2.1.1 合情推理(一) 教案(新人教A版选修1—2)
高中数学专题2.1.1合情推理教案新人教A版选修1-2
合情推理【教材分析】本章内容属于数学思维方法的范畴,即把过去渗透在具体数学内容中的思维方法以集中显示的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识的使用。
推理是人们学习和生活中经常使用的思维方式.在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。
通过本节的学习,有利于发展学生的思维能力,提高学生的数学素养,让学生感受合情推理在数学以及日常生活中的作用,从而架起数学与生活的桥梁,形成严谨的理性思维和科学精神。
【学情分析】a知识分析:学生在中学阶段已经接触过推理,比如等差数列求和公式的推导。
b能力分析学生对推理本质的把握需要进一步提升,对合情推理的思维过程需要进一步明确.【教学目标】a.知识目标:(1)了解合情推理的含义;(2)能利用归纳进行简单的推理;(3)体会并认识合情推理在数学发现中的作用。
b.能力目标:(1)通过探索、研究、归纳总结形成本节知识结构;(2)提高学生进行合情推理的能力。
c.情感目标:(1)体会合情推理的意义和重要性;(2)体会合情推理有助于培养学生进行归纳的严谨作风和思维习惯.【教学重点和难点】重点:合情推理的定义及归纳推理的定义.难点:进行简单的合情推理,归纳推理的基本方法,如何提高数学思维能力。
【教学方法】本节课采用范例分析、媒体演示、分层教学等启发发现法进行教学;课堂学习上,鼓励学生采取回顾复习、分组讨论、归纳总结等课堂讨论法进行学习;教法与学法协助提高,从而达到举一反三、触类旁通、提高课堂学习效率的效果.【教学过程】教学环节教学内容师生互动设计意图创设情境佛教《百喻经》中有这样一则故事。
从前有一位富翁想吃芒果,打发他的仆人到果园去买,并告诉他:"要甜的,好吃的,你才买。
”仆人拿好钱就去了.到了果园,园主说:”教师提问这样做对吗?你会怎么做呢?教师通过评价学生推测的结论引入推理的概念。
自然合理地提出问题,让学生体会“数学来源于生活"。
高中数学选修1-2教案3:2.1.1 合情推理教学设计
《合情推理》教学设计●教学目标:通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去。
●教学重点:了解合情推理的含义,能利用类比进行简单的推理。
●教学难点:用类比进行推理,做出猜想。
●教具准备:与教材内容相关的资料。
●教学设想:类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
●教学过程:学生探究过程:从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?A对象具有属性a、b、c、d;B对象具有属性a、b、c;所以,B对象具有属性d。
为了提高类比推理结论的可靠性,逻辑学提出了一些要求:应当尽可能多地列举出对象间相似属性和选择较为本质的属性进行类比。
数学活动我们再看几个类似的推理实例。
例1、试根据等式的性质猜想不等式的性质。
等式的性质:猜想不等式的性质:(1) a=b⇒a+c=b+c; (1) a>b⇒a+c>b+c;(2) a=b ⇒ ac=bc; (2) a >b ⇒ ac >bc;(3) a =b ⇒a 2=b 2;等等。
(3) a >b ⇒a 2>b 2;等等。
问:这样猜想出的结论是否一定正确?例2、试根据等差数列的性质猜想等比数列的性质。
等差数列 等比数列a n -a n -1=d(n ≥2,n ∈N) ),2(1N n n q a a n n ∈≥=-a n =a 1+(n -1)d a n =a 1⋅q n -1a n =211+-+n n a a (n ≥2,n ∈N) a n 2=11-+⋅n n a a (n ≥2,n ∈N) 设问1:观察上述公式,等差数列、等比数列相关公式的对应运算法则规律是什么? 设问2:如何分析表达式结构特征?)2()2(5)4(g f f -设问3:类比对象是什么?三角形与三棱柱。
高中数学《2.1.1合情推理》导学案 新人教A版选修1-2
§2.1.1 合情推理(1)1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.2830在日常生活中我们常常遇到这样的现象:(1)看到天空乌云密布,燕子低飞,蚂蚁搬家,推断天要下雨;(2)八月十五云遮月,来年正月十五雪打灯.以上例子可以得出推理是的思维过程.二、新课导学※学习探究探究任务:归纳推理问题1:哥德巴赫猜想:观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜想:.问题2:由铜、铁、铝、金等金属能导电,归纳出.新知:归纳推理就是由某些事物的 ,推出该类事物的的推理,或者由的推理.简言之,归纳推理是由的推理.※ 典型例题例1 观察下列等式:1+3=4=22,1+3+5=9=23,1+3+5+7=16=24,1+3+5+7+9=25=25,……你能猜想到一个怎样的结论?变式:观察下列等式:1=11+8=9,1+8+27=36,1+8+27+64=100, ……你能猜想到一个怎样的结论?例2已知数列{}n a 的第一项11a =,且nn n a a a +=+11(1,2,3.)n =,试归纳出这个数列的通项公式.变式:在数列{n a }中,11()2n n na a a =+(2n ≥),试猜想这个数列的通项公式.※ 动手试试练1..练2. 在数列{n a }中,11a =,122n n na a a +=+(*n N ∈),试猜想这个数列的通项公式.三、总结提升 ※ 学习小结1.归纳推理的定义.2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想). ※ 知识拓展1.费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,提出猜想:对所有的自然数n ,任何形如221nn F =+的数都是素数. 后来瑞士数学家欧拉发现5252142949672976416700417F =+==⨯不是素数,推翻费马猜想. 2.四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列关于归纳推理的说法错误的是( ). A.归纳推理是由一般到一般的一种推理过程 B.归纳推理是一种由特殊到一般的推理过程C.归纳推理得出的结论具有或然性,不一定正确D.归纳推理具有由具体到抽象的认识功能2.若2()41,f n n n n N =++∈,下列说法中正确的是( ). A.()f n 可以为偶数 B. ()f n 一定为奇数 C. ()f n 一定为质数 D. ()f n 必为合数3.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ). A.4()22xf x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+4.111()1()23f n n N n+=+++⋅⋅⋅+∈,经计算得357(2),(4)2,(8),(16)3,(32)222f f f f f =>>>>猜测当2n ≥时,有__________________________.5. 从22211,2343,345675=++=++++=中得出的一般性结论是1. 对于任意正整数n ,猜想(21)n -与2(1)n +的大小关系.2. 已知数列{n a }的前n 项和n S ,123a =-,满足12(2)n n nS a n S ++=≥,计算1234,,,,S S S S 并猜想n S 的表达式.。
高中数学人教A版选修1-2课件:2.1.1合情推理(归纳推理)(共15张PPT)
an1
an 1 an
( n =1,2,3,···),
1
请归纳出这个数列的通项公式为__a_n___n__.
