混凝土抗冻性能影响因素

混凝土抗冻性能影响因素
混凝土抗冻性能影响因素

混凝土抗冻性能影响因素

水库、水闸、渡槽等水位波动区域的商品混凝土,在正负温交替变化情况下会因频繁冻融循环而受到剥蚀。现针对这种冻融剥蚀的破坏机理,分析影响商品混凝土抗冻性能的几种因素,并列举在工程上的应用实例以说明可以正确规避相关因素的影响,防止商品混凝土因频繁冻融而受到剥蚀。

近年来,随着人们对商品混凝土耐久性认识的日益提高,在各种设计规程中,均把耐久性列为商品混凝土的一项重要指标,尤其在一些大中型工程中,更加重视商品混凝土的耐久性问题。耐久性指标包括抗冻性、抗渗性、抗碳化、抗氯离子侵蚀、抗硫酸盐侵蚀等,各项指标之间密切相关,本文主要探讨的是抗冻性能。

根据现有研究成果,商品混凝土冻融破坏机理是:在0°C以下时,冻害从温度较低的表层开始,表层毛细管中的水先冻结,伴随这种相变产生膨胀压力;剩余的水分迁移至附近的孔隙和毛细管中,在水的运动过程中,产生液体压力;随温度的进一步降低,内部商品混凝土与孔径更小孔隙中的水分也开始冻结,商品混凝土体积持续膨胀。解冻后,有一部分膨胀仍然残留下来,产生冻融劣化,硬化水泥石的组织结构发生破坏,动弹性模量下降,抗拉强度降低,严重的时候产生剥蚀破坏。

1 影响因素分析

通过一组试验,我们来分析各种因素对商品混凝土抗冻性能的影响,找出提高商品混凝土抗冻性能的有效方法。

普通混凝土配合比设计方法及例题

普通混凝土配合比设计方法[1] 一、基本要求 1.普通混凝土要兼顾性能与经济成本,最主要的是要控制每立方米胶凝材料用量及水泥用量,走低水胶比、大掺合料用量、高砂率的设计路线; 2.普通塑性混凝土配合比设计时,主要参数参考下表 ; ②普通混凝土掺合料不宜使用多孔、含碳量、含泥量、泥块含量超标的掺合料; ③确保外加剂与水泥及掺合料相容性良好,其中重点关注缓凝剂、膨胀剂等与水泥及掺合料的相容性,相容性不良的外加剂,不得用于配制混凝土; 3 设计普通混凝土配合比时,应用excel编计算公式,计算过程中通过调整参数以符合表1给出的范围。

2 术语、符号 2.1 术语 2.1.1普通混凝土ordinary concrete 干表观密度为2000~2800kg/m3的水泥混凝土。 2.1.2 干硬性混凝土stiff concrete 拌合物坍落度小于10mm且须用维勃时间(s)表示其稠度的混凝土。 2.1.3塑性混凝土plastic concrete 拌合物坍落度为10mm~90mm的混凝土。 2.1.4流动性混凝土pasty concrete 拌合物坍落度为100mm~150mm的混凝土。 2.1.5大流动性混凝土flowing concrete 拌合物坍落度不小于160mm的混凝土。 2.1.6抗渗混凝土impermeable concrete 抗渗等级不低于P6的混凝土。 2.1.7抗冻混凝土frost-resistant concrete 抗冻等级不低于F50的混凝土。 2.1.8高强混凝土high-strength concrete 强度等级不小于C60的混凝土。 2.1.9泵送混凝土pumped concrete 可在施工现场通过压力泵及输送管道进行浇筑的混凝土。 2.1.10大体积混凝土mass concrete 体积较大的、可能由胶凝材料水化热引起的温度应力导致有害裂缝的结构混凝土。 2.1.11 胶凝材料binder 混凝土中水泥和矿物掺合料的总称。 2.1.12 胶凝材料用量binder content 混凝土中水泥用量和矿物掺合料用量之和。 2.1.13 水胶比water-binder ratio 混凝土中用水量与胶凝材料用量的质量比。 2.1.14 矿物掺合料掺量percentage of mineral admixture 矿物掺合料用量占胶凝材料用量的质量百分比。 2.1.15 外加剂掺量percentage of chemical admixture 外加剂用量相对于胶凝材料用量的质量百分比。

混凝土抗冻性的主要影响因素及改善措施

混凝土抗冻性的主要影响因素及改善措施

————————————————————————————————作者:————————————————————————————————日期:

本文探讨了影响混凝土抗冻性的主要影响因素,并讨论了改善混凝土抗冻性的技术措施。 关键词:混凝土;抗冻性 伴随着我国经济建设的突飞猛进,人民生活水平的日益提高,我国的公路交通事业得到了迅速的发展,公路建设开创了崭新的局面。由于水泥混凝土路面具有强度高,稳定性好,耐久性好,造价适当,养护维修费用小,及利于夜间行车等诸多优点被越来越多应用于我国的道路建设中。水泥混凝土能否在设计年限内正常使用,取决于其耐久性能的优劣。而北方地区的混凝土的抗冻能力将直接影响整个路面结构的耐久性。耐久性是否得到保证是个关键问题。耐久性是关于整个使用寿命期间的问题,它不仅是近年来混凝土材料科学研究的焦点,而且是我国大规模公路建设期间确保混凝上结构工程质量的核心问题。百年大计,质量为本,公路工程必须对混凝土的耐久性能提出更高、更严格的切合实际的技术要求。 一、影响混凝土抗冻性的主要因素 1、含气量 含气量也是影响混凝土抗冻性的主要因素,尤其是加入引气剂形成的微小气孔对提高混凝土抗冻性史为重要。为使混凝土具有较好的抗冻性,其最佳含气量约为5%~6%。加气的混凝土不仅从耐久性的观点看是有益的,而且从改善和易性的观点看也是有利的。混凝

