华东师大版《数的开方》单元测试题
华东师大版八年级数学上册《第十一章数的开方》单元检测卷及答案
华东师大版八年级数学上册《第十一章数的开方》单元检测卷及答案一、单选题(共10小题,满分40分)122,3.1415926237中,无理数是( ) A 2B .2 C .3.1415926 D .237240 )A .点 AB .点BC .点CD .点D3.实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论错误的是( )A .0a b c ++>B .b a c b ->-C .ab ac >D .a a b c> 4.下列说法不正确的是( )A .0.4的算术平方根是0.2B .−9是81的一个平方根C .−27的立方根是−3D .22 5.如图,在数轴上表示1、的点分别为A 、B ,点B 关于点A 的对称点为C ,则C 点所表示的( ).A .2-B .-2C .1-D .-1 6.下列四个实数中,是无理数的是( )A .0B 3C 121D .27- 7.下列说法正确的是( )A .无理数都是无限小数B .无限小数都是无理数C .带根号的数都是无理数D .无理数与数轴上的点是一一对应的 833(4)4a a -=-成立,则a 的取值范围是( )A .a≤4B .a≤-4C .a≥4D .一切实数9.下列各数中,是无理数的是( )A .1.32322B .23C 4D 3910.下列计算正确的是( )A .()660--=B .()224-=-C .33-=D 93=±二、填空题(共8小题,满分32分)11.先阅读,再解答:对于三个数a 、b 、c 中,我们用符号来表示其中最大的数和最小的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,1,31-=- {}max 1,1,33-=;若{}{}min 1,3,1max 23,12,2x x x x ---=+-+,则x 的值为 .12.计算:3612516--= .13.一个四位数n ,如果千位与十位上的数字之和等于百位与个位上的数字之和,则称n 为“等和数”,将这个“等和数”反序排列(即千位与个位对调,百位与十位对调)得到一个新的四位数m ,记2()33n m D n -=,则()4521D = ;若某个“等和数”n 的千位与十位上的数字之和为8,()D n 为正数且能表示为两个连续偶数的平方差,则满足条件的最大“等和数”n 是 .14.计算:()()303221--⨯+-= .15.在实数10122-、、、中,最小的数为 . 16172的小数部分是 .17.-π,-333的大小顺序是 .18.如图是一个数值转换器,当输入x 为64-时,输出y 的值是 .三、解答题(共6小题,每题8分,满分48分)19.已知,在平面直角坐标系中,O 为坐标原点,点A 的坐标为()0,a ,点B 的坐标为(),0b ,其中a 、b ()2310a b -+=.(1)求点A 、点B 的坐标;(2)将A 点向右平移m 个单位(0m >)到C ,连接BC .①如图1,若BC 交y 轴于点H ,且3ABC ABH S S >△△,求满足条件的m 的取值范围(说明:ABC S 表示三角形ABC 的面积,后面类似);①如图2,若1m >,AG 平分BAC ∠交BC 于点G ,已知点D 为x 轴负半轴上一动点(不与B 点重合),射线CD 交直线AB 交于点E ,交直线AG 于点F ,试探究D 点在运动过程中CDB ∠、CEB ∠和 AFD ∠之间是否有某种确定的数量关系?直接写出你的结论.20.求下列各式中x 的值.(1)()21100x -= (2)()31293x +=- 21.已知52a +的立方根是3,1b +的算术平方根是3,c 11(1)求,,a b c 的值;(2)求a b c ++的平方根.22.将下列各数按从小到大的顺序排列,并用“<”号连接起来:32 2π- 0 5 1.8-. 23.计算(1)(32698(2)已知关于x ,y 的方程组()43113x y mx m y -=⎧⎨+-=⎩的解满足43x y +=,求m 的值. 24.(1)已知21a -的平方根是3±,31a b +-的平方根是4±,求2+a b 的平方根; (2)已知a ,b 都是有理数,且(31)233a b +=,求a b +的平方根.参考答案1.A2.C3.D4.A5.A6.B7.A8.D9.D10.C11.3-12.513. 3 8404 14.015.216174/-1717.−π<−3331834-19.(1)()0,3A ;()1,0B -(2)①2m >;①1118022AFD CEB CDB ∠+∠+∠=︒ 20.(1)111x = 29x =-(2)5x =-21.(1)5a = 8b = 3c =(2)4± 22.053221.8π--<<<23.(1)1 (2)289m =24.(1)3±;(2)3。
2022-2023学年华东师大版八年级数学上册《第11章数的开方》单元达标测试题(附答案)
2022-2023学年华东师大版八年级数学上册《第11章数的开方》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列说法正确的是()A.4的平方根是2B.﹣4的平方根是﹣2C.(﹣2)2没有平方根D.2是4的一个平方根2.下列运算正确的是()A.=4B.﹣|﹣2|=2C.=±3D.23=63.在实数、0、、2π、3.1415、0.333……、2.12112111211112……中,有理数有()A.1个B.2个C.3个D.4个4.已知A,B,C是数轴上三点,点B是线段AC的中点,点A,B对应的实数分别为﹣1和,则点C对应的实数是()A.B.C.D.5.估计的值()A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间6.在实数范围内定义一种新运算“@”,其运算规则为:a@b=1﹣ab,如:2@5=1﹣2×5=﹣9,则22020@的值为()A.B.﹣C.D.﹣7.﹣﹣++的值为()A.﹣B.±C.D.8.已知m=20212+20222,则的值为()A.2021B.2022C.4043D.4044二.填空题(共8小题,满分40分)9.如果,则=.10.若(x2+y2﹣5)2=64,则x2+y2的值为.11.的平方根是.12.一个自然数的算术平方根是a,则和这个自然数相邻的下一个自然数是.13.已知与互为相反数,则a+b的值为.14.利用计算器计算出的下表中各数的算术平方根如下:………0.250.7906 2.57.9062579.06250…根据以上规律,若,=4.11,则.15.根据图中的程序,当输入x为64时,输出的值是.16.2a﹣1和﹣a+2是一个正数x的的平方根,则x的值为.三.解答题(共6小题,满分40分)17.求下列各式中的x.(1)9x2﹣16=0.(2)(x+1)3=﹣27.18.计算:|﹣5|﹣+(﹣2)2+4÷(﹣).19.计算:(1)﹣+|﹣2|;(2)×(1﹣)+;(3)|2﹣|+|3﹣|+|﹣|.20.我们知道,是一个无理数,将这个数减去整数部分,差就是小数部分,即的整数部分是1,小数部分是﹣1,请回答以下问题:(1)的小数部分是,﹣2的小数部分是.(2)若a是的整数部分,b是的小数部分,求a+b﹣的立方根.21.判断下面各式是否成立①;②;③.探究:(1)你判断完上面各题后,发现了什么规律?并猜想:=(2)用含有n的代数式将规律表示出来,说明n的取值范围,并给出证明.22.列方程解应用题小丽给了小明一张长方形的纸片,告诉他,纸片的长宽之比为3:2,纸片面积为294cm2.(1)请你帮小明求出纸片的周长.(2)小明想利用这张纸片裁出一张面积为157cm2的完整圆形纸片,他能够裁出想要的圆形纸片吗?请说明理由.(π取3.14)参考答案一.选择题(共8小题,满分40分)1.解:A、4的平方根是±2,故A错误;B、﹣4没有平方根,故B错误;C、(﹣2)2=4,有平方根,故C错误;D、2是4的一个平方根,故D正确.故选:D.2.解:A.根据算术平方根的定义,,那么A正确,故A符合题意.B.根据绝对值的定义,﹣|﹣2|=﹣2,那么B错误,故B不符合题意.C.根据算术平方根的定义,=3,那么C错误,故C不符合题意.D.根据有理数的乘方,23=8,那么D错误,故D不符合题意.故选:A.3.解:=3、0、=2、2π、3.1415、0.333……、2.12112111211112……中,有理数有:、0、3.1415、0.333……共4个.故选:D.4.解:∵A、B两点对应的实数是﹣1和,∴AB=+1,∵点B是线段AC的中点,∴BC=+1,∴点C所对应的实数是:++1=2+1,故选:D.5.解:∵<<,∴4<<5,∴5<+1<6.故选:C.6.解:22020@=1﹣22020×=1﹣[2×(﹣)]2020×(﹣)=1+=.故选:C.7.解:﹣﹣++=﹣3﹣0﹣++=﹣.故选:A.8.解:∵2m﹣1=2(20212+20222)﹣1=2[20212+(2021+1)2]﹣1=2(2×20212+2×2021+1)﹣1=4×20212+4×2021+1=(2×2021+1)2=40432∴=4043,故选:C.二.填空题(共8小题,满分40分)9.解:根据题意得:a﹣2=0,4﹣b=0,解得:a=2,b=4,则==2.故答案是:2.10.解:令m=x2+y2,则原方程可化为(m﹣5)2=64,两边开平方,得m﹣5=±8,所以m=13或﹣3,∵x2+y2≥0,∴x2+y2=13.故答案为:13.11.解:∵=22的平方根是±.∴的平方根是±.故答案为:±.12.解:∵一个自然数的算术平方根为a,∴这个自然数是a2.∴和这个自然数相邻的下一个自然数是a2+1.故答案为a2+1.13.解:∵与互为相反数,∴+=0,∴a﹣3=0,4+b=0,解得a=3,b=﹣4,∴a+b=3+(﹣4)=﹣1,故答案为:﹣1.14.解:由表格可以发现:被开方数的小数点(向左或者右)每移动两位,其算术平方根的小数点相应的向相同方向移动一位.∵16.9×100=1690,∴=×10=4.11×10=41.1.故答案为:41.1.15.解:当输入x为64时,y==8,8是有理数,=2,2是无理数,∴当输入的x=64时,输出的值是2.故答案为:2.16.解:根据题意得:(2a﹣1)+(﹣a+2)=0或2a﹣1=﹣a+2,解得:a=﹣1或a=1,∴2a﹣1=2×(﹣1)﹣1=﹣3或2a﹣1=2×1﹣1=1,∴x=(﹣3)2=9或x=12=1.故答案为:9或1.三.解答题(共6小题,满分40分)17.解:(1)9x2=16,x2=,x=±;(2)x+1=﹣3,x=﹣4.18.解:原式=5﹣3+4﹣6=019.解:(1)原式=5﹣3+2=4;(2)原式=﹣×9﹣1=﹣3;(3)原式=﹣2+3﹣+﹣=1.20.解:(1)∵3<<4.∴的整数部分是3,小数部分是﹣3.∵4<<5.∴2<﹣2<3.∴﹣2的整数部分是2,小数部分是﹣2﹣2=﹣4.故答案为:﹣3,﹣4.(2)∵,∴a=9.∵,∴,∴,∵=2.∴的立方根等于2.21.解:(1)①;==2;②;==3;③,==4;∴=5;(2)∴=n,证明:===n.∴=n(n≥2).22.解:设长方形纸片的长为3xcm,宽为2xcm.依题意,3x•2x=294,6x2=294,x2=49,x=±7,∵x>0,∴x=7,∴长方形的纸片的长为21厘米,宽为14厘米,(21+14)×2=70厘米.答:纸片的周长是70厘米.(2)设圆形纸片的半径为r,S=πr2=157,r2=50,由于长方形纸片的宽为14厘米,则圆形纸片的半径最大为7,72=49<50,所以不能裁出想要的圆形纸片.。
华师大版八年级数学上册单元测试《第11章 数的开方》(解析版)
