七年级上数学第一章 123 相反数练习题
七年级数学上册《相反数》同步练习(含解析)
人教版数学七年级上册第1章 1.2.3相反数同步练习一、单选题(共12题;共24分)1、﹣(﹣)的相反数是()A、﹣﹣B、﹣+C、﹣D、+2、下列的数中,负有理数的个数为()﹣,﹣(﹣2),﹣|﹣7|,|﹣|,﹣(+ ).A、2个B、3个C、4个D、5个3、下列说法正确的是()A、a一定是正数B、绝对值最小的数是0C、相反数等于自身的数是1D、绝对值等于自身的数只有0和14、﹣2017的相反数是()A、2017B、C、﹣D、05、相反数不大于它本身的数是()A、正数B、负数C、非正数D、非负数6、一个数的相反数是非负数,这个数是()A、负数B、非负数C、正数D、非正数7、下列各组数中,互为相反数的是()A、2和B、﹣2和C、2 和﹣2.375D、+(﹣2)和﹣28、一个数的相反数等于它本身,这样的数一共有()A、1个B、2个C、3个D、4个9、已知5个数中:(﹣1)2017,|﹣2|,﹣(﹣1.5),﹣32,﹣3的倒数,其中正数的个数有()A、1B、2C、3D、410、在﹣中,负数有()A、1个B、2个C、3个D、4个11、如果a,b互为相反数,那么(6a2﹣12a)﹣6(a2+2b﹣5)的值为()A、﹣18B、18C、30D、﹣3012、下列各对数:﹣2与+(﹣2),+(+3)与﹣3,﹣(﹣)与+(﹣),﹣(﹣12)与+(+12),﹣(+1)与﹣(﹣1).其中互为相反数的有()A、0对B、1对C、2对D、3对二、填空题(共5题;共13分)13、当2x+1和﹣3x+2互为相反数时,则x2﹣2x+1=________.14、±=________;=________;|﹣|=________;π﹣3.14的相反数是________.15、的相反数是________,它的绝对值是________.16、计算:﹣(+ )=________,﹣(﹣5.6)=________,﹣|﹣2|=________,0+(﹣7)=________.(﹣1)﹣|﹣3|=________.17、当x=________时,代数式与x﹣3的值互为相反数.三、解答题(共5题;共25分)18、a、b互为相反数,c、d互为倒数,|m|=2,且m<0,求2a﹣(cd)2007+2b﹣3m的值.19、把下列各数及其相反数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来﹣2.5,0,+3.5,﹣.20、已知a、b互为相反数,c、d互为倒数,x的绝对值是3,求x2﹣(a+b+cd)x﹣cd.21、把下列各数及它们的相反数在数轴上表示出来,并用“<”把所有数都连接起来. 2 ,﹣1.5,0,﹣4.22、如果与|y+1|互为相反数,求x﹣y的平方根.答案解析部分一、单选题1、【答案】C【考点】相反数,有理数的加减混合运算【解析】【解答】解:﹣(﹣)的相反数是﹣,故选C【分析】原式计算后,利用相反数定义判断即可.2、【答案】B【考点】相反数【解析】【解答】解:因为﹣(﹣2)=2,﹣|﹣7|=﹣7,|﹣|= ,﹣(+ )=﹣.所以负有理数有﹣,﹣|﹣7|,﹣(+ )共三个.故选B.【分析】先对各数进行化简,根据化简后的结果再确定负有理数的个数.3、【答案】B【考点】相反数,绝对值【解析】【解答】解:A、a既是正数,也可能是负数,还可能是0,故本选项错误;B、,绝对值最小的数是0;故本选项正确;C、相反数等于自身的数是0,故本选项错误;D、绝对值等于自身的数是非负数,故本选项错误.故选B.【分析】根据绝对值的性质,以及相反数的定义对各选项举反例验证即可得解.4、【答案】A【考点】相反数【解析】【解答】解:﹣2017的相反数是2017,故选:A.【分析】根据相反数的定义,可得答案.5、【答案】D【考点】相反数【解析】【解答】解:设这个数为a,根据题意,有﹣a≤a,所以a≥0.故选D.【分析】设这数是a,得到a的不等式,求解即可;也可采用特殊值法进行筛选.6、【答案】D【考点】相反数【解析】【解答】解:∵一个数的相反数是非负数,∴这个数是非正数,故选D.【分析】非负数包括正数和0,再根据相反数的定义得出即可.7、【答案】C【考点】相反数【解析】【解答】解:A、2与是互为倒数,故本选项错误;B、﹣2和相等,是互为负倒数,故本选项错误;C、2 和﹣2.375互为相反数,正确;D、∵+(﹣2)=﹣2,∴+(﹣2)与﹣2相等,不是互为相反数,故本选项错误.故选C.【分析】根据相反数的定义,只有符号不同的两个数是互为相反数解答.8、【答案】A【考点】相反数【解析】【解答】解:∵0的相反数等于0,故选:A.【分析】根据只有符号不同的两个数互为相反数,一个数的相反数等于它本身,可得这个数.9、【答案】B【考点】正数和负数,相反数,绝对值,倒数【解析】【解答】解:(﹣1)2017=﹣1,|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9,﹣3的倒数是﹣.故正数的个数有2个.故选:B.【分析】根据有理数的乘方求出(﹣1)2007和﹣32,根据绝对值的性质求出|﹣2|,根据相反数的定义求出﹣(﹣1.5),根据倒数的定义求出﹣3的倒数的值即可作出判断.10、【答案】C【考点】正数和负数,相反数,绝对值【解析】【解答】解:﹣|﹣2|=﹣2,|﹣(﹣2)|=2,﹣(+2)=﹣2,﹣(﹣)= ,﹣[+(﹣2)]=2,+[﹣(+ )]=﹣,负数有:﹣|﹣2|,﹣(+2),+[﹣(+ )],共3个.故选C.【分析】负数是小于0的数,结合所给数据进行判断即可.11、【答案】C【考点】相反数,整式的加减【解析】【解答】解:∵果a,b互为相反数,∴a+b=0,∴(6a2﹣12a)﹣6(a2+2b﹣5)=6a2﹣12a﹣6a2﹣12b+30=﹣12a﹣12b+30=﹣12(a+b)+30=﹣12×0+30=30,故选C.【分析】根据a,b互为相反数,然后对题目中所求式子化简,即可解答本题.12、【答案】D【考点】相反数【解析】【解答】解:﹣2与+(﹣2)不是相反数,+(+3)与﹣3互为相反数,﹣(﹣)与+(﹣)互为相反数,﹣(﹣12)与+(+12)是同一个数,﹣(+1)与﹣(﹣1)互为相反数,故选:D.【分析】根据相反数的意义,只有符号不同的数为相反数.二、填空题13、【答案】4【考点】相反数,解一元一次方程【解析】【解答】解:根据题意得:2x+1﹣3x+2=0,移项合并得:﹣x=﹣3,解得:x=3,则原式=9﹣6+1=4,故答案为:4【分析】利用互为相反数两数之和为0列出方程,求出方程的解得到x的值,代入原式计算即可得到结果.14、【答案】;﹣3;;3.14﹣π【考点】相反数,绝对值,平方根【解析】【解答】解:±= ;=﹣3;|﹣|= ;π﹣3.14的相反数是3.14﹣π,故答案为:,﹣3,,3.14﹣π.【分析】根据平方根的意义,立方根的意义,绝对值的性质,相反数的意义,可得答案.15、【答案】3﹣;【考点】相反数,绝对值【解析】【解答】解:根据相反数的概念有的相反数是﹣(),即3﹣;根据绝对值的定义:的绝对值是.【分析】分别根据相反数、绝对值的概念即可求解.16、【答案】﹣;5.6;﹣2;﹣7;﹣4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=﹣;原式=5.6;原式=﹣2;原式=﹣7;原式=﹣1﹣3=﹣4,故答案为:﹣;5.6;﹣2;﹣7;﹣4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.17、【答案】【考点】相反数,一元一次方程的应用【解析】【解答】解:∵代数式与x﹣3的值互为相反数,∴+x﹣3=0,解得:x= .故填.【分析】紧扣互为相反数的特点:互为相反数的和为0.三、解答题18、【答案】解:由题意知:a+b=0,cd=1,m=﹣2.原式=2(a+b)﹣(cd)2007﹣3m=2×0﹣1﹣3×(﹣2)=5【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】先依据相反数、倒数、绝对值的性质得到a+b、c d、m的值,然后代入计算即可.19、【答案】解:这几个数分别为,2.5,﹣2.5,0,+3.5,﹣3.5,1 ,﹣1 ,根据负数的绝对值越大则负数的值越小可得:﹣3.5<﹣2.5<﹣1 <0<1 <2.5<3.5【考点】数轴,相反数,有理数大小比较【解析】【分析】负数的绝对值越大则负数的值越小,由此可得出答案.20、【答案】解:∵a、b互为相反数,c、d互为倒数,x的绝对值是3,∴a+b=0,cd=1,x=±3.当x=3时,原式=32﹣(0+1)×3﹣1=9﹣3﹣1=5;当x=﹣3时,原式=(﹣3)2﹣(0+1)×(﹣3)﹣1=9+3﹣1=11【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】根据题意可知a+b=0,cd=1,x=±3,然后代入计算即可.21、【答案】解:﹣4<﹣2 <﹣1.5<0<1.5<2 <4【考点】数轴,相反数,有理数大小比较【解析】【分析】先在数轴上表示各个数和相反数,再比较即可.22、【答案】解:∵与|y+1|互为相反数,∴x﹣3=0,y+1=0,解得,x=3,y=﹣1,∴,即x﹣y的平方根是±2.【考点】相反数,二次根式的非负性,绝对值的非负性【解析】【分析】根据非负数的性质和题目中与|y+1|互为相反数,可以得到x、y的值,从而可以求得x﹣y的平方根.。
七年级数学上册1.2.3 相反数-化简多重符号 选择题专项练习一(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-化简多重符号1.()2-+等于( )A .2-B .2C .12- D .122.下列各对数中,互为相反数的有( )(-1)与+(-1),+(+1)与-1,-(-2)与+(-2), +[-(+1)]与-[+(-1)],-(+2)与-(-2),13⎛⎫-- ⎪⎝⎭与13⎛⎫++ ⎪⎝⎭. A .6对 B .5对 C .4对 D .3对3.化简-(-8)的的结果( )A .18B .1 8-C .8D .-8 4.在,12,—20, ,,3-+中,负数的个数有( ) A .个B . 个C . 个D . 个 5.在 -116,2.1,-|-3|,0,-(-2)中,负数的个数有( )A .2个B .3个C .4个D .5个6.()2--的值为( )A .2-B .2C .12-D .12 7.在112-,12,—20,0,-(-5),-π中,负数的个数有( )A .2个B .3个C .4个D .5个8.下列各式中,化简正确的是( )A .-[+(-7)]=-7B .+[-(+7)]=7C .-[-(+7)]=7D .-[-(-7)]=79.下列化简错误的是( )A .1122⎛⎫+-=- ⎪⎝⎭ B .()2.6 2.6-+=- C .()55---=-⎡⎤⎣⎦D .()22--=- 10.()2--的值为( )A .-2B .2±C .12 D .211.-(-2)的结果是( )A .2B .-2C .12 D .12- 12.下列各组数中互为相反数的是( )A .2|2|+-与B .(2)(2)++-+与C .(2)2+--+与D .2(2)--+-与13.化简-(+2)的结果是( )A .-2B .2C .±2D .014.下列四组数中,相等一组是( )A .+(+3)和+(-3)B .+(-5)和-5C .D .+(-1)和1-15.在,,, ,中,负数的个数是( ) A .B .C .D .参考答案1.A解析:表示求-2的相反数.详解:解:-(+2)=-2.故选A.点睛:本题考查了求有理数的相反数.2.C解析:对各组数进行化简,再根据只有符号不同的两数叫做互为相反数判断.详解:解:(-1)与+(-1)=-1相等,不是互为相反数,+(+1)=1与-1是互为相反数,-(-2)=2与+(-2)=-2,是互为相反数,+[-(+1)]=-1与-[+(-1)]=1是互为相反数,-(+2)=-2与-(-2)=2是互为相反数,13⎛⎫-- ⎪⎝⎭=13与+(+13)=13相等,不是互为相反数. 综上所述,互为相反数的有4对.故选C .点睛:本题考查了相反数的定义,熟记概念并准确化简是解题的关键.3.C解析:直接根据相反数的定义解答即可.详解:∵-(-8)即为-8的相反数,∵-8<0,∴-8的相反数是8,即-(-8)=8.故选C .点睛:本题考查了相反数的定义,即只有符号不同的两个数叫做互为相反数.4.B解析:-112是负数,12是正数,-20是负数,0既不是正数也不是负数,-(-5)=5是正数,3-+=-3是负数.则负数有3个. 故选B.5.A解析:根据负数的概念找出对应的负数即可,负数:小于0的数,0既不是正数也不是负数,计算个数即可求解;详解: ∵ 33 ,()22--= ,∴ 负数有:116-、3--故选:A .点睛:本题主要考查负数的概念,要注意0既不是正数也不是负数,正确理解负数的概念是解题的关键.6.B解析:根据相反数概念求解即可.详解:化简多重负号,就看负号的个数,此时有两个符号,偶数个则为正,故选:B .点睛:本题考查了多重负号的化简问题,掌握基本法则是解题关键.7.B解析:根据正数和负数的定义找出其中的负数即可解题.详解:112-<0,12>0,-20<0,0=0,-(-5)>0,-π<0; 其中小于0的有3个,故选:B .点睛:本题考查了正数和负数的定义,明确负数小于0 是解题的关键.8.C解析:根据相反数的定义对各选项分析判断后利用排除法求解.详解:解:A 、-[+(-7)]=7,故本选项错误;B 、+[-(+7)]=-7,故本选项错误;C 、-[-(+7)]=7,故本选项正确;D 、-[-(-7)]=-7,故本选项错误.故选:C .点睛:本题考查了利用相反数的定义进行化简,是基础题,熟记概念是解题的关键.9.D解析:根据相反数的定义对各选项分析判断后利用排除法求解.详解:解:A 、1122⎛⎫+-=- ⎪⎝⎭,正确; B 、()2.6 2.6-+=-,正确;C 、()55---=-⎡⎤⎣⎦,正确;D 、()22--=,故D 错误;故答案为:D .点睛:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.10.D解析:根据相反数的定义,-2的相反数是2.详解:解:-(-2)=2故选:D点睛:本题考查相反数的定义,掌握定义是解答此题的关键.11.A解析:根据相反数的性质即可得出答案详解:解:-(-2)=2故选:A点睛:此题考查了相反数的性质,熟练掌握相关的知识是解题的关键12.B解析:根据有理数的运算及相反数的定义即可判断.详解:A. 22|2|+=-,=2,不互为相反数; B. (2)2(2)2++=-+=-,,互为相反数; C. (2)2,22+-=--+=-,不互为相反数; D. 22,(2)2--=-+-=-,不互为相反数;故选B.点睛:此题主要考查相反数的定义,解题的关键是熟知绝对值的性质.13.A解析:直接利用去括号法则化简得出答案.详解:-(+2)=-2.故选A.点睛:此题主要考查了相反数,正确去括号是解题关键.14.B解析:试题解析:A.+(+3)=3;+(-3)=-3,故不符合题意;B.+(-5)=-5;符合题意;C.-(+4)=-4,-(-4)=4,故不符合题意;-=,故不符合题意.D.+(-1)=-1;11故选B.考点:正数和负数.15.A解析:负数有,,共2个.故选A.。
