的是( )A .()D x 是偶函数B .,(())1x R D D x ∀∈=C .对于任意的有理数t ,都有()()D x t D x +=D .存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC 为正三角形 【答案】ABCD 【分析】利用定义判断函数奇偶性,可确定A 的正误,根据“狄利克雷函数”及有理数、无理数的性质,判断其它三个选项的正误. 【详解】A :由()D x 定义知:定义域关于原点对称,当x Q ∈则x Q -∈,当R x Q ∈则Rx Q -∈,即有()()D x D x -=,故()D x 是偶函数,正确;B :由解析式知:,()1x R D x ∀∈=或()0D x =,即(())1D D x =,正确;C :任意的有理数t ,当x Q ∈时,x t Q +∈即()()D x t D x +=,当R x Q ∈时,R x t Q +∈即()()D x t D x +=,正确;D :若存在ABC 为正三角形,则其高为1,所以当((0,1),,0)33A B C -时成立,正确; 故选:ABCD 【点睛】关键点点睛:应用函数的奇偶性判断,结合新定义函数及有理数、无理数的性质判断各选项的正误.4.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.5.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-,将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍),结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.6.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;7.已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,若存在实数a ,使得()()f a f f a ⎡⎤=⎣⎦,则a 的个数不是( ) A .2 B .3 C .4 D .5【答案】ABD 【分析】令()f a t =,即满足()f t t =,对t 进行分类讨论,结合已知函数解析式代入即可求得满足题意的t ,进而求得a. 【详解】令()f a t =,即满足()f t t =,转化为函数()1y f t =与2y t =有交点,结合图像由图可知,()f t t =有两个根0t =或1t =(1)当1t =,即()1f a =,由()22,1,1a a f a a a -≥⎧=⎨<⎩,得1a =±时,经检验均满足题意;(2)当0t =,即()0f a =,当1a ≥时,()20f a a =-=,解得:2a =;当1a <时,()20f a a ==,解得:0a =;综上所述:共有4个a . 故选:ABD . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解8.已知函数4()nn f x x x=+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nn f x x x f x xx -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确; 当n 为偶数时,>0n x,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫ ⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.二、导数及其应用多选题9.设函数cos 2()2sin cos xf x x x=+,则( )A .()()f x f x π=+B .()f x 的最大值为12C .()f x 在,04π⎛⎫- ⎪⎝⎭单调递增 D .()f x 在0,4π⎛⎫⎪⎝⎭单调递减 【答案】AD 【分析】先证明()f x 为周期函数,周期为π,从而A 正确,再利用辅助角公式可判断B 的正误,结合导数的符号可判断C D 的正误. 【详解】()f x 的定义域为R ,且cos 2()2sin cos xf x x x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故y ≤≤当y =时,有1cos 4ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈-⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x , 故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 故选:AD【点睛】方法点睛:与三角函数有关的复杂函数的研究,一般先研究其奇偶性和周期性,而单调性的研究需看函数解析式的形式,比如正弦型函数或余弦型函数可利用整体法来研究,而分式形式则可利用导数来研究,注意辅助角公式在求最值中的应用.10.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210x f x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考文科数学《 基本初等函数》题型归纳与训练【题型归纳】题型一 幂函数的图像与性质例1 已知幂函数()x f y =的图象过点),(2221,则()2log 2f 的值为( ) A.21B .21-C .1-D .1【答案】A【解析】由幂函数()ax x f =的图象过点),(2221,得22)21()21(==αf ,21=a ,则幂函数()21x x f =, ∴()2122=f ,∴()212log 2=f .故选A . 【易错点】幂函数的运算法则,以及对数的运算公式. 【思维点拨】熟练掌握幂函数的函数类型()ax x f =.例2 如果幂函数()23212++-=p p x x f ()Z p ∈是偶函数,且在()+∞,0上是增函数,求p 的值,并写出相应的函数()x f 的解析式.【答案】1=p ,()2x x f =.