《第11章数的开方》一、选择题1.25的平方根是()A.±5 B.5 C.﹣5 D.±252.8的立方根是()A.±2 B.2 C.﹣2 D.3.二次根式有意义的条件是()A.x≤3 B.x<3 C.x≥3 D.x>34.下列实数中,是无理数的是()A.B.C.D.5.下列等式中,正确的是()A.B. C.D.6.一个数的平方根是2m﹣1和m+1,则这个数是()A.2 B.﹣2 C.4 D.17.下列说法中正确的是()A.无理数是无限不循环小数B.无理数是开不尽方的数C.无理数是含量有根号的数D.无理数是含有π的数8.的算术平方根是()A.4 B.±4 C.2 D.±29.3a+5b+2的平方根是±3,2a﹣3b﹣3的立方根是2,则b a的值是()A.1 B.﹣1 C.4 D.﹣4二、填空题10.计算: = , = , = .11.比较大小:,﹣2,.12.已知,则x﹣y= .13. 1﹣的相反数为;绝对值为.14.若,则x﹣y= .15.若,则m的取值范围是.三、解答题(55分)16.解下列方程或不等式(1)(2)(3)(4)(5)(6)(x﹣2)2﹣81=0.17.已知:x2=9,y3=﹣8,求x﹣y的值.18.在等式y=kx+b中,当x=1时y=﹣2;当x=﹣1时y=﹣4.求k,b的值.19.如图,已知l1∥l2,∠A=40°,∠1=60°,求∠2的度数.20.为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?《第11章数的开方》参考答案与试题解析一、选择题1.25的平方根是()A.±5 B.5 C.﹣5 D.±25【考点】平方根.【分析】如果一个数x的平方等于a,那么x是a是平方根,根据此定义即可解题.【解答】解:∵(±5)2=25∴25的平方根±5.故选:A.【点评】本题主要考查了平方根定义,关键是注意一个非负数有两个平方根.2.8的立方根是()A.±2 B.2 C.﹣2 D.【考点】立方根.【分析】依据立方根的定义求解即可.【解答】解:∵23=8,∴8的立方根是2.故选:B.【点评】本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.3.二次根式有意义的条件是()A.x≤3 B.x<3 C.x≥3 D.x>3【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据二次根式有意义,得:x﹣3≥0,解得:x≥3.故选C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.下列实数中,是无理数的是()A.B.C.D.【考点】无理数;立方根.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:、,是有理数,是无理数,故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…下列等式中,正确的是()A.B. C.D.【考点】立方根;平方根;算术平方根.【分析】根据立方根,即可解答.【解答】解:A、=2,故本选项错误;B、=±3,故本选项错误;C、,正确;D、=4,故本选项错误;故选:C.【点评】本题考查了立方根,解决本题的关键是熟记立方根.6.一个数的平方根是2m﹣1和m+1,则这个数是()A.2 B.﹣2 C.4 D.1【考点】平方根.【专题】计算题;实数.【分析】根据一个正数的平方根有两个,且互为相反数,求出m的值,即可确定出这个数.【解答】解:根据题意得:2m﹣1+m+1=0,解得:m=0,则这个数是1.故选:D.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.7.下列说法中正确的是()A.无理数是无限不循环小数B.无理数是开不尽方的数C.无理数是含量有根号的数D.无理数是含有π的数【考点】实数.【分析】根据无理数的定义,开方开不尽的数,与π有关的数,没有循环规律的无限小数都是无理数.【解答】解:A、无理数是无限不循环小数,正确;B、无理数是开不尽方的数,不正确,应该为开不尽方的数是无理数C、无理数不一定是含量有根号的数,如π,故本选项错误;D、无理数不一定是含有π的数,如,故本选项错误;故选A.【点评】此题考查了无理数的定义,掌握无理数的定义是本题的关键,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.8.的算术平方根是()A.4 B.±4 C.2 D.±2【考点】算术平方根.【分析】先计算的值,再根据算术平方根的定义求解.【解答】解: =4,4的算术平方根2,故选:C.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.9.3a+5b+2的平方根是±3,2a﹣3b﹣3的立方根是2,则b a的值是()A.1 B.﹣1 C.4 D.﹣4【考点】立方根;平方根.【专题】计算题.【分析】首先根据3a+5b+2的平方根是±3,可得3a+5b+2=9,然后根据2a﹣3b﹣3的立方根是2,可得2a﹣3b﹣3=8,据此求出a、b的值各是多少,即可求出b a的值是多少.【解答】解:∵3a+5b+2的平方根是±3,∴3a+5b+2=(±3)2=9…(1);∵2a﹣3b﹣3的立方根是2,∴2a﹣3b﹣3=23=8…(2);解得a=4,b=﹣1,∴b a=(﹣1)4=1.故选:A.【点评】此题主要考查了平方根、立方根的含义和求法,要熟练掌握,解答此题的关键是分别求出a、b的值各是多少.二、填空题10.计算: = ±1.5 , = , = ﹣0.7 .【考点】立方根;平方根;算术平方根.【专题】计算题.【分析】根据平方根、算术平方根、立方根的含义和求法求解即可.【解答】解: =±1.5, =, =﹣0.7.故答案为:±1.5,,﹣0.7.【点评】此题主要考查了平方根、立方根的概念的运用,要熟练掌握.11.比较大小:<,>﹣2,<.【考点】实数大小比较.【分析】根据实数的大小比较解答即可.【解答】解:∵5<7,∴;∵<2,∴>﹣2;∵,∴6﹣<6﹣.故答案为:<,>,<.【点评】本题主要考查实数大小的比较,掌握被开方数越大,其算术平方根越大是解决此题的关键.12.已知,则x﹣y= 4 .【考点】解二元一次方程组;非负数的性质:算术平方根.【专题】计算题;一次方程(组)及应用.【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出x﹣y的值.【解答】解:∵ +=0,∴,解得:,则x﹣y=5﹣1=4,故答案为:4【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.1﹣的相反数为﹣1 ;绝对值为﹣1 .【考点】实数的性质.【专题】计算题.【分析】求1﹣的相反数,根据a的相反数就是﹣a,即可求解;求1﹣的绝对值时,首先判断1﹣的正负情况,根据绝对值的性质:正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0,去掉绝对值符号即可.【解答】解:1﹣的相反数是﹣(1﹣)=﹣1;∵1<∴1﹣<0∴1﹣绝对值为﹣1.故答案是:和.【点评】此题主要考查了相反数的确定绝对值的性质,去掉绝对值符号时,要先确定绝对值符号中代数式的正负再去绝对值符号.14.若,则x﹣y= ﹣2 .【考点】二次根式有意义的条件.【分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答】解:∵,∴x=3,则y=5,故x﹣y=3﹣5=﹣2.故答案为:﹣2.【点评】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.15.若,则m的取值范围是m≤4 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质,可得答案.【解答】解:,得4﹣m≥0,解得m≤4,故答案为:m≤4.【点评】本题考查了二次根式的性质,熟记二次根式得性质是解题关键.三、解答题(55分)16.(30分)解下列方程或不等式(1)(2)(3)(4)(5)(6)(x﹣2)2﹣81=0.【考点】解一元一次不等式组;平方根;解一元一次方程;解二元一次方程组;解三元一次方程组;解一元一次不等式.【分析】(1)先去分母,再去括号、移项、合并同类项,把x的系数化为1即可.(2)先去分母,再去括号、移项、合并同类项,把x的系数化为1即可;(3)把第一个方程乘以3,第二个方程乘以2,利用减法消元先消去x,求出y的值,再把y的值代入第一个方程求出x的值,即可得解.(4)先求出各不等式的解集,再求出两个不等式的公共部分即可.(5)先消掉y,再组成关于x、z的方程组,求出x、z,代入即可求出y的值;(6)移项,直接开平方即可求解.【解答】解:(1)去分母得,12﹣3(3x+2)=4(4﹣x),去括号得,12﹣9x﹣6=16﹣4x,移项得,﹣9x+4x=16+6﹣12,合并同类项得,﹣5x=10,把x的系数化为1得,x=﹣2;(2)去分母得,5(5﹣x)﹣15≥3(4﹣x),去括号得,25﹣5x﹣15≥12﹣3x,移项得,﹣5x+3x≥12+15﹣25,合并同类项得,﹣2x≥2,把x的系数化为1得,x≤﹣1;(3),3得,6x+9y=366x+8y=34④,③×3﹣④×2得,﹣5y=4解得y=﹣,把y=﹣代入①得,2x+=8,解得x=,所以,方程组的解是;(4)∵解不等式①得:x <﹣,解不等式②得:x ≥3,∴不等式组无解.(5),由①+②×2,得5x+z=11④由③+②,得3x ﹣2z=4⑤由④×2+⑤,解得x=2.把x=2代入④,得z=1.把x=2,z=1代入③得到:y=﹣1所以原方程组的解为:;(6)移项得,(x ﹣2)2=81,开平方得,x ﹣2=±9,所以x 1=11,x 2=﹣7.【点评】本题考查了解一元一次方程、解一元一次不等式(组)、解三元一次方程组以及解一元二次方程,熟练掌握解一元一次方程、解一元一次不等式(组)、解三元一次方程组以及解一元二次方程的方法是本题的关键.17.已知:x2=9,y3=﹣8,求x﹣y的值.【考点】立方根;平方根.【分析】根据根式的性质即可求出答案.【解答】解:由题意可知:x=±3,y=﹣2,∴x﹣y=5或﹣1;【点评】本题考查平方根与立方根,涉及代入求值.18.在等式y=kx+b中,当x=1时y=﹣2;当x=﹣1时y=﹣4.求k,b的值.【考点】解二元一次方程组.【专题】计算题.【分析】本题的实质是将两组未知数的数值代入等式,转化为关于未知系数的二元一次方程组来解答.【解答】解:把x=1时y=﹣2和x=﹣1时y=﹣4,分别代入y=kx+b得:,解之得:k=1,b=﹣3.【点评】现设出某些未知的系数,然后根据已知条件求出这些系数,此法叫待定系数法,以后求函数解析式时经常用到.19.如图,已知l1∥l2,∠A=40°,∠1=60°,求∠2的度数.【考点】平行线的性质.【分析】先根据平行线的性质去除∠AC的度数,再由三角形外角的性质即可得出结论.【解答】解:∵l1∥l2,∠1=60°,∴∠ABC=∠1=60°.∵∠A=40°,∴∠2=∠A+∠ABC=40°+60°=100°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.20.为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)关系式为:A种纪念品8件需要钱数+B种纪念品3件钱数=950;A种纪念品5件需要钱数+B种纪念品6件需要钱数=800;(2)关系式为:用于购买这100件纪念品的资金不少于7500元,但不超过7650元,得出不等式组求出即可.【解答】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,∴,解得:50≤x≤53,∵x 为正整数,x=50,51,52,53∴共有4种进货方案,分别为:方案1:商店购进A种纪念品50个,则购进B种纪念品有50个;方案2:商店购进A种纪念品51个,则购进B种纪念品有49个;方案3:商店购进A种纪念品52个,则购进B种纪念品有48个;方案4:商店购进A种纪念品53个,则购进B种纪念品有47个.【点评】此题主要考查了二元一次方程组的应用以及一元一次方程的应用,找到相应的关系式是解决问题的关键,注意第二问应求得整数解.。
华东师大版《数的开方》单元测试题
数的开方测试题姓名 总分一选择题1、与数轴上的点一 一对应的是( )A 、有理数B 、整数C 、无理数D 、实数2、若一个有理数的平方根与立方根是相等的,则这个有理数一定是( ) A 、0 B 、1 C 、0或1 D 、0和±13、下列说法正确的是:( )A 、4的平方根是2B 、-1的平方根是-1C 、749±=D 、-2是4的一个平方根 4、a 是4的一个平方根,且a <0,则a 的值是( ) A 、-2 B 、±2 C 、-16 D 、±16 5、25的平方根是( )A 、5B 、–5C 、5±D 、5± 6、2)3(-的算术平方根是( )A 、9B 、–3C 、3±D 、3 7、下列叙述正确的是( )A 、0.4的平方根是2.0±B 、32)(--的立方根不存在 C 、6±是36的算术平方根 D 、–27的立方根是–38、下列等式中,错误的是( ) A 、864±=± B 、1511225121±= C 、62163-=- D 、1.0001.03-=- 9、下列各数中,无理数的个数有( )10.10100731642π--, , ,A 、1B 、2C 、3D 、410、如果x -2有意义,则x 的取值范围是( ) A 、2≥x B 、2<x C 、2≤x D 、2>x11、以下语句及写成式子正确的是( )A 7是49的算术平方根,即749±=B 7是2)7(-的平方根,即7)7(2=-C 7±是49的平方根,即749=±D 7±是49的平方根,即749±= 12、若a 为实数,则下列代数式中一定是负数的是 ( )A 、-a 2B 、-(a+1)2C 、- 2)(a -D 、 -(| -a |+1)二、填空题1.4的平方根是_____________.719-的相反数的平方根是________.2.的平方根是_____.3、若a 是正数,且252=a ,那么a 的平方根是 4、如果a 的平方根等于2±,那么_____=a 5、3-是 的平方根,3-是 的立方根 6、64的平方根是 ,64的立方根是 ; 7.81-的立方根是 ,125的立方根是 8、=-2)4( .=-33)6( , 2)196(= .9、下列各数654.0 、23π、14.3、80108.0、ππ--1、 1010010001.0、4、 544514524534.0,8,其中无理数的个数是 个。