:河内塔(Tower of Hanoi)
传说在古老的印度有一座神庙,神庙中有三根针和套在一 根针上的64个圆环.古印度的天神指示他的僧侣们按下列规则, 把圆环从一根针上全部移到另一根针上,第三根针起“过渡” 的作用.
1.每次只能移动1个圆环;
2.较大的圆环不能放在较小的圆环上面. 如果有一天,僧侣们将这64个圆环全部移到另一根针上, 那么世界末日就来临了.
请你试着推测:把 n个圆环从1号针移到3号针,最少需要移
动多少次?
2
1
3
设 a n 为把 n 个圆环从1号针移到3号针的最少次数,则
n =1时,a1=1 第1个圆环从1到3.
2
1
3
设 a n 为把 n 个圆环从1号针移到3号针的最少次数,则
n =1时,a1=1 第1个圆环从1到3.
n=2时,a2=3 前1个圆环从1到2;
第2个圆环从1到3;
第1个圆环从2到3.
2
1
3
设 a n 为把 n 个圆环从1号针移到3号针的最少次数,则
n =1时,a1=1 第1个圆环从1到3.
想一想:
第一个芒果是甜的
故事中仆人的做法实际吗? 第二个芒果是甜的
换作你,你会怎么做? 第三个芒果是甜的
这个果园 的芒果都 是甜的
数学皇冠上璀璨的明珠——哥德巴赫猜想
3+7=10 3+17=20 13+17=
10= 3+7 20= 3+17 30= 13+17
6=3+3, 8=3+5, 10=5+5, …… 1000=29+971, 1002=139+863, ……
人教A版选修1-2教案新部编本:2.1合情推理与演绎推理(一)(含部分答案)
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校高二文科数学备课组长:林飞燕主备人:陈艺全2015年3月10日§2.1.1 合情推理与演绎推理(一)【内容分析】:归纳是重要的推理方法,在掌握一定的数学基础知识(如数列、立体几何、空间向量等等)后,对数学问题的探究方法加以总结,上升为思想方法。
【教学目标】:1、知识与技能:(1)结合数学实例,了解归纳推理的含义(2)能利用归纳方法进行简单的推理,2、过程与方法:通过课例,加深对归纳这种思想方法的认识。
3、情感态度与价值观:体验并认识归纳推理在数学发现中的作用。
【教学重点】:(1)体会并实践归纳推理的探索过程(2)归纳推理的局限【教学难点】:引导和训练学生从已知的线索中归纳出正确的结论【练习与测试】: (基础题)1)数列2,5,11,20,,47,x …中的x 等于( ) A .28 B .32 C .33 D .272)从222576543,3432,11=++++=++=中得出的一般性结论是_____________。
3)定义,,,A B B C C D D A ****的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A )、(B )所对应的运算结果可能是( ).4 A.,B D A D ** B.,B D A C ** C.,B C A D ** D.,C D A D ** 4)有10个顶点的凸多面体,它的各面多边形内角总和是________.答案:1)B 523,1156,20119,-=-=-=推出2012,32x x -==2)2*1...212...32(21),n n n n n n n N ++++-+++-=-∈ 注意左边共有21n -项 3)B4)(n-2)3600(中等题)1)观察下列的图形中小正方形的个数,则第n 个图中有 个小正方形.2)-1 .3 .-7 .15 .( ) ,63 , , , 括号中的数字应为( ) A.33 B.-31 C.-27 D.-57 3)设平面内有n 条直线(n ≥ 3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用表示 n 条直线交点的个数,则 f (4 )=( ) A.3 B.4 C.5 D.64)顺次计算数列:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,的前4项,由此猜测123...)1()1(...321++++-++-++++=n n n a n 的结果. 答案:1)1+2+3+4+…+(n+1)=)2)(1(21++n n 2)B 正负相间,3=1+2,7=3+22,15=7+23,15+24=31,31+25=63 3)C4)依次为,1,22,32,42,所以a n =n 2。
高中数学人教A版选修1-2 2.1.1合情推理 学案
第二章 推理与证明 2.1 合情推理与演绎推理 2.1.1 合 情 推 理1.了解合情推理的含义.2.能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.基础梳理1.归纳推理.由某类事物的部分对象具有某些特征,推出这类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.2.类比推理.由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.3.合情推理.归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.通俗地说,合情推理是指“合乎情理”的推理.基础自测1.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高,可推知扇形面积公式S 扇等于(C )A .r 22B .l 22C .lr2D .不可类比 解析:由扇形的弧长与半径类比于三角形的底边与高可得C .故选C .2.从1=12,2+3+4=32,3+4+5+6+7=52,…,可得一般规律为___________________________________________________.解析:猜想:第n 个等式的左边是2n -1个连续整数的和,第1个数为n ,等式的右边是整数个数的平方,即一般规律为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)23.根据下列5个图形及相应点的个数的变化规律,试猜想第n 个图形中有______________个点.解析:第n 个图有n 个分支,每个分支上有(n -1)个点(不含中心点),再加上中心1个点,则有n(n -1)+1=n 2-n +1个点.答案:n 2-n +14.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE EB =ACBC,把这个结论类比到空间:在三棱锥ABCD 中(如图所示),平面DEC 平分二面角ACDB 且与AB 相交于点E ,则得到的类比结论是________.解析:把线段比类比到面积比,得AE EB =S △ACDS △BCD.答案:AE EB =S △ACDS △BCD(一)解读合情推理数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的一般过程为:(二)解读归纳推理 (1)归纳推理的分类.①完全归纳推理:由某类事物的全体对象推出结论. ②不完全归纳推理:由某类事物的部分对象推出结论. 需要注意的是,由完全归纳推理得到的结论是准确的,由不完全归纳推理得到的结论不一定准确.(2)归纳推理的特点.由于归纳是根据部分已知的特殊现象推断未知的一般现象,因而归纳推理具有以下特点:①所得结论超越了前提所包含的范围;②所得结论具有猜测性质,准确性需要证明;③归纳的基础在于观察、实验或经验.(3)归纳推理的一般步骤.①通过观察、分析个别情况,发现某些相同特征;②将发现的相同特征进行归纳,推出一个明确表达的一般性命题(猜想).(三)解读类比推理(1)类比推理的特点.