(完整版)证明圆的切线经典例题(最新整理)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明圆的切线方法及例题

证明圆的切线常用的方法有:

一、若直线l 过⊙O 上某一点A ,证明l 是⊙O 的切线,只需连OA ,证明OA ⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.

例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F.

求证:EF 与⊙O 相切.

证明:连结OE ,AD.

∵AB 是⊙O 的直径,

∴AD ⊥BC.

又∵AB=BC ,

∴∠3=∠4.

∴BD=DE ,∠1=∠2.

又∵OB=OE ,OF=OF ,

∴△BOF ≌△EOF (SAS ).

∴∠OBF=∠OEF.

∵BF 与⊙O 相切,

∴OB ⊥BF.

∴∠OEF=900. ∴EF 与⊙O 相切.

说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD.

求证:PA 与⊙O 相切.

证明一:作直径AE ,连结EC.

∵AD 是∠BAC 的平分线,

∴∠DAB=∠DAC.

∵PA=PD ,

∴∠2=∠1+∠DAC.

∵∠2=∠B+∠DAB ,

∴∠1=∠B.

又∵∠B=∠E ,

∴∠1=∠E

∵AE 是⊙O 的直径,

∴AC ⊥EC ,∠E+∠EAC=900.

∴∠1+∠EAC=900. 即OA ⊥PA.

∴PA 与⊙O 相切.

证明二:延长AD 交⊙O 于E ,连结OA ,OE.

∵AD 是∠BAC 的平分线, ∴BE=CE ,

∴OE ⊥BC.

∴∠E+∠BDE=900.

∵OA=OE ,

∴∠E=∠1.

∵PA=PD ,

∴∠PAD=∠PDA. 又∵∠PDA=∠BDE,

∴∠1+∠PAD=900

即OA⊥PA.

∴PA与⊙O相切

说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M

求证:DM与⊙O相切.

证明一:连结OD.

∵AB=AC,

∴∠B=∠C.

∵OB=OD,

∴∠1=∠B.

∴∠1=∠C.

∴OD∥AC.

∵DM⊥AC,

∴DM⊥OD.

∴DM与⊙O相切

证明二:连结OD,AD.

∵AB是⊙O的直径,

∴AD⊥BC.

又∵AB=AC,

∴∠1=∠2.

∵DM⊥AC,

∴∠2+∠4=900

∵OA=OD,

∴∠1=∠3.

∴∠3+∠4=900

.

D

即OD ⊥DM.

∴DM 是⊙O 的切线

说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.

例4 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.

求证:DC 是⊙O 的切线

证明:连结OC 、BC.

∵OA=OC , ∴∠A=∠1=∠300.

∴∠BOC=∠A+∠1=600.

又∵OC=OB ,

∴△OBC 是等边三角形.

∴OB=BC.

∵OB=BD ,

∴OB=BC=BD.

∴OC ⊥CD.

∴DC 是⊙O 的切线.

说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.

例5 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP.

求证:PC 是⊙O 的切线.

证明:连结OC

∵OA 2=OD ·OP ,OA=OC ,

∴OC 2=OD ·OP

.OC

OP OD OC 又∵∠1=∠1,

∴△OCP ∽△ODC.

∴∠OCP=∠ODC.

∵CD ⊥AB ,

∴∠OCP=900.

∴PC 是⊙O 的切线.

说明:此题是通过证三角形相似证明垂直的

例6 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F.

求证:CE 与△CFG 的外接圆相切.

分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解.

证明:取FG 中点O ,连结OC.

∵ABCD 是正方形,

∴BC ⊥CD ,△CFG 是Rt △

∵O 是FG 的中点,

∴O 是Rt △CFG 的外心.

∵OC=OG ,

∴∠3=∠G ,

∵AD ∥BC , ∴∠G=∠4.

∵AD=CD ,DE=DE ,

∠ADE=∠CDE=450, ∴△ADE ≌△CDE (SAS )

∴∠4=∠1,∠1=∠3.

∵∠2+∠3=900,

∴∠1+∠2=900.

即CE⊥OC.

∴CE与△CFG的外接圆相切

二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A 为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”

例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.

求证:AC与⊙D相切.

证明一:连结DE,作DF⊥AC,F是垂足.

∵AB是⊙D的切线,

∴DE⊥AB.

∵DF⊥AC,

∴∠DEB=∠DFC=900.

∵AB=AC,

∴∠B=∠C.

又∵BD=CD,

∴△BDE≌△CDF(AAS)

∴DF=DE.

∴F在⊙D上.

∴AC是⊙D的切线

证明二:连结DE,AD,作DF⊥AC,F是垂足.

∵AB与⊙D相切,

∴DE⊥AB.

∵AB=AC,BD=CD,

∴∠1=∠2.

相关文档
最新文档