七年级数学上册1.2.3 相反数-相反数的定义 选择题专项练习一(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-相反数的定义1.﹣2的相反数是()A.2 B.12C.﹣2 D.以上都不对2.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.﹣1的相反数与1的和是0 D.0是最小的非负数3.的相反数是()A.B.2 C.—2 D.4.-2的相反数是()A.B.2 C.D.-25.﹣9的相反数是()A.9 B.﹣9 C.19D.﹣196.﹣2的相反数是().A.﹣2 B.C.D.2 7.﹣2的相反数等于()A.2 B.﹣C.±2D.8.﹣7的相反数为()A.﹣7 B.C.7 D.﹣0.7 9.-3的相反数是()A .-3B .3C .±3D .1310.﹣2的相反数是( ) A .﹣2B .0C .2D .411.2-的相反数是( ) A .2-B .2C .12D .2±12.﹣2017的相反数是( ) A .﹣2017B .﹣12017C .2017D .1201713.﹣2018的相反数是( ) A .﹣2018B .2018C .±2018D .﹣1201814.一个数的相反数是它本身,则这个数是() A .0 B .正数 C .负数 D .非负数 15.如果a 与3-互为相反数,那么a 等于( )A .3-B .3C .13-D .1316.12018的相反数是( )A .12018-B .12018C .2018-D .201817.9-的相反数是( ). A .19B .19-C .9D .9-18.已知a 是12-,则a 的相反数为( ). A .2B .2-C .12-D .1219.实数5的相反数是( ) A .15B .5C .15-D .5-20.下列四个数中,其相反数是正整数的是( )A.2 B.C.﹣2016 D.﹣参考答案1.A解析:﹣2的相反数是2,选A.2.D解析:利用相反数,有理数的定义,以及有理数加法法则判断即可.详解:A、没有最小的有理数,不符合题意,B、没有最小的整数,不符合题意,C、﹣1的相反数与1的和是2,不符合题意,D、0是最小的非负数,符合题意,故选:D.点睛:本题主要考查相反数,有理数的定义,以及有理数加法法则,掌握相反数,有理数的定义,以及有理数加法法则是解题的关键.3.A解析:试题分析:的相反数是考点:相反数点评:本题难度较低,主要考查学生对相反数知识点的掌握.4.A解析:根据相反数的定义,易得B.5.A解析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此﹣9的相反数是9.故选A.6.D解析:试题分析:根据相反数的定义可知,只有符号不同的两个数互为相反数,即-2的相反数是2.故选D.考点:相反数的定义.7.A解析:试题分析:根据只有符号不同的两个数互为相反数,可得答案.解:﹣2的相反数是2,故选A.考点:相反数.8.C解析:试题分析:根据相反数的概念解答即可.解:﹣7的相反数为7,故选C.考点:相反数.9.B解析:分析:一个数的相反数就是在这个数前面添上“-”号.解答:解:-(-3)=3,故-3的相反数是3.10.C解析:试题分析:根据只有符号不同的两个数叫做互为相反数解答.﹣2的相反数是2考点:相反数11.B解析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:解:2 的相反数是2,故选:B.点睛:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.C解析:试题解析:﹣2017的相反数是:2017.故选C.点睛:只有符号不同的两个数互为相反数.13.B解析:分析:只有符号不同的两个数叫做互为相反数.详解:-2018的相反数是2018.故选B.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.14.A解析:利用相反数的定义判断即可得出结果详解:一个数的相反数是它本身,则这个数为0.故本题答案为:A点睛:此题考查了相反数,熟练掌握其定义是解题的关键.15.B解析:根据相反数的性质即可解答.详解:由题意可得:(3)0a+-=,解得3a=.故选B.点睛:本题主要考查相反数的性质(互为相反数的两个数相加等于0),熟记和掌握相反数的性质是解题关键.16.A解析:直接利用相反数的定义分析得出答案.详解:1 2018的相反数是12018-,故选:A.点睛:此题主要考查了相反数,正确把握相反数的定义是解题关键.17.C解析:根据只有符号不同的两个数互为相反数,可得一个数的相反数. 详解:解:-9的相反数是9. 故选:C . 点睛:本题考查相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 18.D解析:根据相反数的定义即可得出答案. 详解:12-的相反数是12.a 是12-,则a 的相反数为12.故选:D . 点睛:本题考查了相反数,相反数的定义:只有符号不同的两个数是互为相反数. 19.D解析:根据相反数的定义即可求出. 详解:实数5的相反数是-5. 故选:D . 点睛:本题考查相反数.掌握其定义“和是0的两个数互为相反数”是解答本题的关键.20.C解析:试题分析:根据只有符号不同的两个数互为相反数,可得答案.解:A、2的相反数是﹣2,故A不符合题意;B、的相反数是﹣,故B不符合题意;C、﹣2016的相反数是2016,故C符合题意;D、﹣的相反数是,故D不符合题意;故选C.考点:相反数.。
人教版七年级数学上册:1.2.3相反数--同步测试题
一.选择题
1.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是( )
A. B. C. D.
2.2的相反数是( )
A.− B. C.−2 D.2
3.− 的相反数是( )
A.3 B.−3 C. D.−
4.下列各组 数中,互为相反数是( )
A.3和 B.3和−3 C.3和− D.− 3和−
9.已知a与b互为相反数,b与c互为相反数,且c=−2,则a=.
10.化简:−[−(−4)]=.
三.解答题
11.写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.
4,− ,−(− ),+(−4.5),0,−(+3)
12 . 化简:
(1)+(−0.5);(2)−(+10.1);(3)+(+7)
− 的相反数是 ;
−(− ) 的相反数是− ;
+(−4.5)的相反 数是4.5;
0的相反数是0;
−(+3)的相反数是3;
12.解:(1)+(−0.5)=−0.5;
(2)−(+10.1)=−1 0.1;
(3)+(+7)=7;
(4)−(−20)=20;
(5)+
5. 计算−(−2016)的结果是( )
A.−2016 B.2016 C.− D.
6.下列各组数中互为相反数的是( )
A.+(+5)与−(−5) B.+(−5)与−(+5) C.+(+5)与−(− ) D.+(−5)与−(−5)
二.填空题
7.− 的相反数是,−(+20)是的相反数.
【初中数学】人教版七年级上册1.2.3 相反数 (练习题)
人教版七年级上册1.2.3 相反数(150)1.在数轴上点A表示7,点B,C表示互为相反数的两个数,且点C与点A的距离为2,求点B,C对应的数分别是什么.2.小李在做题时,画一个数轴,数轴上原有一点A,其表示的数是−3,由于一时粗心,把数轴的原点标错了位置,使A点正好落在−3的相反数的位置,想一想:要把这个数轴画正确,原点应向哪个方向移动几个单位长度?3.已知表示数a的点在数轴上的位置,如图所示.(1)在数轴上标出表示数a的相反数的点的位置;(2)若表示数a的点与表示其相反数的点相距20个单位长度,则a表示的数是多少?(3)在(2)的条件下,若表示数b的点与表示数a的相反数的点相距5个单位长度,求b表示的数是多少?4.下列四组数中,互为相反数的一组是()A.+2与−3B.−8与+8C.−(−2)与2D.+(−1)与−(+1)5.化简:−(+8),−(+2.7),−(−3),−(−3).46.下列说法正确的有()①−x一定是负数;②任何一个有理数都有相反数;③只有正数和负数才能互为相反数;④互为相反数的数是指两个不同的数;⑤符号不同的两个数互为相反数A.1个B.2个C.3个D.4个7.若一个数的相反数不是正数,则这个数一定是()A.正数B.正数或零C.负数D.负数或零8.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是6个单位长度,那么这个数是()A.6或−6B.3或−3C.6或−3D.−6或39.如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则与点A表示的数互为相反数的是()A.−7B.3C.−3D.210.若x−1与−5互为相反数,则x的值为.11.化简:(1)−[−(+4)](2)−[−(−23)].12.一个数a的相反数是5,则a等于()A.15B.5 C.−15D.−513.下列各组数中,互为相反数的是()A.3和−3B.−3和13C.−3和−13D.13和314.如图,数轴上表示数−2的相反数的点是()A.点PB.点QC.点MD.点N15.如图,表示互为相反数的两个数的点是.16.写出下列各数的相反数: 11.2,9,0,−58,423.17.分别写出5,4,−3的相反数,在数轴上表示出各数及它们的相反数,并说明各对数在数轴上的位置特点.18.−(+5)表示的相反数,即−(+5)=;−(−5)表示的相反数,即−(−5)=.19.化简−(−6)的结果为()A.6B.−6C.16D.−1620.下列各式中,化简正确的是()A.+(−7)=7B.+(+7)=−7C.−(+7)=−7D.−(−7)=−721.如图,数轴上表示3的点是点,表示−3的点是点,它们到原点O的距离,所以3与−3是.22.2的相反数是()A.2B.−2C.−12D.12参考答案1.【答案】:因为数轴上点A 表示7,点C 与点A 的距离为2,所以数轴上点C 表示5或9. 因为点B ,C 表示互为相反数的两个数,所以数轴上点B 表示−5或−9. 所以点B ,C 对应的数分别是−5,5或−9,9【解析】:因为数轴上点A 表示7,点C 与点A 的距离为2,所以数轴上点C 表示5或9. 因为点B ,C 表示互为相反数的两个数,所以数轴上点B 表示−5或−9. 所以点B ,C 对应的数分别是−5,5或−9,92.【答案】:要把这个数轴画正确,原点应向右移动6个单位长度【解析】:要把这个数轴画正确,原点应向右移动6个单位长度3(1)【答案】如图:(2)【答案】a 表示的数是−10(3)【答案】由(2)知−a =10, 当b 在−a 的右边时,b 表示的数是10+5=15; 当b 在−a 的左边时,b 表示的数是10−5=5. 即b 表示的数是5或154.【答案】:B【解析】:根据相反数的定义:A 、+2的相反数是−2,错误;B 、−8的相反数是+8,正确;C 、−(−2)的相反数是−2,错误;D 、+(−1)的相反数是1,错误5.【答案】:因为+8的相反数是−8, 所以−(+8)=−8. 类似地,−(+2.7)=−2.7. 因为−3的相反数是3,所以−(−3)=3. 类似地,−(−34)=34【解析】:因为+8的相反数是−8, 所以−(+8)=−8. 类似地,−(+2.7)=−2.7. 因为−3的相反数是3,所以−(−3)=3. 类似地,−(−34)=346.【答案】:A【解析】:当x 是一个负数时,−x 就是正数,①错;0的相反数是0,③④错;只有符号不同其余完全相同的两个数才互为相反数,⑤错7.【答案】:B【解析】:一个数的相反数不是正数,则这个数的相反数是负数或零,故这个数一定是正数或零8.【答案】:B【解析】:因为这两个互为相反数的数对应的点之间的距离为6个单位长度,并且它们到原点的距离相等,故这两个数为3和−39.【答案】:D【解析】:点C 表示的数是1,向左移动5个单位长度到点B ,则点B 表示的数是−4,点B 向右移动2个单位长度到点A ,则点A 表示的数是−2,−2的相反数是210.【答案】:6【解析】:因为x −1与−5互为相反数,由于−5的相反数是5,所以x −1=5,解得x =611(1)【答案】−[−(+4)]=+4(2)【答案】−[−(−23)]=−2312.【答案】:D【解析】:−5的相反数是5,故a =−5,选 D13.【答案】:A【解析】:从四个选项中选择“只有符号不同的两个数”确定为互为相反数14.【答案】:A【解析】:因为−2的相反数是2,数2在数轴上的对应位置为点P .故选 A15.【答案】:点B 和点C【解析】:点B 和点C16.【答案】:11.2的相反数是−11.2, 9的相反数是−9, 0的相反数是0, −58的相反数是58, 423的相反数是−423【解析】:11.2的相反数是−11.2, 9的相反数是−9, 0的相反数是0, −58的相反数是58, 423的相反数是−42317.【答案】:5,4,−3的相反数分别是−5,−4,3. 在数轴上表示如图所示.各对数在数轴上的位置特点是到原点的距离相等【解析】:5,4,−3的相反数分别是−5,−4,3. 在数轴上表示如图所示.各对数在数轴上的位置特点是到原点的距离相等18.【答案】:5;−5;−5;519.【答案】:A【解析】:−(−6)=6,故答案为 A20.【答案】:C【解析】:看数字前面负号的个数,若有偶数个,则结果为正;若有奇数个,则结果为负21.【答案】:A ;B ;相等;相反数【解析】:AB 相等相反数22.【答案】:B。
七年级数学上册1.2.3 相反数-相反数的应用 选择题专项练习一(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-相反数的应用1.若0a b+<且0ab<,那么()A.0a<,0b>B.0a<,0b<C.0a>,0b<D.a,b异号,且负数绝对值较大2.x2-4x与2x-3的值互为相反数,则x的值是( )A.-1 B.3 C.-1或3 D.以上都不对3.有下列各数:0.01,10,13-,2--,90-,()3.5--其中属于负数的共有()A.2个B.3个C.4个D.5个4.互为相反数的两个数的和是:()A.0 B.1 C.±1D.π5.互为相反数的两个数的和是()A.0 B.1 C.D.6.下列说法错误的是:()A.互为相反数的两数的和为0 B.互为相反数的两数的商为-1 C.互为相反数的两数的平方相等 D.互为相反数的两数的绝对值相等7.若a,b互为相反数,则下面四个等式中一定成立的是()A.a+b=0B.a+b=1C.|a|+|b|=0D.|a|+b=08.下列说法正确的是()A.25-的相反数是5 B.-5是相反数C.14-和15是相反数D.2345-和2345是相反数9.如下图,数轴上的点A、B、C、D中,表示互为相反数的两个点是()A .点A 和点DB .点A 和点C C .点B 和点CD .点B 和点D10.若a 与b 互为相反数,则a+b 等于( )A .0B .-2aC .2aD .-211.如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、C 表示的数互为相反数,则图中点B 对应的数是( )A .-1B .0C .1D .312.已知0m n +=,0n p +=,0m q -=.则( )A .p 与g 相等B .m 与g 互为相反数C .m 与n 相等D .p 与n 相等13.若37m -和9m -互为相反数,则m 的值是( )A .4B .1C .1-D .4-14.已知9,a -=那么a -+a=( )A .9B .-9C .0D .115.已知a 、b 互为相反数,下列各式成立的是( )A .ab <0B .a ﹣|b|=0C .a+b =0D .|a ﹣b|=|a|+|b|16.a b ,是有理数,它们在数轴上的对应点位置如图所示,把a a b b --,,,按照从小到大的顺序排列,正确的是( )A .b a a b -<-<<B .a b a b -<-<<C . b a a b -<<-<D .a b b a -<<-< 17.