【解析】因为()x f 在()+∞,0上是增函数,所以023212>++-p p ,,所以31<<-p . 又因为()x f 是偶函数且Z p ∈,所以1=p ,故()2x x f =.【易错点】易忘记Z p ∈这一关键条件,以及幂函数在()+∞,0递增时指数的特征.【思维点拨】熟练掌握幂函数的函数()ax x f =的奇偶性特征,以及幂函数在()+∞,0上是单调递增时幂函数的指数恒为正数.题型二 二次函数的图像和性质(最值)例1 已知()532-+=x x x f ,[]1,+∈t t x ,若()x f 的最小值为()t h ,写出()t h 的表达式 .2【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧->-+-≤<---≤-+=)23(53)2325(429)25(15)(22t t t t t t t t h【解析】如图所示,函数图像的对称轴为23-=x (1)当231-≤+t ,即25-≤t 时,()()1512-+=+=t t t f t h . (2)当123+≤-≤t t ,即2325-≤<-t 时,()42923-=⎪⎭⎫⎝⎛-=f t h .(3)当23->t 时,()()532-+==t t t f t h . 综上可得22551,22953(),422335.2t t t h t t t t t ⎧⎛⎫+-- ⎪⎪⎝⎭⎪⎪⎛⎫=--<-⎨ ⎪⎝⎭⎪⎪⎛⎫+->-⎪ ⎪⎝⎭⎩≤≤ 【易错点】首先要注意二次函数的开口方向,然后才可以根据二次函数的对称轴去进行分类讨论. 【思维点拨】所求二次函数解析式(所以图像也)固定,区间变动,可考虑区间在变动过程中,二次函数的单调性,从而利用二次函数的单调性求函数在区间上的最值.例2 已知函数()⎪⎩⎪⎨⎧<-≥+-=020222x xx x x x x f ,若关于x 的不等式()[]()022<-+b x af x f 恰有1个整数解,则实数a 的最大值是( )A .2B .3C .5D .8【答案】D【解析】作出函数()x f 的图象如图实线部分所示,由()[]()022<-+b x af x f 得()24242222b a a x f b a a ++-<<+--,若0≠b ,则()0=x f 满足不等式,即不等式有2个整数解,不满足题意,所以0=b ,所以()0<<-x f a ,且整数解x 只能是3,当42<<x 时,()08<<-x f ,所以38-<-≤-a ,即a 的最大值为8,故选D .【易错点】这是二次函数的复合函数,务必理清楚和掌握函数的图像.【思维点拨】根据数型结合画出函数的图像,然后利用方程的求根公式进行解题. 题型三 指数函数 例1 已知奇函数()f x 在R 上是增函数.若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c的大小关系为( ).A.a b c <<B.b a c <<C.c b a <<D.c a b << 【答案】C【解析】因为()f x 在R 上是奇函数,所以()22211log log log 555a f f f ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭,又因为()f x 在R 上是增函数,且0.8222022log 4log 4.1log 5<<=<<,所以()()0.82212log 4.1log 5f f f ⎛⎫<<- ⎪⎝⎭,即c b a <<.故选C .【思维点拨】本题主要考查函数的奇偶性与指数、对数的运算,为基础题。

首先根据奇函数的性质和对数运算法则,,再比较比较大小.例2 设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是_________. 【答案】()2log 5a f =0.822log 5,log 4.1,21,4⎛⎫-+∞ ⎪⎝⎭4【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112x x +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞.【思维点拨】本题以分段函数(含指数函数)为载体,求解不等式。

考查了分类思想。

解题需注意; (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()a f f 的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.题型四 对数函数例1 已知函数log ()a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如图,则下列结论成立的是A .0,1a c >>B .1,01a c ><<C .01,1a c <<>D .01,01a c <<<< 【答案】 D【解析】由图象可知01a <<,当0x =时,log ()log 0a a x c c +=>,得01c <<.例2 若函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,则实数a 的取值范围是( )A .(1,0)(0,1)-UB .(,1)(1,)-∞-+∞UC .(1,0)(1,)-+∞UD .(,1)(0,1)-∞-U 【答案】 C【解析】由分段函数的表达式知,需要对a 的正负进行分类讨论.2112220<0()()log log log ()log ()a a f a f a a a a a >⎧⎧⎪⎪>-⇒⎨⎨>->-⎪⎪⎩⎩或0110112a a a a a a a<>⎧⎧⎪⎪⇒⇒>-<<⎨⎨<>⎪⎪⎩⎩或或.例3 若函数xa y =,0(>a 且)1≠a 的值域为{}1|≥y y ,则函数x y a log =的图象大致是( )【答案】 B【解析】由于xa y =的值域为{}1|≥y y ,∴ 1>a ,则x y a log =在()+∞,0上是增函数,又 函数x y a log =的图象关于y 轴对称.因此x y a log =的图象应大致为选项B .