土中加气与偶然截留的空气不同,加气的气泡直径的数量级为0. 05mm,而偶然截留的空气一般都形成大得多的气泡。加气在水泥浆中形成彼此分离的孔隙,因此不会形成连通的透水孔道,这样就不会增加混凝土的渗透性。这些互不连通的微细气孔在混凝土受冻初期能使毛细孔中的静水压力减小,即起到减压作用。在混凝土受冻结冰过程中,这些孔隙可阻止或抑制水泥浆中微小冰体的生成。为使混凝土具有较好的抗冻性,还必须保证气孔在砂浆中分布均匀。 含气量测定是混凝土是否具有抗冻融性能的“传感器”。含气量增加,平均孔隙间距减小。在最佳含气量条件下,孔隙间距将会防止冻融造成的压力过大。研究表明,混凝土中含气量合适,抗冻性可大为提高。滑模混凝土的含气量在4%左右时,抗冻标号可达500次左右冻融循环,达到超抗冻性混凝土要求。若要求粉煤灰的混凝土达到4%含气量,应视粉煤灰掺量成倍增大引气剂量。此时粉煤灰混凝土的抗冻性也能达到300次以上冻融循环,能达到高抗冻性的要求。 为满足混凝土抗冻性和抗盐性要求,各国都提出了适宜含气量的推荐值,一般均在3%-6%之间,集料的最大粒径增大,含气量小。根据混凝土抗冻性机理研究得到的最大气泡间距系数应为0.25mm,对应的最小拐点(临界)含气量3%。引气剂质量较好,气泡越小、表面积越大,临界含气量有减小趋势。实验表明,当混凝土含气量超过6%后,抗冻性不再提高。 2、水灰比

混凝土抗冻等级

创作编号:BG7531400019813488897SX 创作者:别如克* 混凝土抗冻等级 混凝土抗冻性一般以抗冻等级表示。抗冻等级是采用龄期28d的试块在吸水饱和后,承受反复冻融循环,以抗压强度下降不超过25%,而且质量损失不超过5%时所能承受的最大冻融循环次数来确定的。GBJ50164—92将混凝土划分为以下抗冻等级:F10、F15、F25、F50、F100、F150、F200、F250、F300等九个等级,分别表示混凝土能够承受反复冻融循环次数为10、15、25、50、100、150、200、250和300次。抗冻等级≥F50的混凝土称为抗冻混凝土。 抗渗等级是以28d龄期的标准试件,按标准试验方法进行试验时所能承受的最大水压力来确定。GB 50164《混凝土质量控制标准》根据混凝土试件在抗渗试验时所能承受的最大水压力,混凝土的抗渗等级划分为P4、P6、P8、P10、P12等五个等级,相应表示能抵抗0.4、0.6、0.8、1.0及1.2MPa 的静水压力而不渗水,抗渗等级≥P6的混凝土为抗渗混凝土。维勃稠度法采用维勃稠度仪测定。其方法是:开始在坍落度

筒中按规定方法装满拌合物,提起坍落度筒,在拌合物试体顶面放一透明圆盘,开启振动台,同时用秒表计时,当振动到透明圆盘的底面被水泥浆布满的瞬间停止计时,并关闭振动台。由秒表读出时间即为该混凝土拌合物的维勃稠度值,精确至1s。混凝土拌合物流动性按维勃稠度大小,可分为4级:超干硬性(≥31 s);特干硬性(30~21 s);干硬性(20~11 s);半干硬性(10~5 s)。 创作编号:BG7531400019813488897SX 创作者:别如克*

混凝土配合比设计 继续教育

试题 第1题 抗冻混凝土应掺()外加剂。 A.缓凝剂 B.早强剂 C.引气剂 D.膨胀剂 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第2题 一般地,混凝土强度的标准值为保证率为()的强度值。 A.50% B.85% C.95% D.100% 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第3题 进行混凝土配合比配置强度计算时,根据统计资料计算的标准差,一般有 ()的限制。 A.最大值 B.最小值 C.最大值和最小值 D.以上均不对 答案:B 您的答案:B 题目分数:2 此题得分:2.0

批注: 第4题 在混凝土掺加粉煤灰主要为改善混凝土和易性时,应采用()。 A.外加法 B.等量取代法 C.超量取代法 D.减量取代法 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第5题 进行水下混凝土配合比设计时,配制强度应比相对应的陆上混凝土()。 A.高 B.低 C.相同 D.以上均不对 答案:A 您的答案:A 题目分数:2 此题得分:2.0 批注: 第6题 大体积混凝土中,一定不能加入的外加剂为()。 A.减水剂 B.引气剂 C.早强剂 D.膨胀剂 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第7题

在配制混凝土时,对于砂石的选择下列说法正确的是()。 A.采用的砂粒较粗时,混凝土保水性差,宜适当降低砂率,确保混凝土不离析 B.采用的砂粒较细时,混凝土保水性好,使用时宜适当提高砂率,以提高拌合物和易性 C.在保证混凝土不离析的情况下可选择中断级配的粗骨料 D.采用粗细搭配的集料可使混凝土中集料的总表面积变大,减少水泥用量,且混凝土密实 答案:C 您的答案:C 题目分数:2 此题得分:2.0 批注: 第8题 抗冻混凝土中必须添加的外加剂为()。 A.减水剂 B.膨胀剂 C.防冻剂 D.引气剂 答案:D 您的答案:D 题目分数:2 此题得分:2.0 批注: 第9题 高性能混凝土中水泥熟料中铝酸三钙含量限制在6%~12%的原因是()。 A.铝酸三钙含量高造成强度降低 B.铝酸三钙容易造成闪凝 C.铝酸三钙含量高易造成混凝土凝结硬化快 D.铝酸三钙含量高易造成体积安定性不良 答案:C 您的答案:B 题目分数:2 此题得分:0.0 批注: 第10题 抗渗混凝土中必须添加的外加剂为()。 A.减水剂