若代数式72x -和5x -互为相反数,则x 的值为( )A .2B .-4C .4D .018.如果a 与﹣2互为相反数,那么a 等于( )A .﹣2B .2C .﹣12D .12 19.如图,数轴上有三个点A 、B 、C ,若点A 与B 表示的数互为相反数,则点C 表示数是( )A.1-B.1 C.2-D.220.若式子x42-的值与1互为相反数,则x=( )A.1 B.2 C.-2 D.4参考答案1.D解析:根据0a b +<且0ab <,可以判断a 、b 的符号和绝对值的大小,从而可以解答本题. 详解:解:0a b +<且0ab <,0a ∴>,0b <且a b <或0a <,0b >且a b >,即a ,b 异号,且负数绝对值较大,故选:D .点睛:本题考查有理数的乘法和加法,解题的关键是明确题意,可以根据有理数的加法和乘法,判断a 、b 的正负和绝对值的大小.2.C解析:分析:由两个互为相反数的和为0,可得列出关于x 的方程,解此方程,即可得到答案.详解:∵x²-4x 与2x-3互为相反数,∴x²-4x+2x-3=0解得:x=-1或3.故选c点睛:本题主要考查了相反数的应用以及一元二次方程的解法,解题的关键是根据两个互为相反数的和为0,得出关于x 的一元二次方程,解此方程,即可.3.B解析:分析:先对函绝对值、括号的式子进行化简,再根据负数的定义来判断是否为负数; 解:因为2--=-2,()3.5--=3.5,所以0.01,10,13-,2--,90-,()3.5--中负数有13-、2--和90-共3个;故选B .4.A解析:分析:本题考查的是互为相反数的两个数的和为0.解析:互为相反数的两个数的和是0.故选A5.A解析:根据相反数的概念可得:互为相反数的两个数的和是为0;故选A.6.B解析:A选项:互为相反数的两数的和是0,正确,不符合题意;B选项:互为相反数的两数0,0,没有商,错误,符合题意;C选项:互为相反数的两数的平方相等,正确,不符合题意;D选项:互为相反数的两数的绝对值相等,正确,不符合题意.故选B.点睛:只有符号不同的两个数叫做互为相反数,0的相反数是0.注意:相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.7.A解析:a,b互为相反数0⇔+=,易选B.a b8.D解析:根据相反数的定义解答即可.详解:∵只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数,∴选项A、B、C错误,选项D正确.故选D.点睛:本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.9.B解析:解:A,C这两个点分别在原点的左右两旁,到原点的距离相等,所以它们表示的两个数互为相反数.故选B10.A解析:依据相反数的定义可得到b=-a,然后代入计算即可.详解:∵a与b互为相反数,∴b=−a.∴a+b=a+(−a)=0.故选:A.点睛:本题考查的知识点是相反数和有理数的加法,解题关键是熟记相反数的性质.11.C解析:根据点A、C表示的数互为相反数得到数轴原点的位置,读出点B表示的数即可求解. 详解:解:根据点A、C表示的数互为相反数,可得图中点D为数轴原点,,∴点B对应的数是1,故选:C.点睛:本题考查数轴上表示的数,根据相反数在数轴上的位置确定原点的位置是解题的关键.12.D解析:根据相反数性质,可分析出各个数的大小关系.详解:m+n=0 推出 m=-nn+p=0 推出 n=-p,所以m=pm-q=0 推出 m=q,所以q=p所以m=p=q=-n故选D点睛:考核知识点:相反数性质.理解相反数性质是关键.13.C解析:根据相反数的性质得出关于m的方程3790-+-=,解之可得.m m详解:由题意知3790-+-=,m m则379-=-,m mm=-,22m=-,1故选C.点睛:本题主要考查相反数的性质,解题的关键是熟练掌握相反数的性质和解一元一次方程的基本步骤.14.C解析:a与-a互为相反数,互为相反数的两数相加得0.详解:a与-a互为相反数,互为相反数的两数相加得0.故选C.点睛:本题考查相反数的定义,熟练掌握“互为相反数的两数相加得0”是解题关键.15.C解析:由互为相反数的两个数之和为0,可得出答案.详解:解:∵a、b互为相反数,∴a+b=0,故选:C.点睛:本题考查相反数的性质,掌握相反数的性质是关键.16.D解析:根据数轴和相反数的定义比较即可.详解:因为从数轴可知:b<0<a,|a|>|b|,所以﹣a<b<﹣b<a.故选:D.点睛:本题考查了数轴,相反数,有理数的大小比较的应用,能根据数轴上a、b的位置得出﹣a和﹣b的位置是解答此题的关键.17.C解析:根据互为相反数的两个数和为0列出一元一次方程,求解即可.详解:解:由题意得7250-+-=x x解得4x=故选:C点睛:本题考查了相反数的性质,灵活利用相反数的性质是解题的关键.18.B解析:根据相反数的性质求解即可.详解:∵a与﹣2互为相反数∴20a-=解得2a=故答案为:B.点睛:本题考查了相反数的运算问题,掌握相反数的性质是解题的关键.19.A解析:首先确定原点位置,进而可得C点对应的数.详解:解:如图,∵点A、B表示的数互为相反数,∴原点在线段AB的中点O处,∴点C对应的数是−1.故选:A.点睛:此题主要考查了数轴,关键是正确确定原点位置.20.B解析:根据互为相反数的定义列方程求解即可.详解:∵式子42x-的值与1互为相反数,∴42x-+1=0,解之得x=2.故选B.点睛:本题考查了相反数的定义及一元一次方程的解法,根据题意列出方程是解答本题的关键.。
七年级数学上册《相反数》同步练习题(附答案)
七年级数学上册《相反数》同步练习题(附答案)一、选择题1、()2021--的相反数是( ) A .2021- B .2021 C .12021D .12021-2、如图,数轴上点A 、B 、C 、D 、表示的数中,表示互为相反数的两个点是( ).A .点B 和点C B .点A 和点C C .点B 和点D D .点A 和点D3、下列说法正确的是( ) A .()8--是8-的相反数 B .()2-+是2-的相反数 C .5+的相反数是()5-- D .12-的相反数是()12+-4、一个数的相反数是非负数,这个数一定是( ) A .零 B .负数 C .正数 D .非正数5、下列说法中,正确的是( ) A .π的相反数是-3.14B .任何一个有理数都有相反数C .符号不同的两个数一定互为相反数D .-(-2)和+(+2)互为相反数6、如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、C 表示的数互为相反数,则图中点B 对应的数是( )A .-1B .0C .1D .3二、填空题7、数轴上在原点左侧与表示数1的点的距离为3的数是a ,则a 的相反数是_________.8、把规定了_________, _________, __________的直线叫数轴.9、所有的有理数都可以用数轴上的一个点来表示,表示正有理数的点都在原点____侧,表示0的点在______,表示负有理数的点都在原点______侧10、如图,D 和B 两点虽然分别在原点的左边和右边,它们与原点的距离相同吗?11、像3和-3,5和-5,35 和-35等这样,_____的两个数叫做互为相反数, 0的相反数为____.12、互为相反数的两个数分别位于原点的_____(0除外);互为相反数的两个数到原点的距离_______.13、一般地,设a 是一个正数,数轴上与原点的距离是a 的点有____个,它们分别在原点的两侧,表示_____,这两点关于_____对称.14、结合数轴思考:0的相反数是_____.一个正数的相反数是一个___.一个负数的相反数是一个___.一个数的相反数是它本身的数是 ______.15、一般地,a的相反数是-a,a可表示任意有理数.求一个数的相反数,只需在这个数前加一个“___”号.16、如果a=﹣a,那么表示数a的点在数轴上的位置是_____﹣三、简答题17、化简下列各数前的符号:(1)﹣[﹣(﹣9)](2)﹣[+(﹣75)]18、如图所示,数轴上的一个单位长度表示2,观察下图,回答问题:(1)若点A与点D表示的数互为相反数,则点D表示的数是多少?(2)若点B与点F表示的数互为相反数,则点D表示的数的相反数是多少?19、在给出的数轴上,标出以下各数及它们的相反数,-1,2,5,-4,并把它们按照从小到大的2顺序用“<”连接起来20、写出下列各数的相反数原数:6,-8,-0.9,52,211-,100,021、化简下列各式:(1)47⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦;(2){[(0.03)]}+-+-;(3){[(5)]}----;(4){[(5)]}---+.参考答案1、A【分析】根据去括号法则以及相反数的定义解题即可.【详解】解:(2021)2021--=,2021∴的相反数为2021-,故选:A.【点睛】本题主要考查相反数的定义以及去括号法则,解题的关键是熟知定义.2、B【分析】根据数轴、相反数的性质分析,即可得到答案.【详解】根据题意,点A表示的数为6-,点B表示的数为0,点C表示的数为6﹣表示互为相反数的两个点是点A和点C故选:B.【点睛】本题考查了有理数的知识;解题的关键是熟练掌握数轴、相反数的性质,从而完成求解.3、A【分析】根据相反数的定义判断选项的正确性.【详解】().8A --是8-的相反数,故A 正确; B .()22-+=-,故B 错误; C .()55+=--,故C 错误; D .()1212-=+-,故D 错误. 故选:A .【点睛】本题考查相反数,解题的关键是掌握相反数的定义. 4、D【分析】一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.由此得出结果. 【详解】解:非负数是指正数或 0,而负数的相反数是正数,0 的相反数是 0,所以这个数一定是负数或 0. 故选:D .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 5、B【分析】根据相反数的定义、去括号法则逐项判断即可得. 【详解】A 、π的相反数是π-,此项错误; B 、任何一个有理数都有相反数,此项正确;C 、只有符号不同的两个数一定互为相反数,此项错误;D 、()22--=,()22++=,不是相反数,此项错误; 故选:B .【点睛】本题考查了相反数的定义、去括号法则,熟练掌握相反数的概念是解题关键. 6、C【分析】根据点A 、C 表示的数互为相反数得到数轴原点的位置,读出点B表示的数即可求解. 【详解】解:根据点A 、C 表示的数互为相反数,可得图中点D 为数轴原点,,﹣点B 对应的数是1, 故选:C .【点睛】本题考查数轴上表示的数,根据相反数在数轴上的位置确定原点的位置是解题的关键.7、2【分析】数轴上在原点左侧即是负数,结合与表示数1的点的距离为3的数,即可得到a表示的数是-2,再根据相反数的定义解题.【详解】数轴上在原点的左侧且距离数1为3的数是-2,故-2的相反数为2,故答案为:2.【点睛】本题考查数轴上的点表示有理数、相反数等知识,是基础考点,难度较易,掌握相关知识是解题关键.8、原点、正方向、单位长度.【解析】分析:数轴的三要素为:原点,正方向,单位长度.解:我们把规定了原点,正方向和单位长度的直线叫做数轴.点评:本题考查数轴的定义,是需要熟记的内容.9、①. 右②. 原点③. 左10、相同,它们到原点的距离都是311、①. 只有符号不同②. 012、①. 两侧②. 相等13、①. 两②. a和-a③. 原点14、①. 0 ②. 负数③. 正数④. 015、-16、原点【解析】先求出a的值,再判断即可.【详解】a=-a,a=0,即表示数a的点在数轴上的位置是原点,故答案为原点.【点睛】本题考查了数轴和相反数,能求出a的值是解此题的关键.17、(1)﹣9;(2)75.【分析】根据相反数的定义,可得答案.【详解】(1)原式=﹣[+9]=﹣9;(2)原式=﹣[﹣75]=75.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.18、(1)点D表示的数为5;(2)点D表示的数的相反数为2-【分析】(1)先确定原点,即可确定点D表示的数;(2)先确定原点,可确定点D表示的数,再确定点D表示的数的相反数.【详解】(1)如图:﹣AD=10,点A与点D表示的数互为相反数,﹣点D表示的数为5;(2)如图:﹣点B与点F表示的数互为相反数,﹣点D表示的数为2;﹣点D表示的数的相反数为2-.【点睛】本题主要考查了数轴和相反数的应用,要注意两点,一是单位长度是多少,二是要注意找好原点,利用原点确定所表示的数.19、图见解析,5542112422-<-<-<-<<<<【分析】根据题意利用相反数性质得出并在数轴上表示出各数和它们的相反数,进而从左到右用“<”连接起来即可.【详解】解:-1,2,52,-4的相反数分别为:1,-2,52-,4,各数在数轴上表示为:所以55 42112422-<-<-<-<<<<.【点睛】本题考查的是有理数的大小比较,熟练掌握相反数的定义以及数轴上右边的数总比左边的大是解答此题的关键.20、-6,+8,+0.9,52-,211+,-100,021、(1)47;(2)0.03;(3)5;(4)5-.【分析】根据相反数的定义分别化简即可.【详解】(1)4477⎡⎤⎛⎫--+=⎪⎢⎥⎝⎭⎣⎦.(2){[(0.03)]}0.03+-+-=.(3){[(5)]}5----=.(4){[(5)]}5---+=-.【点睛】本题考查了利用相反数化简,对这类式子进行化简,非0数的正负与前边的正号的个数无关,而与负号的个数有关,当有奇数个负号时,值是负数,当有偶数个负号时,值是正数.。