①类比是从一种事物的特殊属性推测另一种事物的特殊属性;②类比是以原有知识为基础,猜测新结论;③类比能发现新结论,但结论具有猜测性,准确性需要证明.(2)类比推理的一般步骤.①明确两类对象;②找出两类对象之间的相似性或者一致性;③用一类事物的性质去推测另一类事物的性质,得到一个明确的结论.1.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质.(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).2.归纳推理的思维进程.实验、观察→概括、推广→猜测一般性结论.即对有限的资料进行观察、分析、归纳、整理,提出带有规律性的结论,然后对该猜想的正确性加以检验.3.一般地,归纳的个别情况越多,越具有代表性,推广的一般性命题就越可靠.4.运用类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.5.类比推理常见的几种题型.(1)类比定义:本类题型解决的关键在于弄清两个概念的相似性和相异性以及运用新概念的准确性.(2)类比性质(定理):本类题型解决的关键在于要理解已知性质(定理)的内涵、应用环境及使用方法,通过研究已知性质(定理),刻画新性质(定理)的“面貌”.(3)类比方法(公式):本类题型解决的关键在于解题方法.1.下图为一串白黑相间排列的珠子,按这种规律往下排列起来,那么第36颗珠子的颜色是(A )○○○●●○○○●●○○○●●○○……A .白色B .黑色C .白色可能性大D .黑色可能性大2.数列2,5,11,20,x ,47,…中的x 等于(B ) A .28 B .32 C .33 D .273.已知三角形的三边长分别为a ,b ,c ,其内切圆的半径为r ,则三角形的面积为:S =12(a +b +c )r ,利用类比推理,可以得出四面体的体积为(C ) A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)·r (其中S 1,S 2,S 3,S 4分别是四面体四个面的面积,r 为四面体内切球的半径)D .V =13(ab +bc +ca )h (h 为四面体的高)4.等差数列{a n }中,有2a n =a n -1+a n +1(n ≥2,且n ∈N *),类比以上结论,在等比数列{b n }中类似的结论是________.答案:b 2n =b n -1·b n +1(n ≥2,且n ∈N *)。
(教师用书)高中数学 2.1.1 合情推理教案 新人教A版选修1-2
2.1.1 合情推理(教师用书独具)●三维目标1.知识与技能(1)结合已学过的数学实例,了解归纳推理与类比推理的含义.(2)能利用归纳和类比的方法进行简单的推理.(3)体会并认识归纳推理、类比推理在数学发现中的作用.2.过程与方法让学生感受数学知识与实际生活的普遍联系,通过让学生积极参与,亲身经历归纳、类比推理定义的获得过程,培养学生归纳推理、类比推理的思想.3.情感、态度与价值观通过本节学习正确认识合情推理在数学中的重要作用,养成认真观察事物、分析事物、发现事物之间的质的联系的良好品质,善于发现问题,探求新知识.●重点难点重点:归纳推理与类比推理概念的理解,归纳推理与类比推理思想方法的掌握.难点:归纳推理、类比推理的应用.通过举例分析归纳推理与类比推理的异同,让学生对两个概念有较深刻的理解,突出本节重点,通过例题讲解总结归纳推理与类比推理的应用方法及解题规律,强化训练有关题型,化解难点.(教师用书独具)●教学建议1.关于归纳推理的教学教学时要从具体的事例出发,让学生参与猜测,引导学生归纳,激发学生学习的兴趣,总结归纳推理的过程,让学生自己去发现归纳推理的应用方法与技巧.通过适量的练习使学生掌握观察、猜测、归纳、论证各环节的规律方法,并能灵活应用.2.关于类比推理的教学类比推理的难度要大于归纳推理,教学时应该借助实例帮助学生学会分析类比对象之间的异同点,学会由已知对象的性质、特征联想类比对象的相应性质特征.通过适量练习让学生逐步掌握类比的技巧方法.引导学生总结并掌握常见的类比结论.●教学流程创设问题情境,引出问题,猜想数列的项及三角形内角和,引入归纳推理的概念.创设问题情境,引出问题,由三角形的性质,推测空间四面体的性质,从而引出类比推理的概念.创设问题情境,通过归纳推理、类比推理的概念,引出合情推理的概念.引导学生分析例题1,找出图案的个数变化,猜想出排列规律,从而计算出第六个图案的个数.总结方法,完成变式训练.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.讲解例题3,指出解题误区及如何避免,总结合情推理的应用类型解题方法.引导学生分析例题2,指出相对应的类比元素,三边对四面,高对高推测结论,并给出证明,总结类比方法,引导学生完成互动探究.【问题导思】1.数列{a n }中,a 1=12,a 2=34,a 3=78,a 4=1516.你能猜出a 5的值吗?【提示】 a 5=3132.2.直角三角形、等腰三角形、等边三角形的内角和都是180°,你能猜想出什么结论? 【提示】 所有三角形内角和都是180°.【问题导思】 已知三角形的如下性质: (1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底乘积的12.1.试根据上述三角形的性质推测空间四面体的性质.【提示】 (1)四面体任意三个面的面积之和大于第四个面的面积. (2)四面体的体积等于底面积与高乘积的13.2.以上两个推理有什么共同特点?【提示】都是根据三角形的特征,类比四面体相关元素得出结论的.【问题导思】 1.归纳推理与类比推理有没有共同点?【提示】 二者都是从具体事实出发,推断猜想新的结论.2.归纳推理与类比推理得出的结论一定正确吗?【提示】不一定正确.归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.6个图案中有菱形纹的正六边形的个数是( )图2-1-1A.26 B.31C.32 D.36【思路探究】本题中图形的变化比较简单,可有两种思路:第一种,直接查个数,找到变化规律后再猜想;第二种,看图形的排列规律,每相邻的两块无纹正六边形之间有一块“公共”的有菱形纹正六边形.【自主解答】法一有菱形纹的正六边形个数如下表:为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.故选B.法二由图案的排列规律可知,除第一块无纹正六边形需6个有菱形纹的正六边形围绕(第一个图案)外,每增加一块无纹正六边形,只需增加5块有菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的有菱形纹正六边形),第六个图案中有菱形纹的正六边形的个数为6+5×(6-1)=31,故选B.【答案】 B1.解答本题时,关键是找出相邻图形间正六边形个数的变化规律.2.对于图形中的归纳推理问题,可从图形中相关元素(点、直线等)的变化规律入手直接求解,也可将其转化为数列问题进行求解.(2012·陕西高考)观察下列不等式: 1+122<32, 1+122+133<53, 1+122+132+142<74, ………照此规律,第五个...不等式为________. 【解析】 观察每行不等式的特点,每行不等式左端最后一个分数的分母与右端值的分母相等,且每行右端分数的分子构成等差数列.∴第五个不等式为1+122+132+142+152+162<116.【答案】 1+122+132+142+152+162<116a b c P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c,可以得到结论p a h a +p b h b +p c h c=1.