抗冻混凝土配合比计算

抗冻混凝土配合比计算

1.准备资料 在进行配合比设计前应搜集F列资料:现场使用材料的规格和品质;混凝土浇筑养护期间(当使用普通硅酸盐水泥时为3d;当使用矿滋水泥时为5d}几天内的H平均气温; 没计对混凝土的强度等级、扰潅或抗冻等级婆求;施工对石子粒径、混凝土稠度的要求以及反映施工单位质金管理水平的强度标准差。 2.确定配制强度 当混凝土强度的保证率为95%时,混凝上的配制强度按下式计算: /F= ∕cu,k+ l?645σ(10-39)式中∕f—混凝土配制强度(MPBn ∕ro,∣t——混凝上立方体抗压强度标椎值(MPa); σ—在实际工程中统计得出的混凝土强度标准姜(MPa)O 3.计算烧定基准配台比 根据以往经验并通过计算提出基准配合比。 基准配合比的计算步骤方法同“10.1.1普通混凝七配合比卄算",其中水灰比还应满足表10-3的规定。 混凝土掺加防冻剂的配方可参考表1048选择。当采用单掺商品防冻剂时,应参照说明书使用。在确定基准配合比时,尚应考虑掺加某种防冻组成材料対强度降低的影响。 在基准配合比中应包括每立方米混凝土各种组成材料(包括防冻剂)的用量或重虽比 例,并提出坍落度和表观密度的指标。 注:断冻捌配方中(> 内为占用水量的%,其余为占水用α的帕。 2.食盐Bl方仅用于无其余均可用TlHttS*? e 3.木钙可用适■的其他X水刑歌代.

4?混凝土配合比的试配、调整与确定 采用与T0.1.1普通混凝土配合比计算”中试配调搭相同的方法先进行常温试验, 然后再进行负温抗冻融性能试验。 (1)常温试验 1)用现场所用原材料按照基准配合比进行试拌,检査拌合物的性能,测定和易性、坍落度和表观密度。如与僚定指标不符,应作适当的调整后再行试拌重新测定。 2)当和易性、坍落度和表观密度均符合原定指标要求以后,在保持用水St不变的前提下,将水灰比分别增加或滅少0.05,得出三个不同的配合比。 3)将三个配合比各制作一组抗压强度试件,经201C标准养护28d试压,选取符合试配强厦的配合比作下步的试验。 4)如设计方面还有抗滲要求时,应加作相应的试件,经20C标准养护28d后试验。如试验结果不能满足要求,应将配合比作适当调整,再进行试验,直至满足要求为止。此时的配合比如同时满足试配强度要求,即可进行负温、抗冻融性能试验。 (2)负温、抗冻融性能试验 1)抗冻混凝土除按以上进行试配和调整外,尚应作负温和抗冻融性能试验,试验所用试件应以三个配合比中水灰比最大的泯凝土制作。 2)负温试验系按照常温试验后选定的配合比拌制混凝土,在同一批中取样同时成型两组抗压强度试件。其中一组成根后,即放于20C标准条件F养护至28d试压得强度∕2β;另一组成奉后先在209室内祥登若干小时(试件边长为IOO m m时为4h,试件边长为150mm时为2h),然后送入具有规定温度的低温室(温度为估计实际浇筑养护期间混凝土硬化初期几天内的日平均温度士2C ),试件在低温室存放14d后取出转入20V标准养护室,继续养护21d,取出试压得强度∕14^ + 21o则所得强度应满足下式要求: /14 +21 ≥ /28(10-40)、∕M≥∕F(10-41)若试验结杲可满足上两式要求,表明防冻剂可以达到防冻效果,混凝土不会遭受冻害,该配合比可以达到设计要求的强度等级。否则需增加防冻剂的或改用其他防冻剂,或需滅少水灰比或改用高标号水泥配制。 调整后的配合比应重作试验,直至完全满足上述要求为止。此时的配合比即可提供施工使用。 3)抗冻融性能试验应加作试件。试件在室内成型后先在20C条件下静置几小时(具体时间与抗压试件相同),然后送入具有规定温度的低温室,养护至14d时取出转入20匸标准养护室继续养护21d后取出试压,所得结果应满足设忡要求。如不能满足要求,则应调轅配合比,重作试验,直至所有指标(包括抗压强度)均满足要求为止。此时的配合比即可提供施工使用。 10.1.6泵送混凝土配合比计算 泵送混凝土为用混凝土泵沿管道输送和浇筑的一种大流动度混裁土。这种混凝土具有一定的流动性和较好的粘塑性,泌水小,不易分离等特性。广泛应用于高层建筑、大体积混凝土等结构工程上。

砼抗渗与抗冻等级

抗渗性 砼抗渗等级如分5级:P4、P6、P8、P10、P12, 砼抗渗等级如分4级:P6、P8、P10、P12, 抗渗等级≥P6的混凝土称为抗渗混凝土 抗渗砼试块规格175x185x150 据我所知关于抗渗等级的规定,在不同的规范是有不同的要求。《地下工程防水技术规范》(GB50108-2001)与《高层建筑混凝土结构技术规程》(JGJ 3-2002)上都有规定,但两者是有矛盾的。具体见GB50108-2001第4.1.3条和JGJ 3-2002第12.1.9条。 GB50108-2001 第4.1.3条防水混凝土的设计抗渗等级应符合表4.1.3 的规定。 表4.1.3 防水混凝土设计抗渗等级 工程埋置深度(m) 设计抗渗等级 <10 S6 10~20 S8 20~30 S10 30~40 S12 JGJ 3-2002第12.1.9条高层建筑基础的混凝土强度等级不宜低于C30。当有防水要求时,混凝土抗渗等级应根据地下最大水头与防水混凝土的比值按表12.1.9采用,且不应小于0.6Mpa。必要时可设置架空排水层。 表12.1.9 基础防水混凝土的抗渗等级 最大水头H与防水混凝土厚度h的比值(H/h) 设计抗渗等级(Mpa) <10 0.6 10~15 0.8 15~25 1.2 25~35 混凝土的抗渗性以抗渗等级来表示。抗渗等级是以28d龄期的标准抗渗试件,按规定方法试验,以不渗水时所能承受的最大水压力来表示,划分为P2、P4、P6、P8、P12 等等级,它们分别表示能抵抗0.2、0.4、0.6、0.8、1.2 MPa的水压力而不渗透。 抗冻性 混凝土抗冻性一般以抗冻等级表示。抗冻等级是采用龄期28d的试块在吸水饱和后,承受反复冻融循环,以抗压强度下降不超过25%,而且质量损失不超过 5%时所能承受的最大冻融循环次数来确定的。GBJ50164—92将混凝土划分为以下抗冻等级:F10、F15、F25、F50、F100、F150、F200、F250、F300等九个等级,分别表示混凝土能够承受反复冻融循环次数为10、15、25、50、100、150、200、250和300次。