七年级数学上册1.2.3 相反数-相反数的定义 解答题专项练习二(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-相反数的定义一、解答题1.画出数轴,把下列各数及它们的相反数表示在数轴上,并将这些数按从小到大的顺序用“<”连接.2,0,-12,-3.2.求5,0,(4)--的相反数,并将这些数及它们的相反数标在数轴上,按从大到小的顺序用“>”连接.3.探究题:化简下列各数前的符号:(1)﹣[﹣(﹣9)](2)﹣[+(﹣75)]4.在数轴上表示下列各数及其相反数,﹣3,-(-2),12--,再用“<”将它们连接起来5.把下列各数和它们的相反数在数轴上表示出来.+3,-1.5,0, 5-26.写出下列各数的相反数,并将这些数连同他们的相反数在数轴上表示出来. +3,-1.5,0,104-7.求2,0,12-,3-的相反数,并把这些数及其相反数表示在数轴上,然后将它们按从小到大的顺序用“<”连接.8.把有理数:+1,﹣3.5,﹣2和它们的相反数在下面的数轴上表示出来.9.(1)将数-2,+1,0,122-,134在数轴上表示出来. (2)将(1)中各数用“<”连接起来.(3)将(1)中各数的相反数用“>”连接起来.10.写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来:-4,-1.5,0,9211.数轴上A 点表示的数为+4,B 、C 两点所表示的数互为相反数,且C 到A 的距离为2,点B 和点C 各表示什么数.12.在数轴上表示下列各数:0,﹣2.5,﹣3,+5,113,4.5及它们的相反数.13.如图,A 表示﹣3,指出B 、C 所表示的相反数.14.在数轴上画出表示下列各数以及它们的相反数的点: -4,0.5,3.15.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.5-,1.5-,52,132,()2--参考答案一、解答题1.数轴见解析,113202322-<-<-<<<<解析:先求出各数的相反数,再在数轴上表示出来,根据数轴上的位置,用“<”连接即可. 详解:解:2的相反数是-2,0的相反数是0,-12的相反数是12,-3的相反数是3,在数轴是表示如图所示,用“<”连接如下:113202322-<-<-<<<<.点睛:本题考查了相反数的意义和在数轴上表示数以及有理数的大小,解题关键是准确求出各数的相反数,在正确的在数轴上表示出来,利用数轴比较大小.2.-5,0,-4,数轴见解析,()54045>-->>->-解析:先求出各数的相反数,再在数轴上表示出来,从右到左用“>”号连接起来即可. 详解:解:5,0,(4)--的相反数分别为:-5,0,-4, 如图所示:用“>”连接为:()54045>-->>->-. 点睛:本题考查的是有理数的大小比较,熟知数轴上右边的是总比左边的大是解答此题的关键.3.(1)﹣9;(2)75.解析:根据相反数的定义,可得答案.详解:(1)原式=﹣[+9]=﹣9;(2)原式=﹣[﹣75]=75.点睛:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.4.数轴见解析,-3<-2<12--<12<-(-2)<3解析:先求出各数的相反数,再在数轴上表示出来,从左到右用“<”把它们连接起来即可.详解:解:-3的相反数为3,-(-2)的相反数为-2,12--的相反数为12,如图所示:用“<”连接为:-3<-2<12--<12<-(-2)<3.点睛:本题考查了有理数大小比较的方法.注意在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.5.见解析解析:先求各个数的相反数,再在数轴上表示出来即可.详解:+3的相反数为:-3,-1.5的相反数为:1.5,0的相反数为:0,5 -2的相反数为:52,在数轴上表示如下:.点睛:本题考查了数轴,正确在数轴上表示各个数,解此题的关键是理解相反数的定义,求得相反数.6.详见解析解析:根据相反数的定义,分别写出,然后在数轴上表示即可.详解:由题意,得相反数依次为:-3,1.5,0,10 4数轴表示如下:点睛:此题主要考查相反数以及用数轴表示数,熟练掌握,即可解题.7.2,0,12-,3-的相反数分别是-2,0,12,3;数轴见解析;-3<-2<12-<0<12<2<3解析:先求出它们的相反数,再在数轴上表示出这些数,然后根据右边的数总比左边的数大,把这些数由大到小用“<”号连接起来即可.详解:2,0,12-,3-的相反数分别是-2,0,12,3,-3<-2<12-<0<12<2<3. 点睛:本题考查了相反数的定义,以及利用数轴比较有理数的大小,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.8.见解析解析:根据题意先把各数的相反数求出,再把有理数从数轴上表示出来即可. 详解:解:+1,﹣3.5,﹣2的相反数分别为:﹣1,3.5,2,如图:点睛:此题考查数轴,相反数,解题关键在于在数轴上表示出各数.9.(1)详情见解析;(2)112201324--+<<<<;(3)112201324-->>>> 解析:(1)画出数轴,然后在数轴上找出各数对应的点即可; (2)根据所画数轴,把各数从左至右依次用“<”连接起来即可; (3)将各数相反数依次求出来,然后进行大小比较即可。
人教版七年级数学上册 第一章:有理数_1.2.3:相反数 学案(含答案)
初中七年级数学上册第一章:有理数——1.2.3:相反数(解析)一:知识点讲解知识点一:相反数相反数:✧ 代数定义:像2和﹣2,5和﹣5这样,只有符号不同的两个数叫做互为相反数,把其中一个数叫做另一个数的相反数。
✧ 几何定义:相反数所对应的点在数轴上分别位于原点的左、右两侧,到原点的距离相等。
表示方法:数a 的相反数是﹣a ,这里的数a 是任意有理数,即a 可以是正数、负数或0。
性质:✧ 任何一个数都有相反数,而且只有一个;✧ 正数的相反数是负数,即当有理数a >0时,﹣a <0; ✧ 负数的相反数是正数,即当有理数a <0时,﹣a >0;✧ 0的相反数是0,即当a =0时,﹣a =0,因此,﹣a 表示的数不一定是负数。
特征:✧ 若a 与b 互为相反数,则a +b =0(或a =﹣b ); ✧ 若a +b =0(或a =﹣b ),则a 与b 互为相反数。
互为相反数的两个数一定是成对出现的,不能单独存在,单独的一个数不能说是相反数。
互为相反数的两个数只是符号不同。
求一个具体的数字的相反数时,只需改变这个数字前面的符号,其他部分不变,即可得到该数的相反数。
求一个式子(如:x -y )的相反数时,只需将这个式子括起来,在括号前面加上“﹣”号。
例1:填空1)985-的相反数为 985 ;2) 2m 是 ﹣2m 的相反数; 3)3-π的相反数是 ()3--π 。
知识点二:多重符号的化简多重符号的化简:✧ 当最前面的符号是“﹢”号时,直接省略这个“﹢”号;✧ 当最前面的符号是“﹣”号时,去掉这个“﹣”号,并写出括号内的数的相反数; ✧ 当这个数还能继续化简时,重复使用上述方法。
例如:﹢(﹣2)=﹣2;﹢(﹢2)=2;﹣(﹢2)=﹣2;﹣(﹣2)=2 例2:化简下列各数:①⎪⎭⎫ ⎝⎛--312;②()5+-;③()25.0--;解:312解:5-解:25.0④()[]1+--; ⑤()a -- 解:1解:a二:知识点复习知识点一:相反数1. 2017的相反数是( A )A. ﹣2017B. 2017C.20171D.20171-2. 下面的数中,与﹣6的和为0的数是( A )A. 6B. ﹣6C.61 D.61- 3. 如图所示,如果数轴上A 、B 两点表示的数互为相反数,那么点B 表示的数为( D )A. 2B. ﹣2C. 3D. ﹣34. 下列说法正确的是( D )A.81和﹣0.125不互为相反数 B. ﹣m 不可能等于0 C. 正数和负数互为相反数 D. 任何一个数都有相反数5. 如果a 与﹣3互为相反数,那么a 等于( A )A. 3B. ﹣3C.31 D.31- 6. 若数轴上表示互为相反数的两点之间的距离是4,则这两点表示的数是 2或﹣2 。
初一(七年级)数学上册相反数同步练习题含答案
初一(七年级)数学上册相反数同步练习题含答案数学网讯:开学快一个月了,刚入初一的你,相反数学得怎样?我们来进行一下小测验吧,那么我们来共同看下面的初一(七年级)数学上册相反数同步练习题含答案吧!初一(七年级)数学上册相反数同步练习题基础检测1、-(+5)表示__________的相反数,即-(+5)=__________ ; -(-5)表示__________ 的相反数,即-(-5)=__________ 。
2、-2的相反数是__________ ;的相反数是__________ ;0的相反数是__________ 。
3、化简下列各数:-(-68)=__________ -(+0.75)=__________-(-)=__________-(+3.8)=__________ +(-3)=__________ +(+6)=__________4、下列说法中正确的是( )A、正数和负数互为相反数B、任何一个数的相反数都与它本身不相同C、任何一个数都有它的相反数D、数轴上原点两旁的两个点表示的数互为相反数拓展提高:5、-(-3)的相反数是__________。
6、已知数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,则点A、B表示的数分别是__________ 。
7、已知a与b互为相反数,b与c互为相反数,且c=-6,则a=__________ 。
8、一个数a的相反数是非负数,那么这个数a与0的大小关系是a__________ 0.9、数轴上A点表示-3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是__________ 。
10、下列结论正确的有( )①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。
A 、2个 B、3个 C、4个 D、5个11、如果a=-a,那么表示a的点在数轴上的什么位置?初一(七年级)数学上册相反数同步练习题答案基础检测1、5,-5,-5,5;2、2,,0;3、68,-0.75,,-3.8,-3,6;4、C拓展提高5、-36、-3,37、-68、≥9、1或510、A。
【基础巩固】2021-2022年七年级数学上册1.2.3 相反数-练习四(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数一、选择题1.若整式42x -与3x -互为相反数,则x 的值为( )A .1-B .1C .2D .2-2.若m ﹣2的相反数是5,那么﹣m 的值是( )A .+7B .﹣7C .+3D .﹣33.若0a b +<且0ab <,那么( )A .0a <,0b >B .0a <,0b <C .0a >,0b <D .a ,b 异号,且负数绝对值较大4.﹣1是1的( )A .倒数B .相反数C .绝对值D .立方根 5.下列各组数中,互为相反数的是( )A .2-与12- B .2-与2 C .2-D .2-6.下列各对数:()3+-与3-,()3++与+3,()3--与()3+-,()3-+与()3+-,()3-+与()3++,+3与3-中,互为相反数的有( )A .3对B .4对C .5对D .6对 7.的相反数是( ) A . B . C . D .8.如图,若代数式21a -的相反数是2,则表示a 的值的点落在( )A .段①B .段②C .段③D .段④9.-5的相反数是( )A .15- B .15 C .5 D .-5二、填空题1.当2x+1和﹣3x+2互为相反数时,则x2﹣2x+1=________.2.已知代数式3122tt+-的值与1互为相反数,那么t=________.3.-6的相反数是____________.4.﹣(﹣6)=_____.5.计算:—(—10)=____;-|-8|_________.6.如图,数轴上的单位长度为1,有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是_________.三、解答题1.把下列各数和它们的相反数在数轴上表示出来.+3,-1.5,0,5-22.已知数a为负数,且数轴上表示a的点到原点的距离等于3,将该点向右移动6个单位后得到的数的相反数是多少?3.数轴上点A表示-5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求点B和点C各表示什么数?参考答案一、选择题1.B解析:利用相反数的性质列出方程,求出方程的解即可得到x的值.详解:解:根据题意得:42x-)=0,x-+(3解得:x=1,故选B.点睛:此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.2.C解析:直接利用相反数的定义求出m的值,进而得出答案.详解:解:∵m-2的相反数是5,∴m-2=-5,解得:m=-3,故-m=3.故选C.点睛:此题主要考查了相反数,正确得出m的值是解题关键.3.D解析:根据0ab<,可以判断a、b的符号和绝对值的大小,从而可以解答本题.+<且0a b详解:解:0ab<,a b+<且00a ∴>,0b <且a b <或0a <,0b >且a b >,即a ,b 异号,且负数绝对值较大,故选:D .点睛:本题考查有理数的乘法和加法,解题的关键是明确题意,可以根据有理数的加法和乘法,判断a 、b 的正负和绝对值的大小.4.B解析:根据相反数的定义:只有符号不同的两个数叫互为相反数.即a 的相反数是-a . 详解:-1是1的相反数.故选B .5.C解析:首先化简,然后根据互为相反数的定义即可判定选择项.详解:解:A 、两数数值不同,不能互为相反数,故选项错误,B 、|-2|=2,两数相等,不能互为相反数,故选项错误,C 与-2互为相反数,故选项正确,D 两数相等,不能互为相反数,故选项错误,所以C 选项是正确的.点睛:本题主要考查相反数定义:互为相反数的两个数相加等于0,比较简单.6.A解析:先将各式化简,然后根据相反数的性质分析:只有符号不同的两个数互为相反数,0的相反数是0;互为相反数的两个数的和是0.详解:解:根据相反数的定义得-(-3)与+(-3),-(+3)与+(+3),+3与-3互为相反数,所以有3对.故选:A.点睛:本题主要考查了相反数,解题的关键是熟记定义.7.A解析:试题分析:相反数的定义:只有符号不同的两个数互为相反数,正数的相反数是负数.的相反数是,故选A.考点:相反数点评:本题属于基础应用题,只需学生熟练掌握相反数的定义,即可完成.8.A解析:根据“代数式21a-的相反数是2”可知21=2a--,据此求出a的值然后加以判断即可.详解:∵代数式21a-的相反数是2,∴21=2a--,∴=0.5a-,∵10.50-<-<,∴表示a的值的点落在段①处,故选:A.点睛:本题主要考查了相反数的性质与一元一次方程的综合运用,熟练掌握相关概念是解题关键.9.C解析:根据相反数的定义解答即可.详解:-5的相反数是5故选C点睛:本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键.二、填空题1.4解析:解:根据题意得:2x+1﹣3x+2=0,移项合并得:﹣x=﹣3,解得:x=3,则原式=9﹣6+1=4,故答案为:4.点睛:此题考查了解一元一次方程,以及相反数,熟练掌握相反数的性质及方程的解法是解本题的关键.2.3解析:首先根据相反数的性质,得出代数式的值为-1,然后即可求解.详解:由已知,得31212t t +-=- 解得t=3点睛:此题主要考查利用相反数求解代数式的值,熟练掌握,即可解题.3.6解析:求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.4.6.解析:直接利用去括号法则得出答案.详解:﹣(﹣6)=6.故答案为:6.点睛:本题主要考查了去括号法则,正确化简是解题关键.5.10 -8解析:(1)偶数个“-”号,最终结果为正;(2)先求绝对值,再进行多重符号化简详解:(1)∵-(-10)中有2个“-”,为偶数个∴-(-10)=10(2)∵|-8|=8∴-|-8|=-8故答案为:10;-8点睛:本题考查多重符号化简,主要是根据“﹣”的个数的奇偶数量来判断6.1解析:首先确定原点位置,可得B点对应的数,进而可得C点对应的数.详解:解:∵点A、B对应的数互为相反数,∴线段AB的中点为数轴的原点,∵AB=6,∴B点对应的数为3,∵BC=2,且C点在B点左侧,∴点C对应的数为1.故答案为:1点睛:本题主要考查了数轴,正确确定原点位置是解答此题的关键.三、解答题1.见解析解析:先求各个数的相反数,再在数轴上表示出来即可.详解:+3的相反数为:-3,-1.5的相反数为:1.5,0的相反数为:0,5 -2的相反数为:52,在数轴上表示如下:.点睛:本题考查了数轴,正确在数轴上表示各个数,解此题的关键是理解相反数的定义,求得相反数.2.-3解析:根据数a是负数,且数轴上表示a的点到原点的距离等于3,可确定a=-3,把它向右平移6个单位长度,得到的数是-3+6=+2,据此可求出它的相反数是多少,据此解答即可.详解:因为数a是负数,且数轴上表示a的点到原点的距离等于3,所以a=-3,该点向右移动6个单位后得:-3+6=3,3的相反数是-3,所以将该点向右移动6个单位后得到的数的相反数是-3.点睛:本题考查了学生对数轴和相反数的知识的运用,确定a的值是解题关键.3.分两种情况:①若点B在点A的左侧,则点B表示-9,点C表示9;②若点B在点A的右侧,则点B表示-1,点C表示1解析:分两种情况:①点B在点A的;②点B在点A的右侧. 点B表示的数为-1或-9,从而点C相应表示的数为1或9.详解:由点B到点A的距离为4,点A表示的数为-5,可得:①若点B在点A的左侧,则点B表示-9,点C表示9;②若点B在点A的右侧,则点B表示-1,点C表示1.点睛:本题考核知识点:相反数.解题关键点:熟记相反数的定义,理解数轴上点的位置.。