图2-1-2证明此结论,通过类比写出在空间中的类似结论,并加以证明.【思路探究】 三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.【自主解答】 p a h a =12BC ·p a12BC ·h a =S △PBCS △ABC,同理,p b h b =S △PAC S △ABC ,p c h c =S △PABS △ABC.∵S △PBC +S △PAC +S △PAB =S △ABC , ∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PABS △ABC=1.类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明如下:p a h a =13S △BCD ·p a13S △BCD ·h a =V P -BCDV A -BCD,同理,p b h b =V P -ACD V A -BCD ,p c h c =V P -ABD V A -BCD ,p d h d =V P -ABCV A -BCD.∵V P -BCD +V P -ACD +V P -ABD +V P -ABC =V A -BCD , ∴p a h a +p b h b +p c h c +p dh d=V P -BCD +V P -ACD +V P -ABD +V P -ABCV A -BCD=1.1.类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手,由平面中相关结论可以类比得到空间中的相关结论.2.平面图形与空间图形类比如下:在本例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A 、B 、C ,那么由a =b ·cosC +c ·cos B 可类比四面体的什么性质?【解】 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC的面积,α,β,γ依次表示面PAB ,面PBC ,面PCA 与底面ABC 所成二面角的大小. 猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.(1)写出相应的结论,判断该结论是否正确,并加以证明; (2)写出该结论一个更为一般的情形(不必证明).【思路探究】 结合已知等比数列的特征可类比等差数列每隔10项和的有关性质. 【自主解答】 (1)数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下:∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20) =10d +10d +…+10d 10个=100d =300, 同理可得:(S 40-S 30)-(S 30-S 20)=300, 所以数列S 20-S 10,S 30-S 20,S 40-S 30 是等差数列,且公差为300. (2)对于∀k ∈N *,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d .在等比数列与等差数列的类比中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.等差数列有如下性质:若数列{a n }是等差数列,则当b n =a 1+a 2+…+a nn时,数列{b n }也是等差数列;类比上述性质,相应地,若数列{c n }是正项等比数列,则当d n =________时,数列{d n }也是等比数列.【解析】 类比等差数列与等比数列的性质:定义中“差”与“商”,中项中“和”与“积”,可猜测当d n=nc1c2…c n时,{d n}为等比数列.【答案】nc1c2…c n归纳推理在数阵中的应用(12分)观察如图所示的“三角数阵”1 (1)2 2 (2)3 4 3 (3)4 7 7 4 (4)5 11 14 11 5 (5)…………记第n行的第2个数为a n(n≥2,n∈N*),请仔细观察上述“三角数阵”的特征,完成下列各题:(1)第6行的6个数依次为________、________、________、________、________、________;(2)依次写出a2、a3、a4、a5;(3)归纳出a n+1与a n的关系式.【思路点拨】观察数阵,总结规律:除首末两数外,每行的数等于它上一行肩膀上的两数之和,得出(1)的结果.(2)由数阵可直接写出答案.(3)写出a3-a2,a4-a3,a5-a4,从而归纳出(3)的结论.【规范解答】由数阵可看出,除首末两数外,每行中的数都等于它上一行的肩膀上的两数之和,且每一行的首末两数都等于行数.(1)6,16,25,25,16,6.4分(2)a2=2,a3=4,a4=7,a5=11.8分(3)∵a3=a2+2,a4=a3+3,a5=a4+4,由此归纳:a n+1=a n+n.12分对于数阵问题的解决方法,既要清楚每行、每列数的特征,又要对上、下行,左、右列间的关系进行研究,找到规律,问题即可迎刃而解.1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发展结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.合情推理的过程概括为:从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误【解析】 根据合情推理可知,合情推理必须有前提有结论,故选B. 【答案】 B2.如果数列{a n }的前n 项和S n =32a n -3,那么这个数列的通项公式是( )A .a n =2(n 2+n +1) B .a n =3·2nC .a n =3n +1D .a n =2·3n【解析】 当n =1时,a 1=32a 1-3,∴a 1=6,由S n =32a n -3,当n ≥2时,S n -1=32a n -1-3,∴当n ≥2时,a n =S n -S n -1=32a n -32a n -1,∴a n =3a n -1.∴a 1=6,a 2=3×6,a 3=32×6. 猜想:a n =6·3n -1=2·3n.故选D.【答案】 D3.下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是( ) A .三角形 B .梯形 C .矩形D .平行四边形【解析】 因为平行六面体的六个面全为平行四边形,并且相对的每一对面平行且全等.类比这一性质可知平面中应类比平行四边形更合适.【答案】 D4.在Rt △ABC 中,若∠C =90°,则cos 2A +cos 2B =1,在立体几何中,给出四面体性质的猜想.【解】 如图,在Rt △ABC 中,cos 2A +cos 2B =(a c )2+(b c )2=a 2+b 2c2=1.把结论类比到四面体P -ABC 中,我们猜想,在三棱锥P -ABC 中,若三个侧面PAB ,PBC ,PCA 两两互相垂直,且与底面所成的二面角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.一、选择题1.下列关于归纳推理的说法错误的是( ) A .归纳推理是一种从一般到一般的推理过程 B .归纳推理是一种从特殊到一般的推理过程 C .归纳推理得出的结论不一定正确 D .归纳推理具有由具体到抽象的认知功能【解析】归纳推理是由特殊到一般的推理,其结论未必正确.故B、C、D正确,A错误.【答案】 A2.