高抗冻混凝土F范文配合比的设计与研究

高抗冻混凝土(C30F300)配合比的设计与研究 山东电力建设第二工程公司陈云飞王庆平贾广明仇凯董祥伟[摘要] 本文通过对鄂温克电厂(2×600MW)新建工程高抗冻混凝土(C30F300)配合比的设计与应用的介绍,为工程在寒冷地区进行该种混凝土的生产,提供了借鉴。 [关键词] 高抗冻混凝土配合比抗冻试验 1.前言 鄂温克发电厂(2×600MW)新建工程是我公司在东北地区施工的重点工程。本工程位于内蒙古呼伦贝尔市,属高寒地区,历年的气象资料表明,冬季冰天雪地,历达半年之久,平均气温为零下 -1.5°C左右,极端最低气温-48.5℃左右。按混凝土冬期施工及设计要求,混凝土抗冻等级为高抗冻等级(C30F300)。 由于本工程工期紧、质量要求严、技术标准高。公司及项目部的目标是:“创高寒地区施工标准,建东北地区样板工程!”,争创“草原杯”及“鲁班奖”!。其中有抗冻要求的主要单位工程为综合水池、循环水泵房等混凝土工程,共计混凝土浇筑量2600余立方,因此解决高抗冻等级(特别是C30F300)混凝土问题刻不容缓。 2、混凝土的冻融破坏机理 混凝土是一种多孔性材料,在拌制混凝土时为了得到必要的和易性,加入的拌和水总要多于水泥的水化水,这部分多余的水便以游离水的形式滞留于混凝土中,形成连通的占有一定体积的毛细孔,这种孔隙中的自由水就是导致混凝土遭受冻害的主要原因。吸水饱和的混凝土在冻融过程中遭受的破坏力主要由两部分组成:一是膨胀压力。当温度降到0 ℃以下时,水便凝结成冰,水结成冰且体积膨胀,因受毛细孔约束形成膨胀压力;二是渗透压力。由于表面张力作用,混凝土孔隙中水的冰点随着孔径的减小而降低。因而在粗孔中的水结冰后,冰与过冷水(存在于较细孔和凝胶孔中) 的饱和蒸气压差和过冷水之间盐份浓度差引起水份迁移而形成渗透压力。 另外,过冷水迁移渗透的结果必然会使毛细孔中的冰的体积不断增大,从而形成更大的膨胀压力,当混凝土受冻时,这两种压力会损伤混凝土的内部微观结构,在经过反复多次冻融循环后,损坏逐步积累,不断扩大,发展成相互连通的大裂缝,使混凝土的强度逐渐降低,最后混凝土结构由表及里遭受破坏。 3、高抗冻混凝土配合比设计

混凝土抗渗等级

混凝土抗渗等级 混凝土的抗渗性 抗渗性(water tightness)是指混凝土抵抗压力水(或油)渗透的能力。它直接影响混凝土的抗冻性和抗侵蚀性。因为渗透性控制着水分渗入的速率,这些水可能含有侵蚀性的物质,同时也控制混凝土中受热或冰冻时水的移动。 混凝土的抗渗性主要与其密实度及内部孔隙的大小和构造有关。影响混凝土抗渗性的因素有: 1)水灰比水灰比的大小对混凝土的抗渗性起决定作用,水灰比越大,其抗渗性越差。 2)骨料的最大粒径在水灰比相同时,混凝土骨料的最大粒径越大,其抗渗性能越差。这是由于骨料和水泥石的界面处易产生裂隙和较大骨料下方易形成孔穴。 3)养护方法蒸汽养护的混凝土,其抗渗性较自然养护的混凝土要差。在干燥条件下,混凝土早期失水过多,容易形成收缩裂隙,因而减低混凝土的抗渗性。 4)水泥品种不同品种的水泥,硬化后水泥石孔隙不同,孔隙越小,强度越高,则抗渗性越好。

5)外加剂在混凝土中掺入某些外加剂,如减水剂等,可减小水灰比,改善混凝土的和易性,因而可改善混凝土的密实性,提高了混凝土的抗渗性能。 6)掺合料在混凝土中加入掺合料,如掺入优质粉煤灰,可提高混凝土的密实度、细化孔隙,改善了孔结构和骨料与水泥石界面的过渡区结构,混凝土抗渗性提高。 7)龄期混凝土龄期越长,由于水泥的水化,混凝土密实性增大,其抗渗性提高。 混凝土的抗渗性用抗渗等级表示。抗渗等级是以28d龄期的混凝土标准试件,按规定的方法进行试验,所能承受的最大静水压力来确定。混凝土的抗渗等级分为P4、P6、P8、P10、P12等五个等级,相应表示能抵抗0.4、0.6、0.8、1.0及1.2MPa 的静水压力而不渗水换而言之就是混凝土抗渗试验时一组6个试件中4个试件未出现渗水时不同的最大水压力。抗渗等级≥P6的混凝土为抗渗混凝土。

混凝土配合比设计方法

混凝土配合比设计方法 一、设计出的混凝土配合比应满足的基本要求是: (1)满足施工对混凝土拌和物的和易性要求; (2)满足结构设计和质量规范对混凝土的强度等级要求; (3)满足工程所处环境对混凝土的抗渗性、抗冻性及其他耐久性要求; (4)在满足上述要求的前提下,尽量节省水泥,以满足经济性要求。 二、混凝土配合比设计的三个参数 组成混凝土的四种材料,即水泥、水、砂、石子。 混凝土的四种组成材料可由三个参数来控制。 1.水灰比水与水泥的比例称为水灰比。前面已讲,水灰比是影响混凝土和易性、强度和耐久性的主要因素,水灰比的大小是根据强度和耐久性确定,在满足强度和耐久性要求的前提下,选用较大水灰比,这有利于节约水泥。 2.砂率砂子占砂石总量的百分率称为砂率。砂率对混合料和易性影响较大,如选择不恰当,对混凝土强度和耐久性都有影响。应采用合理砂率。在保证和易性要求的条件下,取较小值,同样有利于节约水泥。 3.用水量用水量是指1m3混凝土拌合物中水的用量(kg/m3)。在水灰比确定后,混凝土中单位用水量也表示水泥浆与集料之间的比例关系。为节约水泥,单位用水量在满足流动性条件下,取较小值。 三、混凝土配合比设计的步骤 (一)设计的基本资料 1、混凝土的强度等级、施工管理水平,