华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案
华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分) 1.化简 |1−√2|+1的结果是 ( )A.2−√2B.2+√2C.√2D.22.计算:-64 的立方根与16的平方根的和是 ( )A.0B. -8C.0或-8D.8或-83.下列实数中,最小的是 ( )A.3 B √2 C √3 D.04.已知 m =√4+√3,则以下对m 的估算正确的是 ( )A.2<m<3B.3<m<4C.4<m<5D.5<m<65.下列说法正确的是 ( ) A.18的立方根是 ±12 B. -49 的平方根是±7C.11的算术平方根是 √11D.(−1)²的立方根是-16.下列各组数中互为相反数的是 ( )A. -2 与 √(−2)2B. -2 与 √−83C. -2 与 −12 D.2 与|-2|7.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为 ( )A.1B. -1C.2D. -28.下列各数:3.14 π3 √16 2.131 331 333 1…(相邻两个1之3的个数逐次多1) 2321,√−93.其中无理数的个数为 ( )A.2个B.3个C.4个D.5个9.实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是 ( )A.|a|>4B. c-b>0C. ac>0D. a+c>010.已知min(√x,x2,x)表示取三个数中最小的那个数,例如:当x=9时min(√x,x2,x)=min(√9,92,9)=3,则当min(√x,x2,x)=116时,x的值为 ( )A.116B.18C.14D.12二、填空题(每小题3分,共15分)11.计算:(−1)2+√9= .12.已知a、b满足(a−1)2+√b+2=0,则a+b= .13.已知a2=16,√b3=2且 ab<0,则√a+b= .14.我们知道√a≥0,所√aₐ有最小值.当x= 时2+√3x−2有最小值.15.请你观察思考下列计算过程:∴112=121 ∴√121=11;∵1112=12321,∴√12321=111⋯⋯由此猜想:√12345678987654321= .三、解答题(本大题共9个小题,满分75分)16.(6分)计算:(1)|−2|+√−83−√16;(2)6×√19−√273+(√2)2.17.已知(x−7)²=121,(y+1)³=−0.064求代数式√x−2−√x+10y+√245y3的值.18.(6分)求下列各式中的x的值:(1)(x+1)²−1=0;(2)23(x+1)3+94=0.19.(8分)阅读材料:如果xⁿ=a,那么x叫做a的n次方根.例如:因为2⁴=16,(−2)⁴=16,所以2和-2都是16的4次方根,即16的4次方根是2和-2,记作±√164=±2.根据上述材料回答问题:(1)求81 的4次方根和32 的5 次方根;(2)求10°的n次方根.20.(9分)求下列代数式的值.(1)如果a²=4,b的算术平方根为3,求a+b的值;(2)已知x是25的平方根,y是16的算术平方根,且.x<y,求x-y的值.x−y21.(9分)如图是一个无理数筛选器的工作流程图.(1)当x为16时,y= ;(2)是否存在输入有意义的x值后,却始终输不出y值? 如果存在,写出所有满足要求的x值,如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)当输出的y值√3₃时,判断输入的x值是否唯一,如果不唯一,请出其中的两个.22.(10分)阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此、√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:√4<√7<√9,即2<√7<3∴√7的整数部分为2,小数部分为√7−2.请解答:(1)√57的整数部分是,小数部分是;(2)如果√11的小数部分为a,√7的整数部分为b,求|a−b|+√11的值;(3)已知:9+√5=x+y,其中x是整数,且0<y<1,求x-y的相反数.x−y23.(10分)小丽想用一块面积为400cm²的正方形纸片,沿着边的方向裁出一块面积为300cm²的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗? 若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.24.(11分)如图1,长方形OABC 的边OA 在数轴上,点O 为原点,长方形OABC 的面积为12,OC 边的长为3.(1)数轴上点 A 表示的数为 ;(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为( O ′A ′B ′C ′,移动后的长方形(O ′A ′B ′C ′与原长方形OABC 重叠部分(如图2 中阴影部分)的面积记为S.①当S 恰好等于原长方形OABC 面积的一半时,求数轴上点. A ′表示的数;②设点A 的移动距离 AA ′=x.i 当S=4时,求x 的值;ii 点 D 为线段 AA'的中点,点 E 在线段0O ′上,且 OE =12OO ′,当点D 、E 表示的数互为相反数时,求x 的值. 参考答案1. C2. C3. D4. B5. C6. A7. B8. B9. B 10. C11.4 12. -1 13.214 2315.111 1111116.解: (1)|−2|+√−83−√16=2−2−4=−4.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.17.解: :(x −7)²=121,∴x −7=±11, 则x=18 或x= -4 又∵x -2≥0 ∴x≥2 ∴x=18.∵(y+1)³= -0.064 ∴y+1= -0.4 ∴y= -1.4 ∴√x −2 - √x +10y + 245y =√18−2−√18+10×(−1.4)−√245×(−1.4)3=√16−√4+√−3433 =4-2-7 = -5.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.18.解: (1)∵(x +1)²−1=0,∴(x +1)²=1,∴x +1=±1,解得x=0或x=-2.(2)∵23(x +1)3+94=0,∴8(x +1)3+27=0,∴(x +1)3=−278,∴x +1=−32,解得 x =−52.19.解:(1)因为 3⁴=81,(−3)⁴=81,所以3 和-3 都是81的4次方根,即81的4次方根是±3;因为 2⁵=32,所以32的5次方根是2.(2)当n 为奇数时 10" 的n 次方根为10;当n 为偶数时 10" 的n 次方根为±10.20.解:(1)∵a²=4 ∴a=±2 ∵b 的算术平方根为3 ∴b=9 ∴a+b=-2+9=7或a+b=2+9=11.(2)∵x 是25的平方根 ∴x=±5.∵y 是16的算术平方根 ∴y=4.∵x<y ∴x= -521.解:(1 √2(2)存在.当x=0,1时,始终输不出y 值.理由:0,1的算术平方根是0,1,一定是有理数.(3)当x<0时,筛选器无法运行.(4)x 值不唯一 x=3或x=9.(答案不唯一)22.解: (1)7√57−7(2 )∵3<√11<4,∴a =√11−3,∴2<√7<3,∴b =2,∴|a −b|+√11=|√11 - 3−2|+√11=5−√11+√11=5.(3)∵2<√5<3,∴11<9+√5<12,∵9+√5=x +y,其中x 是整数 且0<y<1 ∴x =11,y =9+√5−11=√5−2,∴x −y =11−(√5−2)=13−√5∴x -y 的相反数为 √5−13.23.解:(1)设面积为400 cm² 的正方形纸片的边长为a cm∴a²=400.又∵a>0 ∴a=20.又∵要裁出的长方形面积为300 cm²∴若以原正方形纸片的边长为长方形的长,则长方形的宽为300÷20=15( cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm 则宽为2x cm∴6x²=300,∴x²=50.又∵ x >0,∴x =√50∴长方形纸片的长为 3√50.又∵ √50>√49=7,∴3√50>21>20∴ 小丽不能用这块纸片裁出符合要求的纸片.24.解:(1)4(2)①∵S 等于原长方形OABC 面积的一半 ∴S=6 ∴12-3×AA'=6 解得. AA ′=2.当向左运动时,如图1,( OA ′=OA −AA ′=4−2=2,∴点A'表示的数为2;当向右运动时,如图2,∵ ∴OA ′=OA +AA ′=4+2=6,.∴ 点A'表示的数为6.所以点 A'表示的数.为2 或6.②i 左移时,由题意得O C ⋅OA ′=4,∵OC =3,∴OA ′=43,∴:x =OA −OA ′=4−43= 83;同法可得,右移时, x =83,故当S=4时x =83.ii 如图1,当原长方形OABC 向左移动时,点 D 表示的数为 4−12x,点 E 表示的数为 −12x,由题意可得方程 4−12x +(−12x)=0,解得x=4; 如图2,当原长方形OABC 向右移动时,点D 、E 表示的数都是正数,不符合题意.综上所述,x 的值为4.。
华师大版八年级数学上册单元测试《第11章 数的开方》(解析版)
《第11章数的开方》一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±44.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+15.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣320076.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤17.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.58.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在二、填空题11.若x2=8,则x= .12.的平方根是.13.如果有意义,那么x的值是.14.a是4的一个平方根,且a<0,则a的值是.15.当x= 时,式子+有意义.16.若一正数的平方根是2a﹣1与﹣a+2,则a= .17.计算: += .18.如果=4,那么a= .19.﹣8的立方根与的算术平方根的和为.20.当a2=64时, = .21.若|a|=, =2,且ab<0,则a+b= .22.若a、b都是无理数,且a+b=2,则a,b的值可以是(填上一组满足条件的值即可).23.绝对值不大于的非负整数是.24.请你写出一个比大,但比小的无理数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= .三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.27.计算:(1)+;(2)++.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.《第11章数的开方》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±【考点】平方根.【分析】这个正数可用m表示出来,比这个正数大1的数也能表示出来,开方可得出答案.【解答】解:由题意得:这个正数为:m2,比这个正数大1的数为m2+1,故比这个正数大1的数的平方根为:±,故选D.【点评】本题考查算术平方根及平方根的知识,难度不大,关键是根据题意表示出这个正数及比这个正数大1的数.2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.【考点】算术平方根.【分析】根据算术平方根的定义解答即可.【解答】解:3的算术平方根是,所以,这个数是3.故选B.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±4【考点】立方根;平方根.【分析】根据乘方运算,可得a的值,根据开方运算,可得立方根.【解答】解;已知a的平方根是±8,a=64,=4,故选:B.【点评】本题考查了立方根,先算乘方,再算开方.4.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+1【考点】立方根.【分析】根据正数的立方根是正数,0的立方根是0,负数的立方根是负数,结合四个选项即可得出结论.【解答】解:∵﹣a2﹣1≤﹣1,∴﹣a2﹣1的立方根一定是负数.故选C.【点评】本题考查了立方根,牢记“正数的立方根是正数,0的立方根是0,负数的立方根是负数”是解题的关键.5.