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任意两条棱的夹角相等;②各个面是全等的正三角形,相邻的两个面所成的二面角相等;③各个面是全等的正三角形,同一顶点上的任意两条棱的夹角相等;④各棱长相等,相邻的两个面所成的二面角相等.A.①④B.①②C.①③D.③④【解析】类比推理的原则是:类比前后保持类比规则的一致性,而③④违背了这一原则,只有①②符合.【答案】 B3.观察下列各式:72=49,73=343,74=2 401,…,则72 011的末两位数字为( ) A.01 B.43 C.07 D.49 【解析】72=49,73=343,74=2 401,75=16 807,76=117 649,…,由此看出,末两位数字具有周期性,且周期为4,又2 011=4×502+3,由此知72 011的末两位数字应为43,故选B.【答案】 B4.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④【解析】①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理.【答案】 C5.已知f1(x)=cos x,f2(x)=f′1(x),f3(x)=f′2(x),f4(x)=f′3(x),…,f n(x)=f′n-1(x),则f2 013(x)等于( )A.sin x B.-sin x C.cos xD.-cos x【解析】 f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x , 可以归纳出f 4n (x )=sin x ,f 4n +1(x )=cos x , f 4n +2(x )=-sin x ,f 4n +3(x )=-cos x ,∴f 2 013(x )=f 1(x )=cos x . 【答案】 C 二、填空题6.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为________.【解析】 结合等差数列的特点,类比等比数列中b 1b 2b 3…b 9=29可得,在{a n }中,若a 5=2,则有a 1+a 2+a 3+…+a 9=2×9.【答案】 a 1+a 2+a 3+…+a 9=2×97.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图2-1-3).图2-1-3试求第七个三角形数是________.【解析】 观察知第n 个三角形数为1+2+3+…+n =n n +2,∴当n =7时,+2=28.【答案】 288.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.【解析】 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,∴它们的体积比为1∶8.【答案】 1∶8 三、解答题9.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f (n )表示这n 条直线交点的个数.(1)求f (4);(2)当n >4时,求f (n )(用n 表示).【解】 (1)如图所示,可得f (4)=5. (2)∵f (3)=2,f (4)=5=f (3)+3,f (5)=9=f (4)+4, f (6)=14=f (5)+5.……∴每增加一条直线,交点增加的个数等于原来直线的条数. ∴f (n )=f (n -1)+n -1,累加得f (n )=f (3)+3+4+5+…+(n -1) =2+3+4+5+…+(n -1)=12(n +1)(n -2).10.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n+2=0(n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.【解】 当n =1时,S 1=a 1=1;当n =2时,1S 2=-2-S 1=-3,∴S 2=-13;当n =3时,1S 3=-2-S 2=-53,∴S 3=-35;当n =4时,1S 4=-2-S 3=-75,∴S 4=-57.猜想:S n =-2n -32n -1(n ∈N *).11.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD=1AB+1AC 成立.那么在四面体A-BCD 中,类比上述结论,你能得到怎样的猜想,并说明猜想是否正确及理由.【解】 猜想:类比AB ⊥AC ,AD ⊥BC ,可以猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE=1AB+1AC+1AD .猜想正确.如图所示,连接BE ,并延长交CD 于F ,连接AF .∵AB⊥AC,AB⊥AD,∴AB⊥平面ACD.而AF⊂平面ACD,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴1AE2=1AB2+1AF2.在Rt△ACD中,AF⊥CD,∴1AF2=1AC2+1AD2.∴1AE2=1AB2+1AC2+1AD2,故猜想正确.(教师用书独具)三角形与四面体有下列相似性质:(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形.通过类比推理,根据三角形的性质推测空间四面体的性质填写下表:面,即平面的线类比到空间为面.三角形的中位线对应四面体的中位面,三角形的内角对应四面体的二面角,三角形的内切圆对应四面体的内切球.【自主解答】将平面几何中的三角形、长方形、圆、面积等和立体几何中的三棱锥、长方体、球、体积等进行类比,是解决和处理立体几何问题的重要方法.已知椭圆具有以下性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,若直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似的性质,并加以证明.【解】 类似的性质为:若M 、N 是双曲线x 2a 2-y 2b2=1上关于原点对称的两个点,点P 是双曲线上任意一点,若直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M 、P 的坐标为(m ,n )、(x ,y ),则N (-m ,-n ).∵点M (m ,n )在已知双曲线上,∴n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).。
人教版高中选修1—2数学2.1合情推理与演绎推理教案(1)
导学案:2.1合情推理与演绎推理
教学目标:让学生了解合情推理与演绎推理的概念
教学重点、难点:合情推理与演绎推理的概念及区别
知识链接:
1.合情推理的基本概念
(1)从结构上说,推理一般由两部分组成,一部分是以知的事实(或假设),叫做;一部分是由以知判断推出的新判断,叫做
(2)合情推理的主要形式有和
(3)归纳推理包括和
(4)根据两类不同事物之间具有某些类似(或一致)性,推测其中异类事物具有与另一类事物类似(或相同)的性质的推理,叫做
2.演绎推理的基本概念
(1)根据一般性的真命题导出特殊性命题为真的推理,叫做
(2)数学中常用演绎推理的规则是,,
(3)“三段论”推理的一般模式包括,,
(4)把所有情况都考虑在内的演绎推理规则叫做
3.几种推理的比较
(1)归纳推理是的推理
类比推理是的推理
(2)合情推理的结论
演绎推理的结论
例题讲解:
例1.观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?