2、对混凝土耐久性的要求, 3、原材料的品种及其物理力学性质 4、混凝土的部位、结构构造情况、施工条件等 (二)初步配合比的计算 1.确定混凝土的配制强度 fcu.o=fcu.k+1.645σ (规范规定的强度保证率P≥95%) 2.选择水灰比 (1)根据强度要求计算水灰比 根据混凝土的配制强度及水泥的实际强度,用经验公式计算水灰比: 式中A,B——回归系数,可通过试验测定,无试验资料时, 碎石混凝土A=0.48,B=0.52; 卵石混凝土A=0.50,B=0.61: fce——水泥的实际强度,MPa; 无水泥实际强度数据时,可按fce=γc·fce.k确定; fce.k——水泥强度等级的强度标准值; γc——水泥强度等级强度标准值的富裕系数,该值应按实际统计资料确定。 (2)查表4—7确定满足耐久性要求的混凝土的最大水灰比。 (3)选择以上两个水灰比中的小值作为初步水灰比。

混凝土配合比设计的详细步骤

混凝土配合比设计的步骤 1.计算配合比的确定 (1)计算配制强度 当具有近期同一品种混凝土资料时,σ可计算获得。并且当混凝土强度等级为C20或C25,计算值<2.5MPa 时,应取σ=2.5MPa ;当强度等级≥C30,计算值低于<3.0MPa 时,应取用σ=3.0MPa 。否则,按规定取值。 (2)初步确定水灰比(W/C) ce b a cu ce a f f f C W ααα+= 0,(混凝土强度等级小于C60) a α、 b α回归系数,应由试验确定或根据规定选取: ce f 水泥28d 抗压强度实测值,若无实测值,则 ce f ,g 为水泥强度等级值,c γ为水泥强度等级值的富余系数。 若水灰比计算值大于表4-24中规定的最大水灰比值时,应取表中规定的最大水灰比值 (3)选取1m3混凝土的用水量(0w m ) 干硬性和塑性混凝土用水量: ①根据施工条件按表4-25选用适宜的坍落度。 ②水灰比在0.40~0.80时,根据坍落度值及骨料种类、粒径,按表4-26选定1m3混凝土用水量。 流动性和大流动性混凝土的用水量:

以表4-26中坍落度90mm 的用水量为基础,按坍落度每增大20mm 用水量增加5kg 计算出未掺外加剂时的混凝土的用水量; 掺外加剂时的混凝土用水量: () β-=10w wa m m wa m 是掺外加剂混凝土每立方米混凝土的用水量;0w m 未掺外加剂混凝土每立方米混凝土的用 水量;β外加剂的减水率。 (4)计算混凝土的单位水泥用量( c m ) 如水泥用量计算值小于表4-24中规定量,则应取规定的最小水泥用量。 (5)选用合理的砂率值(βs) 坍落度为10~60mm 的混凝土:如无使用经验,砂率可按骨料种类、粒径及水灰比,参照表4-27选用 坍落度大于60mm 的混凝土:在表4-27的基础上,按坍落度每增大20mm ,砂率增大1%的幅度予以调整; 坍落度小于10mm 的混凝土:砂率应经试验确定。 6)计算粗、细骨料的用量(mg0,ms0) A.重量法: 0c m 、0g m 、0s m 、0w m 为1m3混凝土的水泥用量、粗骨料用量、细骨料用量和用水量。cp m 为 1m3混凝土拌合物的假定重量,取2350~2450kg/m3。 B .体积法 c ρ、g ρ、s ρ分别为水泥密度、粗骨料、细骨料的表观密度;w ρ为水的密度,α混凝土的含 气量百分数,在不使用引气型外加剂时,α可取为1。 2.基准配合比的确定(调整和易性) ①若流动性太大,在砂率不变的条件下,适当增加砂、石; ②若流动性太小,保持水灰比不变,增加适量水和水泥; ③若粘聚性和保水性不良,可适当增加砂率 ④调整后,测拌合物的实际表观密度ρc,t ,计算1m3混凝土各材料的用量:

高性能混凝土

《高性能混凝土》教学大纲 课程编号: 课程名称:高性能混凝土/High Performance Concrete 学时/学分:24/1.5 先修课程:无机非金属材料工学 适用专业:无机非金属材料工程 开课学院(部)、系(教研室):材料学院无机非金属材料系 一、课程的性质与任务 高性能混凝土课程是材料学和土木工程专业本科学生应该选修的一门重要工程技术课。其教学内容为近十年来武汉理工大学和国外学者在水泥与混凝土材料科学领域的研究成果。通过本课程的学习,要使学生掌握: 1.高性能混凝土技术规程。 2.高性能混凝土的组成、结构与性能关系。 3.高性能混凝土的原材料选择。 4.高性能混凝土的配合比设计方法。 5.高性能混凝土的性能评价及验收方法。 6.高性能混凝土的生产、施工及质量控制技术。 7.绿色高性能混凝土商品化技术。 8.钢管混凝土的组成、结构与性能。 9.钢管混凝土的配合比设计。 10.钢管混凝土拱桥核心混凝土的施工技术。 11.高性能轻集料混凝土的组成、结构与性能。 等方面的技术内涵,为将来从事市政、交通、水电、民用建筑和军事等工程建设打下坚实的理论基础。 本课程的教学特点是注重培养学生运用所学知识来分析和解决混凝土工程出现各种问题的能力,尤其是技术创新能力。 二、课程的教学内容、基本要求及学时分配 (一)教学内容 1.高性能混凝土现状与发展 (1)混凝土技术进入高科技时代:从胶凝材料的发展论述水泥的发展方向为高性能水泥;从混凝土的力学性能的提高过程和耐久性方面存在的问题论述高性能混凝土是混凝土材料的发展方向,高性能混凝土是高技术混凝土。 (2)高性能混凝土的定义:介绍不同国家,不同学者依据各自的认识、实践、应用范围和目的要求的差异,对高性能混凝土有不同的定义和解释。 (3)高性能混凝土的研究开发与可持续发展: 高性能混凝土的研究与应用现状;高性能混凝土需要进一步研究的问题;高性能混凝土与我国建筑材料可持续发展的关系。 2.高性能混凝土的组成、结构与性能 (1)普通混凝土的组成与结构:原材料;硬化水泥浆体的微观结构;混凝土中的界面,包括界面过度区以及影响界面过度区厚度和性质的因素;混凝土匀质性、内分层和外分层特