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣32007【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】本题首先根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”得到关于a、b的方程组,然后解出a、b的值,再代入所求代数式中计算即可.【解答】解:依题意得:a+2=0,b﹣1=0∴a=﹣2且b=1,∴(a+b)2007=(﹣2+1)2007=(﹣1)2007=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,结果为非负数,即1﹣x≥0.【解答】解:由于二次根式的结果为非负数可知,1﹣x≥0,解得x≤1,故选D.【点评】本题利用了二次根式的结果为非负数求x的取值范围.7.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对【考点】二次根式的性质与化简.【分析】根据=|a|,再根据绝对值的性质去绝对值合并同类项即可.【解答】解:原式=||a|﹣a|=|﹣a﹣a|=|﹣2a|=﹣2a,故选:B.【点评】此题主要考查了二次根式的性质和化简,关键是掌握=|a|.9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质,可得答案.【解答】解:A、数轴上的点表示的数右边的总比左边的大,b>a,故A正确;B绝对值是数轴上的点到原点的距离,|a|>|b|,故B正确;C、|﹣a|>|b,|得﹣a>b,故C错误;D、由相反数的定义,得﹣b>a,故D正确;故选:C.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质是解题关键.10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在【考点】命题与定理.【分析】根据各个选项中的说法正确的说明理由,错误的说明理由或举出反例即可解答本题.【解答】解:∵,故选项A错误;无理数是开放开不尽的数,故选项B正确;无限不循环小数是无理数,故选项C错误;绝对值最小的数是0,故选项D错误;故选B.【点评】本题考查命题与定理,解题的关键是明确题意,正确的命题说明理由,错误的命题说明理由或举出反例.二、填空题11.若x2=8,则x= ±2.【考点】平方根.【分析】利用平方根的性质即可求出x的值.【解答】解:∵x2=8,∴x=±=±2,故答案为±2.【点评】本题考查平方根的性质,利用平方根的性质可求解这类型的方程:(x+a)2=b.12.的平方根是±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.如果有意义,那么x的值是±.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得:﹣(x2﹣2)2≥0,再解即可.【解答】解:由题意得:﹣(x2﹣2)2≥0,解得:x=±,故答案为:.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.a是4的一个平方根,且a<0,则a的值是﹣2 .【考点】平方根.【分析】4的平方根为±2,且a<0,所以a=﹣2.【解答】解:∵4的平方根为±2,a<0,∴a=﹣2,故答案为﹣2.【点评】本题考查平方根的定义,注意一个正数的平方根有两个,且互为相反数.15.当x= ﹣2 时,式子+有意义.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2≥0,﹣x﹣2≥0,解得,x=﹣2,故答案为:﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.16.若一正数的平方根是2a﹣1与﹣a+2,则a= 1或﹣1 .【考点】平方根;解一元一次方程.【专题】计算题.【分析】根据一个正数的两个平方根互为相反数,分2a﹣1与﹣a+2是同一个平方根与两个平方根列式求解.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.【点评】本题考查了平方根与解一元一次方程,注意平方根是同一个平方根的情况,容易忽视而导致出错.17.计算: += 1 .【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出即可.【解答】解: +=π﹣3+4﹣π=1.故答案为:1.【点评】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.18.如果=4,那么a= ±4 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出a的值即可.【解答】解:∵ =4,∴a=±4,故答案为±4.【点评】本题考查了二次根式的性质与化简,掌握a2=16,得出a=±4是解题的关键.19.﹣8的立方根与的算术平方根的和为 1 .【考点】立方根;算术平方根.【分析】﹣8的立方根为﹣2,的算术平方根为3,两数相加即可.【解答】解:由题意可知:﹣8的立方根为﹣2,的算术平方根为3,∴﹣2+3=1,故答案为1.【点评】本题考查立方根与算术平方根的性质,属于基础题型.20.当a2=64时, = ±2 .【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a的立方根.【解答】解:∵a2=64,∴a=±8.∴=±2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.21.若|a|=, =2,且ab<0,则a+b= 4﹣.【考点】实数的运算.【分析】根据题意,因为ab<0,确定a、b的取值,再求得a+b的值.【解答】解:∵ =2,∴b=4,∵ab<0,∴a<0,又∵|a|=,则a=﹣,∴a+b=﹣+4=4﹣.故答案为:4﹣.【点评】本题考查了实数的运算,属于基础题,解答本题的关键是熟练掌握绝对值的性质和二次根式的非负性.22.若a、b都是无理数,且a+b=2,则a,b的值可以是π;2﹣π(填上一组满足条件的值即可).【考点】无理数.【专题】开放型.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…的数,而本题中a与b的关系为a+b=2,故确定a后,只要b=2﹣a即可.【解答】解:本题答案不唯一.∵a+b=2,∴b=2﹣a.例如a=π,则b=2﹣π.故答案为:π;2﹣π.【点评】本题主要考查了无理数的定义和性质,答案不唯一,解题关键是正确理解无理数的概念和性质.23.绝对值不大于的非负整数是0,1,2 .【考点】估算无理数的大小.【分析】先估算出的值,再根据绝对值的性质找出符合条件的所有整数即可.【解答】解:∵4<5<9,∴2<<3,∴符合条件的非负整数有:0,1,2.故答案为:0,1,2.【点评】本题考查的是估算无理数的大小及绝对值的性质,根据题意判断出的取值范围是解答此题的关键.24.请你写出一个比大,但比小的无理数+.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:写出一个比大,但比小的无理数+,故答案为: +.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y、z的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y﹣1=0,z+2=0,解得x=3,y=1,z=﹣2,所以,(3﹣2)2008×1=12008=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.【考点】算术平方根;平方根.【分析】先依据算术平方根的定义得到5x+19=64,从而可术的x的值,然后可求得3x﹣2的值,最后依据平方根的定义求解即可.【解答】解:∵5x+19的算术平方根是8,∴5x+19=64.∴x=9.∴3x﹣2=3×9﹣2=25.∴3x﹣2的平方根是±5.【点评】本题主要考查的是算术平方根和平方根的定义,掌握算术平方根和平方根的定义是解题的关键.27.计算:(1)+;(2)++.【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=5﹣2=3;(2)原式=﹣3+5+2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.【考点】立方根;平方根.【分析】(1)两边直接开平方即可;(2)首先将方程变形为(x+1)3=,然后把方程两边同时开立方即可求解.【解答】解:(1)由原方程直接开平方,得x﹣1=±4,∴x=1±4,∴x1=5,x2=﹣3;(2)∵8(x+1)3﹣27=0,∴(x+1)3=,∴x+1=,∴x=.【点评】本题考查了平方根、立方根的性质与运用,是基础知识,需熟练掌握.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.【考点】实数大小比较.【分析】把2,,﹣,0,﹣分别在数轴上表示出来,然后根据数轴右边的数大于左边的数即可解决问题.【解答】解:如图,根据数轴的特点:数轴右边的数字比左边的大,所以以上数字的排列顺序如下:2>>0>﹣>﹣.【点评】此题主要考查了利用数轴比较实数的大小,解答本题时,采用的是数形结合的数学思想,采用这种方法解题,可以使知识变得更直观.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?【考点】二次根式的应用.【分析】先根据BC、AC、AB的长求出P,再代入到公式S=,即可求得该三角形的面积.【解答】解:∵a=3cm,b=4cm,c=5cm,∴p===6,∴S===6(cm2),∴△ABC的面积6cm2.【点评】此题考查了二次根式的应用,熟练掌握三角形的面积和海伦公式是本题的关键.31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.【考点】实数的运算.【分析】根据相反数,倒数,以及绝对值的意义求出a+b,cd及m的值,代入计算即可求出平方根.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=±2时,原式=5,5的平方根为±.【点评】此题考查了实数的运算,平方根,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.【考点】分式的化简求值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据+(ab﹣2)2=0,可以求得a、b的值,从而可以求得+++…+的值,本题得以解决.【解答】解:∵ +(ab﹣2)2=0,∴a﹣1=0,ab﹣1=0,解得,a=1,b=2,∴+++…+=…+=+…+==.【点评】本题考查分式的化简求值、偶次方、算术平方根,解题的关键是明确分式化简求值的方法.。
数的开方精选练习题
数的开方单元试题(华东师大版)考试总分:120分 考试时间:90分钟姓名: 得分:一、选择题(共8题24分,每题3分) 1、4的算术平方根是( )A 、4-B 、4C 、2-D 、2 2、“9的平方根是3±”的表达式正确的是( ) A 、39±=± B 、39= C 、39±= D 、39=-3、若式子5+x 在实数范围内有意义,则x 的取值范围是( ) A 、5->x B 、5-<x C 、5-≠x D 、5-≥x4、在2-,0,711,23,44.1中,有平方根的数有( )A 、1个B 、2个C 、3个D 、4个 5、下列说法正确的是( )A 、1-的倒数是1B 、1-的相反数是1-C 、1的算术平方根是1D 、1的立方根是1± 6、对于实数a 、b ,若=b ﹣a ,则( )A 、a >bB 、a <bC 、a≥bD 、a≤b7、一个自然数的算术平方根是a ,则与这个自然数相邻的后续自然数的平方根是( ) A . B . C .D .8、化简6236---的结果为( )A 、1-B 、5C 、625-D 、162- 二、填空题(共8题24分,每题3分)9、25的平方根是 ,216-的立方根是 10、=81 ,=±2516,=-31 11、若2(1)0a b -+=则a=_________b=__________12、若一个正数的平方根是2a ﹣1和﹣a+2,则a= _______,这个正数是 ______ . 13、若一个数的平方根为±8,则这个数的立方根为 _________ . 14、已知a 、b 为两个连续整数,且b a <<17,则=+b a 15、如果23-x 和65+x 是一个数的平方根,那么这个数是 16、若252=a ,3=b ,则b a +的值是三、计算(共2题8分,每题4分) (1)、3801.041--+ (2)、33331804.01044.1----+四、解方程(本题共2个小题8分,每题3分)(1)、049162=-x (2)、25)1(2=-x五、解答题(本题共6个小题48分,每题8分) (1)、已知12-a 的立方根是3,13--b a 的平方根是4±,求b a 2+的平方根(2)、已知x 是的整数部分,y 是的小数部分,求的平方根.(3)、)已知x ,y 为实数,且,求的值.(4)、表示a 、b 两个实数的点在数轴上的位置如图所示,化简2)(b a b a ++-(5)、已知a 、b 为实数,且022=-++b b a ,解关于x 的方程:1)2(2-=++a b x a(6)、将下列各数填入相应的集合3,-3,0,21,35-,3,5-,16,73+,π,π5,752- 有理数集合( )无理数集合( )正整数集合( )分数集合( )六、文字题(本题8分)小华家买了一套新房,客厅的面积为32平方米,准备用50块正方形地砖,请你帮她计算一下,她应购买边长为多少米的地砖?七、附加题(本题共2题10分,每题5分,本题得分可记入总分,但总分不超过120分)(1)、已知一个正方形ABCD 的面积是4a 2 cm 2,点E 、F 、G 、H 分别为正方形ABCD 各边的中点,依次连结E 、F 、G 、H 得一个正方形. ①求这个正方形的边长;②求当a=2 cm 时,正方形EFGH 的边长大约是多少厘米?(精确到0.1cm )(2)、若a 、b 、c 是△ABC 的三边,化简:2222()()()()a b c a b c b c a c a b ++---+-----。