例2.把下面在平面内成立的结论类比推广到空间,并判断类比的结论是否成立:
1)如果一条直线与两条平行直线中的一条相交,则必于另一条相交。
2)如果两条直线同时垂直与第三条直线,则这两条直线平行。
例3.(1)证明21001不能被2整除
(2)在锐角三角形ABC中,E
,⊥
⊥是垂足。
求证:的中点M到E
D,的距离相等。
,
AD,
AC
BE
BC
D。
人教版数学高二【素材】新人教A版选修1-2 2.1《合情推理》教案说明
《合情推理》教案说明一、授课内容的数学本质与教学定位人们习惯于把数学看成是演绎科学、研究结构的科学,主要是由于人们习惯上从数学研究的结果来看数学的本质特征.然而,结果并不能反映数学的全貌,组成数学整体的另一个非常重要的方面是数学研究的过程,一个“思维的实验过程”.波利亚(G. Poliva,1888一1985)认为,“数学有两个侧面,由欧几里德方法提出来的数学看来像是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学.”本节课的设计就是为了还原数学的本质,让学生意识到数学不仅仅是演绎的科学,更是归纳的科学.本节课的教学目标:1.知识技能目标理解归纳推理的概念,了解归纳推理的作用,掌握归纳推理的一般步骤,会利用归纳进行一些简单的归纳推理.2.过程方法目标学生通过积极主动地参与课堂活动,经历归纳推理概念的获得过程,了解归纳推理的含义;通过欣赏一些伟大猜想的产生过程,体会并认识利用归纳推理能猜测和发现一些新事实、得出新结论的作用并明确归纳推理的一般步骤;通过具体解题,感受归纳推理探索和提供解决问题的思路和方向的作用;通过自主学习归纳推理的一般方法,建构归纳推理的思维方式.3.情感态度,价值观目标学生通过主动探究、合作学习、相互交流,培养不怕困难、勇于探索的优良作风,增强数学应用意识;通过体会成功,形成学习数学知识、了解数学文化的积极态度.二、学习本内容的基础以及用处推理与证明思想不仅贯穿于高中数学的整个知识体系,在其他学科领域也有多处涉及.在高中历史教材《历史人物评说》中介绍亚里士多德时,对推理做了一定的介绍;高中政治学科的科学方法论中的推理内容对推理也做了相应的讲述;物理、化学、生物、地理等许多学科中的伟大猜想及定理的产生都源于合情推理;高中生本身的学习生活阅历中也有很多合情推理的实例.通过本节课学生可以真正的体会到数学与其他学科的交叉性、互补性,初步体会科学的方法论在日常生活的作用.同时,本节课的学习有助于学生更完整更准确地认识到数学不仅仅是演绎科学,更是归纳的科学;有助于学生形成归纳推理的思维方式, 培养创新精神,为将来合理地提出新思想、新概念、新方法奠定好基础;有助于学生养成良好的科学态度和严谨的学习作风,形成言之有理、论证有据的习惯.三、教学诊断分析本节内容中,学生会较快接受推理的概念,但是对于推理方法的分类会有一定的疑惑.本节课先利用四个例子让学生通过直观感知、观察分析、归纳类比做出合理分类,抽象概括出合情推理和归纳推理的概念,再利用分组讨论降低了概念学习的难度,使学生能够更多围绕归纳推理这个重点展开探索和研究.在体验哥德巴赫猜想产生的过程中,当所给的偶数较大时,学生的检验会遇到相当大的困难;在体会四色猜想的产生过程中设计了浙江省地图的着色过程,学生的思维容易产生混乱,不知道地图着色如何下手.本节课巧妙利用相应的计算机软件解决了上述两个难点.在充分体会了归纳推理的生活实例和数学实例以及其他学科实例之后,学生充分感受到数学美和发现规律的喜悦,能够自主总结出归纳推理的一般步骤,但是容易忽略归纳推理所得结论的不可靠性,从而忽略检验的步骤.所以本节课设计了费马猜想的产生及推翻过程,让学生充分体会检验的必要性,体会数学发展的螺旋上升过程.对于例1的(1)小题,学生能非常熟练地运用归纳推理得出通项公式,但容易忽略所得结论的不可靠性和证明的必要性.所以本节课设计引导学生再用演绎推理的方法解题,就能直观地比较出归纳推理和演绎推理两种思维方式不同的优势.例1的第(2)小题是在(1)上的一种深化,学生无法运用演绎推理的方式直接解题,但可以运用归纳推理探索解题的方向,从而进一步感受归纳推理的优势.四、本节课的教法特点1.引入的设计充分体现了学生的数学情怀.中学数学教学中的大规模练习使学生对于数学有了根深蒂固的认识:数学是严肃枯燥的,数学是解决问题的科学.从某种意义上讲当前中学数学的教学不同程度地掩盖了数学的本质.引入设计采用的调查报告中的数据很容易引起学生的共鸣,抓住了本节课的授课本质,为改变学生对数学的认识现状作好了必要的铺垫.2. 问题的选择注重强调数学的文化价值.本节课创设了四色猜想、哥德巴赫猜想、费马猜想的发现情境,并有相应的数学史的介绍.学生在体验三大猜想产生的过程中自然地受到数学文化的熏陶,也能学习到数学家的数学思想精神、思维方法和看问题的着眼点等,从而提高了自身的数学素养.3. 充分尊重学生的思维活动和自主探究.在分组讨论的过程中给学生想的时间、说的机会以及展示思维过程的舞台;在活动中引导学生用归纳的思维方法思考问题,要求学生在学习归纳推理的过程中运用归纳推理,有效地提高了课堂教学的效率和容量.4. 计算机软件应用灵活、有针对性.在本节授课过程中,共设计使用了三次计算机演示操作,分别是在探究四色猜想、哥德巴赫猜想和练习中使用的画板、数学应用软件和几何画板,将授课过程中的难点一一化解.尤其是在四色猜想的探究过程中,画板的使用使本来非常难处理的问题简单化、直观化.5.注重学生个性发展.对课本例1进行了发展与深化,创设学生的思维困难,体会归纳推理的思维简单性、合理性;练习设计则降低对知识的要求,使得不同层次的学生都能得到相应的训练,提高课堂的思维效率;作业设计中的网站浏览有利于丰富学生的知识,拓展视野,将数学课堂延伸到学校以外;作业中的选做题为学有余力的学生提供进一步发展的空间.五、本节课的预期效果学生在达到本节课的教学目标的基础上,能深刻体会到数学是生动的、有趣的,数学的本质并非仅仅是解决问题,更重要的是发现问题(数学不仅仅是演绎的科学,更是归纳的科学).。
2.1.合情推理-人教A版选修1-2教案
2.1 合情推理-人教A版选修1-2教案一、教学目标1.了解合情推理的定义和基本原理;2.掌握判断命题的真伪方法;3.能通过合情推理解决实际问题;4.培养学生的逻辑思维能力和判断能力。
二、教学重点和难点重点1.合情推理的定义和基本原理2.判断命题的真伪方法难点1.培养学生的逻辑思维能力和判断能力三、教学过程1. 导入(5分钟)以学生身边的例子,让学生思考一下如下问题:“小明买了一顶帽子,他非常喜欢这个帽子,因为这个帽子是红色的。
请问,这顶帽子是红色的吗?”引导学生思考帽子的颜色和问题的答案是否一致,引出合情推理的概念。
2. 讲解合情推理(15分钟)1.合情推理的定义:即根据已知情况推出合理结论的一种方法。
其他的情况都没有考虑到,只是根据已知情况得到的结论。
2.合情推理的常用方法:例如演绎推理、归纳推理、类比推理等等。
3.合情推理的优缺点:询问问题必须非常准确,才能得出准确的答案;但合情推理在许多情况下也是必须的。
3. 合情推理例题讲解(15分钟)请看下面的例子:“小张说他家有一只猫,但他的狗在家中而不是在院子里。
请问他家中这只猫的获得方式是什么?”这个问题看起来很难回答,但如果我们能够利用合情推理,就会得出正确答案。
具体方法如下:1.小张说他家有一只猫,也就是说小张是猫的主人;2.他的狗在家中而不是在院子里,说明小张家中只有一只狗。
3.因此,小张家中这只猫的获得方式只有一种可能:就是小张自己领养得到的。
从这个例子可以看出,合情推理不仅可以解决不易回答的问题,而且可以使我们拓宽思考的范围。
4. 合情推理实例练习(40分钟)1.“明天不下雨”这个命题是真是假?2.山东的落日岛属于海岛吗?3.如果今天是星期天,后天是星期几?5. 总结(5分钟)回顾本节课所学的知识点,并且重点强调实践与应用的意义。