【思维点拨】指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围. 题型五 函数的应用例1 某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系bkx ey +=(718.2≈e 为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时. 【答案】24【解析】由已知条件,得b e =192,又()2112248e e e b b k ==+, ∴2111=k e ,设该食品在33 ℃的保鲜时间是t 小时, 则2433==+bk et . 【思维点拨】重点考察对指数函数应用题的理解和计算.【巩固训练】幂函数的图像与性质1.函数()()mx m m x f 12--=是幂函数,且在()+∞∈,0x 上为增函数,则实数m 的值是()6A .-1B .2C .3D .-1或2【答案】B【解析】由题知⎩⎨⎧>=--0112m m m ,解得2=m .故选B .2.已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在(0,)+∞上递减,则α=_____. 【答案】1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-. 3.已知幂函数()ax x f =的部分对应值如下表:则不等式()2≤x f 的解集是 . 【答案】[]4,4-【解析】由2122)21(=⇒=αf ,故()4221≤⇒⇒≤x x x f ,故其解集为[]4,4-. 题型二 二次函数的图像和性质(最值)1.已知,,a b c R ∈,函数()2f x ax bx c =++.若()()()041f f f =>,则( ).A. 0a >,40a b +=B. 0a <,40a b +=C. 0a >,20a b +=D. 0a <,20a b += 【答案】A【解析】 因为()()()041f f f =>,所以函数图象应开口向上,即0a >,且其对称轴为2x =,即22ba-=,所以40a b +=,故选A .2.已知函数()⎩⎨⎧≤-->-=020122x x x x x x f ,若函数()()m x f x g -=有3个零点,则实数m 的取值范围是_______.【答案】[)1,0【解析】若函数()()m x f x g -=有3个零点,即()x f y =与m y =有3个不同的交点,作出()x f 的图象和m y =的图象,可得出m 的取值范围是[)1,0.3.已知对任意的[]1,1-∈a ,函数()()a x a x x f 2442-+-+=的值总大于0,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,2)∪(3,+∞)【答案】B【解析】()()44224422+-+-=-+-+x x a x a x a x .令()()4422+-+-=x x a x a g ,则由题知,当[]1,1-∈a 时,()0>a g 恒成立,则须⎩⎨⎧>>-0)1(0)1(g g ,解得1<x 或3>x .故选B .题型三 指数函数1. 已知,则函数和在同一坐标系中的图象只可能是图中的( )A. B. C. D. 【答案】D【解析】根据题意,由,函数在R 上为减函数,可排除选项A 、C ,又,则函数的图象是开口向下.故选D.2.已知函数(且)的图象如下图所示,则的值是________.01a <<xy a =2(1)y a x =-01a <<xy a =110a -<-<2(1)y a x =-2y a b =+0a >1a ≠a b-B8【答案】6【解析】由函数(且)过点代入表达式得: ,所以3.与函数 的图象有且仅有两个公共点,则实数的取值范围是____.【答案】【解析】的图象由的图象向下平移一个单位,再将轴下方的图象翻折到轴上方得到,分和两种情况分别作图,如图所示,当时不合题意;时,需要,即,故答案为.题型四 对数函数1.若点(,)a b 在lg y x = 图像上,a ≠1,则下列点也在此图像上的是( )A .1(,)b a B .(10,1)a b - C .10(,1)b a+ D .2(,2)a b 【答案】Dxy a b =+0a >1a ≠(2,0),(0,3)-2,4a b ==-6a b -=2y a =()101x y a a a =->≠且a 10,2⎛⎫ ⎪⎝⎭()101xy a a a =->≠且xa y =x x 1>a 10<<a 1>a 10<<a 120<<a 210<<a 10,2⎛⎫ ⎪⎝⎭【解析】当2x a =时,2lg 2lg 2y a a b ===,所以点2(,2)a b 在函数lg y x =图象上.2.如果,0log log 2121<<y x 那么( )A .1y x <<B .1x y <<C .1x y <<D .1y x <<【答案】D【解析】根据对数函数的性质得1x y >>. 3.当102x <≤时,4log xa x <,则a 的取值范围是 ( ) A.(0,2 B.2C. D.2) 【答案】B【解析】由指数函数与对数函数的图像知12011log 42a a <<⎧⎪⎨>⎪⎩,解得12a <<,故选B. 4已知1a b >>,若5log log 2a b b a +=,b a a b =,则a =________,b =_______. 【答案】4 2【解析】设log b a t =,则1t >,因为21522t t a b t +=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==6.在同一直角坐标系中,函数()ax x f =,()x x g a log =的图象可能是( )【答案】D【解析】因为0>a ,所以()ax x f =在()+∞,0上为增函数,故A 错.在B 中,由()x f 的图象知1>a ,由()x g 的图象知10<<a ,矛盾,故B 错.在C 中,由()x f 的图象知10<<a ,由()x g 的图象知1>a ,矛盾,故C 错.在D 中,由()x f 的图象知10<<a ,由()x g 的图象知10<<a ,相符,故选D.10。

相关文档
最新文档