华东师大版八年级数学上册第11章数的开方单元综合测试
《数的开方》单元检测一、选择题(每小题4分,共16分)1. 有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( )A .1B .2C .3D .42.()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.493.若=a 的值是( ) A .78 B .78- C .78± D .343512- 4.若225a =,3b =,则a b +=( )A .-8B .±8C .±2 D.±8或±2二、填空题(每小题3分,共18分)5.在-52,3π 3.14,01-,21-中,其中: 整数有 ;无理数有 ;有理数有 。
62的相反数是 ;绝对值是 。
7.在数轴上表示的点离原点的距离是 。
8= 。
910.1== 。
10.若一个数的立方根就是它本身,则这个数是。
三、解答题(本大题共66分)11.计算(每小题5分,共20分)(1)(2)2-0. 01);(3+(4))11(保留三位有效数字)。
12.求下列各式中的x(每小题5分,共10分)(1)x2 = 17;(2)x2-12149= 0。
13.比较大小,并说理(每小题5分,共10分)(1与6;(2)1与。
14.写出所有适合下列条件的数(每小题5分,共10分)(1)大于(2的所有整数。
15.(本题5分)+-1316.(本题5分)一个正数x的平方根是2a-3与5-a,则a是多少?17.(本题6分)观察========(一)参考答案1.C2.B3.B4.D5.整数有:01-;无理数有:3π1,2,有理数有:-52, 3.14,01。
6.2278. 19.±1. 0110.1,-1,011.(1)0.5; (2)2.58; (3)1.5; (4)7.0012.(1; (2)x =±11713.(1<6; (2)1<2-。
华东师大版八年级数学上第11章数的开方单元测试含答案
一、选择题。
(每题3分,共21分)1.下列各数:3.141592 ,- 3 ,0.16 ,0.01 ,–π ,0.1010010001… ,227,35 , 0.2 ,8 中无理数的个数是………………………………………………………( )A .2个B .3个C .4个D .5个2.25的平方根是…………………………………………………………………………( )A .±5B .-5C .5D .± 53.-8的立方根是…………………………………………………………………………( )A .±2B .-2C .2D .不存在 4.a=15,则实数a 在数轴上对应的点的大致位置是…………………………………( )A .B .C .D . 5.一个正数的算术平方根是a ,那么比这个正数大2的数的算术平方根是………( )A .a 2+2B .±a 2+2C .a 2+2D .a+26.下列说法正确的是……………………………………………………………………( )A .27的立方根是3,记作27=3B .-25的算术平方根是5C .a 的立方根是± aD .正数a 的算术平方根是 a7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有 …………………………( )A .0个B .1个C .2个D .3个二、填空题。
(每题4分,共40分)8.9的算术平方根是___________;9.比较大小:32_______32 (用“<”或“>”填空);10.若∣x ∣=3,则x=_______;11.-27的立方根是___________;12.2的相反数是___________;13.平方根等于本身的数是_______________;14.写出所有比11小且比3大的整数_____________________;15.81的算术平方根是___________;16.建筑工人李师傅想用钢材焊制一个面积为6平方米的正方形铁框,请你帮离师傅计算0 1 2 3 4 50 1 2 3 4 5一下,他需要的钢材总长至少为____________米(精确到0.01);17.观察思考下列计算过程:因为112=121,所以121=11,同样,因为1112=12321,所以12321=111,则1234321=________,可猜想123456787654321 =___________。
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列说法正确的是()A.16 的平方根是4B.只有正数才有平方根C.不是正数的数都没有平方根D.算术平方根等于立方根的数有两个2、下列判断正确的是()A. B.-9的算术平方根是3 C.27的立方根是±3 D.正数a的算术平方根是3、如图,数轴上点P表示的数可能是A. B. C.-3.2 D.4、9的算术平方根是()A.3B.-3C.±3D.815、与最接近的整数为()A.2B.3C.4D.56、下列四个数中,最小的数是().A.1B.0C.-3D.7、实数a、b、c在数轴上对应点的位置如图所示,以下结论正确的是()A. B. C. D.8、根据表中的信息判断,下列语句中正确是()A. =1.59B.235的算术平方根比15.3小C.只有3个正整数n满足D.根据表中数据的变化趋势,可以推断出16.1 2将比256增大3.199、在实数,,,中,最大的是()A. B. C. D.10、对于两个不相等的实数a、b,我们规定符号表示a、b中的较小的值,如,按照这个规定,方程的解为().A. B.2 C. 或2 D.1或11、9的算术平方根是()A.81B.3C.-3D.±312、点A在数轴上和原点相距个单位长度,点B在数轴上和原点相距3个单位长度,且点B在点A的左边,则A,B之间的距离为()A. B. C. D. 或13、的平方根是()A.±4B.±2C.4D.214、估计的值在A.1到2之问B.2到3之间C.3到4之问D.4刊5之问15、下列计算正确的是()A. =±5B. =2C.3 - =3D. ×=7二、填空题(共10题,共计30分)16、+-=________.17、若一个数的平方根就是它本身,则这个数是________.18、化简()2+ =________.19、约等于:________ (精确到0.1).20、比较大小:________ +1.(填“>”、“<”或“=”)21、已知x-1的立方根是1,2y+2的算术平方根是4,则x+y的平方根是________.22、已知≈2.493,≈7.882,则≈________.23、的平方根是________.24、用字母表示的实数m﹣2有算术平方根,则m取值范围是________25、如果=4.098,=40.98,那么a=________,,则________三、解答题(共5题,共计25分)26、计算:27、计算:.28、化简:已知实数在数轴上的位置如图,求代数式的值29、用两边逼近法估算(可以使用计算器)(1)(结果精确到0.01)(2)(结果精确到10)30、“比差法”是数学中常用的比较两个数大小的方法,即:;例如:比较与2的大小∵又∵则∴∴请根据上述方法解答以下问题:比较与的大小.参考答案一、单选题(共15题,共计45分)1、D3、B4、A5、C6、C7、C8、C9、C10、B11、B12、D13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
第12章《数的开方》单元测试(华东师大版八年级上)doc
第12章 数的开方单元测试(时间:60分钟 满分:120分)一、选择题(每小题2分,共30分。
请将你认为正确的答案填写在题目前的括号内) ( )1.与数轴上的点成一一对应关系的数是( ) A .整数 B .有理数 C .无理数 D .实数 ( )2.下列各组数中互为相反数的是( )A .-3.与-12D .│-2 ( )3.下列四种说法:①负数有一个负的立方根;②1的平方根与立方根都是1;③4•的平方根的立方根是;④互为相反数的两个数的立方根仍为相反数。
正确的有( )个。
A .1 B .2 C .3 D .4 ( )4.下列各式成立的是( )A =±2B >0( )5.在下列各数中,0.5,54,-0,03745,13,其中无理数的个数为( ) A .2 B .3 C .4 D .5( )6.下列比较两个实数大小正确的是( )A >223B .-π.12<0.5 D .2+( )7.一个正方形的面积扩大为原来的n 倍,则它的边长扩大为原来的( )A .n 倍B .2n 倍CD .2n 倍 ( )8.若一个数的平方根等于它的立方根, 则这个数是( )A .0B .1C .-1D .±1( )9.(05年绍兴市中考)“数轴上的点并不都表示有理数,如图中数轴上的点P”,这种说明问题的方式体现的数学思想方法叫做( ) A .代入法 B .换元法 C .数形结合 D .分类讨论m n ( )10.(05年宜昌市中考.课改卷)实数m 、n 在数轴上的位置如图所示,•则下列不等关系正确的是( )A .n<mB .n 2<m 2C .n>mD .│n │<│m │ ( )11.下列叙述中正确的是( )A .正数的平方根不可能是负数B .无限小数都是无理数C .实数和实数上的点一一对应D .带根号的数是无理数( )12.下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数,其中正确的是( ) A .①②③ B .②③④ C .①②④ D .②④ ()13.(2006年常德市)下列计算正确的是( )A±4 B .=1 C .24=4 D =2 ( )14.一个数的算术平方根是a ,则比这个数小5的数是( ) A .a+5 B .a-5 C .a 2 +5 D .a2 -5( )15.(2005根据你发现的规律,判断Q =n•为大于1的整数)的值的大小关系为( )A .P<QB .P=QC .P>QD .与n 的取值有关 二、填空题(每小题2分,共24分)16.若一个正数的平方根是2a-1和-a+2,则a=______,这个数是_______.17_________________.18.在下列数中:1.732,|,0.643,-(-1)2n(n 为正整数),有理数有_______;无理数有________.19.数轴上表示的点在表示的点的________侧. 20.在下列各式中填入“>”或“<”:,,21的相反数是________的绝对值是_____.22.从1到100之间所有自然数的平方根的和为________. 23+│y-1│+(z+2)2=0,则xyz=________.24.如果将2m ,m ,1-m 这三个实数在数轴上所对应的点从左到右依次排列,•那么m 的取值范围是________.25.在数轴上与表示数1的点所表示的数是_________. 26.实数a 、b 在数轴上对应点的位置如图所示:0ab则化简│b-a │.27.(2006湖州市)青蛙在如图8×8的正方形(每个小正方形的边长为1)•网格的格点A•开始连续跳六次正好跳回到点A ,则所构成的封闭图形的面积的最大值是________.三、解答题(共46分)28.(10分)比较下列实数的大小.(1) (2)______7; (3)-4______-3π;(4)π; (5)12______0.5. 29.(6分)如图所示的圆圈中有5个实数,判断哪些是无理数,哪些是有理数,并计算其中有理数的和与无理数的积之差.30.(6分)化简:31.(6分)已知:225x2=16,且8y3-27=0.试求x+y的值。
第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)