四、课后作业1.阅读教材相关部分,巩固知识点;2.观察身边的现象,编写三个合情推理的例子;3.思考突破现有思维模式的方法,将思考结果写入日记或笔记本中。
高中数学(合情推理)教案1 新人教A版选修2-2 教案
课题:2.1.1合情推理(1)●三维目标:(1)知识与技能:掌握归纳推理的技巧,并能运用解决实际问题。
(2)过程与方法:通过“自主、合作与探究”实现“一切以学生为中心”的理念。
(3)情感、态度与价值观:感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
●教学重点:归纳推理及方法的总结。
●教学难点:归纳推理的含义及其具体应用。
●教具准备:与教材内容相关的资料。
●课时安排:1课时●教学过程:一.问题情境(1)原理初探①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?③探究:他是怎么发现“杠杆原理”的?从而引入两则小典故:(图片展示-阿基米德的灵感)A:一个小孩,为何轻轻松松就能提起一大桶水?B:修筑河堤时,奴隶们是怎样搬运巨石的?正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。
④思考:整个过程对你有什么启发?⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。
(2)皇冠明珠追逐先辈的足迹,接触数学皇冠上最璀璨的明珠—“歌德巴赫猜想”。
链接:思考:其他偶数是否也有类似的规律?③讨论:组织学生进行交流、探讨。
④检验:2和4可以吗?为什么不行?⑤归纳:通过刚才的探究,由学生归纳“归纳推理”的定义及特点。
3.数学建构●把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).注:归纳推理的特点;简言之,归纳推理是由部分到整体、由特殊到一般的推理。
●归纳推理的一般步骤:实验、观察概括、推广猜测一般性结论4.师生活动例1 前提:蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇、鳄鱼、海龟、蜥蜴都是爬行动物.结论:所有的爬行动物都是用肺呼吸的。
例2 前提:三角形的内角和是1800,凸四边形的内角和是3600,凸五边形的内角和是5400,…… 结论:凸n 边形的内角和是(n —2)×1800。
人教A版选修2-2 2.1.1 合情推理 (1) 教案
教学目标:1.了解归纳推理的概念和归纳推理的作用.2.掌握归纳推理的一般步骤.3.能利用归纳进行一些简单的推理.教学重点:了解合情推理的含义,能利用归纳进行简单的推理.教学难点:用归纳进行推理,做出猜想.教学过程:一、创设情境从一个或几个已知命题得出另一个新命题的思维过程称为推理.任何推理都包含前提和结论两个部分,前提是推理所依据的命题,它告诉我们已知的知识是什么;结论是根据前提推得的命题,它告诉我们推出的知识是什么.下面我们来看3个推理案例:案例1 前提 当0n =时, 21111n n -+=; 当1n =时,21111n n -+=; 当2n =时,21113n n -+=; 当3n =时,21117n n -+=;当4n =时,21123n n -+=; 当5n =时,21131n n -+=.11,11,13,17,23, 31都是质数. 结论 对于所有的自然数n ,211n n -+的值都是质数.案例2 前提 矩形的对角线的平方等于长、宽的平方和.结论 长方体的对角线的平方等于长、宽、高的平方和.案例3 前提 所有的金属都能导电,铜是金属.结论 铜能导电.三个推理案例的共同点是它们都是由“前提”和“结论”两部分组成,但是在推理的结构形式上表现出不同的特点,据此可以分为合情推理与演绎推理.二、构建新知在案例1中,由“对自然数n 的几个特殊值,211n n -+都是质数”,推出“对所有自然数n ,211n n -+都是质数.”我们再看几个类似的推理实例:1.蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的.因为蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所以我们猜想所有的爬行动物都是用肺呼吸的.2.三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒.归纳推理的一般步骤:(1)对有限的资料进行观察、分析、归纳 整理;(2)提出带有规律性的结论,即猜想;(3)检验猜想.归纳推理的思维过程:三、数学运用例1 已知数列{a n }的每一项均为正数,221111(12)n n a a a n +=,=+=,,L ,试归纳出数列{a n }的一个通项公式.分析 学生通过具体的:当1n =时,11a =,当2n =时,2a ,当3n =时,2a 由此我们猜想{a n }的一个通项公式为n a .例2 已知数列{a n }的通项公式21()(1)n a n n +N =∈+, 12()(1)(1)(1)n f n a a a ⋅⋅⋅=---.试通过计算(1)(2)(3)f f f ,,的值,推测出()f n 的值.分析 学生讨论结果预测如下:113(1)1144f a =-=-= 1213824(2)(1)(1)(1)(1))94936f a a f ⋅⋅=--=-=== 12312155(3)(1)(1)(1)(2)(1)163168f a a a f ⋅⋅=---=-== 由此猜想,2()2(1)n f n n +=+ 四、学生探究 1.已知111()1()23f n n n +⋅⋅⋅N =++++∈,经计算:3(2)2f =,(4)2f >,5(8)2f >,(16)3f >,7(32)2f >,推测当2n ≥时,有_______________________. 2.已知:2223sin 30sin 90sin 1502++=o o o ,2223sin 5sin 65sin 1252++=o o o . 观察上述两等式的规律,请你写出一般性的命题,并证明之.o o o o o o.3.观察(1)tan10tan20tan20tan60tan60tan101++=o o o o o o.(2)tan5tan10tan10tan75tan75tan51++=由以上两式成立,推广到一般结论,写出你的推论.五、课堂总结1.归纳推理的特点:(1)归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.(2)归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.(3)归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.提出带有规律性的结论.(4)归纳推理是由部分到整体,从特殊到一般的推理.通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.2.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同的性质.(2)从已知的相同性质中推出一个明确表述的一般命题(猜想).六、课后作业教材第66页练习第2题,第3题,第4题,第5题.。
(教师用书)高中数学 2.1.1 合情推理课件 新人教A版选修1-2
需 6 个有菱形纹的正六边形围绕(第一个图案)外, 每增加一块 无纹正六边形,只需增加 5 块有菱形纹正六边形(每两块相邻 的无纹正六边形之间有一块“公共”的有菱形纹正六边形), 第六个图案中有菱形纹的正六边形的个数为 6+ 5×(6-1)= 31,故选 B.