高性能砼介绍

第二部分高性能砼(HPC) 一、高性能砼的概念 (一)主要特点 采用常规材料和生产工艺, 能保证混凝土结构所要求的各项力学性能, 并具有高耐久性、高工作性、高体积稳定性和良好外观的混凝土. 高性能混凝土不一定是高强混凝土. 具有实用性、经济性、技术先进性和铁路适用性.

(二)技术措施 ?优质的水泥和砂石料 ?掺加优质化学外加剂---减水剂,引气剂?掺加矿物掺合料---粉煤灰,矿渣粉,硅灰?低水胶比(<0.40) ?限制胶凝材料总量和水泥用量;控制砼中碱含量,氯含量 ?严格的施工过程技术管理 ?力学性能、工作性能、耐久性的全面检验

(三)基本原理 ?全面提升砼微结构三部分的质量,增加砼的密实性,削除薄弱因素,提高砼整体耐久性和强度。 ?减少水泥石的孔隙率---水化硅酸钙凝胶,氢氧化钙和钙矾石晶体,未水化颗粒,其它小颗粒,毛细孔和各种孔隙. ?粗细骨料的质量和级配更科学---骨料强度和表面状态,级配及在砼中所占比例. ?减少骨料界面层厚度,增加其密实性---富集氢氧化钙和钙矾石结晶,界面层的密实性和厚度很重要.

(四)存在问题 ? 1.水胶比少于0.4时,自收缩率增大,早期弹模较高,应力松弛能力降低,增加了开裂趋势. ? 2.磨细矿渣(比表面大于4000) ,尤其是硅灰使砼早期收缩增加,弹模增大,应力松弛能力降低,增加了砼的开裂倾向.但粉煤灰使砼早期收缩减少,弹模也较低,可降低开裂的趋势. ? 3.高性能砼的水胶比较低,掺合料较多,因此对砼的温度控制和湿养护要求更加严格,增加了施工难度和成本.

二、砼原材料 (一)水泥 ?宜用硅酸盐水泥或普通硅酸盐水泥,不宜用C A大于8%的水泥或其它早强型水泥. 3 ?硅酸盐水泥的比表面积应300-350m2/Kg.?当骨料具有碱-硅酸反应活性或C40及以上砼时,水泥的碱含量不宜超过0.6%. ?有抗硫酸盐侵蚀要求的砼,水泥熟料中A含量应不超过6%. ? C 3

防冻混凝土与抗冻混凝土对比

防冻混凝土与抗冻混凝土对比 在建筑行业中,有些施工人员往往把冬期施工的混凝土与结构设计有抗冻等级要求的混凝土都称为“抗冻混凝土”。笔者认为,冬期施工的混凝土,主要是采取技术措施预防混凝土浇筑后,在未达到受冻临界强度以前不发生冻胀破坏就达到了技术要求。应称为“防冻混凝土”。而结构设计有抗冻等级要求,混凝土自身应具有长期抵抗冻融循环能力的,才应称为“抗冻混凝土”。 在相关标准规范中,查不到“防冻混凝土”的术语,仅能查到“掺防冻剂的混凝土”或“冬期施工的混凝土”等词语;抗冻混凝土在规范中的术语是:抗冻等级等于或大于F50级的混凝土。实际这两种混凝土技术要求完全不同,但标准规范没有给出“防冻混凝土”的定义,或有些施工人员对标准规范学习不够,因此容易引起一些施工人员对这两种混凝土产生误解或混淆。譬如:误认为“抗冻混凝土就是掺防冻剂的混凝土”、或“大热天为什么要浇筑抗冻混凝土?”等。这些误解可能造成对抗冻混凝土的生产、浇筑和养护等环节的重视不够而影响到工程质量。 一、防冻混凝土 防冻混凝土的技术要求是:在冬期施工过程中,采取可靠的技术措施,使混凝土浇筑后尽早凝结硬化,并在未达到受冻临界强度以前不得发生冻胀破坏。当气温在0~4℃时,水的活性较低,水泥的水化反应极其缓慢,混凝土的轻度发展不能达到要求。当温度低于0℃时,混凝土内部水分大部分冻结。水结成冰后产生9%的体积膨胀,混凝土结构将遭致永久性破坏;另外,水结成冰后,混凝土中没有足够的液态水参与水泥的水化反应,混凝土的强度增长极慢甚至停止。因此,冬期施工浇筑的混凝土宜掺入早强剂或防冻剂,并应在混凝土凝结硬化初期,采取适当的保温或增温措施,充分利用混凝土自身热量或外部热量(如电热法、暖棚法等),确保混凝土浇筑后的起始养护温度:严寒地区不低于10℃;寒冷地区不低于5℃,使混凝土强度具备正常增长的条件,尽快的获得受冻临界强度。 1、冬期施工采取的技术措施 冬期施工是混凝土工程质量事故的多发季节,这是由于准备工作时间短,技