第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、下列各式正碗的是()A. B. C. D.2、已知实数x,y满足,则x﹣y等于()A.3B.﹣3C.1D.﹣13、用计算器计算的近似值(精确到0.01),结果是()A.1.15B.3.46C.4.62D.13.864、在实数3,﹣3,﹣,中最小的数是()A.3B.﹣3C.D.﹣5、下列运算:sin30°=,=2,π0=π,2﹣2=﹣4,其中运算结果正确的个数为()A.4B.3C.2D.16、计算的结果是()A. B.2 C. D.47、已知m=+ ,则()A.4<m<5B.5<m<6C.6<m<7D.7<m<88、下列说法错误的是()A.有理数和无理数统称为实数;B.无限不循环小数是无理数;C. 是分数;D. 是无理数9、已知二次三项式 x2+12x+m2 是一个完全平方式,那么m的值是()A.36B.6C.-6D.10、已知a+3和2a﹣15是一个数的两个平方根,则这个数是()A.4B.7C.16D.4911、在实数0,(﹣)0,(﹣)﹣2, |﹣2|中,最大的是()A.0B.(﹣)0C.(﹣)﹣2D.|﹣2|12、如图所示,实数a=,则在数轴上,表示﹣a的点应落在()A.线段AB上B.线段BC上C.线段CD上D.线段DE 上13、实数a,b在数轴上对应点的位置如图所示,则化简代数式的结果是().A.-bB.2aC.-2aD.-2a-b14、如图所示,数轴上表示1,,的点为A,B,且C,B两点到点A的距离相等,则点C所表示的数是 ( )A.2-B. -2C. -1D.1-15、若,则a、b、c的大小关系是()A.a>b>cB.c>a>bC.b>a>cD.c>b>a二、填空题(共10题,共计30分)16、已知,,且,则________.17、写出一个比大的负无理数________.18、如果一个数的平方根等于这个数本身,那么这个数是________.19、144是________ 的平方数.20、16的算术平方根是________.21、平方等于16的数是________,立方等于27的数是________。
华东师大版八年级数学上册第11章数的开方单元检测卷(含答案)
华东师大版八年级数学上册第11章数的开方单元检测卷(含答案)第11章数的开方单元检测姓名:__________班级:__________考号:__________一、单选题1.在-1.414,,,3.14,2 ,3.212212221…这些数中,无理数的个数为()A. 2B. 3C. 4D. 52.16的算术平方根等于()A. ±4B. 一4C. 4D. 3.下列命题中,正确的是()A 、两个无理数的和是无理数B 、两个无理数的积是实数C 、无理数是开方开不尽的数D 、两个有理数的商有可能是无理数4x 的取值范围是( )A .x <2B .x ≤2C .x >2D .x ≥25.的平方根是()A. 2B. ﹣2C. ±2D. 46.下列四个实数中最小的是()A. B. 2 C. D. 1.47.下列各数是无理数的是()A. 0.37B. 3.14C. 2π D. 0 8.面积为2的正方形的边长是()A. 整数B. 分数C. 有理数D. 无理数9.在实数0,310,1- )A .0B .310C .1-D 10.比较22,3,7的大小,正确的是()A .7<3<22B .22<7<3C .22<3<7D .7<22<311 )A. 3±B. 3C. 3-D. 81二、填空题12.的算术平方根是__,的立方根是___,绝对值是______.13.面积为3的正方形边长是______.14﹣35,则x=_____,则x=_____. 15.-8的立方根是_________,81的算术平方根是__________.16.-64______.三、解答题17.在数轴上表示下列各数:2 的相反数,绝对值是的数,-1 的倒数.18.(1(2. 19.如果2a-1和5-a 是一个正数m 的平方根,3a+b-1的立方根是-2, 求a+2b 的平方根.20.解方程:(1)x 2=16;(2)(x ﹣4)2=4;(3)x 3=-125;(4)()313903x +-=.21.观察下列各式及验证过程:= ====== ===(1 (2)针对上述各式反映的规律,写出用n (n ≥2的自然数)表示的等式,并进行验证.22.阅读下列材料:∵,即,∴的整数部分为2,小数部分为.请你观察上述的规律后试解下面的问题:如果的小数部分为a,的小数部分为b,求的值.23.阅读下面的文字,解答问题:大家知道11,将这个数减去其整数部分,差就是小数部分.又例如:∵22<7<3,即2322.请解答:(1的整数部分是,小数部分是.(2a,的整数部分为b,求(3)已知:x是y是其小数部分,请直接写出x﹣y的值的相反数.参考答案1.C【解析】分析:根据无理数的定义及无理数常见的三种形式解答即可.详解: -1.414,3.14是有理数;,,2,3.212212221…是无理数;故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如,等;②圆周率π;③构造的无限不循环小数,如(0的个数一次多一个).2.C【解析】试题分析:∵42=16,,"故选C.考点:算术平方根.3.D【解析】试题分析:两个实数相加的和为有理数。
第11章 数的开方 华东师大版数学八年级上册单元测试卷(含答案)
第11章 数的开方时间:60分钟满分:100分一、选择题(每小题3分,共30分) 1.64的立方根是( )A.4B.-4C.-8D.±82.若x2=(-0.7)2,则x=( )A.-0.7B.0.7C.±0.7D.0.493.在下列实数,81100,3.141 592 643,1π,7,711中有理数有( )A.5个B.3个C.4个D.2个4.下列计算正确的是( )A.(-3)2=-3B.36=±6C.39=3D.-3-8=25.观察下表,被开方数a的小数点的位置移动和它的算术平方根a的小数点的位置移动符合一定的规律.若a=180,- 3.24=-1.8,则被开方数a的值为( ) a0.000 0010.000 10.01110010 000 1 000 000a0.0010.010.1110100 1 000A.32.4B.324C.32 400D.-3 2406.若a是最小的正整数,b是最大的负整数,c是平方根等于本身的数,则a,b,c三数之和是( )A.-1B.0C.1D.27.直径为1个单位长度的圆上有一点A,现将点A与数轴上表示3的点重合,并将圆沿数轴无滑动地向左滚动一周,如图.若点A到达数轴上的点B处,则点B表示的数是( )A.2π-3B.π-3C.3-πD.3-2π8.已知|a|=5,b2=49,且|a+b|=a+b,则a-b的值为( )A.2或12B.2或-12C.-2或12D.-2或-129.一个长方体的体积为162 cm3,它的长、宽、高的比为3∶1∶2,则它的表面积为( )A.198 cm2B.162 cm2C.99 cm2D.81 cm210.如图,网格中小正方形的边长均为1,把阴影部分剪拼成一个正方形,正方形的边长为a.若4-a的整数部分和小数部分分别是x,y,则x(x-y)= ( )A.-2B.-2+6C.6D.2-6二、填空题(每小题3分,共18分)11.任意写一个无理数 .(满足-2到-1之间)12.若一个数的算术平方根是8,则这个数的立方根是 .13.已知a,b互为相反数,c,d互为倒数,则a3+b3+38cd的值为 .14.已知x-2的平方根是±7,且3x+y―2=4,则y的值为 .15.通过计算发现:13=1,13+23=3,13+23+33=6,13+23+33+43=10,仔细观察上面几道题的计算结果,请猜想13+23+…+1003= .16.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[2]=1.现对36进行如下操作:36[36]=6[6]=2[2]=1,这样对36进行3次操作后就会变为1.(1)类似地,对81进行 次上述操作后会变为1;(2)在只需要进行2次上述操作后就会变为1的所有正整数中,最大的是 .三、解答题(共52分)17.计算:(1)(4分)0.04+3-8-1―16; (2)(4分)16+3-27-(-3)2-|3-π|.2518.求下列各式中x的值.(1)(4分)4(x-3)2=9;(2)(4分)(x+10)3+125=0.19.(6分)已知M=3是m+3的算术平方根,N=2m-4n+3n―4是n-4的立方根,求M―N-3N的值.20.(8分)一个数值转换器,如图所示:(1)当输入的x为16时,输出的y值是 ;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;(3)若输入x值后,转换器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)若输出的y是3,请直接写出两个满足要求的x的值.21.(10分)木工李师傅现有一块面积为4 m2的正方形胶合板,准备做装饰材料用,他设计了如下两种方案.方案一:以正方形胶合板的边长为边裁出一块面积为3 m2的长方形装饰材料.方案二:沿着边的方向裁出一块面积为3 m2的长方形装饰材料,且其长宽之比为3∶2.李师傅设计的两种方案是否可行?若可行,请帮助解决如何裁剪;若不可行,请说明≈0.7)理由.(参考数据:1222.(12分)有两个十分喜欢探究的同学小明和小芳,他们善于将所做的题目进行归类,下面是他们的探究过程.(1)解题与归纳:①小明摘选了以下各题,请你帮他完成填空.22= ;52= ;62= ;02= ;(-3)2= ;(-6)2= .②归纳:对于任意实数a,有a2= =③小芳摘选了以下各题,请你帮她完成填空.(4)2= ;(9)2= ;(25)2= ;(36)2= ;(49)2= ;(0)2= .④归纳:对于任意非负实数a,有(a)2= .(2)应用:根据他们归纳得出的结论,解答问题.数a,b在数轴上的位置如图所示,化简:a2-b2-(a-b)2-(b―a)2.参考答案与解析1.A2.C 因为x2=(-0.7)2,所以x2=0.49,所以x=±0.7.3.B 81100=910,是有理数.根据有理数的定义可知,81100,3.141 592 643,711是有理数,共3个.4.D (-3)2=3,36=6,39≠3,-3-8=2.5.C 由题表可知被开方数a的小数点每向左或向右移动2位,算术平方根a的小数点就相应地移动1位.因为- 3.24=-1.8,所以32400=180,所以a=32 400.6.B ∵a是最小的正整数,∴a=1.∵b是最大的负整数,∴b=-1.∵c是平方根等于本身的数,∴c=0,∴a+b+c=1+(-1)+0=0.7.C 由题意知,在数轴上点A与点B之间的距离为π×1=π,且点B在点A的左侧,所以点B表示的数是3-π.8.D ∵|a|=5,∴a=±5.∵b2=49,∴b=±7.∵|a+b|=a+b,∴a+b>0,∴a=±5,b=7.∴当a=5, b=7时,a-b=5-7=-2;当a=-5,b=7时,a-b=-5-7=-12,∴a-b的值为-2或-12.9.A 由题意可设长方体的长、宽、高分别是3x cm,x cm,2x cm,则3x·x·2x=162,即6x3=162,x3=27,所以x=3,所以该长方体的长、宽、高分别是9 cm,3 cm,6 cm,所以它的表面积为2×(9×3+9×6+3×6)=198(cm2).10.B 由题意得S阴影=12×2×2×2+12×2×2=6,∴a2=6.∵a>0,∴a=6.∵4<6<9,∴2<6<3,∴1<4-6<2,∴4-a的整数部分x=1,小数部分y=3-6,∴x(x-y)=1×(1-3+6) =-2+6.11.-2(答案不唯一) ∵1<2<4,即1<2<2,∴-2<-2<-1,∴满足-2到-1之间的无理数可以为-2.12.4 由一个数的算术平方根是8可得,这个数为64,64的立方根是4,∴这个数的立方根为4.13.2 因为a,b互为相反数,所以a3与b3也互为相反数,故a3+b3=0.因为c,d互为倒数,所以cd=1,所以原式=0+38=0+2=2.14.15 由题意得x-2=49,∴x=51.∵3x+y―2=4,∴x+y-2=64,∴y=64+2-x=15.15.5 05013=1,13+23=1+2=3,13+23+33=1+2+3=6,13+23+33+43=1+2+3+4=10,可猜想13+23+…+1003=1+2+3+…+100=5 050.16.(1)3;(2)15 (1)81[81]=9[9]=3[3]=1,故对81进行3次上述操作后会变为1.(2)最大的是15,15[15]=3[3]=1,而16[16]=4[4]=2[2]=1,即在只需要进行2次上述操作后就会变为1的所有正整数中,最大的是15.17.解:(1)原式=0.2+(-2)-925=0.2-2-35=-2.4.(4分)(2)原式=4-3-3-(π -3)=4-3-3-π+3=-2-π+3.(4分)18.解:(1)因为4(x-3)2=9,所以(x-3)2=94,所以x-3=32或x-3=-32,解得x=92或x=32.(4分)(2)因为(x+10)3+125=0,所以(x+10)3=-125,所以x+10=3-125,所以x+10=-5,解得x=-15.(4分)19.解:因为M=3是m+3的算术平方根,所以m+3=32=9,即m=6. (2分)因为N=2m ―4n +3n ―4是n-4的立方根,所以2m-4n+3=3,将m=6代入2m-4n+3=3,解得n=3,所以 N=33―4=-1, (4分)所以 M ―N -3N =3―(―1)-3-1 =2+1=3. (6分)20.解:(1)2(2分)因为16的算术平方根是4,4是有理数,所以4不能输出.因为4的算术平方根是2,2是有理数,所以2不能输出.因为22,2是无理数,故输出2.(2)0,1.理由:因为0和1的算术平方根是它们本身,0和1是有理数,所以当x 为0或1时,始终输不出y 值.(4分)(3)x<0.当x<0时,导致开平方运算无法进行. (6分)(4)3或9.(答案不唯一)(8分)21.解:方案一可行.(1分)因为正方形胶合板的面积为4 m 2,所以正方形胶合板的边长为4=2(m).(2分)因为以正方形胶合板的边长为边裁一块面积为3 m 2的长方形装饰材料,所以所裁长方形的宽为3÷2=1.5(m).(3分)因此裁出一个长为2 m,宽为1.5 m 的长方形装饰材料是可行的.(5分)方案二不可行.理由如下:设所裁长方形装饰材料的长为3x m 、宽为2x m,则3x·2x=3,(6分)即x 2=12,解得x=12(负值已舍去),所以所裁长方形装饰材料的长为312m.(8分)因为312≈3×0.7=2.1,所以312>2,所以方案二不可行.(10分)22.解:(1)①2 5 6 0 3 6(3分)②|a|=(5分)③4 9 25 36 49 0(7分)④a(8分)(2)由题中数轴得,a<0,b>0,b>a,所以b-a>0, (9分)原式=|a|-|b|-|a-b|-(b-a)=-a-b+(a-b)-(b-a)=-a-b+a-b-b+a=a-3b. (12分)。