人教版数学七年级上册1.2.3《相反数》训练习题(有答案)
《相反数》基础训练知识点1(相反数的意义)1.[2019四川广元中考]﹣15的相反数是()A.﹣5B.5C.﹣15D.152.给出下列说法:①﹣2是相反数;②2是相反数;③﹣2是2的相反数;④﹣2和2互为相反数.其中正确的有()A.1个B.2个C.3个D.4个3.[2019贵州贵阳中考]在1,﹣1,3,﹣2这四个数中,互为相反数的是()A.1与﹣1B.1与﹣2C.3与﹣2D.﹣1与﹣24.[2019河北唐山开平区期中]如图,表示互为相反数的点是()A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.[2019重庆北碚区兼善教育集团联考]若一个数的相反数比它本身大,则这个数一定是()A.正数B.整数C.负数D.非负数6.(1)若a与﹣2互为相反数,则a= ;(2)若a的相反数是12018,则a= .7.给出下列说法:①只有符号不同的两个数一定互为相反数;②一个数的相反数一定是负数;③若两个数互为相反数,则这两个数一定一正一负.其中正确说法的序号为.8.给出下列说法:①如果两个数互为相反数,则它们的相反数也互为相反数;②在任何一个数前面添加“﹣”号,就变成原数的相反数;③+115与﹣2.2互为相反数;④﹣19与0.1互为相反数.其中错误说法的序号是.9.若A、B两点表示的数互为相反数,且这两点相距8个单位长度,B在A的左边,在数轴上标出A、B两点,并指出A、B两点表示的数.知识点2(多重符号的化简)10.下面两个数互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣0.5与﹣(+0.5)C.﹣1.25与45D.+(﹣0.01)与﹣(﹣1100)11.观察下列各对有理数:①﹣(﹣5)与﹣(+5);②0与0;③﹣(﹣12)与﹣(﹣2);④23与32;⑤﹣1与﹣(﹣1).其中互为相反数的有. (填序号)12.﹣(﹣13)的相反数是.13.化简下列各数:(1)﹣(﹣6);(2)﹣(﹢2.5);(3)﹢(﹢1.8);(4)﹢(﹣12)(5)﹢[﹣(﹢7)];(6)﹣[﹢(﹣1)] (7)﹣[﹣(﹣2)];(8)﹣{﹣[﹢(﹣3)]} 参考答案1.D【解析】15与﹣15只有符号不同,它们是一对相反数,所以﹣15的相反数是15故选D.2.B【解析】相反数是成对出现的,单独的一个数不能说是相反数,所以①②错误,③④正确.故选B.3.A【解析】在1,﹣1,3,﹣2这四个数中,1与﹣1只有符号不同,所以1与﹣1互为相反数.故选A.4.B【解析】观察题中数轴,可知点B表示的数是2,点C表示的数是﹣2,因为2与﹣2互为相反数,所以表示互为相反数的点是点B和点C.故选B.5.C【解析】正数的相反数是负数,所以正数的相反数小于它本身;0的相反数为0,所以0的相反数等于它本身;负数的相反数是正数,所以负数的相反数大于它本身.结合本题条件,可知这个数一定是负数.故选C.6. (1)2;(2)﹣1 20187.①【解析】①的说法符合互为相反数的概念,所以①正确;因为0的相反数是0,而0没有正负之分,所以②③都错误.8.④【解析】在①中,两个数互为相反数,则它们的相反数也满足仅有符号不同.所以它们的相反数也互为相反数,所以①正确;在②中,在任何一个数前面添加“﹣”号,得到的新数和原数仅有符号不同,满足互为相反数的概念,所以②正确;在③中,因为+115=+2.2,+2.2与﹣2.2互为相反数,所以115与﹣2.2互为相反数,所以③正确;在④中,因为0.1=110,﹣19与110不互为相反数,所以﹣19与0.1不互为相反数,所以④错误.9.【解析】因为A,B两点表示的数互为相反数,且这两点相距8个单位长度,所以A,B两点到原点的距离都是4,又数轴上B在A的左边,在数轴上标出A,B两点,如图所示:点4表示的数是4,点B表示的数是﹣4.10.D【解析】选项A,因为﹣(+7)=﹣7,+(﹣7)=﹣7,所以﹣(+7)=+(﹣7),因此﹣(+7)与+(﹣7)不互为相反数,所以A不符合题意;选项B,因为﹣(+0.5)=﹣0.5,所以﹣0.5与﹣(+0.5)不互为相反数,所以B不符合题意;选项C,因为45=0.8. 1.25与0.8不互为相反数,所以C不符合题意;选项D,因为+(﹣0.01)=﹣0.01,﹣(﹣1100)=0.01,﹣0.01与0.01互为相反数,所以D符合题意.故选D.11.①②⑤【解析】因为﹣(﹣5)=5,﹣(+5)=﹣5,5与﹣5互为相反数,所以﹣(﹣5)与﹣(+5)互为相反数;0的相反数是它本身;因为﹣(﹣12)=12,﹣(﹣2)=2,1 2与2不互为相反数,所以﹣(﹣12)与﹣(﹣2)不互为相反数;因为23与32是两个不同的正数,所以23与32不互为相反数;因为﹣(﹣1)=1,﹣1与1互为相反数,所以﹣1与﹣(﹣1)互为相反数.因此互为相反数的有①②⑤.12.﹣13【解析】因为﹣(﹣13)=13,13的相反数是﹣13,所以﹣(﹣13)的相反数是﹣1 3 .13.【解析】(1)﹣(﹣6)=6.(2)﹣(+2.5)=﹣2.5.(3)﹢(﹢1.8)=1.8.(4)+(﹣12)=﹣12⑸+[﹣(+7)]=﹣7.(6)﹣[+(﹣1)]=1.(7)﹣[﹣(﹣2)]=﹣2.(8)﹣{﹣[+(﹣3)]}=﹣3.《相反数》提升训练1.[2019河北保定十三中课时作业]给出下列各数:+(﹣10),﹣(+15),﹣(﹣7),﹣[+(﹣9)],:﹣[﹣(﹣20)].其中负数有()A.0个B.2个C.3个D.4个2.[2019江西师大附中课时作业]下列说法正确的是()A.正数和负数互为相反数B.a的相反数是负数C.相反数等于它本身的数只有0D.﹣a的相反数是正数3.[2019吉林九中课时作业]下列说法正确的有()①π的相反数是﹣3.14;②符号相反的两个数互为相反数;③﹣(﹣3.8)的相反数是3.8;④一个数和它的相反数不可能相等.A.0个B.1个C.2个D.3个4.[2019重庆巴蜀中学课时作业]如果一个数在数轴:上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A.5或﹣5B.52或﹣52C.5或﹣52D.﹣5或525.[2019湖北襄阳四中课时作业]如图,数轴上一动点;A向左移动2个单位长度到达点B,再向右移动5个;单位长度到达点C.若点C表示的数为1,则与点A 表示的数互为相反数的是();A.﹣7B.3C.﹣3D.26.[2019山西大同二中课时作业](1)若a=2.5,则﹣a= ;(2)若﹣a=14,则a= ;(3)若﹣(﹣a)=10,则﹣a= ;(4)若a=﹣(+5),则﹣a= .7.[2019陕西咸阳彩虹中学课时作业]数轴上点A表示﹣3,B,C两点所表示的数互为相反数,且点B与点A的距离为3,则点C所表示的数是.8.[2019江西吉安一中课时作业]如图,已知A,B,C,D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数,则原点为;(2)若点B和点D表示的数互为相反数,则原点为;(3)若点A和点D表示的数互为相反数,请在数轴上标出原点O的位置.9.[2019河南郑州五十七中课时作业]小明在做题时,画了一个数轴,在数轴上原有一点A其表示的数是﹣3,由于粗心,小明把数轴的原点标错了位置,使点A 正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?10.[2019安徽合肥三十八中课时作业]已知表示数a的点在数轴上的位置如图所示.(1)在数轴上标出表示数a的相反数的点的位置;(2)若数a与其相反数相距20个单位长度,则a的值是多少?(3)在(2)的条件下,若表示数6的点与表示数a的相反数的点相距5个单位长度,则6的值是多少?参考答案1.C【解析】因为+(﹣10)=﹣10,﹣(+15)=﹣15,﹣(﹣7)=7,﹣[+(﹣9)]=9,﹣[﹣(﹣20)]=﹣20,所以负数有3个.故选C.2.C【解析】选项A,正数和负数不一定互为相反数,如1与﹣2不互为相反数,所以A错误;选项B,a的相反数不一定是负数,如a表示负数,则它的相反数是正数,所以B错误;选项D,若﹣a表示正数,则它的相反数是负数,所以D 错误.故选C.3.A【解析】①π的相反数是﹣π,故①错误;②符号相反的两个数不一定互为相反数,如+2与﹣3不互为相反数,故②错误;③﹣(﹣3.8)=3.8,3.8的相反数是﹣3.8,故③错误;④0的相反数等于0,故④错误.因此正确的说法有0个.故选A.4.B【解析】52与﹣52在数轴上对应点的距离是5个单位长度,且它们互为相反数.故选B.5.D【解析】因为点C表示的数为1,所以点S表示的数为﹣4,所以点4表示的数为所以与点4表示的数互为相反数的是2.故选D.6.(1)﹣2.5;(2)﹣14;(3)﹣10;(4)5【解析】(1)因为a与﹣a互为相反数,a=2.5,所以﹣a=﹣2.5.(2)因为﹣a=14,所以a=﹣14(3)因为﹣(﹣a)=10,所以a=10,所以﹣a=﹣10.(4)因为a=﹣(+5)=﹣5,所以﹣a=5.7.0或6【解析】数轴上点A表示﹣3,点B与点A的距离为3,所以点B所表示的数是0或﹣6.因为B,C两点所表示的数互为相反数,所以点C所表示的数是0或6.8.【解析】(1)点B(2)点C(3)原点O的位置如图所示.9.【解析】由题意知,当原点标错时,点4所表示的数是3,当原点标正确时,点4表示的数是﹣3,所以应将原点向右移动6个单位长度.10.【解析】(1)如图所示.(2)因为数a与其相反数相距20个单位长度,所以表示数a与﹣a的点到原点的距离都等于10.因为a是负数,所以a的值是﹣10.(3)由(2)知a=﹣10,所以数a的相反数为10.当表示数b的点在表示10的点的左侧时,b的值为5;当表示数b的点在表示10的点的右侧时,b的值为15,所以b的值是5或15.《相反数》典型例题相反数是只有符号不同的两个数.(1)从数轴上看,表示互为相反数的两个点,它们分别在原点的两旁且与原点的距离相等.(2)相反数是成对出现的,不能单独存在.(3)“+a”和“-a”互为相反数.这里a可以是正数、负数、也可以是0.我们来看看相反数的两种题型:知识点一:相反数的概念【例1】(1)2(1)7--的相反数是;(2)如果- a=+(-80.5),那么a= .【分析】(1)因为2(1)7--=217,所以此题就是求217的相反数;(2)已知a的相反数求原数的问题.【解】(1)因为2(1)7--=217,所以2(1)7--的相反数是-217.(2)因为-a=+(-80.5)= -80.5,所以a=80.5.变式练习:写出下列各数的相反数:4.5,-3,0,35,58-,-0.03,+7.参考答案:-4.5,3,0,35-,58,0.03,-7.知识点二:利用相反数的概念简化数的符号【例2】化简下列各数:(1)-(+3)(2)-(-2)(3)-(a)(4)+(-a).【分析】在一个数前面加上“+”号,所得数还是原来的数;在一个数前面加上“-”号,表示求这个数的相反数.如:(1)题表示求+3的相反数;(2)、(3)题表示求-2和a的相反数;(4)题表示仍为-a自身.【解】(1)-(+3)= -3;(2)-(-2)=+2;(3)-(a)= -a;(4)+(-a)= -a. 【说明】所谓简化一个数的符号,就是把多重符号化成单一符号,结果是正号则可省略不写.变式练习:化简下列各数:-(-68),-(+0.75),-(35-),-(+3.8).参考答案:68,-0.75,35,-3.8.。
人教版 七年级数学上册 第一章 相反数 同步训练(含答案)
人教版数学2021-2022学七年级上册第一章-1.2.3《相反数》同步训练一、选择题1.下列各组数中,互为相反数的是( )A .2和-2B .-2和12 C .-2和12- D .12和2 2.下列说法正确的是( )A .符号不相同的两个数互为相反数B .1.5的相反数是32-C .π的相反数是-3.14D .互为相反数的两个数必然一个是正数,一个是负数 3.如果一个数的相反数是负数,那么这个数一定是( )A .正数B .负数C .零D .正数、负数、零都有可能 4.a -b 的相反数是( )A .a +bB .-(a +b )C .b -aD .-a -b5.下列说法错误的是( )A .如果m n >,那么m <n --B .如果a -是正数,那么a 是负数C .如果x 是大于1的数,那么x -是小于-1的数D .一个数的相反数不是正数就是负数6.下列说法不正确的是( )A .所有的有理数都有相反数B .正数与负数互为相反数C .在一个数的前面添上“-”,就得到它的相反数.D .在数轴上到原点距离相等的两个点所表示的数是互为相反数7.下列各对数中互为相反数的是( )A .-5与-(+5)B .-(-7)与+(-7)C .-(+2)与+(-2)D .13-与-(-3) 8.如果x +y =0,那么x ,y 两个数一定是( )A .x =y =0B .一正一负C .x 与y 互为相反数D .x 与y 互为倒数二、填空题9.一个数的相反数大于它本身,这个数是___.10.互为相反数的两数在数轴上的两点间的距离为11,这两个数为________ .11.若2x -=,则[]()x ---= _____.12.已知a 与b 互为相反数,b 与c 互为相反数,且c=-6,则a=______.13.相反数等于本身的数有__个,是__.14.一个数a 的相反数是非负数,那么这个数a 与0的大小关系是a______0.15.(1)相反数是成对出现的,不能说某个数是相反数,一般的,a 和___互为相反数.(2)互为相反数的两个数只有______不同,其他的部分都是相同的.因此,求一个数的相反数只需要把这个数的前面的______改变,其他部分不变.(3)正数的相反数是负数,负数的相反数是______,特别地,0的相反数是______.三、解答题16.如果,那么表示的点在数轴上的什么位置?17.在数轴上画出表示-1.5 ,2,-1,-及它们的相反数的点.18.若a+12与-8+b 互为相反数,求a 与b 的和.19.已知不相等的两数,a b 互为相反数,,c d 互为倒数,3m =,求a+b-cd-m 的值.20.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是正数还是负数,图中表示的5个点中,哪一个点表示的数的绝对值最小,最小的绝对值是多少?参考答案1.A【详解】解答:解:A 、2和-2只有符号不同,它们是互为相反数,选项正确;B 、-2和12除了符号不同以外,它们的绝对值也不相同,所以它们不是互为相反数,选项错误; C 、-2和-12符号相同,它们不是互为相反数,选项错误; D 、12和2符号相同,它们不是互为相反数,选项错误. 故选A .2.B解:A . 只有符号不相同的两个数互为相反数,故A 错误;B . 1.5的相反数是32-,正确.C . π的相反数是-π,故C 错误;D . 互为相反数的两个数必然一个是正数,一个是负数,还有0的相反数是0,故D 错误.故选B .3.A解:一个数的相反数为负数,则这个数一定为正数,故选A .点睛:此题主要考查了相反数,关键是掌握相反数的定义.4.C解:a -b 的相反数是-(a -b ).