高性能混凝土耐久性-

探讨掺合料对高性能混凝土耐久性的影响 摘要: 高性能混凝土具有高强度、良好工作性、高耐久性和高体积稳定性等性能,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用。本文参考前人对高性能混凝土的耐久性试验,结合试验数据,探讨掺合料对其抗渗性、抗冻性、抗硫酸盐侵蚀等耐久性进行研究,总结影响高性能混凝土耐久性的因素,并提出提高耐久性的方法。 关键词: 高性能混凝土、耐久性、掺合料 Abstract: High-performance concrete is considered as the most widely used concrete for its high strength, high workability and high durability features in high-speed railways and other large-scale projects. By referring to high-performance concrete durability test, combined with the test data, this dissertation is aimed at studying theimpermeability, frost resistance, sulfate resistance, durability of HPC, and summarizing the factors that affect the durability of HPC with a view to improve its durability. Key Words:High-performance-concrete、Durability、Additive 高性能混凝土是具有高强度、高耐久性和良好的工作性的新型绿色混凝土。混凝土结构的耐久性主要包括抗渗性、抗冻性、抗侵蚀性、抗碳化及抗碱骨反应。而耐久性是高性能混凝土设计的最重要指标,它是指混凝土结构在自然环境、使用环境及材料内部因素作用下保持其正常工作能力的性能。耐久性是衡量材料乃至结构在长期使用条件的安全性能。很多工程实际表明,造成结构物破坏的原因是多方面的,仅仅由强度不足引起的破坏事例并不多见,而耐久性不良往往是引起结构物破坏的最主要的原因。高性能混凝土之所以在很多重要工程中得以应用,主要是因为其水胶比低、密实度高、体积稳定性好而具有的良好耐久性。高性能混凝土的耐久性主要涉及混凝土的抗裂性、抗渗性、抗冻性、抗硫酸盐侵蚀能力等,其中任一性能指标不能达到规定要求,都会影响整个混凝土结构的耐久性;据美国一项调查显示,美国的混凝土基础设施工程总价值约为6万亿美元,每年所需维修费或重建费约为3千亿美元。而由于耐久性导致建筑工程报废的现象也并不少见,如北京的“西直门立交桥”等便因此被迫拆除。因此,从工程经济效

混凝土配合比设计

第四节 混凝土的配合比设计 混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)用量之间的比例关系。常用的表示方法有两种:①以每立方米混凝土中各项材料的质量表示,如水泥300kg 、水180kg 、砂720kg 、石子1200kg ;②以水泥质量为1的各项材料相互间的质量比及水灰比来表示,将上例换算成质量比为水泥∶砂∶石=1∶∶4,水灰比=。 一、混凝土配合比设计的基本要求 设计混凝土配合比的任务,就是要根据原材料的技术性能及施工条件,合理选择原材料,并确定出能满足工程所要求的技术经济指标的各项组成材料的用量。混凝土配合比设计的基本要求是: (1)满足混凝土结构设计所要求的强度等级。 (2)满足施工所要求的混凝土拌合物的和易性。 (3)满足混凝土的耐久性(如抗冻等级、抗渗等级和抗侵蚀性等)。 (4)在满足各项技术性质的前提下,使各组成材料经济合理,尽量做到节约水泥和降低混凝土成本。 二、混凝土配合比的三个参数 (一) 水灰比(W/C ) 水灰比是单位体积混凝土中水与水泥质量的比值,是影响混凝土强度和耐久性的主要因素。其确定原则是在满足强度和耐久性的前提下,尽量选择较大值,以节约水泥。 (二)砂率(βS ) 砂率是指砂子质量占砂石总质量的百分率。砂率是影响混凝土和易性的重要指标。砂率的确定原则是在保证混凝土拌和物粘聚性和保水性要求的前提下,尽量取小值。 (三)单位用水量 单位用水量是指1m 3混凝土的用水量。单位用水量的多少反映了单位混凝土中水泥浆与集料之间的比例关系。在混凝土拌和物中,水泥浆的多少显著影响混凝土的和易性,同时也影响强度和耐久性。其确定原则是在达到流动性要求的前提下取较小值。 水灰比、砂率、单位用水量是混凝土配合比的三个重要参数,在配合比设计中正确地确定这三个参数,就能使混凝土满足上述设计要求。 三、混凝土配合比设计的方法步骤 (一)配合比设计的基本资料 (1)明确设计所要求的技术指标,如强度、和易性、耐久性等。 (2)合理选择原材料,并预先检验,明确所用原材料的品质及技术性能指标,如水泥品种及强度等级、密度等;砂的细度模数及级配;石子种类、最大粒径及级配;是否掺用外加剂及掺和料等。 (二)初步配合比的计算 1.确定混凝土试配强度() 在正常施工条件下,由于人、材、机、工艺、环境等的影响,混凝土的质量总是会产生波动,经验证明,这种波动符合正态分布。为使混凝土的强度保证率能满足规定的要求,在设计混凝土配合比时,必须使混凝土的试配强度高于设计强度等级,可按下式估计: ,0cu f ≥,cu k f -t (3-7) 式中 —混凝土的试配强度,MPa ; —设计龄期要求的混凝土强度等级,MPa ; σ—施工单位的混凝土强度标准差的历史统计水平,MPa ;若无统计资料时,可参考表3-16取值。 t —与混凝土要求的保证率所对应的概率度,见表3-17。 当设计龄期为28 d 时,抗压强度保证率P 为95%,此时t =,式3-7变为 ,0cu f ≥,cu k f +σ (3-8)