八年级上册数学单元测试卷-第11章 数的开方-华师大版(含答案)
八年级上册数学单元测试卷-第11章数的开方-华师大版(含答案)一、单选题(共15题,共计45分)1、下列计算正确的是()A. =5B. =C. =1D.- =-2、下列计算正确的是()A. =±5B. =4C.()2=4D.±=23、与的大小关系是()A. >B. <C. =D.不能比较4、一个正方体的水晶砖,体积为,它的棱长大约在()A. 之间B. 之间C. 之间D.之间5、下列判断正确的个数是( )①无理数是无限小数;②4的平方根是±2;③立方根等于它本身的数有3个④与数轴上的点一一对应的数是实数.A.1个B.2个C.3个D.4个6、下列各数中,比2大的数是()A.πB.﹣1C.1D.7、5的平方根是()A. B.﹣ C.± D.58、已知|2004﹣a|+ =a,则a﹣20042的值()A.2004B.2005C.2006D.无法确定9、的值是( )A.-3B.3C.±3D.不确定10、下列说法正确的是( )A.数轴上的点与有理数一一对应B.数轴上的点与无理数一一对应C.数轴上的点与整数一一对应D.数轴上的点与实数一一对应11、下列计算中,正确的是()A. B. C. D.12、下列命题: (1) =a,(2) =a,(3)无限小数都是无理数,(4)有限小数都是有理数,(5)实数分为正实数和负实数两类.正确的有( )A.1个B.2个C.3个D.4个13、9的平方根是()A.±81B.±3C.﹣3D.314、下列说法正确的个数是()① 0的平方根是0;② 1的平方根是1;③ 0.01是0.1的一个平方根.A.0个B.1个C.2个D.3个15、已知实数a、b在数轴上的对应的点如图所示,则下列式子正确的是()A.ab>0B.|a|>|b|C.a﹣b>0D.a+b>0二、填空题(共10题,共计30分)16、的算术平方根等于________ .17、若,则________;的平方根是________.18、计算:2cos60°﹣(+1)0=________.19、如图,圆的周长为4个单位长度,在圆的4等分点处标上数字,先让圆上表示数0的点与数轴上表示数-1的点重合,再将-1左侧部分的数轴按顺时针方向绕在该圆上,那么数轴上表示数-2020的点将与圆周上表示数________的点重合.(注:圆和数轴在同一平面内)20、已知=0,则ab的平方根为________.21、计算:________.22、若x的立方根是﹣,则x=________.23、已知1-3m是数A的一个平方根,4m-2是数A的算术平方根,则数A= ________.24、计算:________.25、已知:m与n互为相反数,c与d互为倒数,a是的整数部分,则的值是________.三、解答题(共5题,共计25分)26、计算:(π﹣3)0﹣()﹣1﹣+4sin30°27、已知m是的整数部分,n是的小数部分,求的值.28、某正数的两个不同的平方根分别是m -12和3m -4,求这个数的立方根.29、已知5a-1的平方根是±3,4a+2b+1的平方根是±1,求4a-2b的平方根.30、把下列各数分别填入相应的集合里.(﹣2)2、0、﹣3.14、﹣(﹣11)、、﹣4 、15%、、0. 、|﹣2 |,10.01001000100001…非负整数集合:{ }正分数集合:{ }无理数集合:{ }.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、A5、C6、A8、B9、A10、D11、A12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、。
2022-2023学年华东师大版八年级数学上册《第11章数的开方》单元综合练习题(附答案)
2022-2023学年华东师大版八年级数学上册《第11章数的开方》单元综合练习题(附答案)一.选择题1.数,π,0,﹣0.3中,属于无理数的是()A.B.πC.0D.﹣0.32.如图,点A表示的实数是a,则下列判断正确的是()A.a﹣1>0B.a+1<0C.a﹣1<0D.|a|>13.在实数0,π,|﹣3|,﹣2中,最小的数是()A.|﹣3|B.0C.﹣2D.π4.如图,在数轴上点A和点B之间的整数是()A.1和2B.2和3C.3和4D.4和55.下列计算中,正确的是()A.=﹣2B.5=5C.=2D.=36.下列说法中,正确的是()A.|a|一定是正数B.若≥0,则a≥5C.16.8万精确到十分位D.平方根等于它本身的数是0和17.一个正方体的体积是5m3,则这个正方体的棱长是()A.m B.m C.25m D.125m8.已知m=20212+20222,则的值为()A.2021B.2022C.4043D.40449.已知a的平方根是2m﹣2和4﹣m,a是()A.36B.4C.36或4D.210.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为5,那么第2021步之后,显示的结果是()A.5B.C.D.25二.填空题11.在,2π,0,﹣2,,﹣中,无理数有个.12.当x=时,代数式+1取最小值为.13.若实数x=﹣,则x的立方根的值为.14.实数的平方根是.15.已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,那么a﹣2b的平方根是.16.若,则=.17.已知,≈0.2714,﹣≈﹣0.5848,≈1.260,≈﹣2.714,则≈.18.一个正数a的平方根分别是2m和﹣3m+1,则这个正数a为.三.解答题19.求下列各式中的x.(1)4x2﹣25=0;(2)(x+3)2=16;(3)(x﹣1)3=27.20.(1)把下列各数填在相应的括号内.,0,,﹣0.101001000100001…(每两个1之间逐次增加1个0),π,﹣1.26,﹣(+5),+|﹣2|,0.18.正有理数集合:{…};负数集合:{…};整数集合:{…}.(2)画出数轴,并在数轴上表示下面5个原数,然后比较这5个原数的大小,用“<”号连接.,﹣(﹣2),|﹣3|,0,﹣4.21.解答下列各题:(1)若5a+1和a﹣19是数m的平方根,求m的值.(2)已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.22.计算(1);(2).23.如图,用两个边长为cm的小正方形纸片剪拼成一个大的正方形,(1)则大正方形的边长是cm;(2)若将此大正方形纸片的局部剪掉,能否剩下一个长宽之比为3:2且面积为12cm2的长方形纸片,若能,求出剩下的长方形纸片的长和宽;若不能,请说明理由.参考答案一.选择题1.解:A、是分数,属于有理数,故此选项不符合题意;B、π是无理数,故此选项符合题意;C、0是整数,属于有理数,故此选项不符合题意;D、﹣0.3是有限小数,属于有理数,故此选项不符合题意.故选:B.2.解:A、a<1,则a﹣1<0,故A不符合题意,B、a>﹣1,则a+1>0,故B不符合题意,C、a<1,则a﹣1<0,故C符合题意,D、﹣1<a<0,则|a|<1,故D不符合题意,故选:C.3.解:因为π>0,|﹣3|>0,而负数都小于0,正数大于一切负数,所以最小的数是﹣2,故选:C.4.解:∵1<2<4,9<10<16,∴1<<2,3<<4,∴在数轴上点A和点B之间的整数为2,3.故选:B.5.解:A.=,故A错误;B.5﹣=4,故B错误;C.==,故C错误;D.=3,故D正确.故选:D.6.解:A.|a|不一定是正数,可能是0,故本选项错误,不合题意;B.若≥0,则a≥5,本选项正确,符合题意;C.16.8万精确到千位,故本选项错误,不合题意;D.平方根等于它本身的数是0,故本选项错误,不合题意;故选:B.7.解:设这个正方体的棱长为am,由题意得,a3=5,∴a=(m),故选:B.8.解:∵2m﹣1=2(20212+20222)﹣1=2[20212+(2021+1)2]﹣1=2(2×20212+2×2021+1)﹣1=4×20212+4×2021+1=(2×2021+1)2=40432∴=4043,故选:C.9.解:根据题意得:2m﹣2+4﹣m=0,解得:m=﹣2,当m=﹣2时,2m﹣2=﹣4﹣2=﹣6,∴a=36.故选:A.10.解:由题意知第1步结果为52=25,第2步结果为=0.04,第3步结果为=0.2,第4步结果为0.22=0.04,第5步结果为=25,第6步计算结果为=5,第7步计算结果为52=25,……∴运算的结果以25、0.04、0.2、0.04、25、5 六个数为周期循环,∵2021÷6=336……5,∴第2021步之后显示的结果为25.故选:D.二.填空题11.解:,是分数,属于有理数;0,,是整数,属于有理数;无理数有2π,﹣,共2个.故答案为:2.12.解:∵代数式+1取最小值,∴x﹣2=0,解得:x=2,故当x=2时,代数式+1取最小值为:1.故答案为:2,1.13.解:∵实数x=﹣,∴x的立方根的值为:﹣.故答案为:﹣.14.解:∵=9,∴实数的平方根是±=±3.故答案为:±3.15.解:∵2a﹣1的平方根是±3,∴2a﹣1=9,解得a=5;∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,∴3×5+b﹣1=16,解得b=2,∴a﹣2b=5﹣2×2=1,∴a﹣2b的平方根是:±=±1.故答案为:±1.16.解:∵,∴x﹣2=0,y+7=0,解得:x=2,y=﹣7,故==3.故答案为:3.17.解:∵﹣≈﹣0.5848,∴≈﹣5.848,故答案为:﹣5.848.18.解:由题意得,2m+(﹣3m+1)=0.∴m=1.∴2m=2.∴a=4.故答案为:4.三.解答题19.解:(1)(1)4x2﹣25=0,x2=,x=,x1=,x2=﹣;(2)(x+3)2=16,x+3=±4,x=﹣3±4,x1=1,x2=﹣7;(3)(x﹣1)3=27,x﹣1=3,x=4.20.解:(1)正有理数集合:{,+|﹣2|,0.18…},负数集合:{,﹣0.101001000100001…(每两个1之间逐次增加1个0),﹣1.26,﹣(+5)…},整数集合:{0,﹣(+5),+|﹣2|…},故答案为:,+|﹣2|,0.18;,﹣0.101001000100001…(每两个1之间逐次增加1个0),﹣1.26,﹣(+5);0,﹣(+5),+|﹣2|;(2)在数轴上表示如图所示:﹣4<<0<﹣(﹣2)<|﹣3|.21.解:(1)根据题意,得5a+1+a﹣19=0或5a+1=a﹣19,∴a=3或a=﹣5,∴m=(5×3+1)2=162=256或m=[5×(﹣5)+1]2=(﹣24)2=576.∴m的值为256或576.(2)∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,∴3×5+b﹣1=16,∴b=2,∴a+2b=5+2×2=9.22.解:(1)=+=;(2)=﹣3+0.4﹣1.4=﹣4.23.解:(1)两个正方形面积之和为:2×=16(cm2),∴拼成的大正方形的面积=16(cm2),∴大正方形的边长是4cm;(2)设长方形纸片的长为3xcm,宽为2xcm,则2x•3x=12,解得:x=,3x=3>4,所以不能使剩下的长方形纸片的长宽之比为3:2,且面积为12cm2.。
华师大版八年级上册第11章《数的开方》单元测试卷含答案