故选C .5.D解:A . 如果m n >,那么m n -<-,正确;B . 如果a -是正数,那么a 是负数,正确;C . 如果x 是大于1的数,那么x -是小于-1的数,正确;D . 0的相反数是0.故D 错误.故选D .6.B解:A . 所有的有理数都有相反数,正确;B . 只有符号不同的两个数互为相反数,故B 错误;C . 在一个数的前面添上“-”,就得到它的相反数,正确;D . 在数轴上到原点距离相等的两个点所表示的数是互为相反数,正确.故选B .点睛:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数,只有符号不同的两个数互为相反数.7.B解:A . -5与-(+5) 相等;B . -(-7)与+(-7)互为相反数;C . -(+2)与+(-2)相等;D . 13-与-(-3)互为负倒数. 故选B .8.C解:∵x +y =0,∴x 与y 互为相反数,故选C .9.负数解:设这个数是x ,则-x >x ,解得:x <0,故答案为负数.10.5.5与-5.5解:设一个正数为x ,则x -(-x )=11,解得,x =5.5,∴-x =-5.5,故答案为5.5和-5.5.点睛:本题考查数轴、相反数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数轴和相反数的知识解答.11.2解:()x ⎡⎤---⎣⎦=x -=2.故答案为2.12.-6【分析】先根据b 与c 互为相反数求出b ,再根据a 与b 互为相反数即可求出【详解】b 与c 互为相反数,且c=-6,∴b=6 a 与b 互为相反数,∴a=-6【点睛】本题考查的是相反数的定义,熟练掌握定义是解题的关键.13.1; 0【解析】相反数等于本身的数有1个,是0.14.≤【分析】根据一个数a的相反数是非负数,那么这个数a是非正数,据此作答.【详解】a的相反数是非负数,∴a是非正数,即a≤0.【点睛】本题考查了相反数的意义,熟练掌握相反数的定义是解题的关键.-符号符号正数015.a【详解】略16.原点处【分析】根据相反数等于本身的数为0即可得到结果.【详解】a=-a表示有理数a的相反数是它本身,那么这样的有理数只有0,所以a=0,表示a的点在原点处.【点睛】本题考查的是相反数的定义,熟练掌握0的相反数是它本身是解题的关键. 17.【解析】考点:数轴;相反数.分析:先根据相反数的定义分别求出这四个数的相反数,再在数轴上找出对应的点即可.解答:如图所示:.点评:本题主要考查了相反数的定义及在数轴上表示点.18.-4【分析】互为相反数的两个数和为0,直接联立等式,使(a+12)+(-8+b)=0,得到a与b的和.【详解】∵a+12与-8+b互为相反数∴(a+12)+(-8+b)=0即a+12-8+b=0,即a+b=-4故答案为-4【点睛】本题考查的是相反数的概念,务必清楚互为相反数的两个数和为0.19.-4或2【分析】根据相反数之和为0,倒数之积等于1,可得a+b=0,cd=1,再根据绝对值的性质可得m=±3,然后代入计算即可.解:由题意可得:a+b=0,cd=1,m=±3,当m=3时,a+b-cd-m=0-1-3=-4,当m=-3时,a+b-cd-m=0-1-(-3)=2.【点睛】此题主要考查了代数式求值,关键是掌握相反数之和为0,倒数之积等于1.20.(1)﹣1,(2)正数,点C表示的数的绝对值最小,最小的绝对值是0.5.【分析】(1)根据相反数的概念,互为相反数的两个数到原点的距离相等,确定原点求解即可.(2)根据相反数的概念,互为相反数的两个数到原点的距离相等,确定原点求解即可.解:(1)因为点A、B表示的数是互为相反数,原点就应该是线段AB的中点,即在C点右边一格,C点表示数﹣1;(2)如果点D、B表示的数是互为相反数,那么原点在线段BD的中点,即C点左边半格,点C表示的数是正数;点C到原点的距离最近,点C表示的数的绝对值最小,最小的绝对值是0.5.。
人教版七年级上册数学1.2.3相反数练习题
初中数学组卷参考答案与试题解析一.选择题(共46小题)1.﹣的相反数是()A.2 B.﹣2 C.D.±【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:实数﹣的相反数是.故选C.【点评】本题考查了实数的性质,熟记相反数的定义是解题的关键.2.﹣2的相反数是()A.2 B.﹣2 C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.3.的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.4.﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.5.2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.6.﹣的相反数是()A.B.﹣C.2017 D.﹣2017【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:A.【点评】此题主要考查了相反数的定义,正确把握相反数的定义是解题关键.7.﹣的相反数是()A.B.C.D.﹣【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣与是只有符号不同的两个数,∴﹣的相反数是.故选C.【点评】本题考查的是相反数的定义,熟知只有符号不同的两个数叫互为相反数是解答此题的关键.8.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5 B.±0.5 C.﹣0.5 D.5【分析】根据相反数的定义求解即可.【解答】解:﹣0.5的相反数是0.5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.9.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.【点评】本题考查了相反数的概念:只有符号不同的两个数叫做互为相反数.10.若a的相反数是﹣3,则a的值为()A.1 B.2 C.3 D.4【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:a的相反数是﹣3,则a的值为3,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.11.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D【分析】相反数的定义:符号不同,绝对值相等的两个数叫互为相反数.根据定义,结合数轴进行分析.【解答】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.【点评】本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.12.已知﹣2的相反数是a,则a是()A.2 B.﹣ C.D.﹣2【分析】根据相反数的概念解答即可.【解答】解:∵﹣2的相反数是2,∴a=2.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.13.若实数a、b互为相反数,则下列等式中成立的是()A.a﹣b=0 B.a+b=0 C.ab=1 D.ab=﹣1【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:∵实数a、b互为相反数,∴a+b=0.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.14.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和 C.﹣2和﹣D.0和0【分析】根据只有符号不同的两个数叫做相反数对各选项分析判断即可得解.【解答】解:A、4和﹣(﹣4)=4,是相同的两个数,不是互为相反数,故本选项错误;B、﹣3和,不是互为相反数,故本选项错误;C、﹣2和﹣,不是互为相反数,故本选项错误;D、0和0是互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.15.a与﹣2互为相反数,则a为()A.﹣2 B.2 C.D.【分析】根据相反数的几何意义可知:互为相反数的两数之和为0,列出关于a 的方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a+(﹣2)=0,解得:a=2.故选B【点评】此题考查了相反数的定义,认识相反数应从两个角度出发:1、除0以外,相反数总是一正一负,成对出现;2、在数轴上表示互为相反数(除0外)的两个点分别在原点的两边,且到原点的距离相等.16.与﹣3的和为0的数是()A.3 B.﹣3 C.D.【分析】依据互为相反数的两数之和为0求解即可.【解答】解:﹣3+3=0,∴与﹣3的和为0的数是3.故选:A.【点评】本题主要考查的是相反数的性质,掌握互为相反数的两数之和为0是解题的关键.17.若x=﹣7,则﹣x的相反数是()A.+7 B.﹣7 C.±7 D.【分析】先根据x=﹣7求得﹣x=7,然后再来求7的相反数即可.【解答】解:﹣x的相反数是:﹣(﹣x)=x=﹣7.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.18.如果a与3互为相反数,那么a等于()A.3 B.﹣3 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:如果a与3互为相反数,那么a等于﹣3,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.若2(a+3)的值与4互为相反数,则a的值为()A.B.﹣5 C.﹣ D.﹣1【分析】依据相反数的定义列出关于a的方程求解即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)=﹣4,解得:a=﹣5.故选:B.【点评】本题主要考查的是相反数的定义,依据相反数的定义列出关于a的方程是解题的关键.20.如果a与8互为相反数,那么a是()A.B.﹣ C.8 D.﹣8【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:因为﹣8与8互为相反数,所以a为﹣8,故选D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.21.与﹣1的和等于零的数是()A.﹣1 B.0 C.1 D.【分析】依据互为相反数的两数之和为零求解即可.【解答】解:1与﹣1互为相反数,∴1与﹣1的和为零.故选:C.【点评】本题主要考查的是相反数的性质,掌握互为相反数的两数之和为0是解题的关键.22.若a与﹣2互为相反数,则a﹣1的值为()A.﹣3 B.﹣ C.﹣ D.1【分析】先依据相反数的定义求得a的值,然后再依据有理数减法法则计算即可.【解答】解:∵a与﹣2互为相反数,∴a=2,∴a﹣1=2﹣1=1.故选:D.【点评】本题主要考查的是相反数的定义,依据相反数的定义求得a的值是解题的关键.23.a与互为相反数,则a=()A.﹣2 B.2 C.D.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:∵a与互为相反数,∴a=﹣.故选C.【点评】本题考查了相反数,是基础题,熟记概念是解题的关键.24.若一个数的相反数是x﹣y,则这个数是()A.x﹣y B.x+y C.﹣x﹣y D.﹣x+y【分析】根据互为相反数的两数之和为0,即可得出答案.【解答】解:设这个数为A,则根据题意得:x﹣y+A=0,解得:A=﹣x+y.故选D.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.25.下列说法中正确的是()A.+(﹣3)的相反数是﹣3 B.﹣(+6)的相反数是﹣6C.整数的相反数一定是整数D.0没有相反数【分析】利用相反数的定义分别分析得出即可.【解答】解:A、+(﹣3)的相反数是3,故此选项错误;B、﹣(+6)的相反数是6,故此选项错误;C、整数的相反数一定是整数,正确;D、0的相反数是0,故此选项错误;故选:C.【点评】此题主要考查了相反数的定义,正确利用相反数的定义分析是解题关键.26.关于相反数的叙述错误的是()A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零【分析】根据相反数的概念解答即可.【解答】解:A、两数之和为0,则这两个数为相反数,故选项正确;B、如果两数所对应的点到原点的距离相等,这两个数互为相反数,故选项正确;C、符号相反的两个数,一定互为相反数,如5和﹣4,符号相反,它们不是相反数,故选项错误;D、零的相反数为零,故选项正确.故选C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.27.不等于0的两个数互为相反数,则它们()A.积为﹣1 B.积为1 C.商为﹣1 D.商为1【分析】根据相反数的性质求解即可.【解答】解:不等于0的两个数互为相反数,即a=﹣a,则a除以﹣a=﹣1,所以不等于0的两个数互为相反数,则它们商为﹣1.故选C【点评】本题主要考查互为相反数与互为倒数的概念.只有符号不同的两个数互为相反数;乘积是1的两个数互为倒数.28.下面各组数,互为相反数的是()A.B.3.14与﹣πC.D.3与|﹣3|【分析】根据相反数的定义对各项进行逐一分析即可.【解答】解:A、∵﹣0.25=﹣,∴与﹣0.25互为相反数,故本选项正确;B、∵﹣π≈3.14159…,∴3.14与﹣π不互为相反数,故本选项错误;C、∵﹣(﹣2)=2,+(﹣)=﹣,∴﹣(﹣2)与+(﹣)不互为相反数,故本选项错误;D、∵|﹣3|=3,∴3与|﹣3|不互为相反数,故本选项错误.故选A.【点评】本题考查的是相反数的定义,比较简单.29.下列化简错误的是()A.﹣(﹣5)=﹣5 B.﹣(+3.6)=﹣3.6 C.﹣[﹣(﹣4)]=﹣4 D.【分析】根据相反数的定义得到﹣5的相反数为5,即﹣(﹣5)=5;同理有﹣(+3.6)=﹣3.6;﹣[﹣(﹣4)]=﹣(+4)=﹣4;把+(﹣)写成简写形式为﹣.【解答】解:∵﹣(﹣5)=5;﹣(+3.6)=﹣3.6;﹣[﹣(﹣4)]=﹣(+4)=﹣4;+(﹣)=﹣,∴A选项中的化减简是错误的.故选A.【点评】本题考查了相反数:a的相反数为﹣a.30.有下列的表述:①与﹣0.5互为相反数;②1+与1﹣互为相反数;③﹣|+5|与+|﹣5|互为相反数;④0没有相反数;⑤正数的相反数是负数;其中说法正确的有()A.0个 B.1个 C.2个 D.3个【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数,根据相反数的定义,①③⑤是正确的.【解答】解:①=0.5,0.5与﹣0.5互为相反数;故正确.②1+=,1=,不是的相反数;故错误.③﹣|+5|=﹣5,+|+5|=5,所以﹣|+5|与+|﹣5|互为相反数;故正确.④0的相反数是0;故错误.⑤正数的相反数是负数;故正确.故选D.【点评】本题考查了相反数的定义,0的相反数是0;一般地,任意的一个有理数a,它的相反数是﹣a,a本身既可以是正数,也可以是负数,还可以是零.31.如图,在数轴上点A所表示的数的相反数是()A.﹣2 B.2 C.0.5 D.﹣0.5【分析】先根据图示的内容求出A表示的数的值,再求出其相反数即可.【解答】解:由题意可知,A=2,所以A的相反数为﹣2.