【答案】 B
1.解答本题时,关键是找出相邻图形间正六边形个数的 变化规律. 2 .对于图形中的归纳推理问题,可从图形中相关元素 (点、 直线等)的变化规律入手直接求解, 也可将其转化为数列 问题进行求解.
合情推理
【问题导思】 1.归纳推理与类比推理有没有共同点? 【提示】 二者都是从具体事实出发,推断猜想新的结
论. 2.归纳推理与类比推理得出的结论一定正确吗?
【提示】 不一定正确.
归纳推理和类比推理都是根据已有的事实, 经过猜想
【自主解答】 法一 有菱形纹的正六边形个数如下表:
图案 个数
1 6
2 11
3 16
… …
由表可以看出有菱形纹的正六边形的个数依次组成一个 以 6 为首项,以 5 为公差的等差数列,所以第六个图案中有 菱形纹的正六边形的个数是 6+5×(6-1)=31.故选 B.
法二
由图案的排列规律可知,除第一块无纹正六边形
归纳推理
【问题导思】 1 3 7 15 1.数列{an}中,a1=2,a2=4,a3=8,a4=16.你能猜出 a5 的值吗?
31 【提示】 a5=32.
2.直角三角形、等腰三角形、等边三角形的内角和都是 180° ,你能猜想出什么结论?
【提示】 所有三角形内角和都是 180° .
定义 由某类事物的 部分对象 具有某些 特征,推出该类事物的 全部对象 都具有这些特征的推理,或者由
高中数学新人教版A版精品教案《2.1.1 合情推理》
《合情推理—归纳推理》教学设计海南华侨中学林五虚1教材分析“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式,本章的内容属于数学思维方法的范畴。
推理与证明思想贯穿于高中数学的整个知识体系,作为一章内容出现在选修2-2教材中,目的是把过去渗透在具体数学内容中的思维方法,以集中的、显性的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识地使用,同时培养言之有理,论证有据的习惯。
这一章内容突出体现了数学的人文价值和实际应用价值。
合情推理之归纳推理是这一章的第一节内容。
学习该节内容可以加深学生对数学发现过程的认识,也能够让学生更好地体会数学的本质.这一节内容的学习立意是把归纳推理作为一个重要的数学思维的过程,让学生了解归纳推理的含义,着重学会用归纳的方法进行数学推理和猜想。
并为后面学习类比推理做铺垫。
2学情分析1 高中学生已经有了一定的生活和学习经历,并在这些过程中形成了归纳推理的隐性能力。
2 学生已经在学习生活中掌握了大量的运用归纳推理的生活实例和数学实例,这些内容是学生理解归纳推理的重要基础3学生已经学习过必修5数列部分内容,对从部分推断总体已有初步的认识和体会。
3教学目标(1)知识目标:了解归纳推理的概念,了解归纳推理的作用,掌握归纳推理的一般步骤,会运用归纳推理的思维思考处理一下有关的数学问题和生活问题。
(2)过程与方法目标:学生通过积极主动地参与课堂活动,经历归纳推理概念的获得过程,了解归纳推理的含义;通过欣赏一些伟大猜想的产生过程,体会并认识如何利用归纳推理去猜测和发现一些新事实、得出新结论;通过具体解题,感受归纳推理探索和提供解决问题的思路和方向的作用,从而让学生对归纳推理有一个理性的认识,归纳推理不仅是一个概念,更是一个数学发现的过程(3)情感目标:学生通过主动探究、合作学习、相互交流,培养不怕困难、勇于探索的优良作风,增强了数学应用意识;通过体会成功,形成学习数学知识、了解数学文化的积极态度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时 2.1.1 合情推理(一)
教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,
体会并认识归纳推理在数学发现中的作用.
教学重点:能利用归纳进行简单的推理. 教学难点:用归纳进行推理,作出猜想. 教学过程:
一、新课引入:
1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.
2. 费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对0
20213F =+=,
1
2
12
15F =+=,2
2
22
117
F =+=,32321257F =+=,4
242165537F =+=的观察,发现其结
果都是素数,于是提出猜想:对所有的自然数n ,任何形如221n
n F =+的数都是素数. 后来瑞士数学家欧拉,发现5
252142949672976416700417F =+==⨯不是素数,推翻费马猜想.
3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明. 二、讲授新课: 1. 教学概念:
① 概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.
② 归纳练习:(i )由铜、铁、铝、金、银能导电,能归纳出什么结论?
(ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论? (iii )观察等式:2221342,13593,13579164+==++==++++==,能得出怎样的结论?
③ 讨论:(i )统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?
(ii )归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段) (iii )归纳推理的结果是否正确?(不一定) 2. 教学例题:
① 出示例题:已知数列{}n a 的第1项12a =,且1(1,2,)
1n n n
a a n a +==+ ,试归纳出通项公
式.
(分析思路:试值n =1,2,3,4 → 猜想n a →如何证明:将递推公式变形,再构造新数列)
② 思考:证得某命题在n =n 0时成立;又假设在n =k 时命题成立,再证明n =k +1时命题也成立. 由这两步,可以归纳出什么结论? (目的:渗透数学归纳法原理,即基础、递推关系)
③ 练习:已知(1)0,()(1)1,f af n bf n ==-= 2,0,0n a b ≥>>,推测()f n 的表达式. 3. 小结:①归纳推理的药店:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想的提出;数列通项公式的归纳. 三、巩固练习:
1. 练习:教材P 38 1、2题.
2. 作业:教材P 44 习题A 组 1、2、3题.。