华师大版八年级上册第11章《数的开方》单元测试卷(满分100分)姓名:___________班级:___________学号:___________成绩:___________ 一.选择题(共8小题,满分24分,每小题3分)1.在﹣1,0,π,这四个数中,最大的数是()A.﹣1B.0C.πD.2.等于()A.﹣4B.4C.±4D.2563.实数﹣2,0.3,,﹣,﹣π中,无理数的个数是()A.2B.3C.4D.54.实数a,b,c在数轴上的对应点的位置如图所示,若|a|=|b|,则下列结论中错误的是()A.a+b=0B.a+c<0C.b+c>0D.ac<05.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.96.下列说法,其中正确说法的个数是()①﹣64的立方根是4 ②49的算术平方根是±7③的立方根是④的平方根是A.1B.2C.3D.47.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.28.利用计算器计算出的下表中各数的算术平方根如下:………0.250.7906 2.57.9062579.06250…根据以上规律,若≈1.30,≈4.11,则≈()A.13.0B.130C.41.1D.411二.填空题(共6小题,满分24分,每小题4分)9.(4分)我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)10.(4分)规定用符号[m]表示一个实数m的整数部分,例如[]=0,[π]=3,按此规定,[+1]=.11.(4分)若m,n为实数,且|m+3|+=0,则()2020的值为.12.(4分)甲同学利用计算器探索.一个数x的平方,并将数据记录如表:x16.216.316.416.516.616.716.816.917.0 x2262.44265.69268.96272.25275.56278.89282.24285.61289请根据表求出275.56的平方根是.13.(4分)的立方根是.14.(4分)比较大小:52.三.解答题(共8小题,满分52分)15.(5分)计算:(﹣1)2020﹣(+)+.16.(6分)求出下列x的值:(1)﹣27x3+8=0;(2)3(x﹣1)2﹣12=0.17.(6分)已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.18.(6分)(1)求出下列各数:①﹣27的立方根;②3的平方根;③的算术平方根.(2)将(1)中求出的每一个数准确地表示在数轴上,并用<连接大小.19.(6分)有一种用“☆”定义的新运算,对于任意实数a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.(1)已知﹣m☆3的结果是﹣4,则m=.(2)将两个实数2n和n﹣2用这种新定义“☆”加以运算,结果为9,则n的值是多少?20.(7分)“比差法”是数学中常用的比较两个数大小的方法,即:.例如:比较﹣2与2的大小:∵﹣2﹣2=﹣4,又∵<<,则4<<5,∴﹣2﹣2=﹣4>0,∴﹣2>2.请根据上述方法解答以下问题:比较2﹣与﹣3的大小.21.(8分)阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若的整数部分为a,小数部分为b,求a2+b﹣的值.(2)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的值.22.(8分)(1)用“<““>“或“=“填空:,;(2)由以上可知:①|1﹣|=,②||=(3)计算:|1﹣|+|﹣|+|﹣+…+|﹣|.(结果保留根号)参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:根据实数比较大小的方法,可得﹣1<0<<π,∴在这四个数中,最大的数是π.故选:C.2.解:=4.故选:B.3.解:﹣,﹣π是无理数,共有2个无理数,故选:A.4.解:∵|a|=|b|,∴实数a,b在数轴上的对应点的中点是原点,∴a<0<b<c,且c>﹣a,∴a+b=0,A不符合题意;∴a+c>0,B符合题意;∴b+c>0,C不符合题意;∴ac<0,D不符合题意.故选:B.5.解:∵≈2.646,∴与最接近的是2.6,故选:B.6.解:①﹣64的立方根是﹣4,故此选项错误;②49的算术平方根是7,故此选项错误;③的立方根是,正确;④的平方根是:±,故此选项错误;故选:A.7.解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.8.解:由表格可以发现:被开方数的小数点(向左或者右)每移动两位,其算术平方根的小数点相应的向相同方向移动一位.∵16.9×100=1690,∴=×10=41.1.故选:C.二.填空题(共6小题,满分24分,每小题4分)9.解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如=2;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.10.解:∵3<<4,∴4<<5,∴[+1]=4.故答案为:411.解:∵|m+3|+=0,∴m+3=0,n﹣3=0,解得m=﹣3,n=3,则()2020=()2020=(﹣1)2020=1,故答案为:1.12.解:观察表格数据可知:=16.6所以275.56的平方根是±16.6.故答案为±16.6.13.解:的立方根是,故答案为:14.解:∵5=,2=,∴>,∴5>2.故答案为:>.三.解答题(共8小题,满分52分)15.解:原式=1﹣(6+)+3=1﹣7+3=﹣3.16.解:(1)∵﹣27x3+8=0,∴﹣27x3=﹣8,则x3=,解得:x=;(2)∵3(x﹣1)2﹣12=0,∴3(x﹣1)2=12,∴(x﹣1)2=4,则x﹣1=±2解得:x=3或x=﹣1.17.解:(1)∵4a+7的立方根是3,2a+2b+2的算术平方根是4,∴4a+7=27,2a+2b+2=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴6a+3b=6×5+3×2=36,∴6a+3b的平方根为±6.18.解:(1)①﹣27的立方根是﹣3;②3的平方根是±;③的算术平方根是3;(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:﹣3<﹣<<3.19.解:(1)根据题意可得:﹣m☆3=32﹣2m+1=﹣4,解得:m=7;故答案为:7;(2)根据题意可得:2n☆(n﹣2)=9,即(n﹣2)2+4n+1=9,解得:n=2或﹣2,(n﹣2)☆2n=4n2+2(n﹣2)+1=9,解得:n=﹣2或,则n=﹣2或或2.20.解:2﹣﹣(﹣3)=2﹣+3=5﹣,∵<<,∴4<<5,∴5﹣>0,∴2﹣>﹣3.21.解:(1)∵3<<4,∴a=3,b=﹣3,∴a2+b﹣=32+﹣3﹣=6;(2)∵1<<2,又∵10+=x+y,其中x是整数,且0<y<1,∴x=11,y=﹣1,∴x﹣y=11﹣(﹣1)=12﹣.22.解:(1)∵1<2,2<3,∴<,<;故答案为:<;<;(2)∵1﹣<0,﹣<0,∴①|1﹣|=﹣1;②|﹣|=﹣;故答案为:﹣1;﹣;(3)原式=﹣1+﹣+﹣+…+﹣=﹣1.。
华东师大版八年级上册第11章《数的开方》单元测试卷(解析版)
华东师大版八年级上册第11章《数的开方》单元测试卷本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。
题号 一 二 三全卷总分总分人 17 18 19 20 21 22 得分注意事项:1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。
一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。
)1 2 3 4 5 6 7 8 9 10 11 12 BBADCBCBCCBA1、16的平方根是( B ) A 、4B 、4±C 、16D 、16±2、下列各数中,无理数是( B )A 、3−B 、18C 、3.14D 、25 3、下列叙述错误的是( A )A 、4−是16的算术平方根B 、5是25的算术平方根C 、3是9的算术平方根D 、0.04的算术平方根是0.24、一个正数的平方根分别为:62+a 与3−a ,则这个正数是( D )A 、1B 、4C 、9D 、165、若a 、b 为实数,且满足012=−+−b a ,则ba的值为( C ) A 、2− B 、21 C 、2 D 、21−6、下列说法中错误的是( B )A 、3.0−是0.09的一个平方根B 、16的平方根是4±C 、0的立方根是0D 、1−的立方根是1−7、下列选项正确的是( C ) A 、39±= B 、()22− C 、51253−=− D 、416=±8、估算340−的值在( B ) A 、2到3之间B 、3到4之间C 、4到5之间D 、5到6之间9、下列说法:①无限小数是无理数;②负数的立方根仍是负数;③9的平方根是3±;④1的平方根与立方根都是1;⑤互为相反数的两个数的立方根仍为相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学周日家作 姓名 家长签名
一选择题1、与数轴上的点一 一对应的是( )
A 、有理数
B 、整数
C 、无理数
D 、实数
2、若一个有理数的平方根与立方根是相等的,则这个有理数一定是( ) A 、0 B 、1 C 、0或1 D 、0和±1
3、下列说法正确的是:( )A 、4的平方根是2 B 、-1的平方根是-1 C 、749±= D 、-2是4的一个平方根
4、a 是4的一个平方根,且a <0,则a 的值是( ) A 、-2 B 、±2 C 、-16 D 、±16
5、25的平方根是( ) A 、5 B 、–5 C 、5± D 、5±
6、2
)3(-的算术平方根是( )
A 、9
B 、–3
C 、3±
D 、3 7、下列叙述正确的是( )
A 、0.4的平方根是2.0±
B 、3
2)(--
的立方根不存在 C 、6±是36的算术平方根 D 、–27的立方根是–3
8、下列等式中,错误的是( ) A 、864±=±
B 、
15
11
225121±= C 、62163-=- D 、1.0001.03-=- 9、下列各数中,无理数的个数有( )
10.1010017231642
π
---, , , , , 0, -
A 、1
B 、2
C 、3
D 、4
10、如果x -2有意义,则x 的取值范围是( ) A 、2≥x B 、2<x C 、2≤x D 、2>x
11、以下语句及写成式子正确的是( )
A 7是49的算术平方根,即749±=
B 7是2)7(-的平方根,即7)7(2
=-
C 7±是49的平方根,即749=±
D 7±是49的平方根,即749±=
12、若a 为实数,则下列代数式中一定是负数的是 ( ) A 、-a 2 B 、-(a+1)2 C 、-
2)(a - D 、 -(| -a |+1)
二、填空题
1.4的平方根是_____________.7
19
-的相反数的平方根是________.
2.的平方根是36_____.
3、若a 是正数,且252
=a ,那么a 的平方根是 4、如果a 的平方根等于2±,那么_____=a 5、3-是 的平方根,3-是 的立方根 6、64的平方根是 ,64的立方根是 ;
7.8
1
-
的立方根是 ,125的立方根是 8、=-2)4( .
=-3
3)6( , 2)196(= .
9、下列各数65
4.0 、2
3π
、14.3、80108.0、ππ--1、 1010010001.0、4、 544514524534.0,8,其中无理数的个数是 个。
10、若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 11、要使53-x 有意义,则x 可以取的最小整数是 . 12、平方根等于本身的数是________;立方根等于本身的数是_______
13若b a 、是实数,012|1|=++-b a ,则._____22
=-b a
14.能够和数轴上的点一一对应的数是
15.绝对值小于18的所有整数是
16.写出一个无理数,使它与2的积是有理数,这个数是 17.数轴上到原点的距离等于3-1的点表示的实数是 18.5-7的相反数是 ,绝对值是 三、求下列各式的值:
①44.1; ②3027.0-; ③327
102--- ④649.
四、已知y x 、满足0|22|132=+-+--y x y x ,求y x 5
4
2-的平方根.
(1)观察上表,你能发现什么规律?
(2)运用上述结论解题:若414.12=,则=02.0 。
200= 。
六、已知a 和b 互为相反数,c 和d 互为倒数,m 的倒数等于它本身,求
2m
cd
+(a+b )m-|m|的立方根。
七、已知y x 2+=3,334y x -= -2. 求x+y 的平方根与立方根
八、设4+6,4-6的小数部分分别是a 、b ,求a+b 的值。
九、若|a-3|+(6+b)2+2+c =0,求代数式c
b a
-的值。