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.32.下列各对数中,属于互为相反数的是()A.﹣2和B.2和C.2和|﹣2|D.2和﹣2【分析】相反数是只有符号不同的两个数,根据概念可找到答案.【解答】解:只要符号不同的两个数叫做相反数.2和﹣2互为相反数.故选D.【点评】本题考查相反数的概念,关键知道只有符号不同的两个数叫做相反数.33.若2与m互为相反数,则下列结论正确的是()A.2﹣m=0 B.C.2m=4 D.2+m=4【分析】此题只需先由2与m互为相反数求得m的值,然后再代入各式判断是否成立.【解答】解:由于2与m互为相反数,则2+m=0,m=﹣2.因此,2﹣m=4;;2m=﹣4;2+m=0.故选B.【点评】本题考查了相反数的定义及求解,关键是先求得m的值,再代入验证即可.34.已知a的相反数是4,则a﹣3的值为()A.﹣5 B.﹣7 C.1 D.【分析】根据相反数的定义求出a的值,然后代入进行计算即可求解.【解答】解:∵a的相反数是4,∴a=﹣4,∴a﹣3=﹣4﹣3=﹣7.故选B.【点评】本题主要考查了相反数的定义,有理数的加法运算,求出a的值是解题的关键.35.﹣5的相反数是a,则a是()A.5 B.C.D.﹣5【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣5的相反数为﹣(﹣5)=5,故a=5.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.36.已知a、b、c均为有理数,则a+b+c的相反数是()A.b+a﹣c B.﹣b﹣a﹣c C.﹣b﹣a+c D.b﹣a+c【分析】根据只有符号不同的数是互为相反数进行解答.【解答】解:a+b+c的相反数是﹣a﹣b﹣c.故选B.【点评】本题主要考查了相反数的定义,熟记概念,只有符号不同的两个数是互为相反数是解题的关键.37.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2b B.a+1和b+1 C.a+1和b﹣1 D.2a和2b【分析】若a,b互为相反数,则a+b=0,根据这个性质,四个选项中,两个数的和只要不是0的,一定不是互为相反数.【解答】解:∵a,b互为相反数,∴a+b=0.A中,﹣2a+(﹣2b)=﹣2(a+b)=0,它们互为相反数;B中,a+1+b+1=2≠0,即a+1和b+1不是互为相反数;C中,a+1+b﹣1=a+b=0,它们互为相反数;D中,2a+2b=2(a+b)=0,它们互为相反数.故选B.【点评】本题考查了互为相反数的意义和性质:只有符号不同的两个数互为相反数,0的相反数是0;一对相反数的和是0.38.如果a与﹣2互为相反数,那么﹣1的值是()A.﹣2 B.﹣l C.0 D.1【分析】首先算出﹣2的相反数,然后用代入法求出﹣1的值.【解答】解:∵a与﹣2互为相反数.∴a=2,把a=2代入代数式得.故选C.【点评】本题主要考查相反数的定义和性质.39.数轴上表示互为相反数的两点之间的距离是4,这两个数是()A.0和4 B.0和﹣4 C.2和﹣2 D.4和﹣4【分析】根据互为相反数的两个数的绝对值相等求解即可.【解答】解:4÷2=2,所以,这两个数是2和﹣2.故选C.【点评】本题考查了相反数的定义,数轴的知识,熟记互为相反数的两个数的绝对值相等是解题的关键.40.已知2x+4与﹣x﹣8互为相反数,则x的值为()A.4 B.﹣4 C.0 D.﹣8【分析】先根据2x+4与﹣x﹣8互为相反数可得出关于x的方程,求出x的值即可.【解答】解:∵2x+4与﹣x﹣8互为相反数,∴2x+4=﹣(﹣x﹣8),解得x=4.故选A.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.41.下列各对数中,不是相反数的是()A.﹣5.2与﹣[+(﹣5.2)]B.﹣14与(﹣1)4C.﹣(﹣8)与﹣|﹣8| D.+(﹣3)与﹣[﹣(﹣3)]【分析】根据相反数的定义对各选项进行逐一分析即可.【解答】解:A、∵﹣[+(﹣5.2)]=5.2,∴﹣5.2与﹣[+(﹣5.2)]互为相反数,故本选项错误;B、∵﹣14,=﹣1,(﹣1)4,=1,∴14与(﹣1)4互为相反数,故本选项错误;C、∵﹣(﹣8)=8,﹣|﹣8|=﹣8,8与﹣8为相反数,故本选项错误;D、∵+(﹣3)=﹣3,﹣[﹣(﹣3)]=﹣3,∴+(﹣3)与﹣[﹣(﹣3)]不互为相反数,故本选项正确.故选D.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.42.在+[﹣(﹣10)]、﹣(+0.1),+(+7)中,相反数为负数的个数是()A.1个 B.2个 C.3个 D.0个【分析】先化简,再根据互为相反数的定义找出相反数是负数的数即可.【解答】解:+[﹣(﹣10)]=10,相反数是﹣10是负数,﹣(+0.1)=﹣0.1,相反数是0.1,是正数,+(+7)=7,相反数是﹣7,是负数,所以,相反数为负数的个数是2.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.43.一个数在数轴上所对应的点向左移2008个单位后,得到它的相反数对应的点,则这个数是()A.2008 B.﹣2008 C.1004 D.﹣1004【分析】设这个数是x,根据向左移减表示出它的相反数,然后列方程求解即可.【解答】解:设这个数是x,根据题意得,x﹣2008=﹣x,解得x=1004.故选C.【点评】本题考查了相反数的定义,以及数轴上的点向左移用减,列出方程是解题的关键.44.若2m﹣1与﹣m+3互为相反数,则m的值是()A.﹣2 B.C.﹣3 D.【分析】根据相反数的定义得到2m﹣1+(﹣m+3)=0,然后解关于m的方程即可.【解答】解:∵2m﹣1与﹣m+3互为相反数,∴2m﹣1+(﹣m+3)=0,即2m﹣1﹣m+3=0,∴m=﹣2.故选A.【点评】本题考查了相反数:a的相反数为﹣a;0的相反数为0.45.下列各组代数式中互为相反数的有()(1)a﹣b与﹣a﹣b;(2)a+b与﹣a﹣b;(3)a+1与1﹣a;(4)﹣a+b与a﹣b.A.(1)(2)(4)B.(2)与(4)C.(1)(3)(4)D.(3)与(4)【分析】互为相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:(1)中,﹣a﹣b=﹣(a+b),它和a﹣b不是互为相反数,错误;(2)中,﹣a﹣b=﹣(a+b),它和a+b是互为相反数,正确;(3)中,1﹣a=﹣(a﹣1),它和a+1不是互为相反数,错误;(4)中,﹣a+b=﹣(a﹣b),它和a﹣b互为相反数,正确.所以互为相反数的有(2)与(4).故选B.【点评】本题主要考查两个代数式互为相反数的条件:一个多项式的各项分别和另一个多项式的各项互为相反数,则这两个代数式也互为相反数.46.在+|﹣3|与﹣3、﹣(+2)与+2、﹣|﹣5|与+(﹣5)、﹣(+7)与+(﹣7)、+(+7)与+(﹣7).这几对数中,互为相反数的有()A.6对 B.5对 C.4对 D.3对【分析】先将各数化简,然后根据相反数的定义,进行判断即可.【解答】解:+|﹣3|=3,3与﹣3互为相反数;﹣(+2)=﹣2,﹣2与+2互为相反数;﹣|﹣5|=﹣5,+(﹣5)=﹣5,﹣5与﹣5不是相反数;﹣(+7)=﹣7,+(﹣7)=﹣7,﹣7与﹣7不是相反数;+(+7)=7,+(﹣7)=﹣7,7与﹣7是相反数.综上可得互为相反数的有3对.故选D.【点评】本题考查了相反数的定义,注意互为相反数的两数之和为0.。
人教版七年级上册数学第一章相反数复习题含答案
人教版七年级上册数学第一章相反数复习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. −5的相反数是()A.−5B.5C.15D.−152. −0.2的相反数是()A.0.2B.±0.2C.−0.2D.23. 一个数的相反数是它本身,则这个数是()A.0B.正数C.负数D.非负数4. 2020的相反数是( )A.−2020B.2020C.202D.120205. |−13|的相反数是()A.|13| B.−13C.3D.−36. 下列不是具有相反意义的量的是()A.收入5000元与支出5000元B.上升5m和下降5mC.身高增加2cm和体重减少2kgD.提前2min与迟到2min7. |−2|的相反数是()A. B.−2 C. D.28. −2的相反数是()A.−2B.2C.12D.−129. −3的相反数是( )A.−3B.3C.−13D.1310. −3的相反数是( )A.±3B.3C.−3D.1311. 有理数2的相反数是________.12. 2的相反数是________.13. 如果代数式2+x 和3+x 互为相反数,那么x =________.14. 若|a −1|与|b +2|互为相反数,则(a +b )2021的值为________.15. 已知代数式6x −12与4+2x 的值互为相反数,那么x 的值等于________.16. 若a ,b 互为相反数,则a 2−b 2=________.17. 绝对值小于2016的所有的整数的和________.18. a 与b 互为相反数,则 a 3+2a 2b +ab 2=_________.19. −3的相反数是________,−2018的倒数是________.20. 已知a ,b 互为相反数,则a +2a +3a+...+49a +50a +50b +49b+...+3b +2b +b =________.21. 20190的相反数是________.22. 已知关于x ,y 的二元一次方程组{−2x −y =m,x +2y =−1的解中的两个数值互为相反数,求m 2020−m 的值.23.已知a 、b 互为相反数,c 、d 互为倒数, |m −3|+|2n −4|=0,x 的绝对值为2.+10x求mn2018(a+b)+12cd24. 化简下列各式.①−(−5);②−(+5);③−[−(+5)];④−{−[−(+5)]}.25. 若−x=−[−(−2)],求x的相反数.26. 化简下列各式的符号,并回答问题:(1)−(−2););(2)+(−15(3)−[−(−4)];(4)−[−(+3.5)];(5)−{−[−(−5)]};(6)−{−[−(+5)]}.问:①当+5前面有2014个负号,化简后结果是多少?②当−5前面有2015个负号,化简后结果是多少?你能总结出什么规律?27. 某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)−4,+7,−9,+8,+6,−5,−2(1)求收工时距A地多远?在A地的什么方向?(2)在第几次纪录时距A地最远,并求出最远距离.(3)若每千米耗油0.3升,问共耗油多少升?28. 有三个同学在一起讨论−a到底是个什么数,甲同学说−a是正数,乙同学说−a是零,丙同学说−a是负数,你认为谁说得对呢?为什么?29. (1)填空:−(+2.5)=________,−(−2.5)=________,−[−(+2.5)]=________,−[+(−2.5)]=________,+[+(−2.5)]=________,+[+(+2.5)]=________ 29. (2)你发现了什么规律?30. 已知3m−2与−7互为相反数,求m的值.参考答案与试题解析人教版七年级上册数学第一章相反数复习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】相反数【解析】此题暂无解析【解答】解:只有符号不同的两个数称互为相反数,所以−5的相反数是5.故选B.2.【答案】A【考点】相反数相反数的意义【解析】该题主要考查了相反数的判断.【解答】解:由于只有符号不同的两个数互为相反数,因此−0.2的相反数为0.2,故选A.3.【答案】A【考点】相反数的意义相反数【解析】此题暂无解析【解答】利用相反数的定义判断即可得出结果一个数的相反数是它本身,则这个数为0.故本题答案为:A4.【答案】A【考点】相反数【解析】此题暂无解析【解答】解:只有符号不同的数叫做互为相反数. 2020的相反数是−2020.故选A.5.【答案】B【考点】相反数【解析】此题暂无解析【解答】解:∵|−13|=13,而13的相反数是−13,∴|−13|的相反数是−13.故选B.6.【答案】C【考点】相反数的意义【解析】根据相反意义的量进行判断即可.【解答】解:C中身高增加和体重减少研究的不是同一事件,不具有相反意义. 故选C.7.【答案】B【考点】相反数绝对值相反数的意义【解析】试题分析:|−2|=2,则2的相反数为−2.【解答】此题暂无解答8.【答案】B【考点】相反数【解析】此题暂无解析【解答】故选B.9.【答案】B【考点】相反数【解析】直接利用相反数的定义分析得出答案.【解答】解:−3的相反数是:3.故选B.10.【答案】B【考点】相反数相反数的意义多边形内角与外角【解析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:−3的相反数是3.故选:B.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−2【考点】相反数相反数的意义多边形内角与外角【解析】由相反数的定义:“只有符号不同的两个数互为相反数“可知,2的相反数是−2.【解答】此题暂无解答12.【答案】−2【考点】相反数【解析】根据相反数的性质,互为相反数的两个数和为0,由此求解即可.【解答】解:只有符号不同的两个数叫做互为相反数,互为相反数的两个数和为0.故答案为:−2.13.【答案】−2.5【考点】相反数【解析】因为互为相反数的两个数相加得0,所以让两个代数式相加得0,即可求出x的值. 【解答】解:∵ 2+x与3+x互为相反数,∴ 根据相反数的性质得,2+x+3+x=0,解得x=−2.5.故答案为:−2.5.14.【答案】−1【考点】非负数的性质:绝对值相反数的意义【解析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵|a−1|与|b+2|互为相反数,∴|a−1|+|b+2|=0,∵|a−1|≥0,|b+2|≥0,∴a−1=0,b+2=0,解得a=1,b=−2,所以,(a+b)2021=(1−2)2021=−1.故答案为:−1.15.【答案】1【考点】相反数的意义【解析】此题暂无解析【解答】解:6x−12+4+2x=0,8x=8,x=1.故答案为:1.16.【答案】【考点】相反数【解析】此题暂无解析【解答】解:若a、b互为相反数,则a+b=0,a2−b2=(a+b)(a−b)=0.故答案为:0.17.【答案】【考点】相反数【解析】绝对值小于2016的所有整数为:−2015⋯,0,....2015,故−2015+(−2014)+(−2013+⋯+2013+2014+2015=′′′(−2015+2015)+(−202014)+(−2013+2013)+⋯+(−1(+1=0故答案为:0.【解答】此题暂无解答18.【答案】【考点】相反数的意义因式分解的应用【解析】本题主要考查相反数的概念以及因式分解问题.【解答】解:a3+2a2b+ab2=(a3+a2b)+(a2b+ab2)=a2(a+b)+ab(a+b)=(a+b)(a2+ab)=a(a+b)2∵a,b互为相反数∴a+b=0∴a3+2a2b+ab2=0故答案为:0.19.【答案】3,−12018【考点】倒数相反数相反数的意义【解析】利用有理数的相反数和倒数的——求解即可.【解答】解:−3的相反数是3,-2018的倒数是________1201820.【答案】【考点】相反数【解析】根据相反数的概念,a +b =0,继而可求出a +2a +3a+...+49a +50a +50b +49b+...