高性能混凝土

京沪高速铁路双线整孔简支箱梁高性能混凝土设计及施工技术 前言 高性能混凝土作为最大宗的建筑材料用于工程建设迄今已有150年之久。纵观混凝土技术的发展进程,可以看出,混凝土技术的发展途径主要遵循了复合化、高强化、高性能化三大技术路线。进入20世纪90年代,一些有远见卓识的建筑师在提出混凝土强度指标的同时,也相应提出了混凝土的耐久性指标。因此,以耐久性为目标,兼顾高强度、高工作性和高耐久性的高性能混凝土便应运而生。 所谓高性能混凝土应具备以下性能: (1)高性能混凝土具有一定的强度和高抗渗能力,但不一定具有高强度,中、低强度亦可。 (2)高性能混凝土具有良好的工作性,混凝土拌合物应具有较高的流动性,混凝土在成型过程中不分层、不离析,易充满模型;泵送混凝土、自密实混凝土还具有良好的可泵性、自密实性能。 (3)高性能混凝土的使用寿命要长,对于一些特殊工程的特殊部位,控制结构设计的并不是混凝土的强度本身,而是其耐久性。能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 (4)高性能混凝土应具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。高性能混凝土就是能更好地满足结构功能要求和施工工艺要求的混凝土,能最大限度地延长混凝土结构使用年限,降低工程造价。 高性能混凝土与普通混凝土相比具有以下明显优点: 1、强度更高,因而混凝土结构的尺寸可以更小,这就使得结构自重得以减轻,使用面积增加,材料用料减少。 2、弹性模量更高,因而混凝土结构变形更小,刚度增大,稳定性更好; 3、耐久性、抗渗性好,因而混凝土结构的维修和重建费用减少,使用寿命大幅度延长,这些优点基本满足混凝土结构耐久性的要求。 综合以上论点,对高性能混凝土可以提出以下定义: 高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,它以耐久性作为设计的主要指标。针对不同用途要求,高性能混凝土对下列性能有重点予以保证:耐久性、工作性、适用性、强度、体积稳定性、经济

高性能混凝土与普通混凝土的差别

曲器论叶住 高性能混凝土与普通混凝土的差别 一、理念上的差别 ?高性能混凝土本质上与普通混凝土没有很大差别 高性能混凝土为一种新型高技术混凝土,是对普通砼某些性能上的优化,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,是以耐久性作为设计的主要目标,针对不同用途的要求,对下列性能有重点的加以保证:耐久性、施工性、适用性、强度、体积稳定性和经济性。 ?使用的原材料仍然为水泥、砂、石、外加剂,但对各性能指标要求更严。 ?生产工艺过程在宏观上与普通混凝土一致 不同点: ?在普通混凝土基础上掺加大量活性混合材,养护水平要求高。 高性能混凝土是满足特定功能与匀质性综合需要的混凝土。采用普通的组分材料和通常的搅拌、浇注与养护操作,未必能日常生产这种混凝土。高性能混凝土的特性,是针对一定的应用和环境所要求的。例如: 易于浇注、早期强度、水化热、体积稳定性、可捣实不离析、长期力学性质、密度、韧性、在服务环境中运行寿命长久。因此在施工过程中要掺大量活性混合材以改善上述性能。活性混合材掺量提高了,相应的养护工艺也要提高。 ?对施工单位的管理水平要求高 高性能混凝土的施工过程控制要严格按IS09001标准要求运行。 ?许多对普通混凝土不敏感的因素变得敏感了 高性能混凝土对原材料、配合比、生产搅拌运输工艺、养护方式等十分严格,按普通混凝土的生产理念远远不能适应要求。 二、原材料质量要求

------------------- ---- 北晶论叶住------------------- ---- 二、原材料选用上的差别 1. 水泥 水泥应采用硅酸盐水泥、普通硅酸盐水泥。普通硅酸盐水泥中掺和料只能是粉煤灰或高炉矿渣。 a不用早强型水泥 b不用立窑水泥 c不要选用C3A含量高的水泥 d尽量选用低碱水泥 2. 砂 a高性能混凝土要用中粗砂,细度模数大于2.6。细度模数为3.0时,工作性最好,抗压强度最高。 b 0.63mm筛的累计筛余大于70%, 0.315mm筛的累计筛余为 85%~95%, 0.15mm筛的累计筛余大于98%。 c严格控制云母和泥土的含量。砂的含泥量应小于 1.5%。 d选用低碱活性砂 2、石 a、清洁,含泥量小于0.5% b、颗粒尽量接近等径状 c、针片状颗粒含量少 d、5~10mm颗粒质量占40%,10~20(25)mm颗粒质量占 60%。 分级储存、分级运输、分级计量 3. 掺和料 最常用的掺和料为粉煤灰、磨细矿粉磨细矿粉 a、粉煤灰技术要求 b、磨细矿渣技术要求 4. 外加剂 a、减水率大于20% b、碱含量小于10% c、与水泥的相容性好 d、保坍性好

混凝土配合比设计规程JGJ55-2011

提高胶凝材料用量,降低水胶比,增加砼的密实度即可。 ××××商混站 试验室:××× ×××有限公司试验室作业指导书文件编号:LH/W·B008-2011第A 版第1次修订 普通混凝土配合比设计规程 第64页共页 颁布日期:2011年10月20日 普通混凝土配合比设计规程 (JGJ55-2011) 总则 1.0.1 为规范普通混凝土配合比设计方法,满足设计和施工要求,保证混凝土工程质量 并且达到经济合理,制定本规程。 1.0.2 本规程适用于工业与民用建筑及一般构筑物所采用的普通混凝土配合比设计。 ?除一些专业工程以及特殊构筑物的混凝土 1.0.3普通混凝土配合比设计除应符合本规程的规定外,尚应符合国家现行有关标准的 规定。 术语、符号 2.1 术语 2.1.1普通混凝土:干表观密度为 2000kg/m3~2800kg/m3的混凝土。 (在建工行业,普通混凝土简称混凝土,是指水泥混凝土) 2.1.2干硬性混凝土:拌合物坍落度小于10mm且须用维勃稠度(s)表示其稠度的混凝 土。 (维勃稠度可以合理表示坍落度很小甚至为零的混凝土拌合物稠度,维勃稠度等级划分为5个。) 等级维勃稠度(s) V0 ≥31 V1 30~21 V2 20~11 V3 10~6 V4 5~3 2.1.3塑性混凝土:拌合物坍落度为10mm~90mm的混凝土。 2.1.4流动性混凝土:拌合物坍落度为100mm~150mm的混凝土。 2.1.5大流动性混凝土:拌合物坍落度不低于160mm的混凝土。 坍落度等级划分为5个等级。 等级坍落度(mm) S1 10~40 S2 50~90 S3 100~150 S4 160~210 S5 ≥220 2.1.6 抗渗混凝土:抗渗等级不低于P6的混凝土。 2.1.7 抗冻混凝土:抗冻等级不低于F50的混凝土。 第64页

相关文档
最新文档