+3b +2b +b =(a +b)+2(a +b)+3(a +b)+...+50(a +b)=0.【解答】解:∵ a ,b 互为相反数,∴ a +b =0.∴ a +2a +3a+...+49a +50a +50b +49b+...+3b +2b +b=(a +b)+2(a +b)+3(a +b)+...+50(a +b)=0.故答案为:0.三、 解答题 (本题共计 10 小题 ,每题 10 分 ,共计100分 )21.【答案】−1【考点】相反数【解析】此题暂无解析【解答】解:因为20190=1,所以1的相反数为−1,故答案为:−1.22.【答案】解:∵ 二元一次方程组的解中的两个数值互为相反数,∴ y =−x ,代入原方程组可得{−x =m,x =1,∴ m =−1.故m 2020−m =(−1)2020−(−1)=1+1=2.【考点】相反数的意义代入消元法解二元一次方程组二元一次方程组的解【解析】由二元一次方程组的解中的两个数值互为相反数,可得y =−x ,代入原方程组可得{−x =m x =1, 得出m 的值,代入m 2020−m 可得出答案.【解答】解:∵ 二元一次方程组的解中的两个数值互为相反数,∴ y =−x ,代入原方程组可得{−x =m,x =1,∴ m =−1.故m 2020−m =(−1)2020−(−1)=1+1=2.23.【答案】解:∵ a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为2,∴ a +b =0,cd =1,x =±2,∵ |m −3|+|2n −4|=0且|m −3|≥0,|2n −4|≥0,∴ m −3=0,2n −4=0,∴ m =3,2n =4,∴ m =3,n =2,∴ 当x =2时,原式=2012,当x =−2时,原式=−1912,∴ 原式=2012或−1912. 【考点】相反数的意义列代数式求值倒数相反数【解析】此题暂无解析【解答】解:∵ a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为2,∴ a +b =0,cd =1,x =±2,∵ |m −3|+|2n −4|=0且|m −3|≥0,|2n −4|≥0,∴ m −3=0,2n −4=0,∴ m =3,2n =4,∴ m =3,n =2,∴ 当x =2时,原式=2012,当x =−2时,原式=−1912,∴ 原式=2012或−1912. 24.【答案】解:①−(−5)=5;②−(+5)=−5;③−[−(+5)]=5;④−{−[−(+5)]}=−5.【考点】相反数【解析】根据去括号的法则,可得化简后的数.【解答】解:①−(−5)=5;②−(+5)=−5;③−[−(+5)]=5;④−{−[−(+5)]}=−5.25.【答案】解:∵ −x =−[−(−2)],∴ −x =−2,即x 的相反数为−2.【考点】相反数【解析】先根据多重符号的化简方法得出−[−(−2)]=−2,即−x =−2,即可求解.【解答】解:∵ −x =−[−(−2)],∴ −x =−2,即x 的相反数为−2.26.【答案】解:(1)−(−2)=2;(2)+(−15)=−15;(3)−[−(−4)]=−4;(4)−[−(+3.5)]=+3.5;(5)−{−[−(−5)]}=5;(6)−{−[−(+5)]}=−5.①当+5前面有2014个负号,化简后结果是+5;②当−5前面有2015个负号,化简后结果是+5,规律:在一个数的前面有偶数个负号,化简结果是本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.【考点】相反数【解析】根据相反数的概念进行化简;①根据相反数的性质进行解答;②根据相反数的性质解答.【解答】解:(1)−(−2)=2;(2)+(−15)=−15;(3)−[−(−4)]=−4;(4)−[−(+3.5)]=+3.5;(5)−{−[−(−5)]}=5;(6)−{−[−(+5)]}=−5.①当+5前面有2014个负号,化简后结果是+5;②当−5前面有2015个负号,化简后结果是+5,规律:在一个数的前面有偶数个负号,化简结果是本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.27.【答案】解:(1)根据题意列式−4+7−9+8+6−5−2=1km .答:收工时距A 地1km ,在A 的东面.(2)由题意得,第一次距A 地|−4|=4千米;第二次距A 地|−4+7|=3千米;第三次距A 地|−4+7−9|=6千米;第四次距A 地|−4+7−9+8|=2千米;第五次距A 地|−4+7−9+8+6|=8千米;第六次距A 地|−4+7−9+8+6−5|=3千米;第五次距A 地|−4+7−9+8+6−5−2|=1千米;所以在第五次纪录时距A 地最远,最远为8km .(3)根据题意得检修小组走的路程为:|−4|+|+7|+|−9|+|+8|+|+6|+|−5|+|−2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升.【考点】绝对值的意义相反数的意义有理数的加减混合运算绝对值正数和负数的识别【解析】(2)收工时距A 地的距离等于所有记录数字的和的绝对值;(1)分别计算每次距A 地的距离,进行比较即可;(3)所有记录数的绝对值的和×0.3升,就是共耗油数.【解答】(1)根据题意列式−4+7−9+8+6−5−2=1km.答:收工时距A地1km,在A的东面.(2)由题意得,第一次距A地|−4|=4千米;第二次距A地|−4+7|=3千米;第三次距A地|−4+7−9|=6千米;第四次距A地|−4+7−9+8|=2千米;第五次距A地|−4+7−9+8+6|=8千米;第六次距A地|−4+7−9+8+6−5|=3千米;第五次距A地|−4+7−9+8+6−5−2|=1千米;所以在第五次纪录时距A地最远,最远为8km.(3)根据题意得检修小组走的路程为:|−4|+|+7|+|−9|+|+8|+|+6|+|−5|+|−2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升.28.【答案】解:由有理数的分类可知,字母a除了可以表示正数和负数外,还可以表示有理数0.【考点】相反数【解析】根据负数的相反数为正数,正数的相反数为负数,0的相反数为0,可知:若a是负数,则−a是正数;若a是0,则−a是0;若a是正数,则−a是负数.【解答】解:由有理数的分类可知,字母a除了可以表示正数和负数外,还可以表示有理数0.29.【答案】−2.5,2.5,2.5,2.5,−2.5,2.5(2)规律:化简的结果只与负号的个数有关,当负号的个数是奇数时,结果是负数,负号的个数是偶数时,结果是正数.【考点】相反数【解析】(1)根据相反数的定义分别化简即可得解;(2)从负号的个数与结果考虑解答.【解答】解:(1)−(+2.5)=−2.5,−(−2.5)=2.5,−[−(+2.5)]=2.5,−[+(−2.5)]=2.5,+[+(−2.5)]=−2.5,+[+(+2.5)]=2.5;(2)规律:化简的结果只与负号的个数有关,当负号的个数是奇数时,结果是负数,负号的个数是偶数时,结果是正数.30.【答案】解:∵3m−2与−7互为相反数,∴(3m−2)+(−7)=0,解得m=3.【考点】相反数【解析】根据互为相反数的两个数的和等于0列出方程求解即可.【解答】解:∵3m−2与−7互为相反数,∴(3m−2)+(−7)=0,解得m=3.。
人教版七年级数学上册 1.2.3相反数 课后练习(含答案)
第1章 有理数 1.2.3相反数一、选择题1.有理数-13的相反数为( ) A .-3 B .-13 C.13 D .32.在1,-1,3,-2这四个数中,互为相反数的是( )A .1与-1B .1与-2C .3与-2D .-1与-23.-(-2)等于( )A .-2B .2 C.12 D .±24.A ,B 是数轴上的两点,线段AB 上的点表示的数中,有互为相反数的是( )5.下列关于相反数的说法正确的是( )A .-15和0.2不互为相反数 B .相反数一定是不相等的两个数C .任何一个有理数都有相反数D .正数与负数互为相反数6.下列各组数中,不相等的是( )A .-(+8)和+(-8)B .-5和-(+5)C .+(-7)和-7D .+(-23)和+23二、填空题7.点A ,B ,C ,D 在数轴上的位置如图所示,其中-2的相反数所对应的点是________.8.(1)-5.4的相反数是________;(2)-(-8)的相反数是________;(3)若a =-a ,则a =________.9.a 的相反数是-9,则a =________.10.若x-1与-5互为相反数,则x的值为________.11.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为4个单位长度,则这个数为________.12.化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________.三、解答题13.如图,数轴上每相邻两刻度之间的距离为1个单位长度,请回答下列问题:(1)如果点A,B表示的数互为相反数,那么点C表示的数是多少?(2)如果点E,B表示的数互为相反数,那么点C表示的数是多少?图中其他点表示的数分别是多少?链接听P4例2归纳总结14.规律探索化简下列各数:(1)-(-2);(2)+(-15 );(3)-[-(-4)];(4)-[-(+3.5)];(5)-{-[-(-5)]};(6)-{-[-(+5)]}.问题:当+5前面有2019个负号时,化简后的结果是多少?当-5前面有2020个负号时,化简后的结果是多少?你能总结出什么规律?参考答案1.C 2.A 3.B 4.B5.C 6.D 7.点B8.(1)5.4 (2)-8 (3)09.910.6 [解析] 因为x -1与-5互为相反数,由于-5的相反数是5,所以x -1=5,解得x =6.11.2或-2 [解析] 由题意知这个数到原点的距离为2,所以这个数为2或-2.12.(1)-3 (2)3 (3)3 (4)-3 (5)3(6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.13.解:(1)若点A ,B 表示的数互为相反数,则到A ,B 两点距离相等的点O 是原点,如图.故点C 表示的数是-1.(2)如果点E ,B 表示的数互为相反数,那么到E ,B 两点距离相等的点C 是原点,故点C 表示的数是0,点D 表示的数是-5,点E 表示的数是-4,点A 表示的数是-2,点B 表示的数是4.14.解:(1)-(-2)=2;(2)+(-15)=-15; (3)-[-(-4)]=-4;(4)-[-(+3.5)]=3.5;(5)-{-[-(-5)]}=5;(6)-{-[-(+5)]}=-5.当+5前面有2019个负号时,化简后的结果是-5;当-5前面有2020个负号时,化简后的结果是-5.规律:在一个数的前面有偶数个负号时,化简后的结果是它本身;在一个数的前面有奇数个负号时,化简后的结果是它的相反数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.3 相反数姓名
一.填空题:
1.-(+5)表示___的相反数,即-(+5)=___;
-(-5)表示___的相反数,即-(-5)=___。
5的相反数是___;0的相反数是___。
3的相反数是___;2.-7 3.化简下列各数:3)=___-(+0.75)=___-(--(-68)=___5-(+3.8)=_
__+(-3)=___+(+6)=___
4.-(-3)的相反数是___。
5.已知数轴上A.B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,
则点A.B表示的数分别是___。
6.已知a与b互为相反数,b与c互为相反数,且c=-6,则a=___。
7.一个数a的相反数是非负数,那么这个数a与0的大小关系是a___0.
8.数轴上A点表示-3,B.C两点表示的数互为相反数,且点B到点A的距离是2,
则点C表示的数应该是___。
9.只有__________的两个数,叫做互为相反数.0的相反数是_______.
31?;______互为相反数.与;10.+5的相反数是____________的相反数是-2.3
5x?x______?______xx?;若,则.的相反数是-11.若3的相反数是-,则5.74?a?________??a,则.若.12????????________???6??____???1.33??,.化简下列各
数:,.131??a?a2.3?1a??__?a?_______________?a?_,.15若,则若;;,则若
3?a?a2?a??a?_______________a?a?.;若,则,那么;如果则16.数轴上离开原点4.5个单位长度的点所表示的数是______,它们是互为______.
aa b?a?bb的点到原点的距,那么在数轴上表示数表示有理数,且17.若.与数离______ (填序号).
a b的点到原点的距离远②表示数①表示数的点到原点的距离较远
③一样远④无法比较
x?3x?______.与-1互为相反数,则.18a?1n?1的相反数________19..的相反数________,1
20.在数轴上,若点A和点B分别表示互为相反数的两个数,并且这两点间的距离
是12.8,则这两点所表示的数分别是________,________
二.选择题
20.下列说法中正确的是()
1?3与+3互为相反数A.-1是相反数31152???的相反数为DC .与.互为相反数445221.写出下列各数的相反数,并在数轴上把这些相反数表示出来:
13?,-(+2)1),.,-+23,0,-(-222.下列说法中正确的是()
A.正数和负数互为相反数B.任何一个数的相反数都与它本身不相同
C.任何一个数都有它的相反数D.数轴上原点两旁的两个点表示的数互为相反数
23.下列结论正确的有()
①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它
们一定异号。
A .2个B.3个C.4个D.5个
1.(2009年,河南)-5的相反数是()
11?C.-5 B.D.A.5 5524.(2009年,杭州)如果a+b=0,那么a,b两个有理数一定是()
A.都等于0 B.一正一负C.互为相反数D.互为倒数
(原题是“那么两个实数一定是”此处改为“两个有理数是”)
25.下列说法正确的是()
23?.B互为相反数与.-A5是相反数231?的相反数是D.2 4 C.-是4的相反数226.下列说法中错误的是()
A.在一个数前面添加一个“-”号,就变成原数的相反数
11?与2.2互为相反数B.5C.如果两个数互为相反数,则它们的相反数也互为相反数
1的相反数是-.D0.3 3
2
27.下列说法中正确的是()
A.符号相反的两个数是相反数B.任何一个负数都小于它的相反数
D.0没有相反数C.任何一个负数都大于它的相反数x y2互为相反数,那么(与28.如果)x?020y?0y?0x?2y??x?2y0x?2 D B.A.C..,
29.下列各对数中,互为相反数的有()
(-1)与+(-1),+(+1)与-1,-(-2)与+(-2),+[-(+1)]与-[+(-1)],11????????????.与,-(+2)与-(-2)33???? D.3对A.6对B.5对C.4对
三、解答题
x y在数轴上对应点如图所示:.30.有理数
x y0
x?y?;在数轴上表示.(1)
xx?yy?>”号连接起来...0.这五个数从大到小用“(2) 试把.
a的点在数轴上的什么位置?-.如果a=a,那么表示31
3。